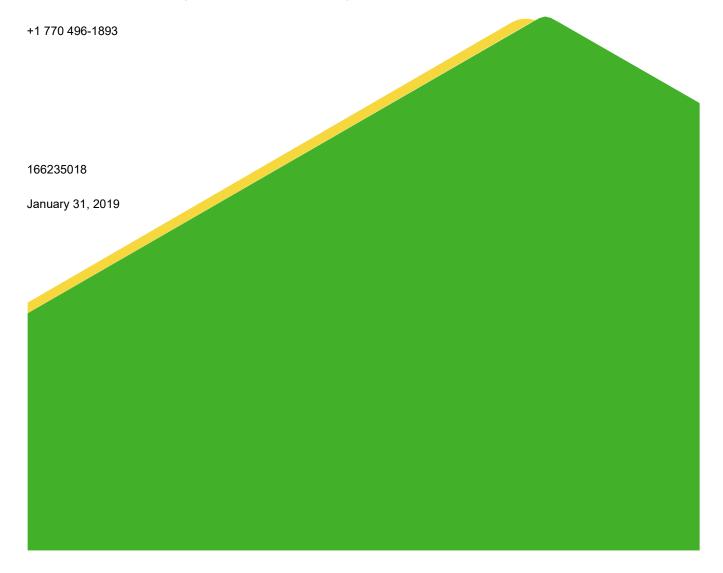


REPORT

Annual Groundwater Monitoring & Corrective Action Report

Plant Scherer Ash Pond 1 (AP-1)

Submitted to:


Georgia Power Company

3895 McGill Boulevard

Submitted by:

Golder Associates Inc.

5170 Peachtree Road Building 100 Suite 300, Atlanta, Georgia, USA 30341

Distribution List

Buddy Edmond - Plant Scherer

Tyler J. Boyles - Georgia Power Company

Joju Abraham, PG - Southern Company Services

Justin Wong - Georgia Power Company

İ

Table of Contents

1.0	INTRO	ODUCTION	2
	1.1	Site Description and Background	2
	1.2	Regional Geology and Hydrogeologic Setting	2
	1.3	Groundwater Monitoring Well Network	3
2.0	GRO	JNDWATER MONITORING ACTIVITIES	3
	2.1	Monitoring Well Installation and Maintenance	3
	2.2	Assessment Monitoring	4
	2.3	Additional Piezometer Installation & Sampling	4
3.0	SAME	PLE METHODOLOGY & ANALYSIS	4
	3.1	Groundwater Level Measurement	4
	3.2	Groundwater Gradient and Flow Velocity	4
	3.3	Groundwater Sampling	5
	3.4	Laboratory Analyses	6
	3.5	Quality Assurance and Quality Control	6
4.0	STAT	ISTICAL ANALYSES	6
	4.1	Statistical Methodology	6
	4.1.1	Appendix III Constituents	6
	4.1.2	Assessment Monitoring Statistics	7
	4.2	Statistical Analysis Results	8
	4.2.1	First Semi-Annual Assessment Monitoring Event (June 2018)	9
	4.2.2	Second Semi-Annual Assessment Monitoring Event	9
5.0	ALTE	RNATE SOURCE DEMONSTRATIONS	9
6.0	MONI	TORING PROGRAM STATUS	.10
7.0	CONC	CLUSIONS AND FUTURE ACTIONS	.10
8.0	RFFF	RENCES	.10

TABLES

Table 1	Monitoring Well Network Summary
Table 2	Groundwater Sampling Event Summary for 2018
Table 3	Summary of Groundwater Elevations
Table 4	Groundwater Flow Velocity Calculations - 2018
Table 5A	Summary of Groundwater Analytical Data (March 2018)
Table 5B	Summary of Groundwater Analytical Data (June 2018)
Table 5C	Summary of Groundwater Analytical Data (October 2018)

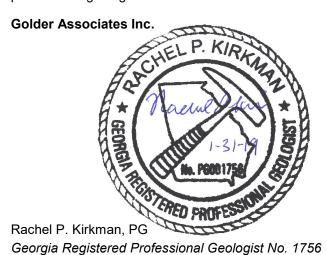
No table of figures entries found.

FIGURES

Figure 1	Site Location Map
Figure 2	Site Plan and Monitoring Well Location Map
Figure 3A	Potentiometric Surface Elevation Contour Map – June 2018
Figure 3B	Potentiometric Surface Elevation Contour Map – October 2018

APPENDICES

Appendix A Laboratory Analytical & Field Sampling Results


Appendix B Statistical Analyses

Appendix C Appendix IV ASD

Certification

This 2018 Annual Groundwater Monitoring & Corrective Action Report, Georgia Power Company Plant Scherer-Ash Pond (AP-1) has been prepared in accordance with the United States Environmental Protection Agency (USEPA) coal combustion residual (CCR) rule (40 Code of Federal Regulations [CFR] 257 Subpart D; published in 80 FR 21302-21501, April 17, 2015) and the Georgia Environmental Protection Division Rules for Solid Waste Management 391-3-4-.10 under the direction of a licensed professional engineer as well as a licensed professional geologist with Golder Associates Inc.

I hereby certify that this 2018 Annual Groundwater Monitoring & Corrective Action Report, Georgia Power Company Plant Scherer-Ash Pond (AP-1) located at 10986 Georgia 87, Juliette, Georgia 31046, has been prepared to meet the requirements of 40 CFR §257.90(e).

Golder Associates Inc.

W. Randall Sullivan, PEn. 31, 2019

Georgia Registered Professional Engineer No. 13030

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/24912g/project files/200 reports/annual gw monitoring & corrective action report/2018 annual gwmca report/ap-1/final/2018 annual gwmr ap1 final 1.28.2019.docx

1

1.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (USEPA) Coal Combustion Residuals (CCR) rule (40 Code of Federal Regulations [CFR] 257 Subpart D and the Georgia Environmental Protection Division (EPD) Rules for Solid Waste Management 391-3-4-.10, Golder Associates Inc. has prepared this 2018 Annual Groundwater Monitoring and Corrective Action Report to document groundwater monitoring activities conducted at the Georgia Power Company (Georgia Power)'s Plant Scherer Ash Pond (AP-1). Semi-annual monitoring and reporting for Plant Scherer is performed in accordance with the monitoring requirements of 40 CFR §257.90 through §257.95 of the Federal CCR rule, and Georgia EPD Rules for Solid Waste Management 391-3-4-.10(6)(a).

1.1 Site Description and Background

Plant Scherer is a four-unit, coal-fired power generation facility located in northeast Monroe County, GA, and is operated by Georgia Power. The Plant is situated approximately 5 miles south of Juliette, GA and is surrounded primarily by agricultural and residential land use. The property occupies approximately 12,000 acres and is bounded on the south by Lake Juliette. Figure 1, Site Location Map, depicts the location of Plant Scherer relative to the surrounding area.

CCR resulting from power generation has historically been transferred and stored at ash pond AP-1. AP-1 has been in operation since the plant became commercially operational in 1982. Figure 2, Site Plan and Monitoring Well Location Map depicts the general configuration of AP-1 and site monitoring wells.

The site is located within the Piedmont Physiographic Province of central Georgia, which is characterized by gently rolling hills and narrow valleys, with locally pronounced linear ridges. Overall, the property slopes gently south toward Lake Juliette and east toward the Ocmulgee River (Figure 1). The ash pond is located on a topographically high area, with several relatively small, intermittent and perennial creeks and streams surrounding the pond. Several isolated hilltops occur west of the pond and represent topographic high points on the site. Topographic relief across the site is greater than 200 feet, with a natural topographic high of over 570 feet above mean sea level (ft msl) occurring along the ridge west of the ash pond, and a topographic low of less than 380 ft msl in the eastern portion of the site near Berry Creek.

1.2 Regional Geology and Hydrogeologic Setting

The following section and subsections include a general description of regional geologic and hydrogeologic characteristics of formations that occur beneath the site. Information presented in this section is based on published literature, discussion with local geologic experts, and experience working in this geologic terrain.

The metamorphic and igneous rocks that underlie the area have been subjected to physical and chemical weathering which has created a landscape dissected by creeks and streams forming a dendritic drainage pattern. These rocks are deeply weathered due to the humid climate and bedrock is typically overlain by a variably thick blanket of residual soils and saprolite. The overall depth of weathering in the Piedmont is generally about 20 to 60 feet; however, the depth of weathering along discontinuities and/or very feldspathic rock units may extend to depths greater than 100 feet. Because of such variations in rock types and structure, the depth of weathering can vary significantly over short horizontal distances.

The near surface conditions were determined based upon available boring and monitoring well installation logs. Based on our review of this information, residual soils, consisting of primarily sandy silt, silty sand, sandy clay and

silty clay, occur as a variably-thick blanket overlying bedrock across most of the site. The thickness of the residual soil encountered in the borings is variable, ranging from approximately 17 feet to 168 feet, with an average residual soil thickness of about 57 feet. Saprolitic soils and/or saprolitic rock vary in thickness across the site but were generally encountered at or near ground surface; saprolitic rock is considered to be partially weathered rock (PWR) as defined by blow counts, where available. Material overlying the top of rock surface, including residual soils, saprolite, and transitionally weathered rock, is collectively referred to as overburden or regolith.

1.3 Groundwater Monitoring Well Network

Pursuant to §257.91, a groundwater monitoring system was installed within the uppermost aquifer at AP-1. The monitoring system is installed to monitor groundwater passing the waste boundary of AP-1 within the uppermost aquifer. Wells are located to serve as upgradient and downgradient wells based on groundwater flow direction as determined by the potentiometric surface elevation contour maps. The monitoring well network was certified by a Professional Engineer in Georgia on October 17, 2017, and the certification is maintained in the Operating Record pursuant to §257.90(f)(6).

The certified monitoring well network for AP-1 consists of 25 monitoring wells. Table 1A, Monitoring Well Network Summary includes the pertinent construction details for the AP-1 monitoring well network at Plant Scherer. Additionally, a series of groundwater piezometers have been installed for gauging groundwater elevations. Table 1B, Piezometer Network Summary includes pertinent construction details for the AP-1 piezometer network at Plant Scherer.

2.0 GROUNDWATER MONITORING ACTIVITIES

In accordance with 40 CFR §257.90(e), the following describes monitoring-related activities performed during the preceding year and discusses any change in status of the monitoring program. Groundwater sampling was performed in accordance with 40 CFR §257.93. Samples were collected from each well in the certified monitoring system. The location of each of these monitoring wells is shown on Figure 2.

Table 2, Groundwater Sampling Event Summary, presents a summary of groundwater sampling events completed for AP-1. Groundwater sampling events were conducted for AP-1 during March 2018, June 2018 and October/December 2018. During the March 2018 sampling event, groundwater samples were collected and analyzed for Appendix IV to meet the requirement of §257.95(b). During each of the June and October/December 2018 semi-annual sampling events, groundwater samples were collected for both Appendix III and the Appendix IV constituents detected during the March 2018 event at each detection monitoring well. Results of sampling activities conducted in 2018 are presented in Appendix A, Analytical Results and Field Sampling Forms.

2.1 Monitoring Well Installation and Maintenance

There was no change to the certified groundwater monitoring system in 2018; the network remained the same as in the 2017 (previous) reporting year. Monitoring well-related activities were limited to visual inspection of well conditions prior to sampling, recording the site conditions, and performing exterior maintenance to provide safe access for sampling.

In August and September, seven additional piezometers (PZ-36S, PZ-39S, PZ-40I, PZ-41S, PZ-42I, PZ-43S, and PZ-44I) were installed to help further characterize site hydrogeologic conditions. The additional site piezometers and pertinent construction details is presented on Table 1B.

2.2 Assessment Monitoring

Pursuant to §257.94(e)(3), an assessment monitoring program has been established for AP-1 at Plant Scherer based on statistically significant increases documented in the 2017 Annual Groundwater Monitoring and Corrective Action Report, (Golder 2018). A notice of assessment monitoring was placed in the operation record on May 15, 2018.

As per the requirements of §257.95, sampling, analyses and statistical evaluation of Appendix IV constituents was completed during 2018. Results of the assessment monitoring are discussed in section 4.0 and presented in Appendix A.

2.3 Additional Piezometer Installation & Sampling

To further characterize site conditions, additional site piezometers were installed in August and September 2018. Each of these additional site piezometers (PZ-36S, PZ-39S, PZ-40I, PZ-41S, PZ-42I, PZ-43S, PZ-44I) were sampled for Appendix III and Appendix IV constituents to further characterize groundwater conditions at the site. Additionally, select wells (SGWC-11, SGWC-15, SGWC-18 and SGWC-20) were sampled for primary cations and anions to aid in geochemical fingerprinting of the site groundwater. Results of these analyses are provided in Appendix A.

3.0 SAMPLE METHODOLOGY & ANALYSIS

The following sections discuss procedures used to complete each of the sampling events conducted during 2018 in connection with the assessment monitoring program.

3.1 Groundwater Level Measurement

Prior to each sampling event, groundwater elevations were recorded from the monitoring wells and piezometers. Groundwater elevations are summarized in Table 3, Summary of Groundwater Elevations. The June 2018 and October/December 2018 elevation data were used to develop potentiometric surface elevation contour maps (Figure 3A, Ash Pond Potentiometric Surface Elevation Contour Map – June 2018, and Figure 3B, AP-1 Potentiometric Surface Elevation Contour Map – October 2018). The general direction of groundwater flow across AP-1 is east/southeast. This groundwater flow patterns are consistent with historical observations.

3.2 Groundwater Gradient and Flow Velocity

Groundwater flow rates at the site were calculated based on hydraulic gradients, hydraulic conductivity from previous slug test results, and an estimated effective porosity of the screened horizon. Based on slug test data at the site, hydraulic conductivity ranges from approximately 0.06 to 1.28 feet per day (22.2 to 469 feet per year), which are used in the flow calculations. The hydraulic gradient was calculated between well pairs shown on Table 4, Groundwater Flow Velocity Calculations – 2018. An effective porosity of 0.20 was used based on the default values for effective porosity recommended by USEPA for a silty sand-type soil (U.S. USEPA, 1996).

Horizontal flow velocity was calculated using the commonly-used derivative of Darcy's Law:

Specifically:
$$V = \frac{K*i}{n_{\mathcal{C}}} \qquad V = \text{Groundwater flow velocity } \left(\frac{feet}{day}\right)$$

$$K = \text{Average Permeability of the aquifer } \left(\frac{feet}{day}\right)$$

$$i = \text{Horizontal hydraulic gradient } \left(\frac{feet}{feet}\right)$$

$n_e = \text{Effective porosity}$

Using this equation, groundwater flow velocities are calculated for various areas of the site and are tabulated on Table 4. Table 4 presents the velocities calculated using groundwater elevation data from each of the June and October 2018 sampling events.

As presented on Table 4 groundwater flow velocity at the site ranges from approximately 0.01 feet/day to 1.3 feet/day (or approximately 3.7 to 470 feet/year) across AP-1. These calculated groundwater flow velocities across the site are consistent with historical calculations. The observed groundwater flow velocities calculated for this monitoring event are also consistent with expected velocities in the regolith-upper bedrock aquifers of Georgia Piedmont and confirm the groundwater monitoring system as properly located to monitor the uppermost aquifer for AP-1 at Plant Scherer. However, these calculated velocities are best estimates based on field data and default data for soils, and therefore, these velocities should not be taken as absolute values, but rather as estimated values that may vary with future data collected at the site.

3.3 Groundwater Sampling

Groundwater samples were collected in accordance with §257.93(a) from monitoring wells and select piezometers described in Section 2.3. Monitoring wells were purged and sampled using low-flow sampling procedures. Non-dedicated, low-flow pneumatic bladder pumps were used to purge and sample the wells. During the purging of each well, field measurements of temperature, specific conductance, dissolved oxygen (DO), pH, oxidation-reduction potential (ORP), and turbidity were recorded using a SmarTroll® (In-Situ® field instrument) along with a separate turbidity meter to verify stabilization. Groundwater samples were collected when the following general stabilization criteria were met:

- 0.1 standard units for pH
- 5% for specific conductance
- 0.2 milligrams per liter (mg/L) or 10% for DO > 0.5 mg/L (whichever is greater)
- Turbidity measurements less than 10 Nephelometric Turbidity Units (NTU)

Any deviation from stabilization criteria, if applicable, is identified on field sampling forms. Following well stabilization, unfiltered samples were collected directly into appropriately preserved laboratory supplied sample containers, placed in iced coolers, and submitted to the laboratory following standard chain-of-custody protocol. Field information forms generated directly from the SmarTroll as well as chain-of-custody records are included in Appendix A.

Where sample turbidity was greater than 5 NTU and all other stabilization criteria were met, samplers continued purging in order to reduce the turbidity to 5 NTU or less. When turbidity remained above 5 NTU but was less than 10 NTU, and all other parameters are stabilized, the well was sampled. Where turbidity remained above 10 NTU, an unfiltered sample was collected followed by a filtered sample that has passed through an in-line 0.45-micron filter attached to the discharge (sample collection) tube. The unfiltered sample data are used for compliance monitoring and in the statistical analysis database. Filtered sample data are used to assess the impacts of turbidity on groundwater quality. Details regarding additional filtered samples is recorded on the field information form.

3.4 Laboratory Analyses

AP-1 monitoring wells were sampled and analyzed for Appendix IV monitoring parameters pursuant to 40 CFR §257.95(b). Groundwater samples collected during subsequent semi-annual events in June, October and December 2018 were analyzed for Appendix III and those Appendix IV parameters detected above the laboratory method detection limit (MDL) during the March 2018 event in accordance with 40 CFR §257.95(d). Parameters not detected above the laboratory MDL included: antimony, cadmium and molybdenum. Analytical methods used for groundwater monitoring parameters are provided in laboratory reports in Appendix A.

Laboratory analyses Test America, Inc. (TAL), which is accredited by National Environmental Laboratory Accreditation Program (NELAP) and maintain a NELAP certification for all parameters analyzed for this project. In addition, TAL laboratories are certified by the State of Georgia to perform analyses. Groundwater data and chain of custody records for the monitoring events are presented in Appendix A.

3.5 Quality Assurance and Quality Control

During each sampling event, quality assurance/quality control samples (QA/QC) are collected at a rate of one QA/QC sample per every 10 groundwater samples. Equipment blanks (where non-dedicated sampling equipment is used), field blanks, and duplicate samples were also collected during each sampling event. QA/QC sample data was evaluated during data validation and is included in Appendix A.

Groundwater quality data were validated based on the pertinent methods referenced in the laboratory reports and professional and technical judgment. Where necessary, the data were qualified with supporting documentation and justifications.

4.0 STATISTICAL ANALYSES

Statistical analysis of Appendix III and IV groundwater monitoring data was performed on samples collected from the certified groundwater monitoring network pursuant to 40 CFR §257.93 and following the appropriate certified statistical methodology. The statistical method used for AP-1 was developed in accordance with 40 CFR §257.93(f) using methodology presented in Statistical Analysis of Groundwater Data at RCRA Facilities, Unified Guidance, March 2009, EPA 530/R-09-007 (USEPA, 2009).

4.1 Statistical Methodology

The Sanitas[™] groundwater statistical software was used to perform the statistical analyses. Sanitas[™] is a decision support software package that incorporates the statistical tests required of Subtitle C and D facilities by USEPA regulations. Although assessment monitoring has been implemented, statistical evaluation of Appendix III constituents is performed to determine if constituents have returned to background conditions. Statistical analyses of appendix IV constituents have been performed to determine whether there are exceedances of established groundwater protection standards.

4.1.1 Appendix III Constituents

Groundwater quality data was evaluated through use of interwell prediction limits for Appendix III parameters. Using this method, upgradient well data were pooled to establish a background statistical limit. Data are compared to the statistical limit to determine whether any concentrations exceed background levels. The selected statistical method uses a1-of-2 verification resample plan. When an initial statistically significant increase (SSI) or questionable result occurs, a second sample may be collected to verify the initial result or determine if the result was an outlier. If no resample is collected, the initial exceedance is considered to be confirmed.

The following table provides a summary of the statistical methodology used at AP-1 for routine detection groundwater monitoring.

	PLANT SCHERER AP-	1 STATISTICAL METHOD SUMMARY
	Upgradient Wells	SGWA-1, SGWA-2, SGWA-3, SGWA-4, SGWA-5, SGWA-24, SGWA-25
Monitoring Well Network	Downgradient Wells	SGWC-6, SGWC-7, SGWC-8, SGWC-9, SGWC-10, SGWC-11, SGWC-12, SGWC-13, SGWC-14, SGWC-15, SGWC-16, SGWC-17, SGWC-18, SGWC-19, SGWC-20, SGWC-21, SGWC-22, SGWC-23
CCR Monitoring	Appendix III (Detection Monitoring)	Boron, Calcium, Chloride, Fluoride, pH, Sulfate, and TDS
Parameters	Appendix IV (Assessment Monitoring)	Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, combined Radium 226 + 228, Fluoride, Lead, Lithium, Mercury, Molybdenum, Selenium, and Thallium
Statistical	Data Screening on Proposed Background	Evaluate outliers, trends, and seasonality when sufficient data are available
Methodology	Statistical Limits	Interwell statistical limits will be applied on a constituent basis, depending on the appropriateness of the method as determined by the Analysis of Variance

4.1.2 Assessment Monitoring Statistics

Parametric tolerance limits were used to calculate background limits from pooled upgradient well data for Appendix IV parameters with a target of 95% confidence and 95% coverage. The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. The background limits were then used when determining the groundwater protection standard (GWPS) under 40 CFR §257.95(h) and Georgia EPD Rule 391-3-4-.10(6)(a).

As described in 40 CFR 257.95(h)(1-3), the GWPS is:

- The maximum contaminant level (MCL) established under §§ 141.62 and 141.66 of this title;
- Where an MCL has not been established, background concentration for the constituent established in accordance with § 257.91; or a rule-identified GWPS specified for cobalt, lead, lithium, or molybdenum; or
- Background levels for constituents where the background level is higher than the MCL or rule-identified GWPS.

USEPA revised the Federal CCR Rule on July 30, 2018, updating providing GWPS for cobalt, lead, lithium, and molybdenum as described above in 40 CFR 257.95(h)(2). Presently those updated GWPS have not yet been incorporated in the current Georgia EPD Rules for Solid Waste Management 391-3-4-.10(6)(a); therefore, background concentrations are considered when determining the GWPS for constituents where an MCL has not been established (or where background is higher than the MCL). Under the existing EPD rules, the GWPS is:

- The MCL.
- Where an MCL has not been established, the background concentration.
- Background levels for constituents where the background level is higher than the MCL.

Following the above federal and state rule requirements, GWPS have been established for statistical comparison of Appendix IV constituents. The Summary of Background Levels and GWPS table presented below, summarizes the background limit established at each monitoring well and the GWPS established under State and Federal rules.

To complete the statistical comparison to GWPS, confidence intervals were constructed for each of the Appendix IV parameters in each downgradient well. Those confidence intervals were compared to the GWPS established under the State and Federal rules. Only when the entire confidence interval is above a GWPS is the well/constituent pair considered to exceed its respective standard. If there is an exceedance of the established standard, a statistically significant level (SSL) exceedance is identified.

	Sumn	nary of Background Lev	els and GWPS	
Analyte	Units	Background June/October	Federal-Derived GWPS	State-Derived GWPS
Antimony	mg/L	0.0021	0.006	0.006
Arsenic	mg/L	0.0025/0.0015	0.01	0.01
Barium	mg/L	0.06308/0.06407	2	2
Beryllium	mg/L	0.0015/0.0002	0.004	0.004
Cadmium	mg/L	0.00125/0.0011	0.005	0.005
Chromium	mg/L	0.0142/0.016	0.1	0.1
Cobalt	mg/L	0.02	0.02	0.02
Fluoride	mg/L	0.15/0.108	4	4
Lead	mg/L	0.0025/0.000175	0.015	0.0025/0.000175
Lithium	mg/L	0.0125/0.00235	0.04	0.0125/0.00235
Mercury	mg/L	0.00025/0.00012	0.002	0.002
Molybdenum	mg/L	0.0075/0.00278	0.1	0.0075/0.00278
Radium (226 + 228)	pCi/L	1.2	5	5
Selenium	mg/L	0.005/0.00041	0.05	0.05
Thallium	mg/L	0.0005/0.0001	0.002	0.002

Notes:

- 1) Mg/L = milligrams per liter; pCi/L = picocuries per liter; NA = Not Available
- 2) Where 2 numbers are present, they denote the different background levels and background-derived GWPS for each of the 2 semiannual monitoring events in the order that they were determined.

4.2 Statistical Analysis Results

Analytical data from the 2018 semi-annual monitoring events in June and October/December 2018 were statistically analyzed in accordance with the certified *Statistical Analysis Plan*. Appendix III statistical analysis was performed to determine if constituents have returned to background levels. Appendix IV assessment monitoring parameters were evaluated to determine if concentrations statistically exceeded the established groundwater protection standard.

Based on review of the Appendix III statistical analysis presented in Appendix B, Appendix III constituents have not returned to background levels and assessment monitoring should continue pursuant to 40 CFR 257.95(f).

4.2.1 First Semi-Annual Assessment Monitoring Event (June 2018)

Analytical data from the June 2018 monitoring event at AP-1 have been statistically analyzed in accordance with the site's certified statistical analysis method. Review of the Sanitas™ results indicates that using the GWPS established according to both 40 CFR §257.95(h) and 391-3-4-.10(6)(a), the following SSLs were identified following the June 2018 monitoring event:

AP-1 Confidence Interval Statistically Significant Level Exceedances									
Appendix IV Parameter	AP-1 Monitoring Well								
Cobalt	SGWC-11, SGWC-15, SGWC-18, SGWC-20								

4.2.2 Second Semi-Annual Assessment Monitoring Event

Analytical data from the October/December 2018 monitoring event at AP-1 has been statistically analyzed in accordance with the site's certified statistical analysis method. Review of the Sanitas™ results indicates that the following verified SSIs were identified following the October/December 2018 monitoring event:

AP-1 Confidence Interval Statistically Significant Level Exceedances									
Appendix IV Parameter	AP-1 Monitoring Well								
Cobalt	SGWC-10, SGWC-11, SGWC-15, SGWC-18, SGWC-20								

5.0 ALTERNATE SOURCE DEMONSTRATIONS

In accordance with 40 CFR §257.95, an alternate source demonstration (ASD) was prepared for cobalt at AP-1. The ASD was completed by January 13, 2019 and is included in Appendix C, Alternate Source Demonstration.

In summary, there are multiple lines of evidence that support the conclusion that the SSLs of cobalt present in compliance monitoring wells are not the result of impact by AP-1, but rather are from an alternate source. The following lines of evidence support an ASD for concentrations of cobalt in groundwater downgradient of AP-1 are:

- The absence of cobalt in porewater samples collected from AP-1.
- Naturally occurring cobalt present in soils/sediment, saprolite, and bedrock at Plant Scherer.
- Data suggest natural dissolution of cobalt into groundwater.
- Published sources of naturally-occurring cobalt in groundwater.

Review of groundwater quality data since monitoring began at AP-1 in 2016, demonstrate a spatial variability in cobalt concentrations across the site including upgradient of the AP-1. Cobalt is present in groundwater above the laboratory method detection limit in groundwater monitoring wells located both upgradient and downgradient of AP-1. Based on the information presented in the ASD, it is likely that the cobalt identified in the groundwater is derived from the naturally occurring cobalt present in the aquifer solids and is not originating from AP-1. In summary, where pH is observed to be relatively low in site groundwater, cobalt concentrations are elevated.

Naturally occurring cobalt in the geologic media is dissolved into groundwater as a result of the sporadically low pH.

6.0 MONITORING PROGRAM STATUS

In accordance with 40 CFR §257.94(e), an assessment monitoring program was implemented in January 2018. SSIs of Appendix III and SSLs of Appendix IV parameters were identified at AP-1 during sampling events conducted in 2018. In accordance with 40 CFR §257.95(g)3, an ASD was prepared for the cobalt SSL exceedances.

7.0 CONCLUSIONS AND FUTURE ACTIONS

This 2018 Annual Groundwater Monitoring and Corrective Action Report, Georgia Power Plant Scherer Ash Pond (AP-1) has been prepared to fulfill the requirements of USEPA CCR rule 40 CFR 257 Subpart D.

Statistical evaluations of the groundwater monitoring data for AP-1 identified SSIs of Appendix III groundwater monitoring parameters above background and SSLs of Appendix IV groundwater monitoring parameters above site specific background. In accordance with 40 CFR §257.95(g)(3), an ASD was prepared for cobalt, and the site will remain in assessment monitoring.

Annual monitoring for Appendix IV constituents will be conducted in February 2019 while the first 2019 semiannual detection monitoring event is planned for April 2019.

8.0 REFERENCES

EPRI, Technical Report, Groundwater Monitoring Guidance for the Coal Combustion Residuals Rule, 2015.

- LeGrand, H.E., A master conceptual model for hydrogeological site characterization in the Piedmont and Mountain region of North Carolina. North Carolina Division of Water Quality, Groundwater Section Report, 55 p., 2004.
- MacStat Consulting Ltd., Statistical Analysis Plan, Georgia Power Company Plant Scherer Ash Pond, September 2017.
- Sanitas™: Groundwater Statistical Software, Sanitas™ Technologies, Shawnee, KS, 2007. www.sanitastech.com, 2014.
- Southern Company Services, Plant Scherer Proposed Coal Combustion By-Products Storage Facility Site Acceptability Report, 2007.
- State Waste Management Board, *State Solid Waste Management Regulations* (9VAC20 81 et seq.), January 2016.
- USEPA. Subpart E, Groundwater Monitoring and Corrective Action, in Chapter 5, Solid Waste Disposal Facility Criteria Technical Manual. EA530-R-93-017, 1993.
- USEPA. RCRA Groundwater Monitoring Technical Enforcement Guidance Document, 1986
- USEPA. Soil Guidance Manual, 1996.

- USEPA. *Environmental Investigations Standard Operating Procedures and Quality Assurance Manual.*November 2001.
- USEPA, Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery Program Implementation and Information Division, March 2009.
- USEPA. *Data Validation Standard Operating Procedures*. Science and Ecosystem Support Division. Revision IV. Athens, GA, September 2011.
- USEPA. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule. [EPA HQ RCRA–2009–0640; FRL–9919–44–OSWER]. RIN–2050–AE81, 2015.
- USEPA. *National Functional Guidelines for Inorganic Superfund Methods Data Review,* Office of Superfund Remediation and Technology Innovation. OLEM 9355.0-135 [EPA-540-R-2017-001]. Washington. DC. January 2017.

TABLE 1A. MONITORING WELL NETWORK SUMMARY **SGeorgia Power - Plant Scherer** Juliette, GA

Well ID	Former Designation(s)	Hydraulic Location	Geologic Unit Screened	Latitude	Longitude	Top of Casing Elevation (feet msl)	Ground Surface Elevation (feet msl)	Total Depth (feet bgs)	Top of Screen Elevation (feet msl)	Bottom of Screen Elevation (feet msl)	Screen Length (feet)	Date of Installation
AP-1 DETECTION	ON MONITORING W	ELL NETWORK										
SGWA-1	APA-1/PZ-8S	Upgradient	Saprolite	33.07657	-83.82937	546.81	543.97	50.2	503.8	493.8	10.0	2/11/2015
SGWA-2	APA-1I/PZ-8I	Upgradient	Bedrock	33.07658	-83.82935	546.81	543.79	51.1	502.7	492.7	10.0	2/17/2015
SGWA-3	APA-2	Upgradient	Saprolite	33.07930	-83.83133	545.65	542.47	60.5	492.0	482.0	10.0	11/18/2015
SGWA-4	APA-3	Upgradient	Saprolite	33.08273	-83.82535	547.27	544.25	60.5	493.8	483.8	10.0	11/17/2015
SGWA-5	APA-4	Upgradient	Saprolite	33.07344	-83.83746	508.11	505.32	30.2	485.1	475.1	10.0	11/18/2015
SGWC-6	APC-1	Downgradient	Saprolite	33.08462	-83.82255	510.57	507.94	25.0	492.94	482.94	10.0	11/12/2015
SGWC-7	APC-2	Downgradient	Bedrock	33.08599	-83.82163	506.05	503.32	35.0	478.3	468.3	10.0	11/11/2015
SGWC-8	APC-3	Downgradient	Bedrock	33.08653	-83.81928	513.93	511.05	40.0	481.05	471.05	10.0	11/10/2015
SGWC-9	APC-4	Downgradient	Saprolite	33.08589	-83.81773	510.37	507.61	35.0	482.61	472.61	10.0	11/6/2015
SGWC-10	APC-5	Downgradient	Saprolite	33.08385	-83.81580	509.22	506.3	30.0	486.3	476.3	10.0	11/5/2015
SGWC-11	APC-6	Downgradient	Saprolite	33.08288	-83.81488	511.28	508.3	40.0	478.3	468.3	10.0	10/29/2015
SGWC-12	APC-7	Downgradient	Saprolite	33.08296	-83.81267	500.29	497.35	47.0	460.35	450.35	10.0	10/30/2015
SGWC-13	APC-8	Downgradient	Saprolite	33.08213	-83.81022	482.58	479.75	35.0	454.75	444.75	10.0	11/4/2015
SGWC-14	APC-9/PZ-16S	Downgradient	Saprolite	33.08127	-83.80836	476.48	473.30	34.8	448.5	438.5	10.0	2/24/2015
SGWC-15	APC-10/PZ-17S	Downgradient	Saprolite	33.07914	-83.80588	483.27	480.04	44.5	445.5	435.5	10.0	2/26/2015
SGWC-16	APC-11/PZ-18S	Downgradient	Saprolite	33.07647	-83.80569	460.03	456.90	38.8	428.1	418.1	10.0	3/3/2015
SGWC-17	APC-12/PZ-20S	Downgradient	Saprolite	33.07396	-83.80533	417.96	414.8	24.1	400.7	390.7	10.0	3/11/2015
SGWC-18	APC-13/PZ-22S	Downgradient	Saprolite	33.07022	-83.80644	513.18	510.3	44.1	476.2	466.2	10.0	3/17/2015
SGWC-19	APC-14/PZ-23S	Downgradient	Saprolite	33.06769	-83.80918	478.67	475.8	34.2	451.6	441.6	10.0	3/18/2015
SGWC-20	APC-15	Downgradient	Saprolite	33.06769	-83.81175	504.44	501.12	25.0	486.12	476.12	10.0	11/19/2015
SGWC-21	APC-16/PZ-1S	Downgradient	Saprolite	33.06602	-83.81538	487.54	484.8	24.5	470.3	460.3	10.0	5/6/2015
SGWC-22	APC-17/PZ-2S	Downgradient	Saprolite	33.06639	-83.81928	518.07	515.2	46.5	479.1	468.7	10.4	1/22/2015
SGWC-23	APC-18/PZ-4I	Downgradient	Bedrock	33.06957	-83.82211	523.07	520.1	49.3	480.8	470.8	10.0	2/3/2015
SGWA-24	APA-5/PZ-7S	Upgradient	Saprolite	33.07352	-83.82663	503.86	500.9	37.7	473.2	463.2	10.0	2/10/2015
SGWA-25	APA-6/PZ-9S	Upgradient	Saprolite	33.08020	-83.82623	526.39	523.4	44.6	488.8	478.8	10.0	2/18/2015

Notes:

- feet msl = feet mean sea level
 feet bgs = feet below ground surface

TABLE 1B. PIEZOMETER NETWORK SUMMARY Georgia Power - Plant Scherer Juliette, GA

Well ID	Geologic Unit Screened	Latitude	Longitude	Top of Casing Elevation (feet msl)	Ground Surface Elevation (feet msl)	Total Depth (feet bgs)	Top of Screen Elevation (feet msl)	Bottom of Screen Elevation (feet msl)	Screen Length (feet)	Date of Installation
PIEZOMETERS										
PZ-2I	Bedrock	33.06640517	-83.81932	517.61	515.1	83.9	441.2	431.2	10	1/27/2015
PZ-3S	Saprolite	33.067894	-83.82081	517.29	514.6	49.6	475.0	465.0	10	1/28/2015
PZ-5I	Saprolite	33.07174453	-83.82313	523.24	520.7	47.2	483.5	473.5	10	2/4/2015
PZ-6S	Saprolite/PWR	33.07291573	-83.82274	531.48	529.2	54.4	484.8	474.8	10	2/4/2015
PZ-9I	Bedrock	33.08021581	-83.82622	527.49	523.5	79.8	453.7	443.7	10	2/19/2015
PZ-10S	Saprolite	33.08508695	-83.82324	516.81	514.2	34.5	489.7	479.7	10	5/5/2015
PZ-11S	Saprolite	33.0873611	-83.81997	529.21	526.1	45.5	490.6	480.6	10	4/6/2015
PZ-12S	Saprolite	33.08602396	-83.81719	517.65	514.7	44.0	480.7	470.7	10	4/1/2015
PZ-13S	Saprolite	33.08401471	-83.81521	520.21	517.4	44.9	482.5	472.5	10	4/1/2015
PZ-14S	Saprolite	33.08372361	-83.81328	511.86	508.8	44.5	474.3	464.3	10	3/26/2015
PZ-15S	Saprolite	33.0827095	-83.81087	499.06	496.1	39.7	466.4	456.4	10	4/28/2015
PZ-17I	Bedrock	33.07913383	-83.80583	483.23	480.4	96.7	393.7	383.7	10	2/27/2015
PZ-19I	Bedrock	33.07473161	-83.80538	417.48	414.5	71.5	353.0	343.0	10	3/4/2015
PZ-19S	Saprolite	33.07472776	-83.80541	417.67	414.7	24.6	400.1	390.1	10	3/4/2015
PZ-20I	Bedrock	33.07398602	-83.80531	417.11	414.1	79.2	344.9	334.9	10	3/10/2015
PZ-21S	Saprolite	33.07212133	-83.80619	473.42	470.5	23.0	457.5	447.5	10	3/12/2015
PZ-25I	Saprolite	33.08368	-83.81400	528.09	525.7	125.0	410.7	400.7	10	5/24/2016
PZ-25S	Saprolite	33.08371	-83.81410	527.91	525.5	55.0	480.5	470.5	10	5/25/2016
PZ-26S	Saprolite	33.08328	-83.81030	491.36	488.9	45.0	453.9	443.9	10	6/1/2016
PZ-27D	Bedrock	33.0829	-83.80930	475.18	472.4	125.0	367.4	347.4	20	6/17/2016
PZ-27S	PWR	33.08291	-83.80930	475.57	473.0	45.0	438.0	428.0	10	5/26/2016
PZ-28I	Bedrock	33.08244	-83.80820	483.91	481.3	69.0	422.3	412.3	10	6/3/2016
PZ-29S	Saprolite	33.08209	-83.80740	491.02	488.4	45.0	453.4	443.4	10	5/26/2016
PZ-30I	Bedrock	33.08155	-83.80590	478.03	475.4	85.0	400.4	390.4	10	6/2/2016
PZ-31I	Bedrock	33.08191	-83.80470	466.56	463.8	75.0	398.8	388.8	10	6/2/2016
PZ-32D	Bedrock	33.08159	-83.80380	465.18	462.3	126.0	366.3	336.3	30	6/1/2016
PZ-32S	Saprolite/PWR	33.0816	-83.80380	464.82	462.3	55.0	417.3	407.3	10	6/1/2016
PZ-33I	Saprolite/Bedrock	33.08201	-83.79940	469.08	466.3	76.0	400.3	390.3	10	6/8/2016
PZ-34S	PWR	33.08224	-83.79860	443.37	440.8	45.5	405.3	395.3	10	6/4/2016
PZ-35I	Saprolite/Bedrock	33.083012	-83.80924	474.17	474.5	55.5	429.0	419.0	10	6/22/2016

TABLE 1B. PIEZOMETER NETWORK SUMMARY **Georgia Power - Plant Scherer** Juliette, GA

Well ID	Geologic Unit Screened	Latitude	Longitude	Top of Casing Elevation (feet msl)	Ground Surface Elevation (feet msl)	Total Depth (feet bgs)	Top of Screen Elevation (feet msl)	Bottom of Screen Elevation (feet msl)	Screen Length (feet)	Date of Installation
PZ-36I	Bedrock	33.07973	-83.80530	481.42	478.9	95.0	393.9	383.9	10	6/5/2016
PZ-36S	Saprolite	33.07970929	-83.80537	482.19	479.21	55.0	434.21	424.21	10	8/22/2018
PZ-37I	TWR/Bedrock	33.08183	-83.80150	482.02	479.5	71.0	418.5	408.5	10	6/2/2016
PZ-38I	Bedrock	33.082673	-83.80828	481.96	482.1	74.0	418.1	408.1	10	6/23/2016
PZ-39S	Saprolite	33.07909393	-83.80464	474.49	471.87	76.0	405.87	395.87	10	8/21/2018
PZ-40I	Bedrock	33.07025497	-83.80634	512.22	509.76	83.0	436.76	426.76	10	8/15/2018
PZ-41S	Saprolite	33.06981269	-83.80581	491.35	488.44	45.0	415.44	405.44	10	8/16/2018
PZ-42I	Bedrock	33.06767345	-83.81180	502.97	500.38	96.0	427.38	417.38	10	8/21/2018
PZ-43S	Saprolite	33.06652778	-83.81110	504.00	501.27	50.5	428.27	418.27	10	8/17/2018
PZ-44I	Bedrock	33.08280082	-83.81488	510.19	507.69	114.0	434.69	424.69	10	9/5/2018
LPZ-01	PWR/Bedrock	33.070446	-83.83392	553.16	549.84	64.0	495.84	485.84	10	11/10/2015
LPZ-02	Saprolite	33.078618	-83.83555	513.96	510.46	20.0	500.46	490.46	10	11/20/2015
LPZ-03	Saprolite	33.072872	-83.83345	515.11	511.48	35.0	486.48	476.48	10	11/17/2015
LPZ-04	Saprolite	33.067606	-83.83860	461.06	457.83	28.0	439.83	429.83	10	11/18/2015
LPZ-05	Saprolite	33.065842	-83.83007	524.28	520.97	52.1	478.87	468.87	10	11/3/2015

Notes:

- feet msl = feet mean sea level
 feet bgs = feet below ground surface

TABLE 2.

GROUNDWATER SAMPLING EVENT SUMMARY

Georgia Power Company - Plant Scherer Juliette, Georgia

		Su	mmary of Sam	npling Events		
Well ID	Hydraulic Location	March 2018	June 2018	October 2018		Status of Monitoring
Purpose of S	ampling Event	Assessment	Detection / Assessment	Detection / Assessment	SSL Exceedance	Well
ASH POND (AP-	-1)					
SGWA-1	Upgradient	A01	D03/A02	D04/A03	No	Assessment
SGWA-2	Upgradient	A01	D03/A02	D04/A03	No	Assessment
SGWA-3	Upgradient	A01	D03/A02	D04/A03	No	Assessment
SGWA-4	Upgradient	A01	D03/A02	D04/A03	No	Assessment
SGWA-5	Upgradient	A01	D03/A02	D04/A03	No	Assessment
SGWC-6	Downgradient	A01	D03/A02	D04/A03	No	Assessment
SGWC-7	Downgradient	A01	D03/A02	D04/A03	No	Assessment
SGWC-8	Downgradient	A01	D03/A02	D04/A03	No	Assessment
SGWC-9	Downgradient	A01	D03/A02	D04/A03	No	Assessment
SGWC-10	Downgradient	A01	D03/A02	D04/A03	Yes	Assessment
SGWC-11	Downgradient	A01	D03/A02	D04/A03	Yes	Assessment
SGWC-12	Downgradient	A01	D03/A02	D04/A03	No	Assessment
SGWC-13	Downgradient	A01	D03/A02	D04/A03	No	Assessment
SGWC-14	Downgradient	A01	D03/A02	D04/A03	No	Assessment
SGWC-15	Downgradient	A01	D03/A02	D04/A03	Yes	Assessment
SGWC-16	Downgradient	A01	D03/A02	D04/A03	No	Assessment
SGWC-17	Downgradient	A01	D03/A02	D04/A03	No	Assessment
SGWC-18	Downgradient	A01	D03/A02	D04/A03	Yes	Assessment
SGWC-19	Downgradient	A01	D03/A02	D04/A03	No	Assessment
SGWC-20	Downgradient	A01	D03/A02	D04/A03	Yes	Assessment
SGWC-21	Downgradient	A01	D03/A02	D04/A03	No	Assessment
SGWC-22	Downgradient	A01	D03/A02	D04/A03	No	Assessment
SGWC-23	Downgradient	A01	D03/A02	D04/A03	No	Assessment
SGWA-24	Upgradient	A01	D03/A02	D04/A03	No	Assessment
SGWA-25	Upgradient	A01	D03/A02	D04/A03	No	Assessment

Notes:

Dxx - Detection Event Number

Axx - Assessment Monitoring Event Number

TABLE 3. SUMMARY OF GROUNDWATER ELEVATIONS Georgia Power - Plant Scherer Juliette, GA

	Top of Casing					GI	ROUNDWATE	R ELEVATIO	NS (FEET MS	SL)				
Well ID	Elevation (feet/MSL)	4/19/2016	5/10/2016	6/16/2017	8/8/2016	10/3/2016	11/28/2016	2/6/2017	4/4/2017	6/19/2017	10/3/2017	3/19/2018	6/4/2018	10/1/2018
ASH POND														
SGWA-1	546.81	512.11	512.13	510.06	508.14	506.12	504.30	506.52	507.33	506.31	503.43	502.31	505.46	504.93
SGWA-2	546.81	518.24	512.58	509.47	508.00	505.92	504.08	507.39	508.02	506.61	503.48	503.31	506.67	505.05
SGWA-3	545.65	497.83	515.95	510.64	512.92	511.40	509.93	512.90	512.40	511.21	509.26	509.15	512.16	509.28
SGWA-4	547.27	532.81	500.12	498.97	500.63	500.07	499.11	498.22	497.81	499.57	496.76	495.76	495.26	495.12
SGWA-5	508.11	494.97	493.56	492.75	492.01	490.93	489.71	490.85	490.99	490.68	489.23	488.39	489.97	489.22
SGWC-6	510.57	497.84	497.34	494.31	495.95	495.33	494.65	495.33	495.64	495.47	494.65	495.12	495.33	494.05
SGWC-7	506.05	485.67	493.51	493.08	492.60	492.01	491.30	491.60	491.84	491.91	491.18	491.38	491.64	490.80
SGWC-8	513.93	494.89	493.70	493.07	492.51	491.97	491.23	491.82	492.05	491.86	491.05	491.42	491.41	490.63
SGWC-9	510.37	495.07	491.16	490.02	489.93	489.39	488.94	490.07	490.14	489.77	489.13	489.43	489.82	488.77
SGWC-10	509.22	492.89	493.46	491.46	491.77	491.29	490.87	492.81	492.81	492.27	491.58	492.35	492.16	490.32
SGWC-11	511.28	477.69	494.01	490.99	492.19	491.75	491.47	493.65	493.44	492.76	492.08	492.93	492.86	490.55
SGWC-12	500.29	496.74	486.89	483.19	485.09	484.58	484.18	486.12	485.89	485.33	485.67	485.39	485.73	483.82
SGWC-13	482.58	472.38	478.62	477.44	478.17	478.12	478.21	478.79	478.67	478.31	478.30	478.58	478.47	477.82
SGWC-14	476.48	449.59	465.83	465.31	465.34	465.27	465.49	466.08	465.97	465.54	465.60	460.08	466.02	465.58
SGWC-15	483.27	462.51	455.73	454.16	453.44	453.04	452.64	455.61	455.65	454.70	453.64	454.45	454.93	452.86
SGWC-16	460.03	459.6	436.54	434.83	434.19	433.80	433.61	437.75	436.53	435.08	434.41	435.47	437.20	434.08
SGWC-17	417.96	385.98	417.38	416.91	417.31	417.42	417.38	417.56	417.54	417.46	417.96	417.37	417.16	417.96
SGWC-18	513.18	499.19	480.73	478.94	477.91	476.71	475.89	478.65	477.77	476.68	476.81	476.65	477.39	478.82
SGWC-19	478.67	467.16	463.21	461.28	461.85	461.74	461.46	463.47	462.92	462.47	462.65	462.96	463.73	462.29
SGWC-20	504.44	504.26	491.58	490.18	490.65	490.04	489.55	492.01	491.09	490.76	490.44	490.71	492.43	490.49
SGWC-21	487.54	463.53	486.92	486.16	486.04	485.58	485.61	486.85	486.61	486.17	485.79	486.49	486.97	487.14
SGWC-22	518.07	486.62	493.11	489.87	491.15	490.71	490.18	492.82	492.47	492.25	491.23	492.27	493.35	491.71
SGWC-23	523.07	510.38	492.36	491.72	491.26	490.73	490.02	491.27	491.91	492.06	491.86	492.19	493.25	493.02
SGWA-24	503.86	479.06	490.24	489.11	488.54	487.96	487.44	490.05	489.46	488.61	487.66	488.96	490.17	488.18
SGWA-25	526.39	NM	500.99	498.99	497.47	496.44	495.19	497.91	498.16	497.14	495.44	496.84	497.67	495.36
PIEZOMETER	S	1	1			1				1		I.		
PZ-2I	517.61	NM	NM	NM	NM	NM	NM	492.25	491.88	491.86	490.70	491.72	492.80	491.14
PZ-3	517.29	NM	NM	NM	NM	NM	NM	489.75	489.78	489.89	489.30	489.95	490.84	489.81
PZ-5I	523.24	NM	NM	NM	NM	NM	NM	484.42	484.44	483.93	482.95	483.97	484.68	482.88
PZ-6S	531.48	NM	NM	NM	NM	NM	NM	494.94	495.39	495.38	494.75	494.72	494.97	494.44
PZ-9I	527.49	NM	NM	NM	NM	NM	NM	498.96	499.33	498.35	496.74	497.67	498.46	496.64
PZ-10S	516.81	NM	NM	NM	NM	NM	NM	493.38	493.79	493.35	492.25	492.74	493.19	491.80
PZ-11S	529.21	NM	NM	NM	NM	NM	NM	490.45	490.70	490.51	489.80	489.99	490.25	489.60
		1	I.	1	l	1	1		1	1	l	1	L	1

TABLE 3. SUMMARY OF GROUNDWATER ELEVATIONS Georgia Power - Plant Scherer Juliette, GA

Wall ID	Top of Casing					GI	ROUNDWATE	R ELEVATIO	NS (FEET MS	SL)				
Well ID	Elevation (feet/MSL)	4/19/2016	5/10/2016	6/16/2017	8/8/2016	10/3/2016	11/28/2016	2/6/2017	4/4/2017	6/19/2017	10/3/2017	3/19/2018	6/4/2018	10/1/2018
PIEZOMETERS	3													
PZ-12S	517.65	NM	NM	NM	NM	NM	NM	488.93	489.14	488.82	488.12	488.45	488.79	487.91
PZ-13S	520.21	NM	NM	NM	NM	NM	NM	491.16	491.51	490.83	489.70	490.86	491.17	488.91
PZ-14S	511.86	NM	NM	NM	NM	NM	NM	489.43	489.26	488.42	487.24	488.31	489.40	486.46
PZ-14I	512.61	NM	NM	NM	NM	NM	NM	NM	489.30	488.46	487.27	488.33	489.37	486.49
PZ-15S	499.06	NM	NM	NM	NM	NM	NM	NM	NM	488.52	480.34	480.56	480.61	479.65
PZ-17I	483.23	NM	NM	NM	NM	NM	NM	455.77	455.74	454.71	453.58	454.53	455.02	453.08
PZ-19I	417.48	NM	NM	NM	NM	NM	NM	414.56	414.38	413.69	413.18	414.07	414.66	413.08
PZ-19S	417.67	NM	NM	NM	NM	NM	NM	414.00	413.87	413.12	412.92	413.71	414.19	412.80
PZ-20I	417.11	NM	NM	NM	NM	NM	NM	415.18	415.10	414.91	414.78	415.02	415.09	414.68
PZ-21S	473.42	NM	NM	NM	NM	NM	NM	466.12	465.77	465.23	465.00	465.50	466.40	465.36
PZ-25S	527.91	NM	NM	NM	NM	NM	NM	491.12	491.20	490.35	489.11	490.30	491.10	488.34
PZ-25I	528.09	NM	NM	NM	NM	NM	NM	491.42	491.13	490.26	489.09	490.30	491.63	488.24
PZ-26S	491.36	NM	NM	NM	NM	NM	NM	476.08	475.46	474.95	474.49	475.38	476.35	474.34
PZ-27S	475.57	NM	NM	NM	NM	NM	NM	471.18	470.91	469.73	469.42	470.77	471.45	469.22
PZ-27D	475.18	NM	NM	NM	NM	NM	NM	474.47	474.17	473.54	473.06	473.98	474.79	472.69
PZ-28I	483.91	NM	NM	NM	NM	NM	NM	466.60	466.21	465.40	464.85	466.26	466.74	464.73
PZ-29S	491.02	NM	NM	NM	NM	NM	NM	460.93	461.07	NM	459.84	461.03	461.37	459.94
PZ-30I	478.03	NM	NM	NM	NM	NM	NM	447.87	448.45	448.04	446.59	447.52	448.71	447.01
PZ-31I	466.56	NM	NM	NM	NM	NM	NM	436.13	436.53	435.96	434.54	435.47	437.01	435.28
PZ-32S	464.82	NM	NM	NM	NM	NM	NM	437.52	438.68	438.33	436.36	437.49	438.88	437.17
PZ-32D	465.18	NM	NM	NM	NM	NM	NM	435.64	436.03	435.46	433.98	435.16	436.38	434.86
PZ-33I	469.08	NM	NM	NM	NM	NM	NM	423.93	424.28	423.67	422.44	422.41	423.32	422.88
PZ-34S	443.37	NM	NM	NM	NM	NM	NM	424.01	423.79	NM	NM	421.98	424.09	421.27
PZ-35I	474.17	NM	NM	NM	NM	NM	NM	471.02	470.71	469.56	469.25	470.53	471.31	468.97
PZ-36S	482.19	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	445.46
PZ-36I	481.42	NM	NM	NM	NM	NM	NM	450.91	451.30	NM	448.22	449.17	450.32	447.67
PZ-37I	482.02	NM	NM	NM	NM	NM	NM	432.29	432.13	432.04	431.42	430.62	430.73	431.17
PZ-38I	481.96	NM	NM	NM	NM	NM	NM	467.06	466.95	466.06	465.48	466.90	467.40	465.36
PZ-39S	474.49	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	437.01
PZ-40I	512.22	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	479.50
PZ-41S	491.35	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	463.28
PZ-42I	502.97	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	492.12

TABLE 3. SUMMARY OF GROUNDWATER ELEVATIONS Georgia Power - Plant Scherer Juliette, GA

Well ID	Top of Casing					Gi	ROUNDWATE	R ELEVATIO	NS (FEET MS	SL)				
weil ib	Elevation (feet/MSL)	4/19/2016	5/10/2016	6/16/2017	8/8/2016	10/3/2016	11/28/2016	2/6/2017	4/4/2017	6/19/2017	10/3/2017	3/19/2018	6/4/2018	10/1/2018
PIEZOMETER	S													
PZ-43S	504.00	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	480.25
PZ-44I	510.19	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	NM	490.11
LPZ-01	553.16	NM	NM	NM	NM	NM	NM	493.81	493.78	493.66	492.36	492.49	492.36	492.52
LPZ-02	513.96	NM	NM	NM	NM	NM	NM	509.73	509.97	508.75	507.50	508.98	509.79	507.79
LPZ-03	515.11	NM	NM	NM	NM	NM	NM	507.03	506.55	505.26	503.61	504.06	507.42	504.23
LPZ-04	461.06	NM	NM	NM	NM	NM	NM	446.13	446.60	445.87	444.20	445.50	447.10	445.50
LPZ-05	524.28	NM	NM	NM	NM	NM	NM	476.31	476.38	476.06	474.96	474.40	474.64	475.57

Notes:

Feet MSL = feet above mean sea level

NM = Not Measured

TABLE 4. GROUNDWATER VELOCITY CALCULATIONS - 2018 Georgia Power - Plant Scherer Ash Pond

Juliette, GA

Flow Paths	Groundwater Elevation (feet msl)	Δh (feet) ²	Δ I (feet) ³	Hydraulic Gradient (Δ h/Δ l)	Cond	luctiv	draulic vity, K day) ⁵	Assumed Effective Porosity				e Linear er Velocity
	(100011101)			(== .)	(1001	, pci	uuy)	(n _e)	(feet	per	day) ⁴	(feet per year)4
AP-1 March 2018				-								
00000 44/07 000	460.08	0.05	500.0	0.0040	4.00	4-	0.04	0.0	0.04	4-	0.00	0.7 1- 0.4
SGWC-14/PZ-29S	461.03	0.95	503.0	0.0019	1.06	to	2.34	0.2	0.01	to	0.02	3.7 to 8.1
00000 40/07 05	478.58	0.05	200.0	0.0075	4.00		2.24		0.45		2.22	50.4.4.47.0
SGWC-13/PZ-35I	470.53	8.05	293.0	0.0275	1.06	to	2.34	0.2	0.15	to	0.32	53.1 to 117.3
	504.06	50.50	544.0	0.400	4.00		2.24		0.53		4.07	222 4 4 422 2
LPZ-3/LPZ-4	445.50	58.56	541.0	0.108	1.06	to	2.34	0.2	0.57	to	1.27	209.4 to 462.3
AP-1 June 2018												
00000 44/07 000	466.02	4.05	500.0	0.000	4.00		0.04	0.0	0.05		0.44	47.0 1 00.5
SGWC-14/PZ-29S	461.37	4.65	503.0	0.009	1.06	to	2.34	0.2	0.05	to	0.11	17.9 to 39.5
SGWC-13/PZ-35I	478.47	7.16	293.0	0.0244	1.06	to	2.34	0.2	0.13	to	0.29	47.3 to 104.4
3GWC-13/PZ-331	471.31	7.10	293.0	0.0244	1.06	ιο	2.34	0.2	0.13	lO	0.29	47.3 10 104.4
LPZ-3/LPZ-4	507.42	60.32	541.0	0.111	1.06	to	2.34	0.2	0.59	to	1.30	215.7 to 476.1
LFZ-3/LFZ-4	447.10	00.32	341.0	0.111	1.00	ιο	2.34	0.2	0.59	ιο	1.30	215.7 10 476.1
AP-1 October 2018	3											
SGWC-14/PZ-29S	465.58	5.64	503.0	0.011	1.06	to	2.34	0.2	0.06	to	0.13	21.7 to 47.9
3GWC-14/PZ-293	459.94	5.04	503.0	0.011	1.06	ιο	2.34	0.2	0.06	ιο	0.13	21.7 10 47.9
COMO 40/DZ 25!	477.82	0.05	202.0	0.0202	1.00	4-	2.24	0.0	0.40	4-	0.25	E0 4 to 400 0
SGWC-13/PZ-35I	468.97	8.85	293.0	0.0302	1.06	to	2.34	0.2	0.16	to	0.35	58.4 to 129.0
1 D7 2/1 D7 4	504.23	50 72	5/1 0	0.400	1.06	to	2 24	0.2	0.50	to	1 27	210 0 to 462 6
LPZ-3/LPZ-4	445.50	58.73	541.0	0.109	1.06	to	2.34	0.2	0.58	to	1.27	210.0 to 463.6

Notes:

- 1. Δ H = Change in groundwater elevation.
- 2. $\Delta L = Distance along flow path.$
- 3. $I = \Delta H / \Delta L$.
- 4. Velocity = $(I * K)/n_e$.
- 5. Hydraulic conductivity range based on historic aquifer performance tests (revised 3/2017).
- 6. Effective porosity based on fracture occurrence.

TABLE 5A. ANALYTICAL DATA SUMMARY Ash Pond - (March 2018) GPC PLANT SCHERER JULIETTE, GEORGIA

		SCREEN	IING/TARG	ET LEVELS								GROU	INDWATER M	ONITORING V	VELLS							
Analyte	Units	MCL	PQL/RL	MDL	SGWA-1	SGWA-2	SGWA-3	SGWA-4	SGWA-5	SGWA-24	SGWA-25	SGWC-6	SGWC-7	SGWC-8	SGWC-9	SGWC-10	SGWC-11	SGWC-12	SGWC-13	SGWC-14	SGWC-15	SGWC-16
			San	nple Date:	3/26/2018	3/26/2018	3/26/2018	3/27/2018	3/27/2018	3/26/2018	3/27/2018	3/27/2018	3/27/2018	3/27/2018	3/28/2018	3/27/2018	3/27/2018	3/27/2018	3/27/2018	3/27/2018	3/27/2018	3/27/2018
Appendix III																						
BORON, TOTAL	mg/L	N/R	0.05	0.021																		
CALCIUM, TOTAL	mg/L	N/R	0.23	0.13																		
CHLORIDE, TOTAL	mg/L	N/R	1.0	0.89																		
FLUORIDE, TOTAL	mg/L	4	0.2	0.082	ND	ND	ND	ND	ND	ND	ND	ND	ND (0.19 J)	0.4	ND	ND	ND	ND	ND	ND	ND (0.12 J)	ND
рН	S.U.	N/R	N/R	N/R																		
SULFATE, TOTAL	mg/L	N/R	1.0	0.7																		
TOTAL DISSOLVED SOLIDS	mg/L	N/R	5.0	3.4																		
Appendix IV	1	II.		1	1				1		1		1	1	l	l .						
ANTIMONY, TOTAL	mg/L	0.006	0.0025	0.001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ARSENIC, TOTAL	mg/L	0.01	0.0013	0.00046	ND	ND	ND	ND	ND	ND	ND (0.00052 J)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BARIUM, TOTAL	mg/L	2	0.0025	0.00049	0.053	0.036	0.035	0.061	0.01	0.022	0.024	0.021	0.27	0.17	0.069	0.031	0.039	0.043	0.029	0.055	0.035	0.021
BERYLLIUM, TOTAL	mg/L	0.004	0.0025	0.00034	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND (0.00041 J)	ND
CADMIUM, TOTAL	mg/L	0.005	0.0025	0.00034	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CHROMIUM, TOTAL	mg/L	0.1	0.0025	0.0011	ND	0.013	0.012	0.0058	ND	0.0042	ND	ND	ND	ND (0.0012 J)	ND	ND	ND	ND	ND	ND	0.031	0.0098
COBALT, TOTAL	mg/L	N/R	0.0025	0.0004	0.0065	ND	ND	ND	ND	ND	0.014	0.004	0.0054	ND	0.0087	0.026	0.024	0.0035	0.0035	0.0083	0.27	0.0037
LEAD, TOTAL	mg/L	0.015	0.0013	0.00035	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND (0.00039 J)	ND	ND	ND
LITHIUM, TOTAL	mg/L	N/R	0.005	0.0032	ND (0.0024 J)	ND	ND (0.0013 J)	ND	ND (0.0017 J)	ND	ND	ND	0.0061	ND (0.0023 J)	ND	ND	ND (0.0029 J)	ND	ND	ND	ND (0.0034 J)	ND
MERCURY, TOTAL	mg/L	0.002	0.0002	0.00007	ND (0.000089 J)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND (0.0001 J) ND (0.00014 J)	ND
MOLYBDENUM, TOTAL	mg/L	N/R	0.015	0.00085	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
RADIUM (226 + 228)	pCi/L	5	5	varies	0.522	0.124 U	0.226 U	0.164 U	0.252 U	0.141 U	0.207 U	0.0443 U	0.546	2.3	0.378	0.136 U	0.172 U	0.445	0.145 U	0.306 U	0.285 U	0.387 U
SELENIUM, TOTAL	mg/L	0.05	0.0013	0.00024	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
THALLIUM, TOTAL	mg/L	0.002	0.0005	8.5E-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

- 1. Bold indicated detection above MDL.
- 2. mg/L Milligrams per Liter
- 3. pCi/L picocuries per Liter
- 4. N/R Indicates consitiuent is not regulated by Hazardous Site Response Act
- 5. J Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantitation Limit (PQL). Values are displayed as less that the PQL with a J.
- 6. < Constituent was analyzed for, but was not detected above the MDL and is considered a non-detect. Value is displayed as less than the PQL.
- 7. MCL/SMCL Maximum Contaminant Level/Secondary Contaminant Level United States Environmental Protection Agency (USEPA) Table of Regulated Drinking Water Contaminants (updated June 2016). Available at https://www.epa.gov/ground-water- and-drinking-water/table-regulated-drinking-water-contaminants. USEPA Secondary Drinking Water Standards: Guidance for Nuisance Chemicals (updated January 2016). Available at https://www.epa.gov/dwstandardsregulations/secondary-drinking-water-standards-guidance-nuisance-chemicals.
- 8. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.
- 9. Annual sampling for Appendix IV constituents only was completed following initiation of assessment monitoring. Appendix III constituents were not required during this monitoring event.

TABLE 5A. ANALYTICAL DATA SUMMARY Ash Pond - (March 2018) GPC PLANT SCHERER

									•	IULIETTE, G	ILUNUIA	
		SC	REENING/T/	ARGET LEVE	LS			GROUNDWA	TER MONITOR	RING WELLS		
Analyte	Units	MCL	SMCL	PQL/RL	MDL	SGWC-17	SGWC-18	SGWC-19	SGWC-20	SGWC-21	SGWC-22	SGWC-23
				San	nple Date:	3/27/2018	3/28/2018	3/28/2018	3/28/2018	3/28/2018	3/28/2018	3/27/2018
Appendix III												
BORON, TOTAL	mg/L	N/R	N/R	0.05	0.021							
CALCIUM, TOTAL	mg/L	N/R	N/R	0.23	0.13							
CHLORIDE, TOTAL	mg/L	N/R	250	1.0	0.89							
FLUORIDE, TOTAL	mg/L	4	2	0.2	0.082	ND	ND	ND	ND (0.19 J)	ND	ND	ND
рН	S.U.	N/R	6.5-8.5	N/R	N/R							
SULFATE, TOTAL	mg/L	N/R	250	1.0	0.7							
TOTAL DISSOLVED SOLIDS	mg/L	N/R	500	5.0	3.4							
Appendix IV				"			1					
ANTIMONY, TOTAL	mg/L	0.006	N/R	0.0025	0.001	ND	ND	ND	ND	ND	ND	ND
ARSENIC, TOTAL	mg/L	0.01	N/R	0.0013	0.00046	ND	0.0015	ND	ND	ND	ND	ND
BARIUM, TOTAL	mg/L	2	N/R	0.0025	0.00049	0.02	0.029	0.034	0.027	0.09	0.084	0.076
BERYLLIUM, TOTAL	mg/L	0.004	N/R	0.0025	0.00034	ND	ND (0.00036 J)	ND	ND (0.00079 J)	ND	ND	ND
CADMIUM, TOTAL	mg/L	0.005	N/R	0.0025	0.00034	ND	ND	ND	ND	ND	ND	ND
CHROMIUM, TOTAL	mg/L	0.1	N/R	0.0025	0.0011	0.0045	0.0082	0.014	ND	ND	ND	ND (0.0012 J)
COBALT, TOTAL	mg/L	N/R	N/R	0.0025	0.0004	ND	0.16	ND	0.18	ND	ND (0.0022 J)	ND
LEAD, TOTAL	mg/L	0.015	N/R	0.0013	0.00035	ND	ND	ND	ND	ND	ND	ND
LITHIUM, TOTAL	mg/L	N/R	N/R	0.005	0.0032	ND (0.0014 J)	0.0056	ND	0.0053	ND (0.0038 J)	ND (0.0033 J)	0.005
MERCURY, TOTAL	mg/L	0.002	N/R	0.0002	0.00007	ND	ND (0.000083 J)	ND	ND	ND	ND	ND
MOLYBDENUM, TOTAL	mg/L	N/R	N/R	0.015	0.00085	ND	ND	ND	ND	ND	ND	ND
RADIUM (226 + 228)	pCi/L	5	N/R	5	varies	0.249 U	0.428	0.247 U	0.334 U	0.38	0.0661 U	0.61
SELENIUM, TOTAL	mg/L	0.05	N/R	0.0013	0.00024	ND	0.0085	ND	ND	ND	ND	ND
THALLIUM, TOTAL	mg/L	0.002	N/R	0.0005	8.5E-05	ND	ND (0.00011 J)	ND	ND (00009 J)	ND	ND	ND

- 1. Bold indicated detection above MDL.
- 2. mg/L Milligrams per Liter
- 3. pCi/L picocuries per Liter
- 4. N/R Indicates consitiuent is not regulated by Hazardous Site Response Act
- 5. J Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantitation Limit (PQL). Values are displayed as less that the PQL with a J.
- 6. < Constituent was analyzed for, but was not detected above the MDL and is considered a non-detect. Value is displayed as less than the PQL.
- 7. MCL/SMCL Maximum Contaminant Level/Secondary Contaminant Level United States Environmental Protection Agency (USEPA) Table of Regulated Drinking Water Contaminants (updated June 2016). Available at https://www.epa.gov/ground-water- and-drinking-water/table-regulated-drinking-water-contaminants. USEPA Secondary Drinking Water Standards: Guidance for Nuisance Chemicals (updated January 2016). Available at https://www.epa.gov/dwstandardsregulations/secondary-drinking-water-standards-guidance-nuisance-chemicals.
- 8. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.

TABLE 5B. ANALYTICAL DATA SUMMARY Ash Pond - (June 2018) GPC PLANT SCHERER JULIETTE, GEORGIA

		SCREEN	ING/TARG	ET LEVELS							GROUNDW	ATER MONITOR	ING WELLS						
Analyte	Units	MCL	PQL/RL	MDL	SGWA-1	SGWA-2	SGWA-3	SGWA-4	SGWA-5	SGWA-24	SGWA-25	SGWC-6	SGWC-7	SGWC-8	SGWC-9	SGWC-10	SGWC-11	SGWC-12	SGWC-13
			San	nple Date:	6/5/2018	6/5/2018	6/6/2018	6/6/2018	6/5/2018	6/5/2018	6/5/2018	6/6/2018	6/6/2018	6/6/2018	6/6/2018	6/6/2018	6/6/2018	6/6/2018	6/7/2018
Appendix III																			
BORON, TOTAL	mg/L	N/R	0.05	0.021	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.059	1.8	0.07	0.37	ND	0.45
CALCIUM, TOTAL	mg/L	N/R	0.23	0.13	2.6	11	4.1	18	1.5	13	9.7	4.2	19	51	54	1.2	1.8	22	15
CHLORIDE, TOTAL	mg/L	N/R	1.0	0.89	1.7	1.3	2	1.1	1.6	1.9	2	1.3	4.6	11	12	8.6	7.5	8.8	6.2
FLUORIDE, TOTAL	mg/L	4	0.2	0.082	ND	ND	ND	ND	ND	ND	ND	ND	0.2	0.4	ND	ND	ND	ND	ND
рН	S.U.	N/R	N/R	N/R	5.38	6.73	5.62	6.7	5.59	6.27	6.06	5.99	6.56	6.42	6.12	5.43	5.32	6.10	5.93
SULFATE, TOTAL	mg/L	N/R	1.0	0.7	ND	ND	1.8	0.89 J	ND	ND	ND	ND	14	74	320	2.9	0.89 J	41	69
TOTAL DISSOLVED SOLIDS	mg/L	N/R	5.0	3.4	8	74	46	120	50	76	80	100	210	410	590	38	40	260	190
Appendix IV			1			<u> </u>			1		1	1	1			1			
ANTIMONY, TOTAL	mg/L	0.006	0.0025	0.001															
ARSENIC, TOTAL	mg/L	0.01	0.0013	0.00046	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BARIUM, TOTAL	mg/L	2	0.0025	0.00049	0.058	0.038	0.036	0.058	0.011	0.022	0.024	0.014	0.24	0.18	0.069	0.027	0.041	0.048	0.032
BERYLLIUM, TOTAL	mg/L	0.004	0.0025	0.00034	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CADMIUM, TOTAL	mg/L	0.005	0.0025	0.00034															
CHROMIUM, TOTAL	mg/L	0.1	0.0025	0.0011	ND (0.0014 J)	0.014	0.015	0.0048	ND	0.0046	ND	ND	ND	ND (0.0013 J)	ND	ND	ND	ND	ND
COBALT, TOTAL	mg/L	N/R	0.0025	0.0004	0.0028	ND	ND	ND	ND	ND	0.0095	ND (0.0021 J)	0.0034	ND	0.0064	0.018	0.026	0.0038	0.0039
LEAD, TOTAL	mg/L	0.015	0.0013	0.00035	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LITHIUM, TOTAL	mg/L	N/R	0.005	0.0032	ND (0.0018 J)	ND	ND	ND	ND	ND (0.0011 J)	ND (0.0015 J)	ND	ND (0.004 J)	ND (0.0018 J)	ND	ND	ND (0.0017 J)	ND	ND
MERCURY, TOTAL	mg/L	0.002	0.0002	0.00007	ND	ND	ND	ND	ND	ND	ND (0.000075 J)	ND	ND	ND	ND	ND	ND	ND	ND
MOLYBDENUM, TOTAL	mg/L	N/R	0.015	0.00085															
RADIUM (226 + 228)	pCi/L	5	5	varies	0.106 U	0.0496 U	0.175 U	0.308	0.255 U	0.163 U	-0.0364 U	0.127 U	0.165 U	1.59	-0.0272 U	0.123 U	0.153 U	0.0775 U	0.235 U
SELENIUM, TOTAL	mg/L	0.05	0.0013	0.00024	ND (0.00065 J)	ND (0.00098 J)	ND	ND	ND (0.00039 J)	ND (0.00041 J)	ND (0.00029 J)	ND (0.00032 J)	ND	ND	ND	ND	ND	ND	ND (0.00064 J)
THALLIUM, TOTAL	mg/L	0.002	0.0005	8.5E-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

- 1. Bold indicated detection above MDL.
- 2. mg/L Milligrams per Liter
- 3. pCi/L picocuries per Liter
- 4. N/R Indicates consitiuent is not regulated by Hazardous Site Response Act
- 5. J Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantitation Limit (PQL). Values are displayed as less that the PQL with a J.
- 6. < Constituent was analyzed for, but was not detected above the MDL and is considered a non-detect. Value is displayed as less than the PQL.
- 7. MCL/SMCL Maximum Contaminant Level/Secondary Contaminant Level United States Environmental Protection Agency (USEPA) Table of Regulated Drinking Water Contaminants (updated June 2016). Available at https://www.epa.gov/ground-water- and-drinking-water/table-regulated-drinking-water-contaminants. USEPA Secondary Drinking Water Standards: Guidance for Nuisance Chemicals (updated January 2016). Available at https://www.epa.gov/dwstandardsregulations/secondary-drinking-water-standards-guidance-nuisance-chemicals.
- 8. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.
- 9. -- Each of these Appendix IV constituents were not detected during the March 2018 monitoring event and therefore are not required to be analyzed.

TABLE 5B. ANALYTICAL DATA SUMMARY Ash Pond - (June 2018) GPC PLANT SCHERER JULIETTE, GEORGIA

		cc	DEENING/T	ADCET LEVE	1.0					LILITE, GLON		ATED MACHITOR	INC WELLS		
				ARGET LEVE						1		VATER MONITOR		I	T
Analyte	Units	MCL	SMCL	PQL/RL	MDL	SGWC-14	SGWC-15	SGWC-16	SGWC-17	SGWC-18	SGWC-19	SGWC-20	SGWC-21	SGWC-22	SGWC-23
				San	nple Date:	6/7/2018	6/7/2018	6/7/2018	6/7/2018	6/8/2018	6/8/2018	6/7/2018	6/7/2018	6/7/2018	6/7/2018
Appendix III															
BORON, TOTAL	mg/L	N/R	N/R	0.05	0.021	1.6	1.7	0.59	0.35	4.3	1.8	2.1	1.4	0.41	0.71
CALCIUM, TOTAL	mg/L	N/R	N/R	0.23	0.13	44	16	0.84	49	90	37	11	29	26	25
CHLORIDE, TOTAL	mg/L	N/R	250	1.0	0.89	10	9.3	7.7	8	9	7.2	9.9	8.6	10	10
FLUORIDE, TOTAL	mg/L	4	2	0.2	0.082	ND	ND (0.14 J)	ND	ND	ND	ND	0.21	ND	ND	ND
рН	S.U.	N/R	6.5-8.5	N/R	N/R	5.81	4.62	5.26	6.21	4.69	5.52	4.26	6.1	5.66	5.97
SULFATE, TOTAL	mg/L	N/R	250	1.0	0.7	190	190	25	170	870	220	210	79	94	100
TOTAL DISSOLVED SOLIDS	mg/L	N/R	500	5.0	3.4	340	310	74	360	820	320	320	260	210	220
Appendix IV															
ANTIMONY, TOTAL	mg/L	0.006	N/R	0.0025	0.001										
ARSENIC, TOTAL	mg/L	0.01	N/R	0.0013	0.00046	ND	ND	ND	ND	0.002	ND	ND	ND	ND	ND
BARIUM, TOTAL	mg/L	2	N/R	0.0025	0.00049	0.057	0.035	0.022	0.02	0.032	0.035	0.029	0.092	0.084	0.082
BERYLLIUM, TOTAL	mg/L	0.004	N/R	0.0025	0.00034	ND	ND (0.00038 J)	ND	ND	ND (0.00035 J)	ND	ND (0.000869 J)	ND	ND	ND
CADMIUM, TOTAL	mg/L	0.005	N/R	0.0025	0.00034										
CHROMIUM, TOTAL	mg/L	0.1	N/R	0.0025	0.0011	ND	0.032	0.01	0.0083	0.0086	0.015	ND	ND	ND	ND
COBALT, TOTAL	mg/L	N/R	N/R	0.0025	0.0004	0.0025	0.3	0.0037	ND	0.19	ND	0.21	ND	ND (0.0022 J)	ND
LEAD, TOTAL	mg/L	0.015	N/R	0.0013	0.00035	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LITHIUM, TOTAL	mg/L	N/R	N/R	0.005	0.0032	ND	ND (0.003 J)	ND	ND	ND (0.0042 J)	ND (0.0022 J)	ND (0.0038 J)	ND (0.0013 J)	ND	ND (0.0027 J)
MERCURY, TOTAL	mg/L	0.002	N/R	0.0002	0.00007	ND	ND (0.00013 J)	ND	ND (0.00011 J)	ND (0.00014 J)	ND	ND (0.000082 J)	ND	ND	0.00028
MOLYBDENUM, TOTAL	mg/L	N/R	N/R	0.015	0.00085										
RADIUM (226 + 228)	pCi/L	5	N/R	5	varies	0.211 U	0.64	0.283 U	0.172 U	0.32 U	0.0462 U	0.235 U	0.514	0.222 U	0.64
SELENIUM, TOTAL	mg/L	0.05	N/R	0.0013	0.00024	ND (0.00084 J)	0.0014	0.0013	ND (0.00064 J)	0.014	ND (0.00063 J)	ND (0.00066 J)	ND	ND	ND
THALLIUM, TOTAL	mg/L	0.002	N/R	0.0005	8.5E-05	ND	ND	ND	ND	ND (0.00019 J)	ND	ND (0.00014 J)	ND	ND	ND

- 1. Bold indicated detection above MDL.
- 2. mg/L Milligrams per Liter
- 3. pCi/L picocuries per Liter
- 4. N/R Indicates consitiuent is not regulated by Hazardous Site Response Act
- 5. J Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantitation Limit (PQL). Values are displayed as less that the PQL with a J.
- 6. < Constituent was analyzed for, but was not detected above the MDL and is considered a non-detect. Value is displayed as less than the PQL.
- 7. MCL/SMCL Maximum Contaminant Level/Secondary Contaminant Level United States Environmental Protection Agency (USEPA) Table of Regulated Drinking Water Contaminants (updated June 2016). Available at https://www.epa.gov/ground-water- and-drinking-water/table-regulated-drinking-water-contaminants. USEPA Secondary Drinking Water Standards: Guidance for Nuisance Chemicals (updated January 2016). Available at https://www.epa.gov/dwstandardsregulations/secondary-drinking-water-standards-guidance-nuisance-chemicals.
- 8. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.
- 9. -- Each of these Appendix IV constituents were not detected during the March 2018 monitoring event and therefore are not required to be analyzed.

TABLE 5C.

ANALYTICAL DATA SUMMARY

Ash Pond - (October/December 2018)

GPC PLANT SCHERER JULIETTE, GEORGIA

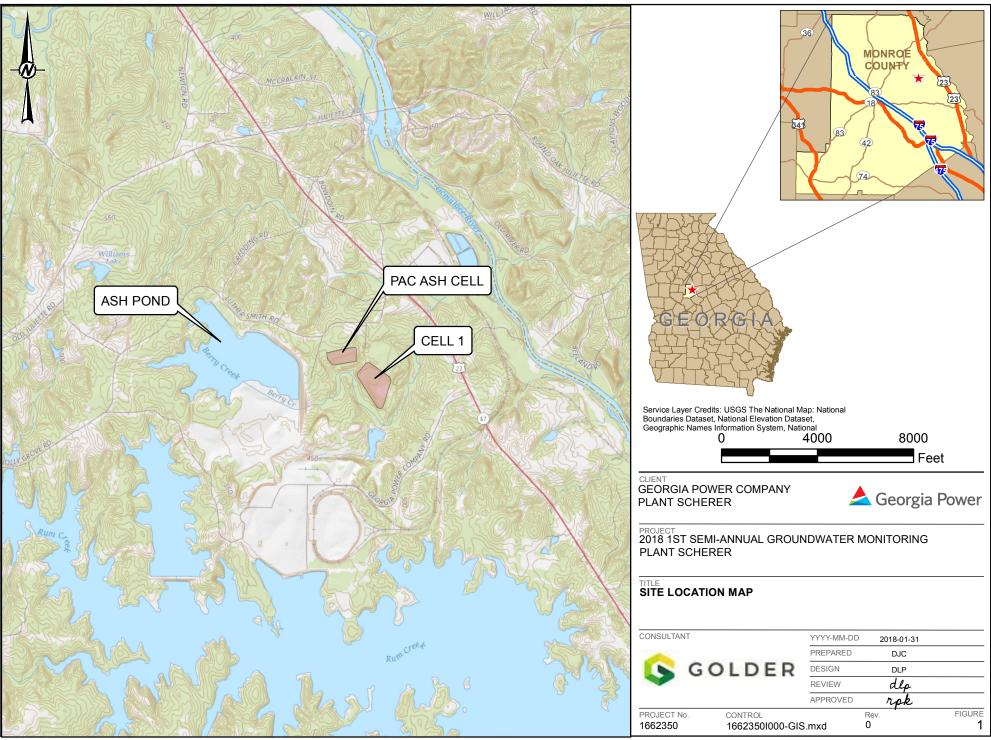
S GOLDER

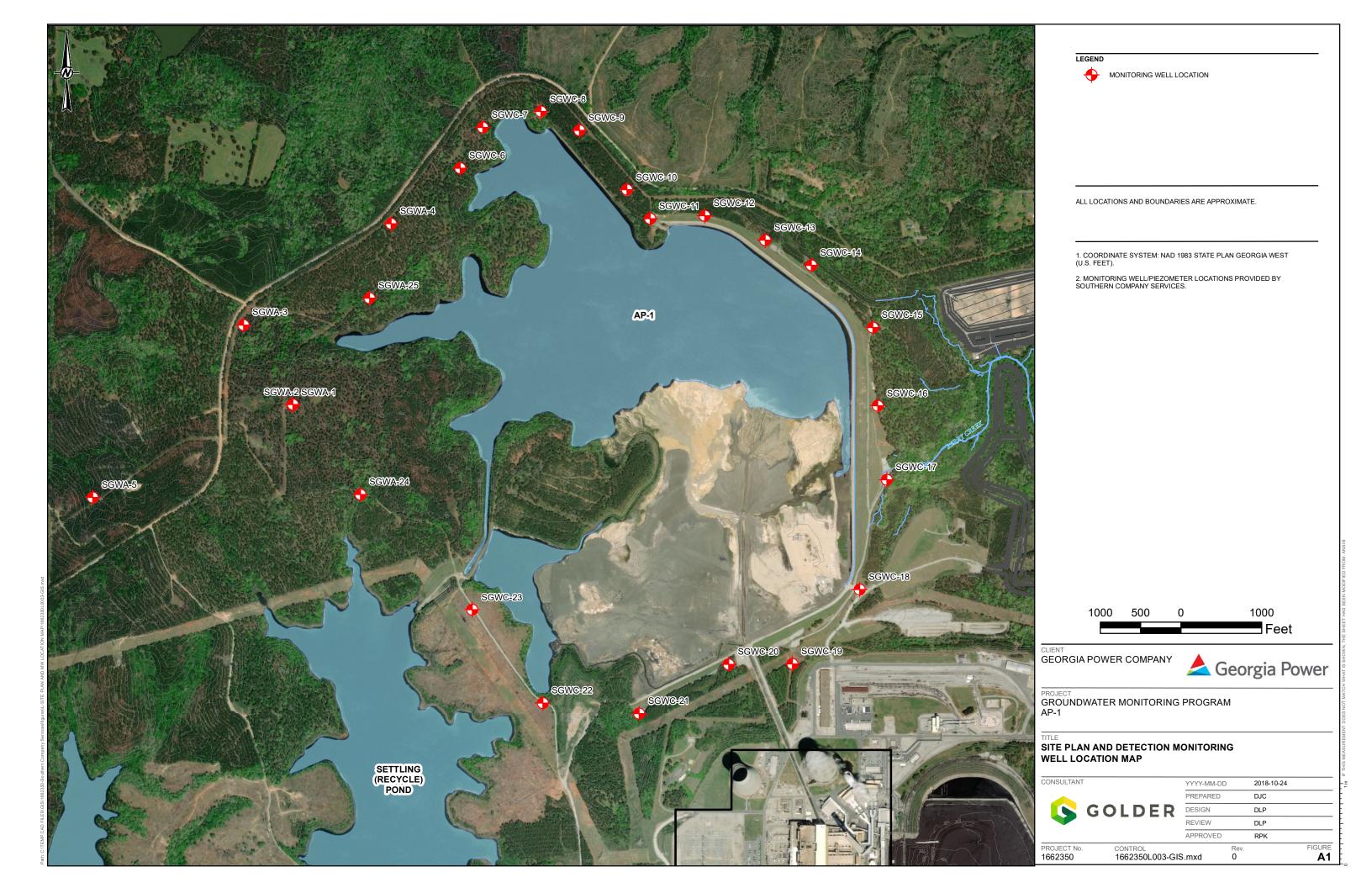
		SCREEN	IING/TARG	ET LEVELS							GROUNDW	ATER MONITOR	RING WELLS						
Analyte	Units	MCL	PQL/RL	MDL	SGWA-1	SGWA-2	SGWA-3	SGWA-4	SGWA-5	SGWA-24	SGWA-25	SGWC-6	SGWC-7	SGWC-8	SGWC-9	SGWC-10	SGWC-11	SGWC-12	SGWC-13
			San	nple Date:	10/5/2018	10/5/2018	10/5/2018	10/8/2018	10/8/2018	10/5/2018	10/8/2018	10/8/2018	10/9/2018	10/9/2018	10/9/2018	10/9/2018	10/16/2018	10/8/2018	10/8/2018
Appendix III																			
BORON, TOTAL	mg/L	N/R	0.05	0.021	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.064	1.6	0.098	0.35	ND	0.47
CALCIUM, TOTAL	mg/L	N/R	0.23	0.13	1.7	10	4.3	18	1.4	12	9.4	6.5	16	46	55	4.0	1.8	21	16
CHLORIDE, TOTAL	mg/L	N/R	1.0	0.89	1.7	1.3	2	1.2	1.7	2	1.9	1.8	4.2	11	13	8.6	7.8	9.1	7.5
FLUORIDE, TOTAL	mg/L	4	0.2	0.082	ND	ND	ND	ND	ND	ND	ND	ND	0.2	0.47	ND	ND	ND	ND	ND
рН	S.U.	N/R	N/R	N/R	5.46	6.81	5.76	6.53	5.7	6.37	6.16	6.3	6.56	6.51	6.06	5.29	5.34	6.16	6.02
SULFATE, TOTAL	mg/L	N/R	1.0	0.7	ND	ND	1.4	ND (0.76 J)	ND	ND	ND	ND	10	72	330	16	1.3	43	74
TOTAL DISSOLVED SOLIDS	mg/L	N/R	5.0	3.4	16	110	ND (4 J)	94	58	100	ND (4 J)	44	170	390	510	38	100	190	140
Appendix IV																			
ANTIMONY, TOTAL	mg/L	0.006	0.0025	0.001															
ARSENIC, TOTAL	mg/L	0.01	0.0013	0.00046	ND	ND	ND (0.00096 J)	ND (0.00056 J)	ND (0.00052 J)	ND	ND	ND	ND (0.00049 J)	ND (0.00053 J)	ND (0.00068 J)	ND	ND	ND (0.0007 J)	ND (0.00069 J)
BARIUM, TOTAL	mg/L	2	0.0025	0.00049	0.058	0.036	0.035	0.064	0.011	0.024	0.024	0.069	0.28	0.17	0.077	0.032	0.037	0.049	0.033
BERYLLIUM, TOTAL	mg/L	0.004	0.0025	0.00034	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
CADMIUM, TOTAL	mg/L	0.005	0.0025	0.00034															
CHROMIUM, TOTAL	mg/L	0.1	0.0025	0.0011	ND (0.0014 J)	0.016	0.015	0.0098	ND (0.0011 J)	0.0058	ND	ND	ND	ND (0.0016 J)	ND	ND	ND	ND	ND
COBALT, TOTAL	mg/L	N/R	0.0025	0.0004	ND (0.00075 J)	ND	ND	ND	ND	ND (0.00058 J)	0.0047	ND	0.013	ND	0.0049	0.03	0.023	0.0037	0.0036
LEAD, TOTAL	mg/L	0.015	0.0013	0.00035	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LITHIUM, TOTAL	mg/L	N/R	0.005	0.0032	ND (0.0018 J)	ND	ND	ND	ND	ND (0.0012 J)	ND	ND	0.0053	ND (0.002 J)	ND	ND	ND (0.0031 J)	ND	ND (0.0014 J)
MERCURY, TOTAL	mg/L	0.002	0.0002	0.00007	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND (0.000072 J)	ND	ND
MOLYBDENUM, TOTAL	mg/L	N/R	0.015	0.00085															
RADIUM (226 + 228)	pCi/L	5	5	varies	0.522	0.474	0.5	-0.0974 U	0.764	0.568	0.478	0.77	0.385	3.01	0.565	0.387	1.06	0.865	0.64
SELENIUM, TOTAL	mg/L	0.05	0.0013	0.00024	ND (0.00031 J)	ND (0.00028 J)	ND (0.00024 J)	ND (0.00041 J)	ND	ND	ND	ND	ND (0.00034 J)	ND	ND	ND	ND (0.00046 J)	ND	ND
THALLIUM, TOTAL	mg/L	0.002	0.0005	8.5E-05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

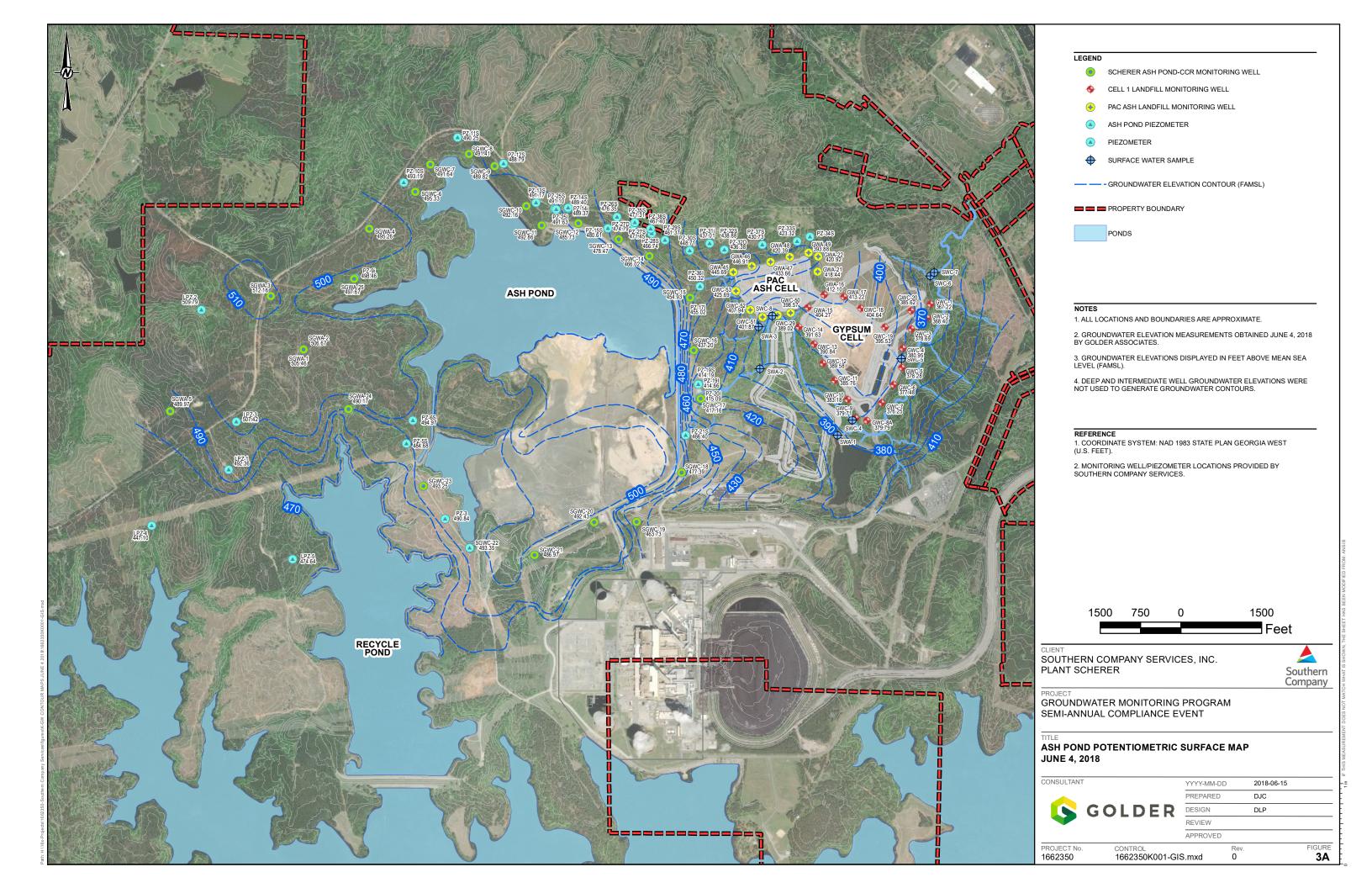
- 1. Bold indicated detection above MDL.
- 2. mg/L Milligrams per Liter
- 3. pCi/L picocuries per Liter
- 4. N/R Indicates consitiuent is not regulated by Hazardous Site Response Act
- 5. J Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantitation Limit (PQL). Values are displayed as less that the PQL with a J.
- 6. < Constituent was analyzed for, but was not detected above the MDL and is considered a non-detect. Value is displayed as less than the PQL.
- 7. MCL/SMCL Maximum Contaminant Level/Secondary Contaminant Level United States Environmental Protection Agency (USEPA) Table of Regulated Drinking Water Contaminants (updated June 2016). Available at https://www.epa.gov/ground-water- and-drinking-water/table-regulated-drinking-water-contaminants. USEPA Secondary Drinking Water Standards: Guidance for Nuisance Chemicals (updated January 2016). Available at https://www.epa.gov/dwstandardsregulations/secondary-drinking-water-standards-guidance-nuisance-chemicals.
- 8. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.
- 9. SGWC-18 samples collected 10/18/2018 required dilution for analyses. As a result, the reporting limit has been increased. The reported result is not detected at 0.41 mg/L.
- 10. -- Each of these Appendix IV constituents were not detected during the March 2018 monitoring event and therefore are not required to be analyzed.

TABLE 5C.

ANALYTICAL DATA SUMMARY


Ash Pond - (October/December 2018)


GPC PLANT SCHERER


									JUI	LIETTE, GEOR	GIA				
		sc	REENING/TA	ARGET LEVE	LS						GROUNDV	VATER MONITOR	RING WELLS		
Analyte	Units	MCL	SMCL	PQL/RL	MDL	SGWC-14	SGWC-15	SGWC-16	SGWC-17	SGWC-18	SGWC-19	SGWC-20	SGWC-21	SGWC-22	SGWC-23
				San	nple Date:	10/8/2018	10/16/2018	10/8/2018	10/8/2018	10/18/2018	10/9/2018	10/18/2018	10/8/2018	10/8/2018	10/8/2018
Appendix III															
BORON, TOTAL	mg/L	N/R	N/R	0.05	0.021	1.4	1.5	0.55	0.44	4.9	1.8	2.3	1.2	0.4	0.6
CALCIUM, TOTAL	mg/L	N/R	N/R	0.23	0.13	37	16	0.94	46	100	42	12	29	28	24
CHLORIDE, TOTAL	mg/L	N/R	250	1.0	0.89	10	10	8.1	8.1	16	7.3	11	9.3	10	9.9
FLUORIDE, TOTAL	mg/L	4	2	0.2	0.082	ND	ND (0.14 J)	ND	ND	ND*	ND	0.23	ND	ND	ND
рН	S.U.	N/R	6.5-8.5	N/R	N/R	5.83	4.59	5.29	6.17	4.7	5.51	4.3	6.14	5.74	5.94
SULFATE, TOTAL	mg/L	N/R	250	1.0	0.7	190	200	28	180	1200	270	210	88	99	96
TOTAL DISSOLVED SOLIDS	mg/L	N/R	500	5.0	3.4	280	350	42	390	1200	250	370	310	260	30
Appendix IV															
ANTIMONY, TOTAL	mg/L	0.006	N/R	0.0025	0.001										
ARSENIC, TOTAL	mg/L	0.01	N/R	0.0013	0.00046	ND (0.00097 J)	ND	ND (0.00054 J)	ND (0.00075 J)	0.0023	ND (0.00058 J)	ND	ND	ND	ND
BARIUM, TOTAL	mg/L	2	N/R	0.0025	0.00049	0.053	0.031	0.025	0.021	0.033	0.037	0.027	0.092	0.084	0.077
BERYLLIUM, TOTAL	mg/L	0.004	N/R	0.0025	0.00034	ND	ND (0.0004 J)	ND	ND	ND	ND	ND (0.00079 J)	ND	ND	ND
CADMIUM, TOTAL	mg/L	0.005	N/R	0.0025	0.00034										
CHROMIUM, TOTAL	mg/L	0.1	N/R	0.0025	0.0011	ND	0.032	0.013	0.0055	0.009	0.017	ND	ND	ND (0.0012 J)	ND (0.0017 J)
COBALT, TOTAL	mg/L	N/R	N/R	0.0025	0.0004	0.0071	0.27	0.0044	ND (0.00046 J)	0.21	ND	0.16	ND	ND (0.0021 J)	ND
LEAD, TOTAL	mg/L	0.015	N/R	0.0013	0.00035	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LITHIUM, TOTAL	mg/L	N/R	N/R	0.005	0.0032	ND (0.0011 J)	ND (0.0034 J)	ND (0.0015 J)	ND	0.0054	ND	0.0062	ND (0.0019 J)	ND (0.0011 J)	ND (0.0035 J)
MERCURY, TOTAL	mg/L	0.002	N/R	0.0002	0.00007	ND	ND	ND	ND	0.00021	ND	ND	ND	ND	ND
MOLYBDENUM, TOTAL	mg/L	N/R	N/R	0.015	0.00085										
RADIUM (226 + 228)	pCi/L	5	N/R	5	varies	0.636	0.731	0.799	0.682	0.304 U	0.584	0.399	0.374	0.499	0.437
SELENIUM, TOTAL	mg/L	0.05	N/R	0.0013	0.00024	ND	0.0021	0.0014	ND (0.00028 J)	0.017	ND (0.0005 J)	ND (0.00049 J)	ND	ND	ND (0.00026 J)
THALLIUM, TOTAL	mg/L	0.002	N/R	0.0005	8.5E-05	ND	ND (0.0001 J)	ND	ND	ND (0.00019 J)	ND	ND (0.00018 J)	ND	ND	ND


- 1. Bold indicated detection above MDL.
- 2. mg/L Milligrams per Liter
- 3. pCi/L picocuries per Liter
- 4. N/R Indicates consitiuent is not regulated by Hazardous Site Response Act
- 5. J Result is an estimated value. The result is greater than or equal to the Method Detection Limit (MDL) and less than the Practical Quantitation Limit (PQL). Values are displayed as less that the PQL with a J.
- 6. < Constituent was analyzed for, but was not detected above the MDL and is considered a non-detect. Value is displayed as less than the PQL.
- 7. MCL/SMCL Maximum Contaminant Level/Secondary Contaminant Level United States Environmental Protection Agency (USEPA) Table of Regulated Drinking Water Contaminants (updated June 2016). Available at https://www.epa.gov/ground-water- and-drinking-water/table-regulated-drinking-water-contaminants. USEPA Secondary Drinking Water Standards: Guidance for Nuisance Chemicals (updated January 2016). Available at https://www.epa.gov/dwstandardsregulations/secondary-drinking-water-standards-guidance-nuisance-chemicals.
- 8. Radium data is a combination of radium isotopes 226 and 228. When results are reported below the MDC (Minimum Detectable Concentration), data is displayed with an accompanying U. The MDC varies depending upon the sample amount and elapsed time of the measurement.
- 9. SGWC-18 samples collected 10/18/2018 required dilution for analyses. As a result, the reporting limit has been increased. The reported result is not detected at 0.41 mg/L.
- 10. -- Each of these Appendix IV constituents were not detected during the March 2018 monitoring event and therefore are not required to be analyzed.

APPENDIX A

Laboratory Analytical & Field Sampling Reports

ANALYTICAL DATA REPORTS MARCH 2018

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-151428-1

TestAmerica Sample Delivery Group: Ash Pond

Client Project/Site: CCR - Plant Scherer

For:

Southern Company 241 Ralph McGill Blvd SE B10185 Atlanta, Georgia 30308

Attn: Joju Abraham

Authorized for release by: 4/13/2018 3:56:21 PM

Cheyenne Whitmire, Project Manager II (850)471-6222

cheyenne.whitmire@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Southern Company Project/Site: CCR - Plant Scherer

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	10
Sample Summary	11
Client Sample Results	12
Definitions	46
Chronicle	47
QC Association	56
QC Sample Results	63
Chain of Custody	72
Receipt Checklists	76
Certification Summary	77

3

4

6

0

9

10

12

13

Case Narrative

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Job ID: 400-151428-1

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-151428-1

Metals

Method(s) 6020: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 392265 and analytical batch 393106 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) 6020: The post digestion spike % recovery for Lithium associated with batch 393373 was outside of control limits.

Method(s) 6020: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 392655, 392993 and 393096 and analytical batch 393373 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) 6020: The continuing calibration verification (CCV) associated with batch 393373 recovered above the upper control limit for Lithium. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: SGWA-2 (400-151428-3), SGWA-4 (400-151428-7), SGWC-6 (400-151428-9), SGWC-14 (400-151428-11), SGWC-16 (400-151428-13), SGWA-25 (400-151428-16), EB-2 (AP) (400-151428-17), SGWC-10 (400-151428-20), SGWC-9 (400-151428-26) and (MB 400-392655/1-A ^5).

Method(s) 6020: The continuing calibration verification (CCV) associated with batch 393373 recovered above the upper control limit for Arsenic, Beryllium, and Lithium. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: (MB 400-392993/1-A ^5).

Method(s) 6020: The continuing calibration verification (CCV) associated with batch 393373 recovered above the upper control limit for Arsenic and Lithium. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: SGWC-12 (400-151428-22), SGWC-13 (400-151428-23) and FB-1 (AP) (400-151428-24).

Method(s) 6020: The continuing calibration verification (CCV) associated with batch 393373 recovered above the upper control limit for Arsenic. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: SGWC-11 (400-151428-21) and FB-2 (AP) (400-151428-25).

Method(s) 7470A: The method blank for preparation batch 393404 and analytical batch 393589 contained Mercury above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-analysis of samples was not performed.

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

Lab Sample ID: 400-151428-4

SDG: Ash Pond

Client Sample ID: SGWA-24	Lab Sample ID: 400-151428-1
---------------------------	-----------------------------

Analyte	Result C	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.022	0.0025	0.00049	mg/L	5	_	6020	Total
Chromium	0.0042	0.0025	0.0011	mg/L	5		6020	Recoverable Total Recoverable

Client Sample ID: SGWA-1 Lab Sample ID: 400-151428-2

Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
0.053	0.0025	0.00049	mg/L	5	_	6020	Total
							Recoverable
0.0065	0.0025	0.00040	mg/L	5	(6020	Total
							Recoverable
0.0024 J	0.0050	0.0011	mg/L	5	(6020	Total
							Recoverable
0.000089 JB	0.00020	0.000070	mg/L	1		7470A	Total/NA
	0.0053 0.0065 0.0024 J	0.053 0.0025 0.0065 0.0025 0.0024 J 0.0050	0.053 0.0025 0.00049 0.0065 0.0025 0.00040 0.0024 J 0.0050 0.0011	0.053 0.0025 0.00049 mg/L 0.0065 0.0025 0.00040 mg/L 0.0024 J 0.0050 0.0011 mg/L	0.053 0.0025 0.00049 mg/L 5 0.0065 0.0025 0.00040 mg/L 5 0.0024 J 0.0050 0.0011 mg/L 5	0.053 0.0025 0.00049 mg/L 5 0.0065 0.0025 0.00040 mg/L 5 0.0024 J 0.0050 0.0011 mg/L 5	0.053 0.0025 0.00049 mg/L 5 6020 0.0065 0.0025 0.00040 mg/L 5 6020 0.0024 J 0.0050 0.0011 mg/L 5 6020

Client Sample ID: SGWA-2 Lab Sample ID: 400-151428-3

Analyte	Result Qualifier	r RL	MDL	Unit	Dil Fac [Method	Prep Type
Barium	0.036	0.0025	0.00049	mg/L	5	6020	Total
Chromium	0.013	0.0025	0.0011	mg/L	5	6020	Recoverable Total Recoverable

Client Sample ID: FD-1 (AP)

ſ	 Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
	Barium	0.054	0.0025	0.00049	mg/L	5	6020	Total
	Cobalt	0.0060	0.0025	0.00040	ma/l	5	6020	Recoverable Total
	Cobait	0.0000	0.0020	0.00010	mg/L	Ū	0020	Recoverable
	Lithium - RA	0.0023 J	0.0050	0.0011	mg/L	5	6020	Total Recoverable
	Mercury	0.000089 JB	0.00020	0.000070	mg/L	1	7470A	Total/NA

Client Sample ID: EB-1 (AP) Lab Sample ID: 400-151428-5

No Detections.

Client Sample ID: SGWA-3 Lab Sample ID: 400-151428-6

Analyte	Result	Qualifier R	_ MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.035	0.002	0.00049	mg/L	5	_	6020	Total
								Recoverable
Chromium	0.012	0.002	0.0011	mg/L	5		6020	Total
								Recoverable
Lithium - RA	0.0013	J 0.005	0.0011	mg/L	5		6020	Total
								Recoverable

Lab Sample ID: 400-151428-7 **Client Sample ID: SGWA-4**

Ana	alyte Res	ult Qualifier F	RL MD	L Unit	Dil Fac D	Method	Prep Type
Bar	0.0	61 0.00	0.0004	9 mg/L	5	6020	Total Recoverable

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

Detection Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Met	thod Prep Type
Chromium	0.0058	0.0025	0.0011 mg/L	5 602	
					Recoverable

Client Sample ID: SGWA-5 Lab Sample ID: 400-151428-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.010		0.0025	0.00049	mg/L	5	_	6020	Total
Lithium - RA	0.0017	J	0.0050	0.0011	mg/L	5		6020	Recoverable Total Recoverable

7

Client Sample ID: SGWC-6 Lab Sample ID: 400-151428-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.021		0.0025	0.00049	mg/L	5	_	6020	Total Recoverable
Cobalt	0.0040		0.0025	0.00040	mg/L	5		6020	Total Recoverable

10

Client Sample ID: SGWC-7 Lab Sample ID: 400-151428-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluoride	0.19	J	0.20	0.082	mg/L	1	_	300.0	Total/NA
Barium	0.27		0.0025	0.00049	mg/L	5		6020	Total Recoverable
Cobalt	0.0054		0.0025	0.00040	mg/L	5		6020	Total Recoverable
Lithium - RA	0.0061		0.0050	0.0011	mg/L	5		6020	Total Recoverable

4 /

Client Sample ID: SGWC-14

Client Sample ID: SGWC-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.055		0.0025	0.00049	mg/L		_	6020	Total
Cobalt	0.0083		0.0025	0.00040	mg/L	5		6020	Recoverable Total
Mercury	0.00010	JB	0.00020	0.000070	mg/L	1		7470A	Recoverable Total/NA

Lab Sample ID: 400-151428-12

Lab Sample ID: 400-151428-11

							•		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluoride	0.12	J	0.20	0.082	mg/L	1	_	300.0	Total/NA
Barium	0.035		0.0025	0.00049	mg/L	5		6020	Total
									Recoverable
Beryllium	0.00041	J	0.0025	0.00034	mg/L	5		6020	Total
									Recoverable
Chromium	0.031		0.0025	0.0011	mg/L	5		6020	Total
									Recoverable
Cobalt	0.27		0.0025	0.00040	mg/L	5		6020	Total
									Recoverable
Lithium - RA	0.0034	J	0.0050	0.0011	mg/L	5		6020	Total
									Recoverable
Mercury	0.00014	JB	0.00020	0.000070	mg/L	1		7470A	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-16 Lab Sample ID: 400-151428-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.021		0.0025	0.00049	mg/L	5	_	6020	Total
									Recoverable
Chromium	0.0098		0.0025	0.0011	mg/L	5		6020	Total
									Recoverable
Cobalt	0.0037		0.0025	0.00040	mg/L	5		6020	Total
									Recoverable

Client Sample ID: SGWC-17 Lab Sample ID: 400-151428-14

Analyte Barium		ualifier RL 0.0025	MDL 0.00049		Dil Fac	D	Method 6020	Prep Type Total
Chromium	0.0045	0.0025	0.0011	mg/L	5		6020	Recoverable Total Recoverable
Lithium	0.0014 J	0.0050	0.0011	mg/L	5		6020	Total Recoverable

Client Sample ID: SGWC-23 Lab Sample ID: 400-151428-15

Analyte Barium	Result 0.076	Qualifier	RL 0.0025	MDL 0.00049		Dil Fac	D	Method 6020	Prep Type Total
Chromium	0.0012	J	0.0025	0.0011	mg/L	5		6020	Recoverable Total
Lithium - RA	0.0050		0.0050	0.0011	mg/L	5		6020	Recoverable Total Recoverable

Client Sample ID: SGWA-25 Lab Sample ID: 400-151428-16

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.00052	J	0.0013	0.00046	mg/L	5	_	6020	Total
Barium	0.024		0.0025	0.00049	mg/L	5		6020	Recoverable Total Recoverable
Cobalt	0.014		0.0025	0.00040	mg/L	5		6020	Total Recoverable

Client Sample ID: EB-2 (AP) Lab Sample ID: 400-151428-17

No Detections.

Client Sample ID: FD-2 (AP) Lab Sample ID: 400-151428-18

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.056		0.0025	0.00049	mg/L	5	_	6020	Total
Cobalt	0.0083		0.0025	0.00040	mg/L	5		6020	Recoverable Total
Lithium - RA	0.0013	J	0.0050	0.0011	mg/L	5		6020	Recoverable Total Recoverable

Client Sample ID: SGWC-8 Lab Sample ID: 400-151428-19

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

Page 6 of 77

4/13/2018

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sam	ple ID: SGWC-8	(Continued)
------------	----------------	-------------

	Lab Sample	ID:	400-151	428-19
--	------------	-----	---------	--------

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluoride	0.40		0.20	0.082	mg/L		_	300.0	Total/NA
Barium	0.17		0.0025	0.00049	mg/L	5		6020	Total
Chromium	0.0012	J	0.0025	0.0011	mg/L	5		6020	Recoverable Total Recoverable
Lithium - RA	0.0023	J	0.0050	0.0011	mg/L	5		6020	Total Recoverable

Client Sample ID: SGWC-10

Lab Sample ID: 400-151428-20

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.031		0.0025	0.00049	mg/L	5	_	6020	Total Recoverable
Cobalt	0.026		0.0025	0.00040	mg/L	5		6020	Total Recoverable

Client Sample ID: SGWC-11

Lab Sample ID: 400-151428-21

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.039		0.0025	0.00049	mg/L	5	_	6020	Total
Cobalt Lithium - RA	0.024 0.0029	J	0.0025 0.0050	0.00040	Ü	5 5		6020 6020	Recoverable Total Recoverable Total Recoverable

Client Sample ID: SGWC-12

Lab Sample ID: 400-151428-22

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.043		0.0025	0.00049	mg/L	5	_	6020	Total
Cobalt	0.0035		0.0025	0.00040	mg/L	5		6020	Recoverable Total Recoverable

Client Sample ID: SGWC-13

Lab Sample ID: 400-151428-23

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Barium	0.029	0.0025	0.00049 mg/L	5	6020	Total Recoverable
Cobalt	0.0035	0.0025	0.00040 mg/L	5	6020	Total Recoverable
Lead	0.00039 J	0.0013	0.00035 mg/L	5	6020	Total Recoverable

Client Sample ID: FB-1 (AP)

Lab Sample ID: 400-151428-24

No Detections.

Client Sample ID: FB-2 (AP)

Lab Sample ID: 400-151428-25

No Detections.

Client Sample ID: SGWC-9

Lab Sample ID: 400-151428-26

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

4/13/2018

Page 7 of 77

6

5

0

8

10

11

13

Detection Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-9 (Continued)

Lab Sample ID: 400-151428-26

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.069		0.0025	0.00049	mg/L	5	_	6020	Total
Cobalt	0.0087		0.0025	0.00040	mg/L	5		6020	Recoverable Total Recoverable

Client Sample ID: SGWC-18

Lab Sample ID: 400-151428-27

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0015		0.0013	0.00046	mg/L	5	_	6020	Total
									Recoverable
Barium	0.029		0.0025	0.00049	mg/L	5		6020	Total
									Recoverable
Beryllium	0.00036	J	0.0025	0.00034	mg/L	5		6020	Total
									Recoverable
Chromium	0.0082		0.0025	0.0011	mg/L	5		6020	Total
:					_	_			Recoverable
Cobalt	0.16		0.0025	0.00040	mg/L	5		6020	Total
						_			Recoverable
Selenium	0.0085		0.0013	0.00024	mg/L	5		6020	Total
		<u>.</u>				<u>.</u> .			Recoverable
Thallium	0.00011	J	0.00050	0.000085	mg/L	5		6020	Total
1.00	0.0050		0.0050	0.0044	,	_		0000	Recoverable
Lithium - RA	0.0056		0.0050	0.0011	mg/L	5		6020	Total
	0.00000		0.0000	0.000070	,			7.170.4	Recoverable
Mercury	0.000083	J	0.00020	0.000070	mg/L	1		7470A	Total/NA

Client Sample ID: SGWC-19

Lab Sample ID: 400-151428-28

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.034		0.0025	0.00049	mg/L	5	_	6020	Total
Chromium	0.014		0.0025	0.0011	mg/L	5		6020	Recoverable Total Recoverable

Client Sample ID: SGWC-20

Lab Sample ID: 400-151428-29

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluoride	0.19	J	0.20	0.082	mg/L	1	_	300.0	Total/NA
Barium	0.027		0.0025	0.00049	mg/L	5		6020	Total Recoverable
Beryllium	0.00079	J	0.0025	0.00034	mg/L	5		6020	Total Recoverable
Cobalt	0.18		0.0025	0.00040	mg/L	5		6020	Total Recoverable
Thallium	0.000090	J	0.00050	0.000085	mg/L	5		6020	Total Recoverable
Lithium - RA	0.0053		0.0050	0.0011	mg/L	5		6020	Total Recoverable

Client Sample ID: SGWC-21

Lab Sample ID: 400-151428-30

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.090		0.0025	0.00049	mg/L	5	_	6020	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

Page 8 of 77

4/13/2018

Detection Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Samr	ole ID: SGWC-21	(Continued)

Lab Sample ID: 400-151428-30

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	0.0038	J	0.0050	0.0011	mg/L	5	_	6020	Total
									Recoverable

Client Sample ID: SGWC-22

Lab Sample	ID: 400-151428-31
------------	-------------------

Analyte	Result Q	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.084		0.0025	0.00049	mg/L		_	6020	Total
Cobalt Lithium	0.0022 J 0.0033 J		0.0025 0.0050	0.00040	Ü	5 5		6020 6020	Recoverable Total Recoverable Total Recoverable

Client Sample ID: EB-3 (AP)

Lab Sample	ID: 400-15142	8-32
------------	---------------	------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac I) Method	Prep Type
Lithium	0.0016	J	0.0050	0.0011	mg/L	5	6020	Total Recoverable

Client Sample ID: FB-3 (AP)

Lab Sample ID: 400-151428-33

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	0.0024	J	0.0050	0.0011	mg/L	5	_	6020	Total Recoverable

Client Sample ID: FD-3 (AP)

Lab Sample ID: 400-151428-34

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.085		0.0025	0.00049	mg/L	5	_	6020	Total
Cobalt	0.0021	1	0.0025	0.00040	ma/l	5		6020	Recoverable
Cobait	0.0021	J	0.0025	0.00040	IIIg/L	5		0020	Total Recoverable
Lithium	0.0028	J	0.0050	0.0011	mg/L	5		6020	Total Recoverable

4/13/2018

Method Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	TAL PEN
6020	Metals (ICP/MS)	SW846	TAL PEN
7470A	Mercury (CVAA)	SW846	TAL PEN

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Sample Summary

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-151428-1 SDG: Ash Pond

5. 7 torr i orra	
Received	
03/28/18 09:44	
03/28/18 09:44 03/28/18 09:44	
03/28/18 09:44	5
03/28/18 09:44 03/28/18 09:44	6

	rā	
	Ľ	

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-151428-1	SGWA-24	Water	03/26/18 11:00	03/28/18 09:44
400-151428-2	SGWA-1	Water	03/26/18 14:40	03/28/18 09:44
400-151428-3	SGWA-2	Water	03/26/18 15:40	03/28/18 09:44
400-151428-4	FD-1 (AP)	Water	03/26/18 00:00	03/28/18 09:44
400-151428-5	EB-1 (AP)	Water	03/26/18 16:15	03/28/18 09:44
400-151428-6	SGWA-3	Water	03/26/18 16:05	03/28/18 09:44
400-151428-7	SGWA-4	Water	03/27/18 13:10	03/29/18 10:20
400-151428-8	SGWA-5	Water	03/27/18 09:35	03/29/18 10:20
400-151428-9	SGWC-6	Water	03/27/18 14:25	03/29/18 10:20
400-151428-10	SGWC-7	Water	03/27/18 15:30	03/29/18 10:20
400-151428-11	SGWC-14	Water	03/27/18 09:25	03/29/18 10:20
400-151428-12	SGWC-15	Water	03/27/18 10:45	03/29/18 10:20
400-151428-13	SGWC-16	Water	03/27/18 12:35	03/29/18 10:20
400-151428-14	SGWC-17	Water	03/27/18 14:05	03/29/18 10:20
400-151428-15	SGWC-23	Water	03/27/18 15:10	03/29/18 10:20
400-151428-16	SGWA-25	Water	03/27/18 10:45	03/29/18 10:20
400-151428-17	EB-2 (AP)	Water	03/27/18 16:00	03/29/18 10:20
400-151428-18	FD-2 (AP)	Water	03/27/18 00:00	03/29/18 10:20
400-151428-19	SGWC-8	Water	03/27/18 09:25	03/29/18 10:20
400-151428-20	SGWC-10	Water	03/27/18 11:20	03/29/18 10:20
400-151428-21	SGWC-11	Water	03/27/18 13:30	03/29/18 10:20
400-151428-22	SGWC-12	Water	03/27/18 14:55	03/29/18 10:20
400-151428-23	SGWC-13	Water	03/27/18 16:05	03/29/18 10:20
400-151428-24	FB-1 (AP)	Water	03/27/18 09:00	03/29/18 10:20
400-151428-25	FB-2 (AP)	Water	03/27/18 10:40	03/29/18 10:20
400-151428-26	SGWC-9	Water	03/28/18 10:55	04/03/18 09:32
400-151428-27	SGWC-18	Water	03/28/18 11:55	04/03/18 09:32
400-151428-28	SGWC-19	Water	03/28/18 12:05	04/03/18 09:32
400-151428-29	SGWC-20	Water	03/28/18 10:10	04/03/18 09:32
400-151428-30	SGWC-21	Water	03/28/18 09:05	04/03/18 09:32
400-151428-31	SGWC-22	Water	03/28/18 09:25	04/03/18 09:32
400-151428-32	EB-3 (AP)	Water	03/28/18 13:00	04/03/18 09:32
400-151428-33	FB-3 (AP)	Water	03/28/18 09:00	04/03/18 09:32
400-151428-34	FD-3 (AP)	Water	03/28/18 00:00	04/03/18 09:32

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWA-24

Date Collected: 03/26/18 11:00 Date Received: 03/28/18 09:44

Analyte

Mercury

Lab Sample ID: 400-151428-1

Matrix: Water

Dil Fac

Analyzed

04/10/18 12:15 04/11/18 15:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/06/18 07:38	1
Method: 6020 - Metal	ls (ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/04/18 12:19	04/09/18 20:24	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/04/18 12:19	04/09/18 20:24	5
Barium	0.022		0.0025	0.00049	mg/L		04/04/18 12:19	04/09/18 20:24	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 20:24	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 20:24	5
Chromium	0.0042		0.0025	0.0011	mg/L		04/04/18 12:19	04/09/18 20:24	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		04/04/18 12:19	04/09/18 20:24	5
Lead	< 0.00035		0.0013	0.00035	mg/L		04/04/18 12:19	04/09/18 20:24	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/04/18 12:19	04/09/18 20:24	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/04/18 12:19	04/09/18 20:24	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/04/18 12:19	04/09/18 20:24	5
Method: 6020 - Metal	ls (ICP/MS) - Total Re	coverable	- RA						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	<0.0011	F1	0.0050	0.0011	mg/L		04/04/18 12:19	04/10/18 14:37	5

RL

0.00020

MDL Unit

0.000070 mg/L

Prepared

Result Qualifier

<0.000070

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWA-1

Date Collected: 03/26/18 14:40 Date Received: 03/28/18 09:44

Lab Sample ID: 400-151428-2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/06/18 08:46	1
Method: 6020 - Meta	als (ICP/MS) - Total Re	coverable							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/04/18 12:19	04/09/18 20:46	
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/04/18 12:19	04/09/18 20:46	5
Barium	0.053		0.0025	0.00049	mg/L		04/04/18 12:19	04/09/18 20:46	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 20:46	5
Cadmium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 20:46	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/04/18 12:19	04/09/18 20:46	5
Cobalt	0.0065		0.0025	0.00040	mg/L		04/04/18 12:19	04/09/18 20:46	5
Lead	<0.00035		0.0013	0.00035	mg/L		04/04/18 12:19	04/09/18 20:46	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/04/18 12:19	04/09/18 20:46	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/04/18 12:19	04/09/18 20:46	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/04/18 12:19	04/09/18 20:46	5
Method: 6020 - Meta	als (ICP/MS) - Total Re	coverable	- RA						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.0024	J	0.0050	0.0011	mg/L		04/04/18 12:19	04/10/18 14:42	5
Method: 7470A - Me	ercury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000089	JB	0.00020	0.000070	mg/L		04/10/18 12:15	04/11/18 15:37	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWA-2

Date Collected: 03/26/18 15:40 Date Received: 03/28/18 09:44 Lab Sample ID: 400-151428-3

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Fluoride	<0.082		0.20	0.082	mg/L			04/06/18 09:09	
Method: 6020 - Metal	ls (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/04/18 12:19	04/09/18 20:51	
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/04/18 12:19	04/09/18 20:51	Ę
Barium	0.036		0.0025	0.00049	mg/L		04/04/18 12:19	04/09/18 20:51	Ę
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 20:51	
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 20:51	į
Chromium	0.013		0.0025	0.0011	mg/L		04/04/18 12:19	04/09/18 20:51	į
Cobalt	<0.00040		0.0025	0.00040	mg/L		04/04/18 12:19	04/09/18 20:51	
Lead	< 0.00035		0.0013	0.00035	mg/L		04/04/18 12:19	04/09/18 20:51	į
Lithium	<0.0011	٨	0.0050	0.0011	mg/L		04/04/18 12:19	04/09/18 20:51	į
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/04/18 12:19	04/09/18 20:51	
Selenium	<0.00024		0.0013	0.00024	mg/L		04/04/18 12:19	04/09/18 20:51	į
Thallium	<0.000085		0.00050	0.000085	mg/L		04/04/18 12:19	04/09/18 20:51	ţ
Method: 7470A - Mer	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		04/10/18 12:15	04/11/18 15:38	

3

_

8

9

11

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: FD-1 (AP)

Date Collected: 03/26/18 00:00 Date Received: 03/28/18 09:44 Lab Sample ID: 400-151428-4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/06/18 09:32	1
Method: 6020 - Meta	als (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/04/18 12:19	04/09/18 20:55	- 5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/04/18 12:19	04/09/18 20:55	5
Barium	0.054		0.0025	0.00049	mg/L		04/04/18 12:19	04/09/18 20:55	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 20:55	5
Cadmium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 20:55	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/04/18 12:19	04/09/18 20:55	5
Cobalt	0.0060		0.0025	0.00040	mg/L		04/04/18 12:19	04/09/18 20:55	5
Lead	<0.00035		0.0013	0.00035	mg/L		04/04/18 12:19	04/09/18 20:55	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/04/18 12:19	04/09/18 20:55	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/04/18 12:19	04/09/18 20:55	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/04/18 12:19	04/09/18 20:55	5
Method: 6020 - Meta	als (ICP/MS) - Total Re	coverable	- RA						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.0023	J	0.0050	0.0011	mg/L		04/04/18 12:19	04/10/18 14:46	5
Method: 7470A - Me	rcury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000089	JB	0.00020	0.000070	mg/L		04/10/18 12:15	04/11/18 15:40	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: EB-1 (AP) Date Collected: 03/26/18 16:15 Lab Sample ID: 400-151428-5 Matrix: Water

Date Received: 03/28/18 09:44

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/06/18 09:55	1
Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/04/18 12:19	04/09/18 21:00	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/04/18 12:19	04/09/18 21:00	5
Barium	<0.00049		0.0025	0.00049	mg/L		04/04/18 12:19	04/09/18 21:00	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 21:00	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 21:00	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/04/18 12:19	04/09/18 21:00	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		04/04/18 12:19	04/09/18 21:00	5
Lead	< 0.00035		0.0013	0.00035	mg/L		04/04/18 12:19	04/09/18 21:00	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/04/18 12:19	04/09/18 21:00	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/04/18 12:19	04/09/18 21:00	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/04/18 12:19	04/09/18 21:00	5
: Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable - R	Δ						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	<0.0011		0.0050	0.0011	mg/L		04/04/18 12:19	04/10/18 14:52	5

Analyte	Result Qualifier	RL	MDL I	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070	0.00020	0.000070 r	mg/L		04/10/18 12:15	04/11/18 15:42	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWA-3

Date Collected: 03/26/18 16:05 Date Received: 03/28/18 09:44 Lab Sample ID: 400-151428-6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/06/18 11:03	1
Method: 6020 - Meta	ıls (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/04/18 12:19	04/09/18 21:04	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/04/18 12:19	04/09/18 21:04	5
Barium	0.035		0.0025	0.00049	mg/L		04/04/18 12:19	04/09/18 21:04	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 21:04	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 21:04	5
Chromium	0.012		0.0025	0.0011	mg/L		04/04/18 12:19	04/09/18 21:04	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		04/04/18 12:19	04/09/18 21:04	5
Lead	<0.00035		0.0013	0.00035	mg/L		04/04/18 12:19	04/09/18 21:04	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/04/18 12:19	04/09/18 21:04	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/04/18 12:19	04/09/18 21:04	5
Thallium	<0.000085		0.00050	0.000085	-		04/04/18 12:19	04/09/18 21:04	5
Method: 6020 - Meta	ıls (ICP/MS) - Total Re	coverable	- RA						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.0013	J	0.0050	0.0011	mg/L		04/04/18 12:19	04/10/18 14:56	5
Method: 7470A - Me	rcury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00070		0.00020	0.000070	mg/L		04/10/18 12:15	04/11/18 15:44	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWA-4

Date Collected: 03/27/18 13:10 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-7

. Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Fluoride	<0.082		0.20	0.082	mg/L			04/06/18 11:26	
Method: 6020 - Meta	ls (ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	<0.0010		0.0025	0.0010	mg/L		04/04/18 12:19	04/09/18 21:31	
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/04/18 12:19	04/09/18 21:31	
Barium	0.061		0.0025	0.00049	mg/L		04/04/18 12:19	04/09/18 21:31	
Beryllium	< 0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 21:31	
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 21:31	į
Chromium	0.0058		0.0025	0.0011	mg/L		04/04/18 12:19	04/09/18 21:31	į
Cobalt	<0.00040		0.0025	0.00040	mg/L		04/04/18 12:19	04/09/18 21:31	
Lead	< 0.00035		0.0013	0.00035	mg/L		04/04/18 12:19	04/09/18 21:31	į
Lithium	<0.0011	٨	0.0050	0.0011	mg/L		04/04/18 12:19	04/09/18 21:31	į
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/04/18 12:19	04/09/18 21:31	
Selenium	<0.00024		0.0013	0.00024	mg/L		04/04/18 12:19	04/09/18 21:31	į
Thallium	<0.000085		0.00050	0.000085	mg/L		04/04/18 12:19	04/09/18 21:31	
Method: 7470A - Mei	rcury (CVAA)								
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.00070		0.00020	0.000070	mg/L		04/10/18 12:15	04/11/18 15:45	

3

5

7

ė

9

10

11

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWA-5

Date Collected: 03/27/18 09:35 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-8

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/06/18 11:49	1
Method: 6020 - Meta	ıls (ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/04/18 12:19	04/09/18 21:36	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/04/18 12:19	04/09/18 21:36	5
Barium	0.010		0.0025	0.00049	mg/L		04/04/18 12:19	04/09/18 21:36	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 21:36	5
Cadmium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 21:36	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/04/18 12:19	04/09/18 21:36	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		04/04/18 12:19	04/09/18 21:36	5
Lead	< 0.00035		0.0013	0.00035	mg/L		04/04/18 12:19	04/09/18 21:36	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/04/18 12:19	04/09/18 21:36	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/04/18 12:19	04/09/18 21:36	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/04/18 12:19	04/09/18 21:36	5
Method: 6020 - Meta	ıls (ICP/MS) - Total Re	coverable	- RA						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.0017	J	0.0050	0.0011	mg/L		04/04/18 12:19	04/10/18 15:01	5
Method: 7470A - Me	rcury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00070		0.00020	0.000070	mg/L		04/10/18 12:15	04/11/18 15:47	

3

9

7

0

10

12

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-6

Date Collected: 03/27/18 14:25 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/06/18 12:12	1
Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/04/18 12:19	04/09/18 21:40	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/04/18 12:19	04/09/18 21:40	5
Barium	0.021		0.0025	0.00049	mg/L		04/04/18 12:19	04/09/18 21:40	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 21:40	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 21:40	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/04/18 12:19	04/09/18 21:40	5
Cobalt	0.0040		0.0025	0.00040	mg/L		04/04/18 12:19	04/09/18 21:40	5
Lead	< 0.00035		0.0013	0.00035	mg/L		04/04/18 12:19	04/09/18 21:40	5
Lithium	<0.0011	٨	0.0050	0.0011	mg/L		04/04/18 12:19	04/09/18 21:40	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/04/18 12:19	04/09/18 21:40	5
Selenium	< 0.00024		0.0013	0.00024	mg/L		04/04/18 12:19	04/09/18 21:40	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/04/18 12:19	04/09/18 21:40	5
Method: 7470A - Mer	cury (CVAA)								
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00070		0.00020	0.000070	mg/L		04/10/18 12:15	04/11/18 15:49	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-7

Lab Sample ID: 400-151428-10

04/10/18 12:15 04/11/18 15:51

Matrix: Water

Date Collected: 03/27/18 15:30 Date Received: 03/29/18 10:20

Mercury

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	0.19	J	0.20	0.082	mg/L			04/06/18 12:34	1
- Method: 6020 - Metal	ls (ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/04/18 12:19	04/09/18 21:45	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/04/18 12:19	04/09/18 21:45	5
Barium	0.27		0.0025	0.00049	mg/L		04/04/18 12:19	04/09/18 21:45	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 21:45	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 21:45	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/04/18 12:19	04/09/18 21:45	5
Cobalt	0.0054		0.0025	0.00040	mg/L		04/04/18 12:19	04/09/18 21:45	5
Lead	<0.00035		0.0013	0.00035	mg/L		04/04/18 12:19	04/09/18 21:45	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/04/18 12:19	04/09/18 21:45	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/04/18 12:19	04/09/18 21:45	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/04/18 12:19	04/09/18 21:45	5
Method: 6020 - Metal	ls (ICP/MS) - Total Re	coverable	- RA						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.0061		0.0050	0.0011	mg/L		04/04/18 12:19	04/10/18 15:05	5
Method: 7470A - Mer	cury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.00020 0.000070 mg/L

<0.000070

3

5

7

8

10

11

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-14

Date Collected: 03/27/18 09:25 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-11

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/06/18 12:57	1
- Method: 6020 - Metal	ls (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/04/18 12:19	04/09/18 21:49	5
Arsenic	< 0.00046		0.0013	0.00046	mg/L		04/04/18 12:19	04/09/18 21:49	5
Barium	0.055		0.0025	0.00049	mg/L		04/04/18 12:19	04/09/18 21:49	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 21:49	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 21:49	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/04/18 12:19	04/09/18 21:49	5
Cobalt	0.0083		0.0025	0.00040	mg/L		04/04/18 12:19	04/09/18 21:49	5
Lead	< 0.00035		0.0013	0.00035	mg/L		04/04/18 12:19	04/09/18 21:49	5
Lithium	<0.0011	٨	0.0050	0.0011	mg/L		04/04/18 12:19	04/09/18 21:49	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/04/18 12:19	04/09/18 21:49	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/04/18 12:19	04/09/18 21:49	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/04/18 12:19	04/09/18 21:49	5
Method: 7470A - Mer	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00010	JB	0.00020	0.000070	mg/L		04/10/18 12:15	04/11/18 16:01	

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-15

Date Collected: 03/27/18 10:45 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	0.12	J	0.20	0.082	mg/L			04/07/18 02:16	1
Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/04/18 12:19	04/09/18 21:54	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/04/18 12:19	04/09/18 21:54	5
Barium	0.035		0.0025	0.00049	mg/L		04/04/18 12:19	04/09/18 21:54	5
Beryllium	0.00041	J	0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 21:54	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 21:54	5
Chromium	0.031		0.0025	0.0011	mg/L		04/04/18 12:19	04/09/18 21:54	5
Cobalt	0.27		0.0025	0.00040	mg/L		04/04/18 12:19	04/09/18 21:54	5
Lead	<0.00035		0.0013	0.00035	mg/L		04/04/18 12:19	04/09/18 21:54	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/04/18 12:19	04/09/18 21:54	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/04/18 12:19	04/09/18 21:54	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/04/18 12:19	04/09/18 21:54	5
Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable	- RA						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.0034	J	0.0050	0.0011	mg/L		04/04/18 12:19	04/10/18 15:10	5
Method: 7470A - Mer	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00014	JB	0.00020	0.000070	mg/L		04/10/18 12:15	04/11/18 16:03	

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-16

Date Collected: 03/27/18 12:35 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-13

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/07/18 03:25	1
Method: 6020 - Metal	ls (ICP/MS) - Total Re	ecoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/04/18 12:19	04/09/18 21:58	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/04/18 12:19	04/09/18 21:58	5
Barium	0.021		0.0025	0.00049	mg/L		04/04/18 12:19	04/09/18 21:58	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 21:58	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 21:58	5
Chromium	0.0098		0.0025	0.0011	mg/L		04/04/18 12:19	04/09/18 21:58	5
Cobalt	0.0037		0.0025	0.00040	mg/L		04/04/18 12:19	04/09/18 21:58	5
Lead	<0.00035		0.0013	0.00035	mg/L		04/04/18 12:19	04/09/18 21:58	5
Lithium	<0.0011	٨	0.0050	0.0011	mg/L		04/04/18 12:19	04/09/18 21:58	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/04/18 12:19	04/09/18 21:58	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/04/18 12:19	04/09/18 21:58	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/04/18 12:19	04/09/18 21:58	5
Method: 7470A - Mer	cury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		04/10/18 14:15	04/12/18 13:53	1

3

__

7

8

4.0

1 U

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-17

Date Collected: 03/27/18 14:05 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-14

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/06/18 21:42	1
Method: 6020 - Meta	ls (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/01/18 12:07	04/06/18 17:45	- 5
Arsenic	< 0.00046		0.0013	0.00046	mg/L		04/01/18 12:07	04/06/18 17:45	5
Barium	0.020		0.0025	0.00049	mg/L		04/01/18 12:07	04/06/18 17:45	5
Beryllium	< 0.00034		0.0025	0.00034	mg/L		04/01/18 12:07	04/06/18 17:45	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/01/18 12:07	04/06/18 17:45	5
Chromium	0.0045		0.0025	0.0011	mg/L		04/01/18 12:07	04/06/18 17:45	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		04/01/18 12:07	04/06/18 17:45	5
Lead	< 0.00035		0.0013	0.00035	mg/L		04/01/18 12:07	04/06/18 17:45	5
Lithium	0.0014	J	0.0050	0.0011	mg/L		04/01/18 12:07	04/06/18 17:45	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/01/18 12:07	04/06/18 17:45	5
Selenium	< 0.00024		0.0013	0.00024	mg/L		04/01/18 12:07	04/06/18 17:45	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/01/18 12:07	04/06/18 17:45	5
Method: 7470A - Mer	curv (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		04/10/18 14:15	04/12/18 14:12	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-23

Date Collected: 03/27/18 15:10 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/07/18 02:39	1
Method: 6020 - Meta	ıls (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/04/18 12:19	04/09/18 22:03	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/04/18 12:19	04/09/18 22:03	5
Barium	0.076		0.0025	0.00049	mg/L		04/04/18 12:19	04/09/18 22:03	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 22:03	5
Cadmium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 22:03	5
Chromium	0.0012	J	0.0025	0.0011	mg/L		04/04/18 12:19	04/09/18 22:03	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		04/04/18 12:19	04/09/18 22:03	5
Lead	<0.00035		0.0013	0.00035	mg/L		04/04/18 12:19	04/09/18 22:03	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/04/18 12:19	04/09/18 22:03	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/04/18 12:19	04/09/18 22:03	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/04/18 12:19	04/09/18 22:03	5
Method: 6020 - Meta	ıls (ICP/MS) - Total Re	coverable	- RA						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.0050		0.0050	0.0011	mg/L		04/04/18 12:19	04/10/18 15:14	5
- Method: 7470A - Mei	rcury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		04/10/18 14:15	04/12/18 14:14	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWA-25

Date Collected: 03/27/18 10:45 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-16

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/07/18 03:48	1
Method: 6020 - Metal	ls (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/04/18 12:19	04/09/18 22:07	5
Arsenic	0.00052	J	0.0013	0.00046	mg/L		04/04/18 12:19	04/09/18 22:07	5
Barium	0.024		0.0025	0.00049	mg/L		04/04/18 12:19	04/09/18 22:07	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 22:07	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 22:07	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/04/18 12:19	04/09/18 22:07	5
Cobalt	0.014		0.0025	0.00040	mg/L		04/04/18 12:19	04/09/18 22:07	5
Lead	< 0.00035		0.0013	0.00035	mg/L		04/04/18 12:19	04/09/18 22:07	5
Lithium	<0.0011	^	0.0050	0.0011	mg/L		04/04/18 12:19	04/09/18 22:07	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/04/18 12:19	04/09/18 22:07	5
Selenium	< 0.00024		0.0013	0.00024	mg/L		04/04/18 12:19	04/09/18 22:07	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/04/18 12:19	04/09/18 22:07	5
Method: 7470A - Mer	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		04/10/18 14:15	04/12/18 14:16	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: EB-2 (AP)

Date Collected: 03/27/18 16:00 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-17

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/07/18 04:56	1
Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/04/18 12:19	04/09/18 22:12	5
Arsenic	< 0.00046		0.0013	0.00046	mg/L		04/04/18 12:19	04/09/18 22:12	5
Barium	< 0.00049		0.0025	0.00049	mg/L		04/04/18 12:19	04/09/18 22:12	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 22:12	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 22:12	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/04/18 12:19	04/09/18 22:12	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		04/04/18 12:19	04/09/18 22:12	5
Lead	< 0.00035		0.0013	0.00035	mg/L		04/04/18 12:19	04/09/18 22:12	5
Lithium	<0.0011	٨	0.0050	0.0011	mg/L		04/04/18 12:19	04/09/18 22:12	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/04/18 12:19	04/09/18 22:12	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/04/18 12:19	04/09/18 22:12	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/04/18 12:19	04/09/18 22:12	5
Method: 7470A - Mer	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		04/10/18 14:15	04/12/18 14:18	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: FD-2 (AP)

Date Collected: 03/27/18 00:00 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-18

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/07/18 05:19	1
Method: 6020 - Meta	als (ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/04/18 12:19	04/09/18 22:39	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/04/18 12:19	04/09/18 22:39	5
Barium	0.056		0.0025	0.00049	mg/L		04/04/18 12:19	04/09/18 22:39	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 22:39	5
Cadmium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 22:39	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/04/18 12:19	04/09/18 22:39	5
Cobalt	0.0083		0.0025	0.00040	mg/L		04/04/18 12:19	04/09/18 22:39	5
Lead	<0.00035		0.0013	0.00035	mg/L		04/04/18 12:19	04/09/18 22:39	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/04/18 12:19	04/09/18 22:39	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/04/18 12:19	04/09/18 22:39	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/04/18 12:19	04/09/18 22:39	5
Method: 6020 - Meta	als (ICP/MS) - Total Re	coverable	- RA						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.0013	J	0.0050	0.0011	mg/L		04/04/18 12:19	04/10/18 15:19	5
	rcury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00070		0.00020	0.000070	mg/L		04/10/18 14:15	04/12/18 14:19	

3

7

8

10

11

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-8

Date Collected: 03/27/18 09:25 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-19

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	0.40		0.20	0.082	mg/L			04/07/18 05:42	1
Method: 6020 - Meta	ls (ICP/MS) - Total Re	coverable							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/04/18 12:19	04/09/18 22:43	5
Arsenic	< 0.00046		0.0013	0.00046	mg/L		04/04/18 12:19	04/09/18 22:43	5
Barium	0.17		0.0025	0.00049	mg/L		04/04/18 12:19	04/09/18 22:43	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 22:43	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 22:43	5
Chromium	0.0012	J	0.0025	0.0011	mg/L		04/04/18 12:19	04/09/18 22:43	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		04/04/18 12:19	04/09/18 22:43	5
Lead	< 0.00035		0.0013	0.00035	mg/L		04/04/18 12:19	04/09/18 22:43	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/04/18 12:19	04/09/18 22:43	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/04/18 12:19	04/09/18 22:43	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/04/18 12:19	04/09/18 22:43	5
Method: 6020 - Meta	ls (ICP/MS) - Total Re	coverable	- RA						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.0023	J	0.0050	0.0011	mg/L		04/04/18 12:19	04/10/18 15:42	5
Method: 7470A - Mei	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		04/10/18 14:15	04/12/18 14:21	

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-10

Date Collected: 03/27/18 11:20 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-20

. Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/07/18 06:05	1
Method: 6020 - Meta	ls (ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/04/18 12:19	04/09/18 22:48	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/04/18 12:19	04/09/18 22:48	5
Barium	0.031		0.0025	0.00049	mg/L		04/04/18 12:19	04/09/18 22:48	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 22:48	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/04/18 12:19	04/09/18 22:48	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/04/18 12:19	04/09/18 22:48	5
Cobalt	0.026		0.0025	0.00040	mg/L		04/04/18 12:19	04/09/18 22:48	5
Lead	<0.00035		0.0013	0.00035	mg/L		04/04/18 12:19	04/09/18 22:48	5
Lithium	<0.0011	٨	0.0050	0.0011	mg/L		04/04/18 12:19	04/09/18 22:48	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/04/18 12:19	04/09/18 22:48	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/04/18 12:19	04/09/18 22:48	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/04/18 12:19	04/09/18 22:48	5
Method: 7470A - Mei	rcury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		04/10/18 14:15	04/12/18 14:23	1

3

5

7

8

10

11

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-11 Date Collected: 03/27/18 13:30 Lab Sample ID: 400-151428-21 Matrix: Water

04/10/18 14:15 04/12/18 14:24

Date Received: 03/29/18 10:20

Mercury

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/07/18 06:28	1
Method: 6020 - Metal	ls (ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/06/18 12:38	04/10/18 05:42	5
Arsenic	<0.00046	٨	0.0013	0.00046	mg/L		04/06/18 12:38	04/10/18 05:42	5
Barium	0.039		0.0025	0.00049	mg/L		04/06/18 12:38	04/10/18 05:42	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/06/18 12:38	04/10/18 05:42	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/06/18 12:38	04/10/18 05:42	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/06/18 12:38	04/10/18 05:42	5
Cobalt	0.024		0.0025	0.00040	mg/L		04/06/18 12:38	04/10/18 05:42	5
Lead	<0.00035		0.0013	0.00035	mg/L		04/06/18 12:38	04/10/18 05:42	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/06/18 12:38	04/10/18 05:42	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/06/18 12:38	04/10/18 05:42	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/06/18 12:38	04/10/18 05:42	5
Method: 6020 - Metal	ls (ICP/MS) - Total Re	coverable	- RA						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.0029	J	0.0050	0.0011	mg/L		04/06/18 12:38	04/10/18 14:10	5
Method: 7470A - Mer	cury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.00020

0.000070 mg/L

<0.000070

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-12

Date Collected: 03/27/18 14:55 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-22

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/07/18 06:50	1
Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/06/18 12:38	04/10/18 05:46	- 5
Arsenic	< 0.00046	٨	0.0013	0.00046	mg/L		04/06/18 12:38	04/10/18 05:46	5
Barium	0.043		0.0025	0.00049	mg/L		04/06/18 12:38	04/10/18 05:46	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/06/18 12:38	04/10/18 05:46	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/06/18 12:38	04/10/18 05:46	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/06/18 12:38	04/10/18 05:46	5
Cobalt	0.0035		0.0025	0.00040	mg/L		04/06/18 12:38	04/10/18 05:46	5
Lead	< 0.00035		0.0013	0.00035	mg/L		04/06/18 12:38	04/10/18 05:46	5
Lithium	<0.0011	٨	0.0050	0.0011	mg/L		04/06/18 12:38	04/10/18 05:46	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/06/18 12:38	04/10/18 05:46	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/06/18 12:38	04/10/18 05:46	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/06/18 12:38	04/10/18 05:46	5
Method: 7470A - Mer	curv (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		04/10/18 14:15	04/12/18 14:26	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-13

Date Collected: 03/27/18 16:05 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-23

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/07/18 09:07	1
Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/06/18 12:38	04/10/18 05:51	5
Arsenic	<0.00046	۸	0.0013	0.00046	mg/L		04/06/18 12:38	04/10/18 05:51	5
Barium	0.029		0.0025	0.00049	mg/L		04/06/18 12:38	04/10/18 05:51	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/06/18 12:38	04/10/18 05:51	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/06/18 12:38	04/10/18 05:51	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/06/18 12:38	04/10/18 05:51	5
Cobalt	0.0035		0.0025	0.00040	mg/L		04/06/18 12:38	04/10/18 05:51	5
Lead	0.00039	J	0.0013	0.00035	mg/L		04/06/18 12:38	04/10/18 05:51	5
Lithium	<0.0011	^	0.0050	0.0011	mg/L		04/06/18 12:38	04/10/18 05:51	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/06/18 12:38	04/10/18 05:51	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/06/18 12:38	04/10/18 05:51	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/06/18 12:38	04/10/18 05:51	5
Method: 7470A - Mer	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		04/10/18 14:15	04/12/18 14:28	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: FB-1 (AP)

Date Collected: 03/27/18 09:00 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-24

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Fluoride	<0.082		0.20	0.082	mg/L			04/07/18 10:16	
Method: 6020 - Metal	ls (ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	<0.0010		0.0025	0.0010	mg/L		04/06/18 12:38	04/10/18 05:55	
Arsenic	<0.00046	٨	0.0013	0.00046	mg/L		04/06/18 12:38	04/10/18 05:55	:
Barium	< 0.00049		0.0025	0.00049	mg/L		04/06/18 12:38	04/10/18 05:55	!
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/06/18 12:38	04/10/18 05:55	
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/06/18 12:38	04/10/18 05:55	:
Chromium	<0.0011		0.0025	0.0011	mg/L		04/06/18 12:38	04/10/18 05:55	:
Cobalt	<0.00040		0.0025	0.00040	mg/L		04/06/18 12:38	04/10/18 05:55	
Lead	< 0.00035		0.0013	0.00035	mg/L		04/06/18 12:38	04/10/18 05:55	:
Lithium	<0.0011	٨	0.0050	0.0011	mg/L		04/06/18 12:38	04/10/18 05:55	:
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/06/18 12:38	04/10/18 05:55	
Selenium	<0.00024		0.0013	0.00024	mg/L		04/06/18 12:38	04/10/18 05:55	
Thallium	<0.000085		0.00050	0.000085	mg/L		04/06/18 12:38	04/10/18 05:55	!
Method: 7470A - Mer	curv (CVAA)								
Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.000070		0.00020	0.000070	mg/L		04/10/18 14:15	04/12/18 14:40	

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: FB-2 (AP)

Date Collected: 03/27/18 10:40 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/07/18 10:39	1
Method: 6020 - Meta	ıls (ICP/MS) - Total Re	coverable							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/06/18 12:38	04/10/18 06:00	5
Arsenic	<0.00046	^	0.0013	0.00046	mg/L		04/06/18 12:38	04/10/18 06:00	5
Barium	<0.00049		0.0025	0.00049	mg/L		04/06/18 12:38	04/10/18 06:00	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/06/18 12:38	04/10/18 06:00	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/06/18 12:38	04/10/18 06:00	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/06/18 12:38	04/10/18 06:00	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		04/06/18 12:38	04/10/18 06:00	5
Lead	< 0.00035		0.0013	0.00035	mg/L		04/06/18 12:38	04/10/18 06:00	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/06/18 12:38	04/10/18 06:00	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/06/18 12:38	04/10/18 06:00	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/06/18 12:38	04/10/18 06:00	5
Method: 6020 - Meta	ıls (ICP/MS) - Total Re	coverable	- RA						
Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	<0.0011		0.0050	0.0011	mg/L		04/06/18 12:38	04/10/18 14:15	5
Method: 7470A - Me	rcury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		04/10/18 14:15	04/12/18 14:42	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-9

Date Collected: 03/28/18 10:55 Date Received: 04/03/18 09:32 Lab Sample ID: 400-151428-26

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/07/18 11:02	1
Method: 6020 - Metal	ls (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/07/18 12:25	04/09/18 23:10	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/07/18 12:25	04/09/18 23:10	5
Barium	0.069		0.0025	0.00049	mg/L		04/07/18 12:25	04/09/18 23:10	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/07/18 12:25	04/09/18 23:10	5
Cadmium	<0.00034		0.0025	0.00034	mg/L		04/07/18 12:25	04/09/18 23:10	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/07/18 12:25	04/09/18 23:10	5
Cobalt	0.0087		0.0025	0.00040	mg/L		04/07/18 12:25	04/09/18 23:10	5
Lead	<0.00035		0.0013	0.00035	mg/L		04/07/18 12:25	04/09/18 23:10	5
Lithium	<0.0011	^	0.0050	0.0011	mg/L		04/07/18 12:25	04/09/18 23:10	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/07/18 12:25	04/09/18 23:10	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/07/18 12:25	04/09/18 23:10	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/07/18 12:25	04/09/18 23:10	5
Method: 7470A - Mer	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		04/10/18 14:15	04/12/18 14:44	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-18

Date Collected: 03/28/18 11:55 Date Received: 04/03/18 09:32 Lab Sample ID: 400-151428-27

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/07/18 11:24	1
Method: 6020 - Metal	s (ICP/MS) - Total Re	ecoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/07/18 12:25	04/09/18 23:15	- 5
Arsenic	0.0015		0.0013	0.00046	mg/L		04/07/18 12:25	04/09/18 23:15	5
Barium	0.029		0.0025	0.00049	mg/L		04/07/18 12:25	04/09/18 23:15	5
Beryllium	0.00036	J	0.0025	0.00034	mg/L		04/07/18 12:25	04/09/18 23:15	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/07/18 12:25	04/09/18 23:15	5
Chromium	0.0082		0.0025	0.0011	mg/L		04/07/18 12:25	04/09/18 23:15	5
Cobalt	0.16		0.0025	0.00040	mg/L		04/07/18 12:25	04/09/18 23:15	5
Lead	< 0.00035		0.0013	0.00035	mg/L		04/07/18 12:25	04/09/18 23:15	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/07/18 12:25	04/09/18 23:15	5
Selenium	0.0085		0.0013	0.00024	mg/L		04/07/18 12:25	04/09/18 23:15	5
Thallium	0.00011	J	0.00050	0.000085	mg/L		04/07/18 12:25	04/09/18 23:15	5
Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable	- RA						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.0056		0.0050	0.0011	mg/L		04/07/18 12:25	04/10/18 12:54	5
Method: 7470A - Mer	cury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000083	J	0.00020	0.000070	mg/L		04/10/18 14:15	04/12/18 14:45	1

3

5

7

0

10

11

13

1 /

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-19

Date Collected: 03/28/18 12:05 Date Received: 04/03/18 09:32

Mercury

Lab Sample ID: 400-151428-28

04/10/18 14:15 04/12/18 14:47

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/07/18 12:33	1
Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/07/18 12:25	04/09/18 23:19	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/07/18 12:25	04/09/18 23:19	5
Barium	0.034		0.0025	0.00049	mg/L		04/07/18 12:25	04/09/18 23:19	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/07/18 12:25	04/09/18 23:19	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/07/18 12:25	04/09/18 23:19	5
Chromium	0.014		0.0025	0.0011	mg/L		04/07/18 12:25	04/09/18 23:19	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		04/07/18 12:25	04/09/18 23:19	5
Lead	< 0.00035		0.0013	0.00035	mg/L		04/07/18 12:25	04/09/18 23:19	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/07/18 12:25	04/09/18 23:19	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/07/18 12:25	04/09/18 23:19	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/07/18 12:25	04/09/18 23:19	5
Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable	- RA						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	<0.0011		0.0050	0.0011	mg/L		04/07/18 12:25	04/10/18 12:58	5
Method: 7470A - Mer	curv (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.00020

0.000070 mg/L

<0.000070

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-20

Date Collected: 03/28/18 10:10 Date Received: 04/03/18 09:32

Mercury

Lab Sample ID: 400-151428-29

04/10/18 14:15 04/12/18 14:49

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	0.19	J	0.20	0.082	mg/L			04/07/18 12:56	1
Method: 6020 - Metals	(ICP/MS) - Total Re	coverable							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/07/18 12:25	04/09/18 23:24	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/07/18 12:25	04/09/18 23:24	5
Barium	0.027		0.0025	0.00049	mg/L		04/07/18 12:25	04/09/18 23:24	5
Beryllium	0.00079	J	0.0025	0.00034	mg/L		04/07/18 12:25	04/09/18 23:24	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/07/18 12:25	04/09/18 23:24	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/07/18 12:25	04/09/18 23:24	5
Cobalt	0.18		0.0025	0.00040	mg/L		04/07/18 12:25	04/09/18 23:24	5
Lead	< 0.00035		0.0013	0.00035	mg/L		04/07/18 12:25	04/09/18 23:24	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/07/18 12:25	04/09/18 23:24	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/07/18 12:25	04/09/18 23:24	5
Thallium	0.000090	J	0.00050	0.000085	mg/L		04/07/18 12:25	04/09/18 23:24	5
Method: 6020 - Metals	(ICP/MS) - Total Re	coverable	- RA						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lithium	0.0053		0.0050	0.0011	mg/L		04/07/18 12:25	04/10/18 13:03	5
Method: 7470A - Merc	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.00020 0.000070 mg/L

<0.000070

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-21

Date Collected: 03/28/18 09:05 Date Received: 04/03/18 09:32 Lab Sample ID: 400-151428-30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/07/18 13:19	1
Method: 6020 - Metal	ls (ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/07/18 12:25	04/10/18 00:09	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/07/18 12:25	04/10/18 00:09	5
Barium	0.090		0.0025	0.00049	mg/L		04/07/18 12:25	04/10/18 00:09	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/07/18 12:25	04/10/18 00:09	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/07/18 12:25	04/10/18 00:09	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/07/18 12:25	04/10/18 00:09	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		04/07/18 12:25	04/10/18 00:09	5
Lead	< 0.00035		0.0013	0.00035	mg/L		04/07/18 12:25	04/10/18 00:09	5
Lithium	0.0038	J	0.0050	0.0011	mg/L		04/07/18 12:25	04/10/18 00:09	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/07/18 12:25	04/10/18 00:09	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/07/18 12:25	04/10/18 00:09	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/07/18 12:25	04/10/18 00:09	5
Method: 7470A - Mer	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		04/10/18 14:15	04/12/18 14:50	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-22

Date Collected: 03/28/18 09:25 Date Received: 04/03/18 09:32 Lab Sample ID: 400-151428-31

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/07/18 13:42	1
Method: 6020 - Metal	ls (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/07/18 12:25	04/10/18 00:13	- 5
Arsenic	< 0.00046		0.0013	0.00046	mg/L		04/07/18 12:25	04/10/18 00:13	5
Barium	0.084		0.0025	0.00049	mg/L		04/07/18 12:25	04/10/18 00:13	5
Beryllium	< 0.00034		0.0025	0.00034	mg/L		04/07/18 12:25	04/10/18 00:13	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/07/18 12:25	04/10/18 00:13	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/07/18 12:25	04/10/18 00:13	5
Cobalt	0.0022	J	0.0025	0.00040	mg/L		04/07/18 12:25	04/10/18 00:13	5
Lead	< 0.00035		0.0013	0.00035	mg/L		04/07/18 12:25	04/10/18 00:13	5
Lithium	0.0033	J	0.0050	0.0011	mg/L		04/07/18 12:25	04/10/18 00:13	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/07/18 12:25	04/10/18 00:13	5
Selenium	< 0.00024		0.0013	0.00024	mg/L		04/07/18 12:25	04/10/18 00:13	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/07/18 12:25	04/10/18 00:13	5
Method: 7470A - Mer	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		04/10/18 14:15	04/12/18 14:52	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: EB-3 (AP)

Date Collected: 03/28/18 13:00 Date Received: 04/03/18 09:32 Lab Sample ID: 400-151428-32

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/07/18 14:05	1
Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/07/18 12:25	04/10/18 00:18	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/07/18 12:25	04/10/18 00:18	5
Barium	<0.00049		0.0025	0.00049	mg/L		04/07/18 12:25	04/10/18 00:18	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/07/18 12:25	04/10/18 00:18	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/07/18 12:25	04/10/18 00:18	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/07/18 12:25	04/10/18 00:18	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		04/07/18 12:25	04/10/18 00:18	5
Lead	<0.00035		0.0013	0.00035	mg/L		04/07/18 12:25	04/10/18 00:18	5
Lithium	0.0016	J	0.0050	0.0011	mg/L		04/07/18 12:25	04/10/18 00:18	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/07/18 12:25	04/10/18 00:18	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/07/18 12:25	04/10/18 00:18	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/07/18 12:25	04/10/18 00:18	5
Method: 7470A - Mer	cury (CVAA)								
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		04/10/18 14:15	04/12/18 14:54	1

3

5

7

8

10

11

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: FB-3 (AP)

Date Collected: 03/28/18 09:00 Date Received: 04/03/18 09:32 Lab Sample ID: 400-151428-33

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/07/18 14:27	1
Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/07/18 12:25	04/10/18 00:22	- 5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/07/18 12:25	04/10/18 00:22	5
Barium	<0.00049		0.0025	0.00049	mg/L		04/07/18 12:25	04/10/18 00:22	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/07/18 12:25	04/10/18 00:22	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/07/18 12:25	04/10/18 00:22	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/07/18 12:25	04/10/18 00:22	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		04/07/18 12:25	04/10/18 00:22	5
Lead	< 0.00035		0.0013	0.00035	mg/L		04/07/18 12:25	04/10/18 00:22	5
Lithium	0.0024	J	0.0050	0.0011	mg/L		04/07/18 12:25	04/10/18 00:22	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/07/18 12:25	04/10/18 00:22	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/07/18 12:25	04/10/18 00:22	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/07/18 12:25	04/10/18 00:22	5
Method: 7470A - Mer	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		04/11/18 11:34	04/12/18 13:16	1

3

5

7

8

10

11

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: FD-3 (AP)

Date Collected: 03/28/18 00:00 Date Received: 04/03/18 09:32 Lab Sample ID: 400-151428-34

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			04/07/18 14:50	1
Method: 6020 - Metal	ls (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/07/18 12:25	04/10/18 00:27	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/07/18 12:25	04/10/18 00:27	5
Barium	0.085		0.0025	0.00049	mg/L		04/07/18 12:25	04/10/18 00:27	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/07/18 12:25	04/10/18 00:27	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		04/07/18 12:25	04/10/18 00:27	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/07/18 12:25	04/10/18 00:27	5
Cobalt	0.0021	J	0.0025	0.00040	mg/L		04/07/18 12:25	04/10/18 00:27	5
Lead	< 0.00035		0.0013	0.00035	mg/L		04/07/18 12:25	04/10/18 00:27	5
Lithium	0.0028	J	0.0050	0.0011	mg/L		04/07/18 12:25	04/10/18 00:27	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/07/18 12:25	04/10/18 00:27	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/07/18 12:25	04/10/18 00:27	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/07/18 12:25	04/10/18 00:27	5
Method: 7470A - Mer	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		04/11/18 11:39	04/12/18 13:18	1

3

5

7

g

10

12

Definitions/Glossary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Qualifiers

HPLC/IC

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
٨	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDI	Mathead Datastian Limit

MDL Method Detection Limit ML Minimum Level (Dioxin) NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWA-24

Date Collected: 03/26/18 11:00 Date Received: 03/28/18 09:44

Lab Sample ID: 400-151428-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	392929	04/06/18 07:38	JAW	TAL PEN
Total Recoverable	Prep	3005A			392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 20:24	DRE	TAL PEN
Total Recoverable	Prep	3005A	RA		392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020	RA	5	393442	04/10/18 14:37	DRE	TAL PEN
Total/NA	Prep	7470A			393404	04/10/18 12:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393589	04/11/18 15:35	JAP	TAL PEN

Lab Sample ID: 400-151428-2 **Client Sample ID: SGWA-1**

Date Collected: 03/26/18 14:40

Date Received: 03/28/18 09:44

Matrix: Water

	Batch	Batch	_	Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	392929	04/06/18 08:46	JAW	TAL PEN
Total Recoverable	Prep	3005A			392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 20:46	DRE	TAL PEN
Total Recoverable	Prep	3005A	RA		392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020	RA	5	393442	04/10/18 14:42	DRE	TAL PEN
Total/NA	Prep	7470A			393404	04/10/18 12:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393589	04/11/18 15:37	JAP	TAL PEN

Client Sample ID: SGWA-2 Lab Sample ID: 400-151428-3 Date Collected: 03/26/18 15:40

Date Received: 03/28/18 09:44

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			392929	04/06/18 09:09	JAW	TAL PEN
Total Recoverable	Prep	3005A			392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 20:51	DRE	TAL PEN
Total/NA	Prep	7470A			393404	04/10/18 12:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393589	04/11/18 15:38	JAP	TAL PEN

Client Sample ID: FD-1 (AP) Lab Sample ID: 400-151428-4 Date Collected: 03/26/18 00:00

Date Received: 03/28/18 09:44

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	392929	04/06/18 09:32	JAW	TAL PEN
Total Recoverable	Prep	3005A			392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 20:55	DRE	TAL PEN
Total Recoverable	Prep	3005A	RA		392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020	RA	5	393442	04/10/18 14:46	DRE	TAL PEN

TestAmerica Pensacola

4/13/2018

Page 47 of 77

Matrix: Water

TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: FD-1 (AP)

Date Collected: 03/26/18 00:00 Date Received: 03/28/18 09:44

Project/Site: CCR - Plant Scherer

Client: Southern Company

Lab Sample ID: 400-151428-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7470A			393404	04/10/18 12:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393589	04/11/18 15:40	JAP	TAL PEN

Client Sample ID: EB-1 (AP)

Date Collected: 03/26/18 16:15

Date Received: 03/28/18 09:44

Lab Sample ID: 400-151428-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			392929	04/06/18 09:55	JAW	TAL PEN
Total Recoverable	Prep	3005A			392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 21:00	DRE	TAL PEN
Total Recoverable	Prep	3005A	RA		392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020	RA	5	393442	04/10/18 14:52	DRE	TAL PEN
Total/NA	Prep	7470A			393404	04/10/18 12:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393589	04/11/18 15:42	JAP	TAL PEN

Client Sample ID: SGWA-3

Date Collected: 03/26/18 16:05

Date Received: 03/28/18 09:44

Lab Sample ID: 400-151428-6

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			392929	04/06/18 11:03	JAW	TAL PEN
Total Recoverable	Prep	3005A			392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 21:04	DRE	TAL PEN
Total Recoverable	Prep	3005A	RA		392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020	RA	5	393442	04/10/18 14:56	DRE	TAL PEN
Total/NA	Prep	7470A			393404	04/10/18 12:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393589	04/11/18 15:44	JAP	TAL PEN

Client Sample ID: SGWA-4

Date Collected: 03/27/18 13:10

Date Received: 03/29/18 10:20

Lab Sample ID: 400-151428-7

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			392929	04/06/18 11:26	JAW	TAL PEN
Total Recoverable	Prep	3005A			392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 21:31	DRE	TAL PEN
Total/NA	Prep	7470A			393404	04/10/18 12:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393589	04/11/18 15:45	JAP	TAL PEN

TestAmerica Job ID: 400-151428-1 SDG: Ash Pond

Lab Sample ID: 400-151428-8

Matrix: Water

Client Sample ID: SGWA-5

Date Collected: 03/27/18 09:35 Date Received: 03/29/18 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	392929	04/06/18 11:49	JAW	TAL PEN
Total Recoverable	Prep	3005A			392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 21:36	DRE	TAL PEN
Total Recoverable	Prep	3005A	RA		392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020	RA	5	393442	04/10/18 15:01	DRE	TAL PEN
Total/NA	Prep	7470A			393404	04/10/18 12:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393589	04/11/18 15:47	JAP	TAL PEN

Client Sample ID: SGWC-6

Date Collected: 03/27/18 14:25 Date Received: 03/29/18 10:20

Lab Sample ID: 400-151428-9 **Matrix: Water**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			392929	04/06/18 12:12	JAW	TAL PEN
Total Recoverable	Prep	3005A			392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 21:40	DRE	TAL PEN
Total/NA	Prep	7470A			393404	04/10/18 12:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393589	04/11/18 15:49	JAP	TAL PEN

Client Sample ID: SGWC-7 Lab Sample ID: 400-151428-10 Date Collected: 03/27/18 15:30 **Matrix: Water**

Date Received: 03/29/18 10:20

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			392929	04/06/18 12:34	JAW	TAL PEN
Total Recoverable	Prep	3005A			392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 21:45	DRE	TAL PEN
Total Recoverable	Prep	3005A	RA		392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020	RA	5	393442	04/10/18 15:05	DRE	TAL PEN
Total/NA	Prep	7470A			393404	04/10/18 12:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393589	04/11/18 15:51	JAP	TAL PEN

Lab Sample ID: 400-151428-11 Client Sample ID: SGWC-14 Date Collected: 03/27/18 09:25 **Matrix: Water**

Date Received: 03/29/18 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			392929	04/06/18 12:57	JAW	TAL PEN
Total Recoverable	Prep	3005A			392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 21:49	DRE	TAL PEN
Total/NA	Prep	7470A			393404	04/10/18 12:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393589	04/11/18 16:01	JAP	TAL PEN

Page 49 of 77

TestAmerica Pensacola

TestAmerica Job ID: 400-151428-1 SDG: Ash Pond

Client Sample ID: SGWC-15

Date Collected: 03/27/18 10:45 Date Received: 03/29/18 10:20

Lab Sample ID: 400-151428-12

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	393083	04/07/18 02:16	JAW	TAL PEN
Total Recoverable	Prep	3005A			392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 21:54	DRE	TAL PEN
Total Recoverable	Prep	3005A	RA		392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020	RA	5	393442	04/10/18 15:10	DRE	TAL PEN
Total/NA	Prep	7470A			393404	04/10/18 12:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393589	04/11/18 16:03	JAP	TAL PEN

Lab Sample ID: 400-151428-13 **Client Sample ID: SGWC-16 Matrix: Water**

Date Collected: 03/27/18 12:35

Date Received: 03/29/18 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	393083	04/07/18 03:25	JAW	TAL PEN
Total Recoverable	Prep	3005A			392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 21:58	DRE	TAL PEN
Total/NA	Prep	7470A			393428	04/10/18 14:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393751	04/12/18 13:53	JAP	TAL PEN

Client Sample ID: SGWC-17 Lab Sample ID: 400-151428-14 Date Collected: 03/27/18 14:05 **Matrix: Water**

Date Received: 03/29/18 10:20

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			393083	04/06/18 21:42	JAW	TAL PEN
Total Recoverable	Prep	3005A			392265	04/01/18 12:07	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393106	04/06/18 17:45	DRE	TAL PEN
Total/NA	Prep	7470A			393428	04/10/18 14:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393751	04/12/18 14:12	JAP	TAL PEN

Client Sample ID: SGWC-23 Lab Sample ID: 400-151428-15 Date Collected: 03/27/18 15:10 **Matrix: Water**

Date Received: 03/29/18 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	393083	04/07/18 02:39	JAW	TAL PEN
Total Recoverable	Prep	3005A			392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 22:03	DRE	TAL PEN
Total Recoverable	Prep	3005A	RA		392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020	RA	5	393442	04/10/18 15:14	DRE	TAL PEN
Total/NA	Prep	7470A			393428	04/10/18 14:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393751	04/12/18 14:14	JAP	TAL PEN

Page 50 of 77

TestAmerica Job ID: 400-151428-1 SDG: Ash Pond

Client Sample ID: SGWA-25

Date Collected: 03/27/18 10:45 Date Received: 03/29/18 10:20

Lab Sample ID: 400-151428-16

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	393083	04/07/18 03:48	JAW	TAL PEN
Total Recoverable	Prep	3005A			392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 22:07	DRE	TAL PEN
Total/NA	Prep	7470A			393428	04/10/18 14:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393751	04/12/18 14:16	JAP	TAL PEN

Lab Sample ID: 400-151428-17

Matrix: Water

Date Collected: 03/27/18 16:00 Date Received: 03/29/18 10:20

Client Sample ID: EB-2 (AP)

Batch Batch Dilution Batch **Prepared** Prep Type Method Number Type Run Factor or Analyzed Analyst Lab Total/NA 300.0 393083 04/07/18 04:56 JAW Analysis TAL PEN Total Recoverable 3005A 392655 04/04/18 12:19 DN1 TAL PEN Prep TAL PEN Total Recoverable Analysis 6020 5 393373 04/09/18 22:12 DRE Total/NA 7470A TAL PEN Prep 393428 04/10/18 14:15 JAP Total/NA Analysis 7470A 1 393751 04/12/18 14:18 JAP TAL PEN

Client Sample ID: FD-2 (AP)

Date Collected: 03/27/18 00:00

Date Received: 03/29/18 10:20

Lab Sample ID: 400-151428-18

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			393083	04/07/18 05:19	JAW	TAL PEN
Total Recoverable	Prep	3005A			392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 22:39	DRE	TAL PEN
Total Recoverable	Prep	3005A	RA		392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020	RA	5	393442	04/10/18 15:19	DRE	TAL PEN
Total/NA	Prep	7470A			393428	04/10/18 14:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393751	04/12/18 14:19	JAP	TAL PEN

Client Sample ID: SGWC-8

Date Collected: 03/27/18 09:25

Date Received: 03/29/18 10:20

Lab Sample ID: 400-151428-19

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	393083	04/07/18 05:42	JAW	TAL PEN
Total Recoverable	Prep	3005A			392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 22:43	DRE	TAL PEN
Total Recoverable	Prep	3005A	RA		392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020	RA	5	393442	04/10/18 15:42	DRE	TAL PEN
Total/NA	Prep	7470A			393428	04/10/18 14:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393751	04/12/18 14:21	JAP	TAL PEN

TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-10

Lab Sample ID: 400-151428-20

Date Collected: 03/27/18 11:20 Date Received: 03/29/18 10:20

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	393083	04/07/18 06:05	JAW	TAL PEN
Total Recoverable	Prep	3005A			392655	04/04/18 12:19	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 22:48	DRE	TAL PEN
Total/NA	Prep	7470A			393428	04/10/18 14:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393751	04/12/18 14:23	JAP	TAL PEN

Lab Sample ID: 400-151428-21

Date Collected: 03/27/18 13:30 Date Received: 03/29/18 10:20

Client Sample ID: SGWC-11

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	393083	04/07/18 06:28	JAW	TAL PEN
Total Recoverable	Prep	3005A			392993	04/06/18 12:38	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/10/18 05:42	DRE	TAL PEN
Total Recoverable	Prep	3005A	RA		392993	04/06/18 12:38	DN1	TAL PEN
Total Recoverable	Analysis	6020	RA	5	393442	04/10/18 14:10	DRE	TAL PEN
Total/NA	Prep	7470A			393428	04/10/18 14:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393751	04/12/18 14:24	JAP	TAL PEN

Client Sample ID: SGWC-12

Lab Sample ID: 400-151428-22

Matrix: Water

Date Collected: 03/27/18 14:55 Date Received: 03/29/18 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	393083	04/07/18 06:50	JAW	TAL PEN
Total Recoverable	Prep	3005A			392993	04/06/18 12:38	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/10/18 05:46	DRE	TAL PEN
Total/NA	Prep	7470A			393428	04/10/18 14:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393751	04/12/18 14:26	JAP	TAL PEN

Client Sample ID: SGWC-13

Lab Sample ID: 400-151428-23

Matrix: Water

Date Collected: 03/27/18 16:05 Date Received: 03/29/18 10:20

Prep Type Total/NA	Batch Type Analysis	Batch Method 300.0	Run	Dilution Factor 1	Batch Number	Prepared or Analyzed 04/07/18 09:07	Analyst JAW	Lab TAL PEN
Total Recoverable Total Recoverable	Prep Analysis	3005A 6020		5	392993	04/06/18 12:38 04/10/18 05:51	DN1	TAL PEN
Total/NA Total/NA	Prep Analysis	7470A 7470A		1	393428 393751	04/10/18 14:15 04/12/18 14:28		TAL PEN TAL PEN

TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: FB-1 (AP)

Date Collected: 03/27/18 09:00 Date Received: 03/29/18 10:20

Lab Sample ID: 400-151428-24

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			393088	04/07/18 10:16	JAW	TAL PEN
Total Recoverable	Prep	3005A			392993	04/06/18 12:38	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/10/18 05:55	DRE	TAL PEN
Total/NA	Prep	7470A			393428	04/10/18 14:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393751	04/12/18 14:40	JAP	TAL PEN

Lab Sample ID: 400-151428-25

Lab Sample ID: 400-151428-26

Lab Sample ID: 400-151428-27

Matrix: Water

Matrix: Water

Matrix: Water

Date Collected: 03/27/18 10:40

Client Sample ID: FB-2 (AP)

Date Received: 03/29/18 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	393088	04/07/18 10:39	JAW	TAL PEN
Total Recoverable	Prep	3005A			392993	04/06/18 12:38	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/10/18 06:00	DRE	TAL PEN
Total Recoverable	Prep	3005A	RA		392993	04/06/18 12:38	DN1	TAL PEN
Total Recoverable	Analysis	6020	RA	5	393442	04/10/18 14:15	DRE	TAL PEN
Total/NA	Prep	7470A			393428	04/10/18 14:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393751	04/12/18 14:42	JAP	TAL PEN

Client Sample ID: SGWC-9

Date Collected: 03/28/18 10:55

Date Received: 04/03/18 09:32

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			393088	04/07/18 11:02	JAW	TAL PEN
Total Recoverable	Prep	3005A			393096	04/07/18 12:25	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 23:10	DRE	TAL PEN
Total/NA	Prep	7470A			393428	04/10/18 14:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393751	04/12/18 14:44	JAP	TAL PEN

Client Sample ID: SGWC-18

Date Collected: 03/28/18 11:55

Date Received: 04/03/18 09:32

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	393088	04/07/18 11:24	JAW	TAL PEN
Total Recoverable	Prep	3005A			393096	04/07/18 12:25	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 23:15	DRE	TAL PEN
Total Recoverable	Prep	3005A	RA		393096	04/07/18 12:25	DN1	TAL PEN
Total Recoverable	Analysis	6020	RA	5	393442	04/10/18 12:54	DRE	TAL PEN
Total/NA	Prep	7470A			393428	04/10/18 14:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393751	04/12/18 14:45	JAP	TAL PEN

TestAmerica Pensacola

TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: SGWC-19

Date Collected: 03/28/18 12:05 Date Received: 04/03/18 09:32

Lab Sample ID: 400-151428-28

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	393088	04/07/18 12:33	JAW	TAL PEN
Total Recoverable	Prep	3005A			393096	04/07/18 12:25	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 23:19	DRE	TAL PEN
Total Recoverable	Prep	3005A	RA		393096	04/07/18 12:25	DN1	TAL PEN
Total Recoverable	Analysis	6020	RA	5	393442	04/10/18 12:58	DRE	TAL PEN
Total/NA	Prep	7470A			393428	04/10/18 14:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393751	04/12/18 14:47	JAP	TAL PEN

Client Sample ID: SGWC-20

Date Collected: 03/28/18 10:10

Date Received: 04/03/18 09:32

Lab Sample ID: 400-151428-29

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	393088	04/07/18 12:56	JAW	TAL PEN
Total Recoverable	Prep	3005A			393096	04/07/18 12:25	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/09/18 23:24	DRE	TAL PEN
Total Recoverable	Prep	3005A	RA		393096	04/07/18 12:25	DN1	TAL PEN
Total Recoverable	Analysis	6020	RA	5	393442	04/10/18 13:03	DRE	TAL PEN
Total/NA	Prep	7470A			393428	04/10/18 14:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393751	04/12/18 14:49	JAP	TAL PEN

Client Sample ID: SGWC-21 Lab Sample ID: 400-151428-30 Date Collected: 03/28/18 09:05 **Matrix: Water**

Date Received: 04/03/18 09:32

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			393088	04/07/18 13:19	JAW	TAL PEN
Total Recoverable	Prep	3005A			393096	04/07/18 12:25	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/10/18 00:09	DRE	TAL PEN
Total/NA	Prep	7470A			393428	04/10/18 14:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393751	04/12/18 14:50	JAP	TAL PEN

Lab Sample ID: 400-151428-31 Client Sample ID: SGWC-22 Date Collected: 03/28/18 09:25 **Matrix: Water**

Date Received: 04/03/18 09:32

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			393088	04/07/18 13:42	JAW	TAL PEN
Total Recoverable	Prep	3005A			393096	04/07/18 12:25	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/10/18 00:13	DRE	TAL PEN
Total/NA	Prep	7470A			393428	04/10/18 14:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393751	04/12/18 14:52	JAP	TAL PEN

TestAmerica Pensacola

Page 54 of 77

Lab Chronicle

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Client Sample ID: EB-3 (AP)

Date Collected: 03/28/18 13:00 Date Received: 04/03/18 09:32

Lab Sample ID: 400-151428-32

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	393088	04/07/18 14:05	JAW	TAL PEN
Total Recoverable	Prep	3005A			393096	04/07/18 12:25	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/10/18 00:18	DRE	TAL PEN
Total/NA	Prep	7470A			393428	04/10/18 14:15	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393751	04/12/18 14:54	JAP	TAL PEN

Client Sample ID: FB-3 (AP) Date Collected: 03/28/18 09:00

Date Received: 04/03/18 09:32

Lab Sample ID: 400-151428-33

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			393088	04/07/18 14:27	JAW	TAL PEN
Total Recoverable	Prep	3005A			393096	04/07/18 12:25	DN1	TAL PEN
Total Recoverable	Analysis	6020		5	393373	04/10/18 00:22	DRE	TAL PEN
Total/NA	Prep	7470A			393526	04/11/18 11:34	JAP	TAL PEN
Total/NA	Analysis	7470A		1	393751	04/12/18 13:16	JAP	TAL PEN

Client Sample ID: FD-3 (AP) Lab Sample ID: 400-151428-34

Date Collected: 03/28/18 00:00

Date Received: 04/03/18 09:32

Matrix: Water

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA 393088 04/07/18 14:50 JAW Analysis 300.0 TAL PEN Total Recoverable Prep 3005A 393096 04/07/18 12:25 DN1 TAL PEN Total Recoverable TAL PEN Analysis 6020 5 393373 04/10/18 00:27 DRE Total/NA Prep 7470A 393526 04/11/18 11:39 JAP **TAL PEN** Total/NA Analysis 7470A 393751 04/12/18 13:18 JAP TAL PEN 1

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Client: Southern Company Project/Site: CCR - Plant Scherer

HPLC/IC

Analysis Batch: 392929

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-1	SGWA-24	Total/NA	Water	300.0	
400-151428-2	SGWA-1	Total/NA	Water	300.0	
400-151428-3	SGWA-2	Total/NA	Water	300.0	
400-151428-4	FD-1 (AP)	Total/NA	Water	300.0	
400-151428-5	EB-1 (AP)	Total/NA	Water	300.0	
400-151428-6	SGWA-3	Total/NA	Water	300.0	
400-151428-7	SGWA-4	Total/NA	Water	300.0	
400-151428-8	SGWA-5	Total/NA	Water	300.0	
400-151428-9	SGWC-6	Total/NA	Water	300.0	
400-151428-10	SGWC-7	Total/NA	Water	300.0	
400-151428-11	SGWC-14	Total/NA	Water	300.0	
MB 400-392929/4	Method Blank	Total/NA	Water	300.0	
LCS 400-392929/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-392929/6	Lab Control Sample Dup	Total/NA	Water	300.0	
400-151428-1 MS	SGWA-24	Total/NA	Water	300.0	
400-151428-1 MSD	SGWA-24	Total/NA	Water	300.0	

Analysis Batch: 393083

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-12	SGWC-15	Total/NA	Water	300.0	
400-151428-13	SGWC-16	Total/NA	Water	300.0	
400-151428-14	SGWC-17	Total/NA	Water	300.0	
400-151428-15	SGWC-23	Total/NA	Water	300.0	
400-151428-16	SGWA-25	Total/NA	Water	300.0	
400-151428-17	EB-2 (AP)	Total/NA	Water	300.0	
400-151428-18	FD-2 (AP)	Total/NA	Water	300.0	
400-151428-19	SGWC-8	Total/NA	Water	300.0	
400-151428-20	SGWC-10	Total/NA	Water	300.0	
400-151428-21	SGWC-11	Total/NA	Water	300.0	
400-151428-22	SGWC-12	Total/NA	Water	300.0	
MB 400-393083/38	Method Blank	Total/NA	Water	300.0	
LCS 400-393083/39	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-393083/40	Lab Control Sample Dup	Total/NA	Water	300.0	
400-151428-14 MS	SGWC-17	Total/NA	Water	300.0	
400-151428-14 MSD	SGWC-17	Total/NA	Water	300.0	

Analysis Batch: 393088

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-23	SGWC-13	Total/NA	Water	300.0	
400-151428-24	FB-1 (AP)	Total/NA	Water	300.0	
400-151428-25	FB-2 (AP)	Total/NA	Water	300.0	
400-151428-26	SGWC-9	Total/NA	Water	300.0	
400-151428-27	SGWC-18	Total/NA	Water	300.0	
400-151428-28	SGWC-19	Total/NA	Water	300.0	
400-151428-29	SGWC-20	Total/NA	Water	300.0	
400-151428-30	SGWC-21	Total/NA	Water	300.0	
400-151428-31	SGWC-22	Total/NA	Water	300.0	
400-151428-32	EB-3 (AP)	Total/NA	Water	300.0	
400-151428-33	FB-3 (AP)	Total/NA	Water	300.0	
400-151428-34	FD-3 (AP)	Total/NA	Water	300.0	
MB 400-393088/4	Method Blank	Total/NA	Water	300.0	

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

HPLC/IC (Continued)

Analysis Batch: 393088 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 400-393088/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-393088/6	Lab Control Sample Dup	Total/NA	Water	300.0	
400-151428-23 MS	SGWC-13	Total/NA	Water	300.0	
400-151428-23 MSD	SGWC-13	Total/NA	Water	300.0	

Metals

Prep Batch: 392265

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-14	SGWC-17	Total Recoverable	Water	3005A	
MB 400-392265/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-392265/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
400-151170-B-24-B MS ^5	Matrix Spike	Total Recoverable	Water	3005A	
400-151170-B-24-C MSD ^5	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

Prep Batch: 392655

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
400-151428-1	SGWA-24	Total Recoverable	Water	3005A	<u> </u>
400-151428-1 - RA	SGWA-24	Total Recoverable	Water	3005A	
400-151428-2	SGWA-1	Total Recoverable	Water	3005A	
400-151428-2 - RA	SGWA-1	Total Recoverable	Water	3005A	
400-151428-3	SGWA-2	Total Recoverable	Water	3005A	
400-151428-4 - RA	FD-1 (AP)	Total Recoverable	Water	3005A	
400-151428-4	FD-1 (AP)	Total Recoverable	Water	3005A	
400-151428-5 - RA	EB-1 (AP)	Total Recoverable	Water	3005A	
400-151428-5	EB-1 (AP)	Total Recoverable	Water	3005A	
400-151428-6 - RA	SGWA-3	Total Recoverable	Water	3005A	
400-151428-6	SGWA-3	Total Recoverable	Water	3005A	
400-151428-7	SGWA-4	Total Recoverable	Water	3005A	
400-151428-8 - RA	SGWA-5	Total Recoverable	Water	3005A	
400-151428-8	SGWA-5	Total Recoverable	Water	3005A	
400-151428-9	SGWC-6	Total Recoverable	Water	3005A	
400-151428-10	SGWC-7	Total Recoverable	Water	3005A	
400-151428-10 - RA	SGWC-7	Total Recoverable	Water	3005A	
400-151428-11	SGWC-14	Total Recoverable	Water	3005A	
400-151428-12 - RA	SGWC-15	Total Recoverable	Water	3005A	
400-151428-12	SGWC-15	Total Recoverable	Water	3005A	
400-151428-13	SGWC-16	Total Recoverable	Water	3005A	
400-151428-15 - RA	SGWC-23	Total Recoverable	Water	3005A	
400-151428-15	SGWC-23	Total Recoverable	Water	3005A	
400-151428-16	SGWA-25	Total Recoverable	Water	3005A	
400-151428-17	EB-2 (AP)	Total Recoverable	Water	3005A	
400-151428-18	FD-2 (AP)	Total Recoverable	Water	3005A	
400-151428-18 - RA	FD-2 (AP)	Total Recoverable	Water	3005A	
400-151428-19	SGWC-8	Total Recoverable	Water	3005A	
400-151428-19 - RA	SGWC-8	Total Recoverable	Water	3005A	
400-151428-20	SGWC-10	Total Recoverable	Water	3005A	
MB 400-392655/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-392655/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
400-151428-1 MS	SGWA-24	Total Recoverable	Water	3005A	

TestAmerica Pensacola

4/13/2018

Page 57 of 77

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Metals (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-1 MSD	SGWA-24	Total Recoverable	Water	3005A	

Prep Batch: 392993

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-21 - RA	SGWC-11	Total Recoverable	Water	3005A	
400-151428-21	SGWC-11	Total Recoverable	Water	3005A	
400-151428-22	SGWC-12	Total Recoverable	Water	3005A	
400-151428-23	SGWC-13	Total Recoverable	Water	3005A	
400-151428-24	FB-1 (AP)	Total Recoverable	Water	3005A	
400-151428-25	FB-2 (AP)	Total Recoverable	Water	3005A	
400-151428-25 - RA	FB-2 (AP)	Total Recoverable	Water	3005A	
MB 400-392993/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-392993/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
400-151541-C-5-B MS ^5	Matrix Spike	Total Recoverable	Water	3005A	
400-151541-C-5-C MSD ^5	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

Prep Batch: 393096

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-26	SGWC-9	Total Recoverable	Water	3005A	_
400-151428-27	SGWC-18	Total Recoverable	Water	3005A	
400-151428-27 - RA	SGWC-18	Total Recoverable	Water	3005A	
400-151428-28 - RA	SGWC-19	Total Recoverable	Water	3005A	
400-151428-28	SGWC-19	Total Recoverable	Water	3005A	
400-151428-29 - RA	SGWC-20	Total Recoverable	Water	3005A	
400-151428-29	SGWC-20	Total Recoverable	Water	3005A	
400-151428-30	SGWC-21	Total Recoverable	Water	3005A	
400-151428-31	SGWC-22	Total Recoverable	Water	3005A	
400-151428-32	EB-3 (AP)	Total Recoverable	Water	3005A	
400-151428-33	FB-3 (AP)	Total Recoverable	Water	3005A	
400-151428-34	FD-3 (AP)	Total Recoverable	Water	3005A	
MB 400-393096/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-393096/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
400-151478-G-5-B MS ^5	Matrix Spike	Total Recoverable	Water	3005A	
400-151478-G-5-C MSD ^5	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

Analysis Batch: 393106

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-14	SGWC-17	Total Recoverable	Water	6020	392265
MB 400-392265/1-A ^5	Method Blank	Total Recoverable	Water	6020	392265
LCS 400-392265/2-A	Lab Control Sample	Total Recoverable	Water	6020	392265
400-151170-B-24-B MS ^5	Matrix Spike	Total Recoverable	Water	6020	392265
400-151170-B-24-C MSD ^5	Matrix Spike Duplicate	Total Recoverable	Water	6020	392265

Analysis Batch: 393373

_					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-1	SGWA-24	Total Recoverable	Water	6020	392655
400-151428-2	SGWA-1	Total Recoverable	Water	6020	392655
400-151428-3	SGWA-2	Total Recoverable	Water	6020	392655
400-151428-4	FD-1 (AP)	Total Recoverable	Water	6020	392655
400-151428-5	EB-1 (AP)	Total Recoverable	Water	6020	392655
400-151428-6	SGWA-3	Total Recoverable	Water	6020	392655

TestAmerica Pensacola

Metals (Continued)

Project/Site: CCR - Plant Scherer

Client: Southern Company

Analysis Batch: 393373 (Continued)

•	,				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-7	SGWA-4	Total Recoverable	Water	6020	392655
400-151428-8	SGWA-5	Total Recoverable	Water	6020	392655
400-151428-9	SGWC-6	Total Recoverable	Water	6020	392655
400-151428-10	SGWC-7	Total Recoverable	Water	6020	392655
400-151428-11	SGWC-14	Total Recoverable	Water	6020	392655
400-151428-12	SGWC-15	Total Recoverable	Water	6020	392655
400-151428-13	SGWC-16	Total Recoverable	Water	6020	392655
400-151428-15	SGWC-23	Total Recoverable	Water	6020	392655
400-151428-16	SGWA-25	Total Recoverable	Water	6020	392655
400-151428-17	EB-2 (AP)	Total Recoverable	Water	6020	392655
400-151428-18	FD-2 (AP)	Total Recoverable	Water	6020	392655
400-151428-19	SGWC-8	Total Recoverable	Water	6020	392655
400-151428-20	SGWC-10	Total Recoverable	Water	6020	392655
400-151428-21	SGWC-11	Total Recoverable	Water	6020	392993
400-151428-22	SGWC-12	Total Recoverable	Water	6020	392993
400-151428-23	SGWC-13	Total Recoverable	Water	6020	392993
400-151428-24	FB-1 (AP)	Total Recoverable	Water	6020	392993
400-151428-25	FB-2 (AP)	Total Recoverable	Water	6020	392993
400-151428-26	SGWC-9	Total Recoverable	Water	6020	393096
400-151428-27	SGWC-18	Total Recoverable	Water	6020	393096
400-151428-28	SGWC-19	Total Recoverable	Water	6020	393096
400-151428-29	SGWC-20	Total Recoverable	Water	6020	393096
400-151428-30	SGWC-21	Total Recoverable	Water	6020	393096
400-151428-31	SGWC-22	Total Recoverable	Water	6020	393096
400-151428-32	EB-3 (AP)	Total Recoverable	Water	6020	393096
400-151428-33	FB-3 (AP)	Total Recoverable	Water	6020	393096
400-151428-34	FD-3 (AP)	Total Recoverable	Water	6020	393096
MB 400-392655/1-A ^5	Method Blank	Total Recoverable	Water	6020	392655
MB 400-392993/1-A ^5	Method Blank	Total Recoverable	Water	6020	392993
LCS 400-393096/2-A	Lab Control Sample	Total Recoverable	Water	6020	393096
400-151428-1 MS	SGWA-24	Total Recoverable	Water	6020	392655
400-151428-1 MSD	SGWA-24	Total Recoverable	Water	6020	392655
400-151478-G-5-B MS ^5	Matrix Spike	Total Recoverable	Water	6020	393096
400-151478-G-5-C MSD ^5	Matrix Spike Duplicate	Total Recoverable	Water	6020	393096
400-151541-C-5-B MS ^5	Matrix Spike	Total Recoverable	Water	6020	392993
400-151541-C-5-C MSD ^5	Matrix Spike Duplicate	Total Recoverable	Water	6020	392993

Prep Batch: 393404

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-1	SGWA-24	Total/NA	Water	7470A	-
400-151428-2	SGWA-1	Total/NA	Water	7470A	
400-151428-3	SGWA-2	Total/NA	Water	7470A	
400-151428-4	FD-1 (AP)	Total/NA	Water	7470A	
400-151428-5	EB-1 (AP)	Total/NA	Water	7470A	
400-151428-6	SGWA-3	Total/NA	Water	7470A	
400-151428-7	SGWA-4	Total/NA	Water	7470A	
400-151428-8	SGWA-5	Total/NA	Water	7470A	
400-151428-9	SGWC-6	Total/NA	Water	7470A	
400-151428-10	SGWC-7	Total/NA	Water	7470A	
400-151428-11	SGWC-14	Total/NA	Water	7470A	
400-151428-12	SGWC-15	Total/NA	Water	7470A	

Page 59 of 77

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Metals (Continued)

Prep Batch: 393404 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
MB 400-393404/14-A	Method Blank	Total/NA	Water	7470A
LCS 400-393404/15-A	Lab Control Sample	Total/NA	Water	7470A
400-151280-B-1-C MS	Matrix Spike	Total/NA	Water	7470A
400-151280-B-1-D MSD	Matrix Spike Duplicate	Total/NA	Water	7470A

Prep Batch: 393428

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-13	SGWC-16	Total/NA	Water	7470A	-
400-151428-14	SGWC-17	Total/NA	Water	7470A	
400-151428-15	SGWC-23	Total/NA	Water	7470A	
400-151428-16	SGWA-25	Total/NA	Water	7470A	
400-151428-17	EB-2 (AP)	Total/NA	Water	7470A	
400-151428-18	FD-2 (AP)	Total/NA	Water	7470A	
400-151428-19	SGWC-8	Total/NA	Water	7470A	
400-151428-20	SGWC-10	Total/NA	Water	7470A	
400-151428-21	SGWC-11	Total/NA	Water	7470A	
400-151428-22	SGWC-12	Total/NA	Water	7470A	
400-151428-23	SGWC-13	Total/NA	Water	7470A	
400-151428-24	FB-1 (AP)	Total/NA	Water	7470A	
400-151428-25	FB-2 (AP)	Total/NA	Water	7470A	
400-151428-26	SGWC-9	Total/NA	Water	7470A	
400-151428-27	SGWC-18	Total/NA	Water	7470A	
400-151428-28	SGWC-19	Total/NA	Water	7470A	
400-151428-29	SGWC-20	Total/NA	Water	7470A	
400-151428-30	SGWC-21	Total/NA	Water	7470A	
400-151428-31	SGWC-22	Total/NA	Water	7470A	
400-151428-32	EB-3 (AP)	Total/NA	Water	7470A	
MB 400-393428/14-A	Method Blank	Total/NA	Water	7470A	
LCS 400-393428/15-A	Lab Control Sample	Total/NA	Water	7470A	
400-151428-13 MS	SGWC-16	Total/NA	Water	7470A	
400-151428-13 MSD	SGWC-16	Total/NA	Water	7470A	

Analysis Batch: 393442

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-1 - RA	SGWA-24	Total Recoverable	Water	6020	392655
400-151428-2 - RA	SGWA-1	Total Recoverable	Water	6020	392655
400-151428-4 - RA	FD-1 (AP)	Total Recoverable	Water	6020	392655
400-151428-5 - RA	EB-1 (AP)	Total Recoverable	Water	6020	392655
400-151428-6 - RA	SGWA-3	Total Recoverable	Water	6020	392655
400-151428-8 - RA	SGWA-5	Total Recoverable	Water	6020	392655
400-151428-10 - RA	SGWC-7	Total Recoverable	Water	6020	392655
400-151428-12 - RA	SGWC-15	Total Recoverable	Water	6020	392655
400-151428-15 - RA	SGWC-23	Total Recoverable	Water	6020	392655
400-151428-18 - RA	FD-2 (AP)	Total Recoverable	Water	6020	392655
400-151428-19 - RA	SGWC-8	Total Recoverable	Water	6020	392655
400-151428-21 - RA	SGWC-11	Total Recoverable	Water	6020	392993
400-151428-25 - RA	FB-2 (AP)	Total Recoverable	Water	6020	392993
400-151428-27 - RA	SGWC-18	Total Recoverable	Water	6020	393096
400-151428-28 - RA	SGWC-19	Total Recoverable	Water	6020	393096
400-151428-29 - RA	SGWC-20	Total Recoverable	Water	6020	393096
MB 400-393096/1-A ^5	Method Blank	Total Recoverable	Water	6020	393096

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Metals (Continued)

Analysis Batch: 393442 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 400-392655/2-A	Lab Control Sample	Total Recoverable	Water	6020	392655
LCS 400-392993/2-A	Lab Control Sample	Total Recoverable	Water	6020	392993

Prep Batch: 393526

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-33	FB-3 (AP)	Total/NA	Water	7470A	
400-151428-34	FD-3 (AP)	Total/NA	Water	7470A	
MB 400-393526/14-A	Method Blank	Total/NA	Water	7470A	
LCS 400-393526/15-A	Lab Control Sample	Total/NA	Water	7470A	
400-151582-N-3-E MS	Matrix Spike	Total/NA	Water	7470A	
400-151582-N-3-F MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Analysis Batch: 393589

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-1	SGWA-24	Total/NA	Water	7470A	393404
400-151428-2	SGWA-1	Total/NA	Water	7470A	393404
400-151428-3	SGWA-2	Total/NA	Water	7470A	393404
400-151428-4	FD-1 (AP)	Total/NA	Water	7470A	393404
400-151428-5	EB-1 (AP)	Total/NA	Water	7470A	393404
400-151428-6	SGWA-3	Total/NA	Water	7470A	393404
400-151428-7	SGWA-4	Total/NA	Water	7470A	393404
400-151428-8	SGWA-5	Total/NA	Water	7470A	393404
400-151428-9	SGWC-6	Total/NA	Water	7470A	393404
400-151428-10	SGWC-7	Total/NA	Water	7470A	393404
400-151428-11	SGWC-14	Total/NA	Water	7470A	393404
400-151428-12	SGWC-15	Total/NA	Water	7470A	393404
MB 400-393404/14-A	Method Blank	Total/NA	Water	7470A	393404
LCS 400-393404/15-A	Lab Control Sample	Total/NA	Water	7470A	393404
400-151280-B-1-C MS	Matrix Spike	Total/NA	Water	7470A	393404
400-151280-B-1-D MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	393404

Analysis Batch: 393751

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-13	SGWC-16	Total/NA	Water	7470A	393428
400-151428-14	SGWC-17	Total/NA	Water	7470A	393428
400-151428-15	SGWC-23	Total/NA	Water	7470A	393428
400-151428-16	SGWA-25	Total/NA	Water	7470A	393428
400-151428-17	EB-2 (AP)	Total/NA	Water	7470A	393428
400-151428-18	FD-2 (AP)	Total/NA	Water	7470A	393428
400-151428-19	SGWC-8	Total/NA	Water	7470A	393428
400-151428-20	SGWC-10	Total/NA	Water	7470A	393428
400-151428-21	SGWC-11	Total/NA	Water	7470A	393428
400-151428-22	SGWC-12	Total/NA	Water	7470A	393428
400-151428-23	SGWC-13	Total/NA	Water	7470A	393428
400-151428-24	FB-1 (AP)	Total/NA	Water	7470A	393428
400-151428-25	FB-2 (AP)	Total/NA	Water	7470A	393428
400-151428-26	SGWC-9	Total/NA	Water	7470A	393428
400-151428-27	SGWC-18	Total/NA	Water	7470A	393428
400-151428-28	SGWC-19	Total/NA	Water	7470A	393428
400-151428-29	SGWC-20	Total/NA	Water	7470A	393428
400-151428-30	SGWC-21	Total/NA	Water	7470A	393428

TestAmerica Pensacola

4/13/2018

Page 61 of 77

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Metals (Continued)

Analysis Batch: 393751 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-31	SGWC-22	Total/NA	Water	7470A	393428
400-151428-32	EB-3 (AP)	Total/NA	Water	7470A	393428
400-151428-33	FB-3 (AP)	Total/NA	Water	7470A	393526
400-151428-34	FD-3 (AP)	Total/NA	Water	7470A	393526
MB 400-393428/14-A	Method Blank	Total/NA	Water	7470A	393428
MB 400-393526/14-A	Method Blank	Total/NA	Water	7470A	393526
LCS 400-393428/15-A	Lab Control Sample	Total/NA	Water	7470A	393428
LCS 400-393526/15-A	Lab Control Sample	Total/NA	Water	7470A	393526
400-151428-13 MS	SGWC-16	Total/NA	Water	7470A	393428
400-151428-13 MSD	SGWC-16	Total/NA	Water	7470A	393428
400-151582-N-3-E MS	Matrix Spike	Total/NA	Water	7470A	393526
400-151582-N-3-F MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	393526

TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 400-392929/4 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 392929

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac D Prepared 0.20 04/06/18 06:29 Fluoride <0.082 0.082 mg/L

Lab Sample ID: LCS 400-392929/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 392929

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec Fluoride 10.0 9.92 mg/L 99 90 - 110

Lab Sample ID: LCSD 400-392929/6 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 392929

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Fluoride 10.0 9.85 mg/L 99 90 - 110

Lab Sample ID: 400-151428-1 MS Client Sample ID: SGWA-24 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 392929

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Fluoride <0.082 10.0 9.94 99 80 - 120 mg/L

Lab Sample ID: 400-151428-1 MSD Client Sample ID: SGWA-24 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 392929

Spike MSD MSD %Rec. RPD Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Fluoride <0.082 10.0 99 80 - 120 9.89 mg/L 20

Lab Sample ID: MB 400-393083/38 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 393083

MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Fluoride 0.20 <0.082 0.082 mg/L 04/06/18 19:42

Lab Sample ID: LCS 400-393083/39 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 393083

Spike LCS LCS %Rec. Added Result Qualifier Limits **Analyte** Unit %Rec Fluoride 10.0 9.98 mg/L 100 90 - 110

Lab Sample ID: LCSD 400-393083/40 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 393083

LCSD LCSD Spike %Rec. Added Result Qualifier Limits

RPD Analyte Unit D %Rec Limit Fluoride 10.0 9.97 mg/L 100 90 - 110 0

TestAmerica Pensacola

RPD

TestAmerica Job ID: 400-151428-1

SDG: Ash Pond

Lab Sample ID: 400-151428-14 MS Client Sample ID: SGWC-17 **Matrix: Water**

Prep Type: Total/NA

Analysis Batch: 393083 Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Unit %Rec Limits

Analyte Fluoride <0.082 10.0 10.2 mg/L 102 80 - 120

Lab Sample ID: 400-151428-14 MSD Client Sample ID: SGWC-17 **Matrix: Water**

Prep Type: Total/NA **Analysis Batch: 393083**

MSD MSD Sample Sample Spike %Rec. **RPD** Result Qualifier Added Result Qualifier Limits RPD Analyte Unit %Rec Limit Fluoride <0.082 10.0 10.2 mg/L 102 80 - 120 n

Lab Sample ID: MB 400-393088/4 Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA Analysis Batch: 393088

мв мв

RL **MDL** Unit Dil Fac **Analyte** Result Qualifier Prepared Analyzed 0.20 Fluoride <0.082 0.082 mg/L 04/07/18 07:59

Lab Sample ID: LCS 400-393088/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 393088 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit %Rec Limits Fluoride 10.0 10.0 mg/L 100 90 - 110

Lab Sample ID: LCSD 400-393088/6 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 393088

Client: Southern Company

Project/Site: CCR - Plant Scherer

LCSD LCSD RPD Spike %Rec. Analyte Added Result Qualifier Unit Limits RPD %Rec Limit Fluoride 10.0 9.99 mg/L 100 90 - 110

Lab Sample ID: 400-151428-23 MS Client Sample ID: SGWC-13 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 393088

MS MS Sample Sample Spike %Rec. Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits <0.082 10.0 Fluoride 10 1 mg/L 101 80 - 120

Lab Sample ID: 400-151428-23 MSD Client Sample ID: SGWC-13 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 393088

Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Analyte Result Qualifier D Limits RPD Limit Unit %Rec Fluoride <0.082 10.0 101 10.1 mg/L 80 - 120 20

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 400-392265/1-A ^5

Matrix: Water

Analysis Batch: 393106

Client: Southern Company

Project/Site: CCR - Plant Scherer

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 392265

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/01/18 12:07	04/06/18 14:14	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/01/18 12:07	04/06/18 14:14	5
Barium	<0.00049		0.0025	0.00049	mg/L		04/01/18 12:07	04/06/18 14:14	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/01/18 12:07	04/06/18 14:14	5
Cadmium	<0.00034		0.0025	0.00034	mg/L		04/01/18 12:07	04/06/18 14:14	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/01/18 12:07	04/06/18 14:14	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		04/01/18 12:07	04/06/18 14:14	5
Lead	<0.00035		0.0013	0.00035	mg/L		04/01/18 12:07	04/06/18 14:14	5
Lithium	<0.0011		0.0050	0.0011	mg/L		04/01/18 12:07	04/06/18 14:14	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/01/18 12:07	04/06/18 14:14	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/01/18 12:07	04/06/18 14:14	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/01/18 12:07	04/06/18 14:14	5

Lab Sample ID: LCS 400-392265/2-A

Matrix: Water

Analysis Batch: 393106

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 392265

Spike LCS LCS %Rec. Unit Analyte Added Result Qualifier D %Rec Limits **Antimony** 0.0500 0.0528 mg/L 106 80 - 120 Arsenic 0.0500 0.0512 mg/L 102 80 - 120 Barium 0.0500 0.0505 mg/L 101 80 - 120 Beryllium 0.0500 0.0507 101 80 - 120 mg/L Cadmium 0.0500 0.0515 mg/L 103 80 - 120 Chromium 0.0500 0.0497 mg/L 99 80 - 120 Cobalt 0.0500 0.0495 mg/L 99 80 - 120 Lead 0.0500 0.0512 mg/L 102 80 - 120 Lithium 0.0500 0.0503 mg/L 101 80 - 120 Molybdenum 0.0500 0.0514 103 80 - 120 mg/L Selenium 0.0500 0.0488 mg/L 98 80 - 120 Thallium 0.0100 0.00986 mg/L 99 80 - 120

Lab Sample ID: 400-151170-B-24-B MS ^5

Matrix: Water

Analysis Batch: 393106

Client Sample ID: Matrix Spike Prep Type: Total Recoverable Prep Batch: 392265

Analysis Batch. 353100	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	<0.0010		0.0500	0.0556		mg/L		111	75 - 125
Arsenic	<0.00046		0.0500	0.0519		mg/L		104	75 - 125
Barium	0.035		0.0500	0.0880		mg/L		107	75 - 125
Beryllium	<0.00034		0.0500	0.0517		mg/L		103	75 - 125
Cadmium	< 0.00034		0.0500	0.0512		mg/L		102	75 - 125
Chromium	0.0086	F1	0.0500	0.0589		mg/L		101	75 - 125
Cobalt	<0.00040		0.0500	0.0504		mg/L		101	75 - 125
Lead	<0.00035		0.0500	0.0518		mg/L		104	75 - 125
Lithium	<0.0011	F1	0.0500	0.0657	F1	mg/L		131	75 - 125
Molybdenum	<0.00085		0.0500	0.0537		mg/L		107	75 - 125
Selenium	<0.00024		0.0500	0.0502		mg/L		100	75 - 125
Thallium	<0.000085		0.0100	0.0100		mg/L		100	75 ₋ 125

TestAmerica Pensacola

Page 65 of 77

Client: Southern Company Project/Site: CCR - Plant Scherer

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 400-151170-B-24-C MSD ^5

Matrix: Water

Analysis Batch: 393106

Duplicate	Client Sample ID: Matrix S
ecoverable	Prep Type: Tota
ch: 392265	Prep
DDD	0/ Dag

S	ample Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony <	0.0010	0.0500	0.0543		mg/L		109	75 - 125	2	20
Arsenic <0.	.00046	0.0500	0.0521		mg/L		104	75 - 125	0	20
Barium	0.035	0.0500	0.0865		mg/L		104	75 - 125	2	20
Beryllium <0.	.00034	0.0500	0.0505		mg/L		101	75 - 125	2	20
Cadmium <0.	.00034	0.0500	0.0537		mg/L		107	75 - 125	5	20
Chromium	0.0086 F1	0.0500	0.0717	F1	mg/L		126	75 - 125	20	20
Cobalt <0.	.00040	0.0500	0.0504		mg/L		101	75 - 125	0	20
Lead <0.	.00035	0.0500	0.0518		mg/L		104	75 - 125	0	20
Lithium <	0.0011 F1	0.0500	0.0656	F1	mg/L		131	75 - 125	0	20
Molybdenum <0.	.00085	0.0500	0.0529		mg/L		106	75 - 125	2	20
Selenium <0.	.00024	0.0500	0.0492		mg/L		98	75 - 125	2	20
Thallium <0.0	000085	0.0100	0.0101		mg/L		101	75 - 125	1	20

Lab Sample ID: MB 400-392655/1-A ^5

Matrix: Water

Analysis Batch: 393373

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 392655

MB MB Dil Fac **Analyte** Result Qualifier RL **MDL** Unit Prepared Analyzed **Antimony** <0.0010 0.0025 0.0010 mg/L 04/04/18 12:19 04/09/18 19:52 Arsenic <0.00046 0.0013 0.00046 mg/L 04/04/18 12:19 04/09/18 19:52 5 Barium < 0.00049 0.0025 0.00049 mg/L 04/04/18 12:19 04/09/18 19:52 5 Beryllium 0.0025 0.00034 mg/L 04/04/18 12:19 04/09/18 19:52 5 < 0.00034 Cadmium < 0.00034 0.0025 0.00034 mg/L 04/04/18 12:19 04/09/18 19:52 5 Chromium <0.0011 0.0025 0.0011 mg/L 04/04/18 12:19 04/09/18 19:52 5 5 Cobalt < 0.00040 0.0025 0.00040 mg/L 04/04/18 12:19 04/09/18 19:52 Lead < 0.00035 0.0013 0.00035 mg/L 04/04/18 12:19 04/09/18 19:52 5 5 Lithium 0.0050 0.0011 mg/L 04/04/18 12:19 04/09/18 19:52 <0.0011 ^ Molybdenum 0.015 0.00085 mg/L 04/04/18 12:19 04/09/18 19:52 5 < 0.00085 Selenium 0.00024 mg/L 5 < 0.00024 0.0013 04/04/18 12:19 04/09/18 19:52 Thallium <0.000085 0.00050 0.000085 mg/L 04/04/18 12:19 04/09/18 19:52 5

Lab Sample ID: LCS 400-392655/2-A

Matrix: Water

Analysis Batch: 393442

Client Sample ID: Lab Control Sample
Prep Type: Total Recoverable
D D 1 1 000000

Prep Batch: 392655

Analysis Batch: 393442	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	0.0500	0.0513		mg/L		103	80 - 120
Arsenic	0.0500	0.0516		mg/L		103	80 - 120
Barium	0.0500	0.0510		mg/L		102	80 - 120
Beryllium	0.0500	0.0527		mg/L		105	80 - 120
Cadmium	0.0500	0.0525		mg/L		105	80 - 120
Chromium	0.0500	0.0532		mg/L		106	80 - 120
Cobalt	0.0500	0.0540		mg/L		108	80 - 120
Lead	0.0500	0.0504		mg/L		101	80 - 120
Lithium	0.0500	0.0506		mg/L		101	80 - 120
Molybdenum	0.0500	0.0518		mg/L		104	80 - 120
Selenium	0.0500	0.0507		mg/L		101	80 - 120
Thallium	0.0100	0.0103		mg/L		103	80 - 120

TestAmerica Pensacola

Page 66 of 77

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 400-151428-1 MS

Matrix: Water

Analysis Batch: 393373

Client: Southern Company

Project/Site: CCR - Plant Scherer

Client Sample ID: SGWA-24 Prep Type: Total Recoverable

Prep Batch: 392655

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	<0.0010		0.0500	0.0533	-	mg/L		107	75 - 125	
Arsenic	<0.00046		0.0500	0.0571		mg/L		114	75 - 125	
Barium	0.022		0.0500	0.0738		mg/L		104	75 - 125	
Beryllium	<0.00034		0.0500	0.0568		mg/L		114	75 - 125	
Cadmium	< 0.00034		0.0500	0.0504		mg/L		101	75 - 125	
Chromium	0.0047		0.0500	0.0543		mg/L		99	75 - 125	
Cobalt	<0.00040		0.0500	0.0518		mg/L		104	75 - 125	
Lead	< 0.00035		0.0500	0.0520		mg/L		104	75 - 125	
Lithium	<0.0011	F1	0.0500	0.0699	F1 ^	mg/L		140	75 - 125	
Molybdenum	<0.00085		0.0500	0.0492		mg/L		98	75 - 125	
Selenium	0.00025	J	0.0500	0.0512		mg/L		102	75 - 125	
Thallium	<0.000085		0.0100	0.00990		mg/L		99	75 - 125	

Lab Sample ID: 400-151428-1 MSD

Matrix: Water

Analysis Batch: 393373

Client Sample ID: SGWA-24 Prep Type: Total Recoverable

Prep Batch: 392655

								Lieb Do	illi. Ja	72033
Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
<0.0010		0.0500	0.0522		mg/L		104	75 - 125	2	20
<0.00046		0.0500	0.0569		mg/L		114	75 - 125	0	20
0.022		0.0500	0.0726		mg/L		102	75 - 125	2	20
<0.00034		0.0500	0.0563		mg/L		113	75 - 125	1	20
<0.00034		0.0500	0.0493		mg/L		99	75 - 125	2	20
0.0047		0.0500	0.0540		mg/L		98	75 - 125	1	20
<0.00040		0.0500	0.0518		mg/L		104	75 - 125	0	20
<0.00035		0.0500	0.0520		mg/L		104	75 - 125	0	20
<0.0011	F1	0.0500	0.0700	F1 ^	mg/L		140	75 - 125	0	20
<0.00085		0.0500	0.0474		mg/L		95	75 - 125	4	20
0.00025	J	0.0500	0.0495		mg/L		99	75 - 125	3	20
<0.000085		0.0100	0.00986		mg/L		99	75 - 125	0	20
	Result <0.0010 <0.00046 0.022 <0.00034 <0.00037 <0.00040 <0.00035 <0.0011 <0.00085 0.00025	<0.00046 0.022 <0.00034 <0.00034 0.0047 <0.00040 <0.00035 <0.0011 F1 <0.00085 0.00025 J	Result Qualifier Added <0.0010	Result Qualifier Added Result <0.0010	Result Qualifier Added Result Qualifier <0.0010	Result Qualifier Added Result Qualifier Unit <0.0010	Result Qualifier Added Result Qualifier Unit D <0.0010	Result Qualifier Added Result Qualifier Unit D %Rec <0.0010	Sample Result Result Qualifier Added Added Added Result Qualifier Unit Unit Unit Unit Unit Unit Unit Unit	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD <0.0010

Lab Sample ID: MB 400-392993/1-A ^5

Matrix: Water

Analysis Batch: 393373

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 392993

	MR	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/06/18 12:38	04/10/18 03:18	5
Arsenic	<0.00046	٨	0.0013	0.00046	mg/L		04/06/18 12:38	04/10/18 03:18	5
Barium	<0.00049		0.0025	0.00049	mg/L		04/06/18 12:38	04/10/18 03:18	5
Beryllium	<0.00034	Λ	0.0025	0.00034	mg/L		04/06/18 12:38	04/10/18 03:18	5
Cadmium	<0.00034		0.0025	0.00034	mg/L		04/06/18 12:38	04/10/18 03:18	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/06/18 12:38	04/10/18 03:18	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		04/06/18 12:38	04/10/18 03:18	5
Lead	<0.00035		0.0013	0.00035	mg/L		04/06/18 12:38	04/10/18 03:18	5
Lithium	<0.0011	^	0.0050	0.0011	mg/L		04/06/18 12:38	04/10/18 03:18	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/06/18 12:38	04/10/18 03:18	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/06/18 12:38	04/10/18 03:18	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/06/18 12:38	04/10/18 03:18	5

TestAmerica Pensacola

Page 67 of 77

TestAmerica Job ID: 400-151428-1

Client: Southern Company Project/Site: CCR - Plant Scherer

SDG: Ash Pond

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 400-392993/2-A Matrix: Water Analysis Batch: 393442				Clie			: Lab Control Sample be: Total Recoverable Prep Batch: 392993
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	0.0500	0.0507		mg/L		101	80 - 120
Arsenic	0.0500	0.0513		mg/L		103	80 - 120
Barium	0.0500	0.0498		mg/L		100	80 - 120
Beryllium	0.0500	0.0506		mg/L		101	80 - 120
Cadmium	0.0500	0.0516		mg/L		103	80 - 120
Chromium	0.0500	0.0531		mg/L		106	80 - 120
Cobalt	0.0500	0.0538		mg/L		108	80 - 120
Lead	0.0500	0.0513		mg/L		103	80 - 120
Lithium	0.0500	0.0493		mg/L		99	80 - 120
Molybdenum	0.0500	0.0516		mg/L		103	80 - 120
Selenium	0.0500	0.0506		mg/L		101	80 - 120
Thallium	0.0100	0.0103		mg/L		103	80 - 120

Lab Sample ID: 400-151541-C-5-B MS ^5

Matrix: Water

Analysis Batch: 393373

Client Sample ID: Matrix Spike Prep Type: Total Recoverable Prep Batch: 392993

Analysis Buton. 000070	Sample	Sample	Spike	MS	MS			%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D %Rec	Limits
Antimony	<0.0010		0.0500	0.0551		mg/L		75 - 125
Arsenic	0.0017	^ F1	0.0500	0.0647	^ F1	mg/L	126	75 - 125
Barium	0.043		0.0500	0.0918		mg/L	99	75 - 125
Beryllium	<0.00034	^	0.0500	0.0575	٨	mg/L	115	75 - 125
Cadmium	< 0.00034		0.0500	0.0496		mg/L	99	75 - 125
Chromium	0.0050		0.0500	0.0441		mg/L	78	75 - 125
Cobalt	<0.00040		0.0500	0.0462		mg/L	92	75 - 125
Lead	< 0.00035		0.0500	0.0515		mg/L	103	75 - 125
Lithium	0.25	^	0.0500	0.301	^ 4	mg/L	112	75 - 125
Molybdenum	<0.00085		0.0500	0.0503		mg/L	101	75 - 125
Selenium	<0.00024		0.0500	0.0497		mg/L	99	75 - 125
Thallium	<0.000085		0.0100	0.00950		mg/L	95	75 - 125

Lab Sample ID: 400-151541-C-5-C MSD ^5

Matrix: Water

Client Sample ID: Matrix Spike Duplicate Prep Type: Total Recoverable

Analysis Batch: 393373									Prep Ba	atch: 39	3 2993
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	<0.0010		0.0500	0.0546		mg/L		109	75 - 125	1	20
Arsenic	0.0017	^ F1	0.0500	0.0640	٨	mg/L		125	75 - 125	1	20
Barium	0.043		0.0500	0.0932		mg/L		101	75 - 125	1	20
Beryllium	<0.00034	٧	0.0500	0.0567	^	mg/L		113	75 - 125	1	20
Cadmium	< 0.00034		0.0500	0.0519		mg/L		104	75 - 125	5	20
Chromium	0.0050		0.0500	0.0443		mg/L		79	75 - 125	1	20
Cobalt	<0.00040		0.0500	0.0459		mg/L		92	75 - 125	1	20
Lead	<0.00035		0.0500	0.0510		mg/L		102	75 - 125	1	20
Lithium	0.25	^	0.0500	0.303	^ 4	mg/L		115	75 - 125	1	20
Molybdenum	<0.00085		0.0500	0.0487		mg/L		97	75 - 125	3	20
Selenium	<0.00024		0.0500	0.0470		mg/L		94	75 - 125	6	20
Thallium	<0.000085		0.0100	0.00948		mg/L		95	75 - 125	0	20

TestAmerica Pensacola

Page 68 of 77

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 400-393096/1-A ^5

Matrix: Water

Analysis Batch: 393442

Client: Southern Company

Project/Site: CCR - Plant Scherer

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 393096

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		04/07/18 12:25	04/10/18 12:22	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		04/07/18 12:25	04/10/18 12:22	5
Barium	< 0.00049		0.0025	0.00049	mg/L		04/07/18 12:25	04/10/18 12:22	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		04/07/18 12:25	04/10/18 12:22	5
Cadmium	<0.00034		0.0025	0.00034	mg/L		04/07/18 12:25	04/10/18 12:22	5
Chromium	<0.0011		0.0025	0.0011	mg/L		04/07/18 12:25	04/10/18 12:22	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		04/07/18 12:25	04/10/18 12:22	5
Lead	< 0.00035		0.0013	0.00035	mg/L		04/07/18 12:25	04/10/18 12:22	5
Lithium	<0.0011		0.0050	0.0011	mg/L		04/07/18 12:25	04/10/18 12:22	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		04/07/18 12:25	04/10/18 12:22	5
Selenium	<0.00024		0.0013	0.00024	mg/L		04/07/18 12:25	04/10/18 12:22	5
Thallium	<0.000085		0.00050	0.000085	mg/L		04/07/18 12:25	04/10/18 12:22	5

Lab Sample ID: LCS 400-393096/2-A

Matrix: Water

Analysis Batch: 393373

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 393096

	Spike	LCS LC	S		%Rec.	
Analyte	Added	Result Qu	ıalifier Unit	D %Rec	Limits	
Antimony	0.0500	0.0522	mg/L		80 - 120	
Arsenic	0.0500	0.0521	mg/L	104	80 - 120	
Barium	0.0500	0.0504	mg/L	101	80 - 120	
Beryllium	0.0500	0.0528	mg/L	106	80 - 120	
Cadmium	0.0500	0.0497	mg/L	99	80 - 120	
Chromium	0.0500	0.0479	mg/L	96	80 - 120	
Cobalt	0.0500	0.0507	mg/L	101	80 - 120	
Lead	0.0500	0.0513	mg/L	103	80 - 120	
Lithium	0.0500	0.0517 ^	mg/L	103	80 - 120	
Molybdenum	0.0500	0.0500	mg/L	100	80 - 120	
Selenium	0.0500	0.0487	mg/L	97	80 - 120	
Thallium	0.0100	0.00960	ma/L	96	80 - 120	

Lab Sample ID: 400-151478-G-5-B MS ^5

Matrix: Water

Client Sample ID: Matrix Spike Prep Type: Total Recoverable

Analysis Batch: 393373 Prep Batch: 393096 Spike MS MS Sample Sample %Rec. **Analyte** Result Qualifier Added Result Qualifier Unit %Rec Limits <0.0010 0.0500 **Antimony** 0.0534 mg/L 107 75 - 125 Arsenic <0.00046 ^ 0.0500 0.0554 ^ 75 - 125 mg/L 111 Barium 0.085 0.0500 0.142 mg/L 114 75 - 125 Beryllium < 0.00034 0.0500 0.0548 mg/L 110 75 - 125 Cadmium < 0.00034 0.0500 0.0496 mg/L 99 75 - 125 75 - 125 Chromium 0.0500 0.0502 100 < 0.0011 mg/L Cobalt 0.0014 0.0500 0.0534 mg/L 104 75 - 125 Lead <0.00035 0.0500 0.0517 mg/L 103 75 - 125 Lithium <0.0011 F1 ^ 0.0500 0.0704 F1 ^ mg/L 141 75 - 125 Molybdenum 0.0500 mg/L 100 75 - 125 <0.00085 0.0501 Selenium < 0.00024 0.0500 0.0504 mg/L 101 75 - 125 Thallium <0.000085 0.0100 0.00985 mg/L 98 75 - 125

TestAmerica Pensacola

Page 69 of 77

TestAmerica Job ID: 400-151428-1 SDG: Ash Pond

Client Sample ID: Matrix Spike Duplicate

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 400-151478-G-5-C MSD ^5

Matrix: Water Analysis Batch: 393373							P	rep Tyl	oe: Total I Prep Ba		
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	<0.0010		0.0500	0.0517		mg/L		103	75 - 125	3	20
Arsenic	<0.00046	^	0.0500	0.0565	٨	mg/L		113	75 - 125	2	20
Barium	0.085		0.0500	0.138		mg/L		106	75 - 125	3	20
Beryllium	<0.00034		0.0500	0.0551		mg/L		110	75 - 125	1	20
Cadmium	<0.00034		0.0500	0.0492		mg/L		98	75 - 125	1	20
Chromium	<0.0011		0.0500	0.0499		mg/L		100	75 - 125	1	20
Cobalt	0.0014	J	0.0500	0.0536		mg/L		104	75 - 125	0	20
Lead	<0.00035		0.0500	0.0516		mg/L		103	75 - 125	0	20
Lithium	<0.0011	F1 ^	0.0500	0.0717	F1 ^	mg/L		143	75 - 125	2	20
Molybdenum	<0.00085		0.0500	0.0478		mg/L		96	75 - 125	5	20
Selenium	< 0.00024		0.0500	0.0481		mg/L		96	75 ₋ 125	5	20

0.00971

LCS LCS

MS MS

MSD MSD

Result Qualifier

Result Qualifier

0.00101

0.00198

0.00193

Result Qualifier

mg/L

Unit

mg/L

Unit

mg/L

Unit

mg/L

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 400-393404/14-A

Matrix: Water

Thallium

Analysis Batch: 393589

MB MB

Sample Sample

Sample Sample

Result Qualifier

Result Qualifier

<0.000085

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Mercury 0.0000777 J 0.00020 0.000070 mg/L 04/10/18 12:08 04/11/18 15:00

0.0100

Spike

Added

Spike

Added

0.00201

Spike

Added

0.00201

0.00101

Lab Sample ID: LCS 400-393404/15-A

Matrix: Water

Analysis Batch: 393589

Analyte Mercury

Lab Sample ID: 400-151280-B-1-C MS

Matrix: Water

Analyte

Analysis Batch: 393589

Analyte

Mercury < 0.000070

Lab Sample ID: 400-151280-B-1-D MSD **Matrix: Water**

Analysis Batch: 393589

< 0.000070 Mercury

Lab Sample ID: MB 400-393428/14-A

Matrix: Water

Analysis Batch: 393751

MB MB

Analyte Mercury <0.000070

Result Qualifier

RL 0.00020

MDL Unit 0.000070 mg/L

Prepared 04/10/18 14:14 04/12/18 13:50

Analyzed

TestAmerica Pensacola

Page 70 of 77

20

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 393404

Prep Type: Total/NA

Prep Batch: 393404

%Rec.

75 - 125

Client Sample ID: Method Blank

Limits

D %Rec 80 - 120 100

%Rec

D %Rec

96

Client Sample ID: Matrix Spike Prep Type: Total/NA

%Rec.

Prep Batch: 393404

Limits

Prep Type: Total/NA **Prep Batch: 393404**

%Rec. **RPD** Limits RPD Limit

80 - 120 2

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 393428

4/13/2018

Dil Fac

TestAmerica Job ID: 400-151428-1 SDG: Ash Pond

Lab Sample ID: LCS 400-393428/15-A

Matrix: Water

Analysis Batch: 393751

LCS LCS Spike Analyte Added Result Qualifier Unit 0.00101 0.000964 mg/L Mercury

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 393428**

%Rec.

%Rec Limits 96 80 - 120

Lab Sample ID: 400-151428-13 MS

Matrix: Water

Analyte

Mercury

Analyte

Mercury

Analysis Batch: 393751

Sample Sample Spike Result Qualifier Added

< 0.000070

<0.000070

MS MS

0.00180

Result Qualifier

Unit n %Rec 89 mg/L

Prep Batch: 393428 %Rec.

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 393428

Client Sample ID: SGWC-16

Limits 80 - 120

Lab Sample ID: 400-151428-13 MSD

Matrix: Water

Analysis Batch: 393751

Sample Sample Result Qualifier

Spike Added 0.00201

0.00201

MSD MSD Result Qualifier 0.00169

Unit mg/L

Unit

mg/L

Unit

mg/L

%Rec

%Rec. Limits **RPD** 80 - 120

Client Sample ID: Method Blank

Client Sample ID: SGWC-16

RPD Limit 20

Lab Sample ID: MB 400-393526/14-A

Matrix: Water

Analysis Batch: 393751

MB MB

Analyte

Mercury

<0.000070

Result Qualifier RI 0.00020

Spike

Added

0.00101

Spike

Added

0.00201

MDL Unit 0.000070 mg/L

LCS LCS

MS MS

Result Qualifier

0.000976

0.00176

Result Qualifier

Prepared

04/11/18 11:34 04/12/18 12:23

Client Sample ID: Lab Control Sample

%Rec.

Limits

%Rec.

Limits

80 - 120

%Rec.

80 - 120

Client Sample ID: Matrix Spike

%Rec

%Rec

87

Analyzed Dil Fac

Prep Type: Total/NA

Prep Batch: 393526

Prep Type: Total/NA

Prep Batch: 393526

Prep Type: Total/NA

Prep Batch: 393526

Prep Type: Total/NA

Prep Batch: 393526

Lab Sample ID: LCS 400-393526/15-A **Matrix: Water**

Analysis Batch: 393751

Analyte

Mercury

Lab Sample ID: 400-151582-N-3-E MS

Matrix: Water

Analysis Batch: 393751

Analyte Result Qualifier Mercury <0.000070

Lab Sample ID: 400-151582-N-3-F MSD

Matrix: Water

Mercury

Analysis Batch: 393751

Analyte

Sample Sample Result Qualifier <0.000070

Sample Sample

Spike Added 0.00201

0.00183

MSD MSD Result Qualifier Unit mg/L

D

Limits %Rec 91 80 - 120

Client Sample ID: Matrix Spike Duplicate

RPD Limit 4

RPD

TestAmerica Pensacola

Chain of Custody Record

	Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671		chain of custody Necord									THE LEADER	THE LEADER IN ENVIRONMENTAL TESTING
Compared	lient Information	Sampler: Ben Hodges			Lab PN Whitn	: iire, Che	yenne F	~		king No(s):		COC No: 400-57303-2	4790
Bibl GE B10105	ent Contact: iju Abraham	Phone:			E-Mail: cheye	nne.whii	tmire@t	estamericainc.com				Page: 1 of 1	
Bind SE B101665 TYP Requested (Baye):	outhern Company							Analysis F	Requested			Job #:	
The Presented (tays): The	idress: 11 Raiph McGill Blvd SE B10185	Due Date Request	:pa									Preservation	
Companies Comp	y: Janta	TAT Requested (d	ays):				gH-A					B - NaOH C - Zn Acetate	
The control of the	ate, Zip: A, 30308) 7 ≱7 ,⊓	EbC	送			D - Nitric Acid E - NaHSO4	
Comparison Work	ione:	PO#:				10	r,ə2,ol	528_G			-	G - Amchlor	
Sample Date	nal: \braham@southernco.com	WO#:					W,il,dq		N 151479 C	Ç	SJ		
Sample Other Samp	oject Name: CR - Scherer	Project #: 40007041				10 29			- 121420	3	enist	PERSONNEL	W - ph 4-5 Z - other (specify)
Sample Date Matrix Sample Date Sample Date Matrix Sample Date Time Coccurs Company Coccurs Company Coccurs Company Coccurs Company Coccurs Coc	e: sh Pond	SSOW#:				A) as		20_Ra			100 100	-	
100 C Water N 1 1 2	mole Identification	Sample Date				M/SM moha		315_Ra226, 93			Total Number		Instructions (Not
100 G Waler N 1 1 2		X	1	700		X	0				X	L	
3126/18 1440 G Water N 1 1 1 1 3 2 2 2 2 2 2 2 2 2	3WA-24	3/26/18	1100	O			-	2			4	1	
3/26/18 1540 G Water N 1 1 1 1 1 1 1 1 1	3WA-1	3/26/18	1440	O			-	-			6	R	-576
3/26/18 1615 G Water N 1 1 1 1 1 3 3/26/18 1615 G Water N 1 1 1 1 1 3 3/26/18 1615 G Water N 1 1 1 1 1 3 3/26/18 1615 G Water N 1 1 1 1 1 3 3/26/18 1615 G Water N 1 1 1 1 1 3 3/26/18 1615 G Water N 1 1 1 1 1 1 3 3/26/18 1/26/18	3WA-2	3/26/18	1540	o			-	-			6		
11 1 1 1 1 1 1 1 1	0-1(AP)	3/26/18	1	O			-	-			6		
Hazard Identification Sample Disposal (A fee may be assessed if samples are retained fonger than 1 in in in in in in its particular in in included in its particular in in its particular in in in in in in its particular in	3-1(AP)	3/26/18	1615	O				-			8		
Cooler Temperature(s) © and Other Remarks: ooler Temperature(s) © and Other Remarks: Cooler T	3WA-3	3/26/18	1605	ŋ			-	-			6		
ant Deison B Unknown Radiological Sample Disposal (A fee may be assessed if samples are retained longer than 1 Sample Disposal By Lab Archive For Special Instructions/QC Requirements: Date:													
ant Deison B Unknown Radiological Sample Disposal (A fee may be assessed if samples are retained longer than 1 Sample Disposal (A fee may be assessed if samples are retained longer than 1 Sample Disposal By Lab Archive For Special Instructions/QC Requirements: Date:													
ant Doison B Unknown Radiological Sample Disposal (A fee may be assessed if samples are retained longer than 1 Sample Disposal (A fee may be assessed if samples are retained longer than 1 Special Instructions/QC Requirements: Date:													
ant Doison B Unknown Radiological Sample Disposal (A fee may be assessed if samples are retained longer than 1 Special Instructions/QC Requirements: Date:	٠												
Date: Time: Time	ant \square		П	diological		Samp	le Disp Return	osal (A fee may I	Disposal By	f samples Lab	are retail	ned longer tha	nn 1 month) Months
Year Date: Time: Time: Time: Amethod of Shipment: - E Co						Speci	al Instru	ctions/QC Require	ments:				
Head of the control of the c	mpty Kit Relinquished by:		Date:		П				Metho	d of Shipmen			
The first Couper Seal No. Coup	blinquished by: Ben Hodges	1	O		ompany	Re	sceived by	131	200	Date/Tin	-	080	
As No Goder Temperature(s) °C and Other Remarks:	+	Date/Time:	00)		~		sceived by	3	3			10:05	Company
Shoot He seal in Shoot He shoot had seal in Shoot had sea	olo latoret. Onto del No	12	1	1	T			0					finding
		, ,				3	noier rem	perature(s) C and Om	er Kemarks.				

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671		hain o	f Cust	Chain of Custody Record	cord	_				SHE LEADY	TestAmeric	O STREET
	Sampler: Ben Hodges			Lab PM Whitm	Lab PM: Whitmire, Cheyenne R	enne R		Camer Tracking No(s)	g No(s):	COC No:	2-247ph	
	Phone:			E-Mail: cheye	ne.whitn	lire@test	E-Mail: cheyenne.whitmire@testamericainc.com	TE		Page: 1 of 1	754/80	T
							Analysis	Analysis Requested		Job #:		
Address: 241 Ralph McGill Blvd SE B10185	Due Date Requested:	#								Preservation Codes:		T
City: Atlanta	TAT Requested (days):	ys):			N.	6H-A		28-3	3	A - HCL B - NaOH		
State, Zip: GA, 30308									437	C - Zn Acetate D - Nitric Acid E - NeHSO4		
Phone:	PO#:			ľ		_				F - MeOH G - Amchlor		
Email: JAbraham@southernco.com	₩O₩				_			400-151428 COC	128 COC		Acid T - TSP Dodecahydrate U - Acetone V - MCAA	drate
Project Name: CCR - Scherer	Project #: 40007041				10 84	_				K-EDTA L-EDA		
Site: Ash Pond	SSOW#.				A) as	_				contro		
Sample Identification	Sample Date	Sample	Sample Type (C=comp,	Matrix (w-wets, 6-solid, 0-westsloat, 81-Theus, A-AW)	Field Filtered : MSM mother 300_ORGFM_S	1,88,8 A ,d2-0208 Ee ,85589_31Ee				> nedmili Number <		
	X	X	02	1		+=				1	Special libri dellong/Mote:	
SGWA-4	3/27/18	1310	O	Water		-				6		
SGWA-5	3/27/18	0935	O	Water	2	-				60		
SGWC-6	3/27/18	1425	O	Water	-	-				60		
SGWC-7	3/27/18	1530	Ø	Water	-	-				6		T
SGWC-14	3/27/18	0925	O	Water	z	-				m		
SGWC-15	3/27/18	1045	ŋ	Water	-	-				8		
SGWC-16	3/27/18	1235	O	Water	-	4				4 Extra Radium	E	
SGWC-17	3/27/18	1405	9	Water	~	-				6		
SGWC-23	3/27/18	1510	ŋ	Water	-	-				3		
SGWA-25	3/27/18	1045	ဖ	Water	-	£-				60		T
EB-2(AP)	3/27/18	1600	O	Water	-					60		
FD-2(AP)	3/27/18	1	v	Water	-	-				0		T
aut.	Poison B Unknown		Radiological		Sample	rle Disposal (A 1 Return To Client	al (A fee may Client	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month, Return To Client Disposal By Lab Archive For Moni	amples are n	etained longer I	than 1 month) Months	T
Deilverable Requested: I, II, IV, Other (specify)					Special	Instructi	Special Instructions/QC Requirements	ements:				Γ
Empty Kit Relinquished by:		Date:			Time:			Method o	Method of Shipment:			T
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7-86-18	1 0800		Company Golder	Rec	Received by:	1 BA	7	Date/Time;	00:8 31	Company	
Resinquished by: FT 6741+	3-23-(8	20	1	Company 6W		Received by:	,	M	Date/Times	11/18	C, Company	1
Custody Seals Intact Custody Seal No.	1808	8	9	Company	Red Con	Received by:	Received by:	3/29/18	1000	10 00 P	The Company of	
A Yes A No					4	Salura Sa	Mic(s) valic	S. Camara	3.6	5	W8	

i estAmerica Pensacola												4 4	
	O	hain o	f Cust	Chain of Custody Record	Scor	70						GSIT	lesi Americo
-												THE LEADER IN	IN ENVIRONMENTAL TESTING
	Sampler. Ben Hodges			Leb PM: Whitm	Lab PM: Whitmire, Cheyenne R	syenne	œ.		Carrier Tracking No(s)	king No(s):		COC No: 400-57303-24790	082
Client Contact: Joju Abraham	Phone:			E-Mait:	nne.whi	tmire@	testame	E-Mait: chevenne.whitmire@testamericainc.com	_			Page:	
							`	Analysis Reguested	Gilested		T	7 O X	
Address: 241 Ralph McGill Blvd SE B10185	Due Date Requested:	iii				F						Preservation Codes	
Otty. Atlanta	TAT Requested (days):);;				BH-₩						A - HCL B - NaOH	M - Hexane N - None
State, Zip: GA, 30308					10.3	0747 ,F	Od:					D - Nitne Acid E - NaHSO4	
Phone:	₽O#:			Ī	le	T,92,0	78 [*] GE					F - MeOH G - Amchlor	
Email. JAbraham@southem.co.com	WO #:				_	M,LJ,de	256Ra2		_			H - Ascorbic Acid 1 - Ice J - DI Water	
Project Name: CCR - Scherer	Project #: 40007041				10 58	_	#F1,852				10nist	K-EDTA L-EDA	W - ph 4-5 Z - other (specify)
Site: Ash Pond	SSOW#:				N) as	_	ເຂ Я_0 2					Other:	
Semple Identification	of an area	Sample	Sample Type (C=comp,	(Www.anter, Sesolid, O-wastaioli, BTe Tasue,	ield Filtered:	3_00_00FGFM_21 1,68,8A,d2-020	316_Ra226, 93				otal Number		
	\bigvee	X	Preservation Code:	110	X	1	0			100	×	Special	Special instructions/Note:
SGWC-8	3/27/18	0825	o	Water	z		-				6		
SGWC-10	3/27/18	1120	υ	Water	z	-	-			-	60		
SGWC-11	3/27/18	1330	ŋ	Water	z	-	-				m		
SGWC-12	3/27/18	1455	o	Water	z	-	-				m		
SGWC-13	3/27/18	1805	O	Water	2	-	-				60		
FB-1(AP)	3/27/18	0060	D	Water	z	-	-				m		
FB-2(AP)	3/27/18	1040	σ	Water	z	1	-				60		
						\vdash							
	Paison B Unknown		Radiological]	Sam	ole Disp	He Disposal (A P	A fee may be	assessed If san	If samples a	re retaine	Sample Disposel (A fee may be assessed if samples are retained longer than 1 month)	1 month)
, III, IV, Other (specify)	ı				Spec	al Instn	uctions/	Special Instructions/QC Requirements:	ents:	101	Š	MCIIVE FOR	Months
Empty Kit Relinquished by:		Date:		Г	Time:				Metho	Method of Shipment:			
Relinquished by Kargo AD	Date/Time: 3-48-18	10800		Сотряпу	α.	Received by:	<u>Σ</u>	8 F	-+	Date/Time:	00	90 %	Company CA AMI
Relinquished by: PA BATH	Dete/Time:	2	47	Company NOW		Received by	×		Z	Datedime	100	å .	Company.
	30/26	20	88	Company	4	Received by:	J.	1		Date() Imp	Sto	PH	Comment
Custody Seals Intact. Custody Seal No.	, ,				O	ooler Terr	perature	Cooler Temperature(s) "C and Other Remarks	Remarks	ele	81/6	Oc. O	

atnaltA-188

TestAmerica Pensacola

TestAmerica THE LEADER IN ENVIRONNENTA: TESTING Special Instructions/Note: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Month
Special Instructions/QC Requirements: COC No: 400-57303-24790 Page: 1 of 1 Extra Radium Ö 4 rö, w. m: Total Number of containers (1) in. m. Method of Shipment 400-151428 COC Analysis Requested emperature(s) °C and Other Remarks: Lab PM: Whitmire, Cheyenne R E-Mali: cheyenne.whitmire@testamericalnc.com 315_Ra226, 9320_Ra228,Ra226Ra228_GFPC ~ BA, Ba, Cd, Cr, Co, Pb, Ll, Mo, Se, Tl, 7470A-Hg Chain of Custody Record Company Company Company Water Water Water Water Water Matrix (W-weter, 8-solld, O-waste/oll, Water Water Water Water Radiological Type (C=comp, G=grab) Sample O O O O O O O O O Dete/Time: 3 | 26 | 18 1155 9060 0925 1300 1055 1205 1010 0060 1 Date: Unknown FAT Requested (days) Due Date Requested: Sample Date mpler: en Hodges 3/28/18 3/28/18 3/28/18 3/28/18 3/28/18 3/28/18 3/28/18 3/28/18 3/28/18 Project #: 40007041 \$\$0W#: WO#: Poison B Skin Irritant Possible Hazard Identification
Non-Hazard — Flammable — Skin Intit
Deliverable Requested: I, III, IV, Other (specify) Custody Seal No.: Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-267 TestAmerica Pensacola 241 Ralph McGill Blvd SE B10185 imail: JAbraham@southernco.com npty Kit Relinquished by: Client Information Sample Identification 3355 McLemore Drive Company: Southern Company Project Name: CCR - Scherer Joju Abraham State, Zlp: GA, 30308 Site: Ash Pond SGWC-19 SGWC-22 EB-3(AP) SGWC-18 SGWC-20 SGWC-21 FB-3(AP) FD-3(AP) SGWC-9

Atlanta

Client: Southern Company

Job Number: 400-151428-1 SDG Number: Ash Pond

List Source: TestAmerica Pensacola

Login Number: 151428 List Number: 1

Creator: Whitmire, Cheyenne R

Creator: whitmire, Cheyenne R		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.0°C IR7, 0.5°C IR-8 (4/3/18)
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Accreditation/Certification Summary

Client: Southern Company

TestAmerica Job ID: 400-151428-1

Project/Site: CCR - Plant Scherer

SDG: Ash Pond

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-18
ANAB	ISO/IEC 17025		L2471	02-22-20
Arizona	State Program	9	AZ0710	01-12-19
Arkansas DEQ	State Program	6	88-0689	09-01-18
California	ELAP	9	2510	03-31-18 *
Florida	NELAP	4	E81010	06-30-18
Georgia	State Program	4	N/A	06-30-18
Illinois	NELAP	5	200041	10-09-18
owa	State Program	7	367	08-01-18
Kansas	NELAP	7	E-10253	10-31-18
Kentucky (UST)	State Program	4	53	06-30-18
Kentucky (WW)	State Program	4	98030	12-31-18
Louisiana	NELAP	6	30976	06-30-18
Louisiana (DW)	NELAP	6	LA170005	12-31-18
Maryland	State Program	3	233	09-30-18
Massachusetts	State Program	1	M-FL094	06-30-18
Michigan	State Program	5	9912	06-30-18
New Jersey	NELAP	2	FL006	06-30-18
North Carolina (WW/SW)	State Program	4	314	12-31-18
Oklahoma	State Program	6	9810	08-31-18
Pennsylvania	NELAP	3	68-00467	01-31-19
Rhode Island	State Program	1	LAO00307	12-30-18
South Carolina	State Program	4	96026	06-30-18
Tennessee	State Program	4	TN02907	06-30-18
Texas	NELAP	6	T104704286-17-12	09-30-18
JSDA	Federal		P330-16-00172	05-24-19
√irginia	NELAP	3	460166	06-14-18
Washington	State Program	10	C915	05-15-18
West Virginia DEP	State Program	3	136	06-30-18

4

9

10

12

13

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Pensacola

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-151428-2

TestAmerica Sample Delivery Group: Ash Pond

Client Project/Site: CCR - Plant Scherer

For:

Southern Company 241 Ralph McGill Blvd SE B10185 Atlanta, Georgia 30308

Attn: Joju Abraham

Authorized for release by: 4/30/2018 1:55:17 PM

Cheyenne Whitmire, Project Manager II (850)471-6222

cheyenne.whitmire@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

TestAmerica Job ID: 400-151428-2 SDG: Ash Pond

Client: Southern Company Project/Site: CCR - Plant Scherer

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Method Summary	4
Sample Summary	5
Client Sample Results	6
Definitions	40
Chronicle	41
QC Association	50
QC Sample Results	53
Chain of Custody	60
Receipt Checklists	64
Certification Summary	68

5

7

_

10

Case Narrative

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Job ID: 400-151428-2

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-151428-2

RAD

Method(s) PrecSep 0: Radium 228 Prep Batch 160-358961: Insufficient sample volume was available to perform a sample duplicate (DUP) for the following samples: SGWC-17 (400-151428-14), EB-2 (AP) (400-151428-17), SGWC-8 (400-151428-19), SGWC-10 (400-151428-20), SGWC-11 (400-151428-21), SGWC-12 (400-151428-22), FB-1 (AP) (400-151428-24) and FB-2 (AP) (400-151428-25). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

Method(s) PrecSep-21: Radium 226 Prep Batch 160-358955: Insufficient sample volume was available to perform a sample duplicate (DUP) for the following samples: SGWC-17 (400-151428-14), EB-2 (AP) (400-151428-17), SGWC-8 (400-151428-19), SGWC-10 (400-151428-20), SGWC-11 (400-151428-21), SGWC-12 (400-151428-22), FB-1 (AP) (400-151428-24) and FB-2 (AP) (400-151428-25). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

Method Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Method	Method Description	Protocol	Laboratory
9315	Radium-226 (GFPC)	SW846	TAL SL
9320	Radium-228 (GFPC)	SW846	TAL SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	TAL SL
PrecSep_0	Preparation, Precipitate Separation	None	TAL SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	TAL SL

Protocol References:

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

TestAmerica Pensacola

4

6

10

11

12

Sample Summary

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-151428-2 SDG: Ash Pond

3. ASII PONG	
Received	
03/28/18 09:44	
03/28/18 09:44	
03/28/18 09:44	5
03/28/18 09:44	J
03/28/18 09:44	
03/28/18 09:44	
03/29/18 10:20	
03/29/18 10:20	
03/29/18 10:20	

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-151428-1	SGWA-24	Water	03/26/18 11:00	03/28/18 09:44
400-151428-2	SGWA-1	Water	03/26/18 14:40	03/28/18 09:44
400-151428-3	SGWA-2	Water	03/26/18 15:40	03/28/18 09:44
400-151428-4	FD-1 (AP)	Water	03/26/18 00:00	03/28/18 09:44
400-151428-5	EB-1 (AP)	Water	03/26/18 16:15	03/28/18 09:44
400-151428-6	SGWA-3	Water	03/26/18 16:05	03/28/18 09:44
400-151428-7	SGWA-4	Water	03/27/18 13:10	03/29/18 10:20
400-151428-8	SGWA-5	Water	03/27/18 09:35	03/29/18 10:20
400-151428-9	SGWC-6	Water	03/27/18 14:25	03/29/18 10:20
400-151428-10	SGWC-7	Water	03/27/18 15:30	03/29/18 10:20
400-151428-11	SGWC-14	Water	03/27/18 09:25	03/29/18 10:20
400-151428-12	SGWC-15	Water	03/27/18 10:45	03/29/18 10:20
400-151428-13	SGWC-16	Water	03/27/18 12:35	03/29/18 10:20
400-151428-14	SGWC-17	Water	03/27/18 14:05	03/29/18 10:20
400-151428-15	SGWC-23	Water	03/27/18 15:10	03/29/18 10:20
400-151428-16	SGWA-25	Water	03/27/18 10:45	03/29/18 10:20
400-151428-17	EB-2 (AP)	Water	03/27/18 16:00	03/29/18 10:20
400-151428-18	FD-2 (AP)	Water	03/27/18 00:00	03/29/18 10:20
400-151428-19	SGWC-8	Water	03/27/18 09:25	03/29/18 10:20
400-151428-20	SGWC-10	Water	03/27/18 11:20	03/29/18 10:20
400-151428-21	SGWC-11	Water	03/27/18 13:30	03/29/18 10:20
400-151428-22	SGWC-12	Water	03/27/18 14:55	03/29/18 10:20
400-151428-23	SGWC-13	Water	03/27/18 16:05	03/29/18 10:20
400-151428-24	FB-1 (AP)	Water	03/27/18 09:00	03/29/18 10:20
400-151428-25	FB-2 (AP)	Water	03/27/18 10:40	03/29/18 10:20
400-151428-26	SGWC-9	Water	03/28/18 10:55	04/03/18 09:32
400-151428-27	SGWC-18	Water	03/28/18 11:55	04/03/18 09:32
400-151428-28	SGWC-19	Water	03/28/18 12:05	04/03/18 09:32
400-151428-29	SGWC-20	Water	03/28/18 10:10	04/03/18 09:32
400-151428-30	SGWC-21	Water	03/28/18 09:05	04/03/18 09:32
400-151428-31	SGWC-22	Water	03/28/18 09:25	04/03/18 09:32
400-151428-32	EB-3 (AP)	Water	03/28/18 13:00	04/03/18 09:32
400-151428-33	FB-3 (AP)	Water	03/28/18 09:00	04/03/18 09:32
400-151428-34	FD-3 (AP)	Water	03/28/18 00:00	04/03/18 09:32

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWA-24

Date Collected: 03/26/18 11:00 Date Received: 03/28/18 09:44 Lab Sample ID: 400-151428-1

Matrix: Water

Method: 9315 - Rad	dium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.00556		0.0447	0.0447	1.00	0.0896			04/25/18 06:13	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	100		40 - 110					04/03/18 09:45	04/25/18 06:13	1

– Da Carrier	700		40 - 110					04/03/10 09.43	04/23/10 00.13	,
_ Method: 9320 - I	Radium-228 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.135	U	0.216	0.216	1.00	0.365	pCi/L	04/03/18 10:12	04/10/18 15:24	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	100		40 - 110					04/03/18 10:12	04/10/18 15:24	1
Y Carrier	90.5		40 - 110					04/03/18 10:12	04/10/18 15:24	1
_										

Method: Ra226_Ra	228 - Con	bined Ra	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.141	Ū	0.221	0.221	5.00	0.365	pCi/L		04/27/18 19:01	1

3

6

8

9

10

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWA-1

Date Collected: 03/26/18 14:40 Date Received: 03/28/18 09:44 Lab Sample ID: 400-151428-2

Matrix: Water

Method: 9315 - Ra	adium-226 ((GFPC)	0	Tatal						
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0619		0.0468	0.0471	1.00	0.0619	pCi/L	04/03/18 09:45	04/25/18 06:13	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.7		40 - 110					04/03/18 09:45	04/25/18 06:13	1

99.7		40 - 110					04/03/10 03.43	04/25/16 00.13	,
dium-228 (GFPC)								
·	•	Count Uncert.	Total Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.460		0.258	0.261	1.00	0.391	pCi/L	04/03/18 10:12	04/10/18 15:24	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
99.7		40 - 110					04/03/18 10:12	04/10/18 15:24	1
93.5		40 - 110					04/03/18 10:12	04/10/18 15:24	1
	Result 0.460	Result Qualifier 0.460 WYield Qualifier 99.7	Count Uncert. (2σ+/-) 0.460 0.258	Count Total Uncert. Uncert. (2σ+/-) (2σ+/-)	Count Total Uncert. Uncert. Uncert.	Count Total Uncert. Uncert.	Count Total Uncert. Uncert. Uncert. Result Qualifier (2\sigma+/-) (2\sigma+/-) RL MDC Unit	Count Total Uncert. Uncert. Uncert. Uncert. Uncert. O.460 O.258 O.261 O.261 O.391 PCi/L O.4/03/18 10:12	Count Total Uncert. Uncert.

Method: Ra226_Ra	228 - Com	nbined Ra	dium-226 a	ınd Radiur	m-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.522		0.262	0.265	5.00	0.391	pCi/L		04/27/18 19:01	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWA-2

Date Collected: 03/26/18 15:40 Date Received: 03/28/18 09:44 Lab Sample ID: 400-151428-3

Matrix: Water

Method: 9315 - Ra	ndium-226 ((GFPC)	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0135	U	0.0404	0.0404	1.00	0.0777	pCi/L	04/03/18 09:45	04/25/18 06:13	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.3		40 - 110					04/03/18 09:45	04/25/18 06:13	1

30.0		10 - 110					0 11 001 10 00. 10	0 1/20/10 00:10	•
Radium-228 ((GFPC)								
	•	Count Uncert.	Total Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.110	U	0.218	0.219	1.00	0.372	pCi/L	04/03/18 10:12	04/10/18 15:24	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
95.3		40 - 110					04/03/18 10:12	04/10/18 15:24	1
95.7		40 - 110					04/03/18 10:12	04/10/18 15:24	1
	Radium-228 (Result 0.110 %Yield 95.3	Radium-228 (GFPC) Result Qualifier 0.110 U WYield Qualifier 95.3	Radium-228 (GFPC) Count Uncert. Result 0.110 Qualifier U 0.218 %Yield 95.3 Qualifier Limits 40 - 110	Radium-228 (GFPC) Count Uncert. Total Uncert. Uncert. Uncert. 0.110 U 0.218 0.219 %Yield Qualifier 95.3 Limits 40 - 110	Radium-228 (GFPC) Count Uncert. Uncert. Uncert. Uncert. 0.110 U 0.218 0.219 1.00 %Yield Qualifier 95.3 40 - 110	Radium-228 (GFPC) Count Uncert. Total Uncert. Uncert. Uncert. 0.110 U 0.218 0.219 35.3 40 - 110	Count Uncert. Uncer	Radium-228 (GFPC) Count Uncert. Total Uncert. Uncert. Uncert. 0.110 U 0.218 0.219 1.00 0.372 Prepared 04/03/18 10:12 Prepared 04/03/18 10:12	Radium-228 (GFPC) Count Uncert. Uncert. Uncert. Uncert. Uncert. Uncert. Prepared O4/03/18 10:12 Analyzed O4/10/18 15:24 8 Result Onling Onlin

Method: Ra226_Ra2	228 - Con	bined Rad	dium-226 a	nd Radium	-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.124	Ū	0.222	0.223	5.00	0.372	pCi/L	_	04/27/18 19:01	1

+ 228

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: FD-1 (AP)

Date Collected: 03/26/18 00:00 Date Received: 03/28/18 09:44 Lab Sample ID: 400-151428-4

Matrix: Water

Method: 9315 - Ra	dium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0126		0.0352	0.0352	1.00	0.0684			04/25/18 06:13	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.1		40 - 110					04/03/18 09:45	04/25/18 06:13	1

33.1		40 - 110					04/03/10 09.43	04/25/10 00.15	,
adium-228 (GFPC)								
	,	Count Uncert.	Total Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.531		0.233	0.239	1.00	0.330	pCi/L	04/03/18 10:12	04/10/18 15:24	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
99.1		40 - 110					04/03/18 10:12	04/10/18 15:24	1
95.3		40 - 110					04/03/18 10:12	04/10/18 15:24	1
	Result 0.531 %Yield 99.1	Result Qualifier 0.531 %Yield Qualifier 99.1	Count Uncert. (2σ+/-) 0.531 0.233	Count Total Uncert. Uncert. (2σ+/-) (2σ+/-)	Count Total Uncert. Uncert. Uncert. Count Total Uncert. U	Count Total Uncert. Uncert. Uncert. Count Total Uncert. U	Count Total Uncert. Uncert. Uncert. Uncert. Uncert. O.531 O.233 O.239 O.330 D.330 D.330 D.330 O.330 O	Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared O.531 O.233 O.239 O.239 O.330 PCi/L O4/03/18 10:12 Prepared O4/03/18 10:12 O4/03/18 O4/03/18	Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared O4/03/18 10:12 O4/10/18 15:24

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.544		0.236	0.242	5.00	0.330	pCi/L		04/27/18 19:01	1

4/30/2018

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: EB-1 (AP)

Date Collected: 03/26/18 16:15 Date Received: 03/28/18 09:44 Lab Sample ID: 400-151428-5

Matrix: Water

Method: 9315 - F	Radium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0851		0.0548	0.0553	1.00	0.0687	pCi/L	04/03/18 09:45	04/25/18 06:13	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	98.2		40 - 110					04/03/18 09:45	04/25/18 06:13	1

Ba Carrier —	98.2		40 - 110					04/03/18 09:45	04/25/18 06:13	7
	Radium-228 ((GFPC)								
		,	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.161	U	0.208	0.208	1.00	0.346	pCi/L	04/03/18 10:12	04/10/18 15:24	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	98.2		40 - 110					04/03/18 10:12	04/10/18 15:24	1
Y Carrier	90.8		40 - 110					04/03/18 10:12	04/10/18 15:24	1
_										

Method: Ra226_Ra2	228 - Con	nbined Rad	dium-226 a	nd Radium	-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.246	U	0.215	0.215	5.00	0.346	pCi/L	_	04/27/18 19:01	1

+ 228

3

5

8

9

1 U

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWA-3

Date Collected: 03/26/18 16:05 Date Received: 03/28/18 09:44 Lab Sample ID: 400-151428-6

Matrix: Water

Method: 9315 - Ra	dium-226 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0400	U	0.0514	0.0515	1.00	0.0855	pCi/L	04/03/18 09:45	04/25/18 06:13	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.4		40 - 110					04/03/18 09:45	04/25/18 06:13	1

Ba Carrier	94.4		40 - 110					04/03/18 09:45	04/25/18 06:13	1
Method: 9320 - Ra	adium-228 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.186	U	0.268	0.269	1.00	0.448	pCi/L	04/03/18 10:12	04/10/18 15:24	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.4		40 - 110					04/03/18 10:12	04/10/18 15:24	1
Y Carrier	92.7		40 - 110					04/03/18 10:12	04/10/18 15:24	1

Method: Ra226_Ra	228 - Con	nbined Ra	ıdium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.226	U	0.273	0.274	5.00	0.448	pCi/L		04/27/18 19:01	1

+ 228

3

6

8

10

11

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWA-4

Date Collected: 03/27/18 13:10 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-7

Matrix: Water

Method: 9315 - Ra	dium-226 (GFPC)								
		,	Count Uncert.	Total Uncert.						
Amaluta	Danult	O			D.	MDC	11	D	A a l a d	D:: F
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0833		0.0575	0.0580	1.00	0.0768	pCi/L	04/03/18 09:45	04/25/18 06:13	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.6		40 - 110					04/03/18 09:45	04/25/18 06:13	1

L	_										•
ſ		ium-228 (GFPC)								
		·	,	Count	Total						
				Uncert.	Uncert.						
	Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
	Radium-228	0.0811	U	0.222	0.222	1.00	0.383	pCi/L	04/03/18 10:12	04/10/18 15:24	1
	Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
	Ba Carrier	95.6		40 - 110					04/03/18 10:12	04/10/18 15:24	1
	Y Carrier	94.2		40 - 110					04/03/18 10:12	04/10/18 15:24	1

Method: Ra226_Ra2	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.164	U	0.229	0.229	5.00	0.383	pCi/L		04/27/18 19:01	1

+ 228

3

4

6

Ω

9

11

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWA-5

Date Collected: 03/27/18 09:35 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-8

Matrix: Water

Method: 9315 - Ra	adium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0713	U	0.0586	0.0590	1.00	0.0868	pCi/L	04/03/18 09:45	04/25/18 06:13	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	93.2		40 - 110					04/03/18 09:45	04/25/18 06:13	1

Ba Carrier	93.2		40 - 110					04/03/18 09:45	04/25/18 06:13	1
Method: 9320 - Ra	adium-228 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.180	U	0.242	0.243	1.00	0.404	pCi/L	04/03/18 10:12	04/10/18 15:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	93.2		40 - 110					04/03/18 10:12	04/10/18 15:25	1
Y Carrier	91.6		40 - 110					04/03/18 10:12	04/10/18 15:25	1

Method: Ra226_Ra2	228 - Com	bined Ra	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.252	U	0.249	0.250	5.00	0.404	pCi/L		04/27/18 19:01	1

+ 228

3

4

6

8

9

11

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWC-6

Date Collected: 03/27/18 14:25 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-9

Matrix: Water

Method: 9315 - Ra	dium-226 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.00968	U	0.0378	0.0378	1.00	0.0749	pCi/L	04/03/18 09:45	04/25/18 06:13	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.6		40 - 110					04/03/18 09:45	04/25/18 06:13	1

Ba Carrier _	97.0		40 - 110					04/03/18 09:45	04/25/18 06:13	7
_ Method: 9320 - I	Radium-228 ((GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0346	U	0.225	0.225	1.00	0.395	pCi/L	04/03/18 10:12	04/10/18 15:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.6		40 - 110					04/03/18 10:12	04/10/18 15:25	1
Y Carrier	95.0		40 - 110					04/03/18 10:12	04/10/18 15:25	1
_										

Method: Ra226 Ra2	228 - Com	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.0443	U	0.228	0.228	5.00	0.395	pCi/L		04/27/18 19:01	1

+ 228

3

--

6

R

9

10

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWC-7

Date Collected: 03/27/18 15:30 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-10

Matrix: Water

Method: 9315 - Ra	adium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0541	U	0.0523	0.0525	1.00	0.0803	pCi/L	04/03/18 09:45	04/25/18 06:14	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	96.2		40 - 110					04/03/18 09:45	04/25/18 06:14	1

90.2		40 - 110					04/03/10 09.43	04/23/10 00.14	,
dium-228 (GFPC)								
	•	Count Uncert.	Total Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.492		0.285	0.288	1.00	0.436	pCi/L	04/03/18 10:12	04/10/18 15:25	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
96.2		40 - 110					04/03/18 10:12	04/10/18 15:25	1
93.5		40 - 110					04/03/18 10:12	04/10/18 15:25	1
	Result 0.492 %Yield 96.2	Result Qualifier 0.492 %Yield Qualifier 96.2	Count Uncert.	Count Total Uncert. Uncert. (2σ+/-) 0.492 0.285 0.288	Count Total Uncert. Uncert.	Count Total Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC MDC MS MS MS MS MS MS MS M	Count Total Uncert. Uncert. Uncert. Uncert. Uncert. O.492 O.285 O.288 O.288 O.436 PCi/L	Count Total Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared 0.492 0.285 0.288 1.00 0.436 pCi/L 04/03/18 10:12 Wyield Qualifier Limits Prepared 04/03/18 10:12 O4/03/18 O4/03/18 O4/03/18 O4/03/18 O4/03/18	Count Total Uncert. Uncert.

Method: Ra226_Ra	228 - Com	bined Ra	dium-226 a	nd Radiur	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.546		0.290	0.293	5.00	0.436	pCi/L		04/27/18 19:01	1

3

5

O

8

9

4 4

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWC-14

Date Collected: 03/27/18 09:25 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-11

Matrix: Water

Method: 9315 - Ra	adium-226 ((GFPC)								
	·	,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0438	U	0.0455	0.0457	1.00	0.0702	pCi/L	04/03/18 09:45	04/25/18 06:14	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.3		40 - 110					04/03/18 09:45	04/25/18 06:14	1

Prepared	Analyzed	Dil Fac
4/03/18 10:12	04/10/18 15:25	1
Prepared	Analyzed	Dil Fac
4/03/18 10:12	04/10/18 15:25	1
4/03/18 10:12	04/10/18 15:25	1
)_	4/03/18 10:12 Prepared 4/03/18 10:12	4/03/18 10:12 04/10/18 15:25

Method: Ra226_Ra2	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.306	U	0.253	0.255	5.00	0.404	pCi/L	_	04/27/18 19:01	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWC-15

Date Collected: 03/27/18 10:45 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-12

Matrix: Water

Method: 9315 - R	adium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0727	U	0.0562	0.0566	1.00	0.0794	pCi/L	04/03/18 09:45	04/25/18 06:14	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.6		40 - 110					04/03/18 09:45	04/25/18 06:14	1

Ba Carrier	97.6		40 - 110					04/03/18 09:45	04/25/18 06:14	1
Method: 9320 - F	Radium-228 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.212	U	0.231	0.232	1.00	0.379	pCi/L	04/03/18 10:12	04/10/18 15:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.6		40 - 110					04/03/18 10:12	04/10/18 15:25	1
Y Carrier	97.6		40 - 110					04/03/18 10:12	04/10/18 15:25	1

Method: Ra226 Ra2	28 - Con	bined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.285	Ū	0.238	0.239	5.00	0.379	pCi/L		04/27/18 19:01	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWC-16

Date Collected: 03/27/18 12:35 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-13

Matrix: Water

Method: 9315 - Rad	dium-226	(GFPC)								
		,	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.00983	U	0.0303	0.0303	1.00	0.0620	pCi/L	04/05/18 11:12	04/27/18 05:32	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	100		40 - 110					04/05/18 11:12	04/27/18 05:32	1

Method: 9320 - I		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.377	U	0.256	0.258	1.00	0.399	pCi/L	04/05/18 11:30	04/12/18 16:43	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	100		40 - 110					04/05/18 11:30	04/12/18 16:43	1
Y Carrier	87.5		40 - 110					04/05/18 11:30	04/12/18 16:43	1

_ Method: Ra226_Ra	228 - Com	nbined Ra	ndium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.387	U	0.258	0.260	5.00	0.399	pCi/L		04/27/18 19:01	1

+ 228

3

6

8

9

10

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWC-17

Date Collected: 03/27/18 14:05 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-14

Matrix: Water

Method: 93	315 - Radium-226	(GFPC)								
		. ,	Count Uncert.	Total Uncert.						
Analyte	Resu	t Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.046	9 U	0.0420	0.0422	1.00	0.0604	pCi/L	04/04/18 11:24	04/26/18 09:38	1
Carrier	%Yiel	d Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	10	9	40 - 110					04/04/18 11:24	04/26/18 09:38	1

109		40 - 110					04/04/10 11.24	04/20/10 09.30	,
dium-228 (GFPC)								
·	•	Count Uncert.	Total Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.202	Ū	0.193	0.194	1.00	0.313	pCi/L	04/04/18 12:42	04/11/18 15:20	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
109		40 - 110					04/04/18 12:42	04/11/18 15:20	1
92.7		40 - 110					04/04/18 12:42	04/11/18 15:20	1
	Result 0.202 %Yield 109	Result Qualifier 0.202 U WYield Qualifier 109	Count Uncert. (2σ+/-) 0.202 U 0.193	Count Total Uncert. Uncert. (2σ+/-) (2σ+/-)	Count Total Uncert. Uncert. Uncert. Count Uncert. Uncert.	Count Total Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC MDC MOC MOC	Count Total Uncert. Uncert. Uncert. Essult Qualifier (2σ+/-) (2σ+/-) (2σ+/-) RL MDC Unit D.202 U 0.193 0.194 1.00 0.313 pCi/L	Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared 0.202 U 0.193 0.194 1.00 0.313 pCi/L 04/04/18 12:42 Wyield Qualifier Limits Prepared Prepared 04/04/18 12:42 O4/04/18 O4/04/18 O4/04/18	Count Total Uncert. Uncert. Uncert. Uncert. Uncert. O.202 U O.193 O.194 O.100 O.313 D.194 O.313 D.194 O.202 O.203 O.194 O.202 O.203 O.204 O.204 O.204 O.205 O.204 O.205 O.205

Method: Ra226_Ra2	228 - Con	nbined Ra	dium-226 a	nd Radiun	n- 228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.249	U	0.198	0.199	5.00	0.313	pCi/L	 -	04/27/18 19:01	1

+ 228

3

6

8

9

10

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWC-23

Date Collected: 03/27/18 15:10 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-15

Matrix: Water

Method: 9315 - R	adium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0842		0.0535	0.0540	1.00	0.0654	pCi/L	04/03/18 09:45	04/25/18 06:14	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	98.8		40 - 110					04/03/18 09:45	04/25/18 06:14	1

Ba Carrier	98.8		40 - 110					04/03/18 09:45	04/25/18 06:14	7
Method: 9320 - R	adium-228 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.525		0.249	0.253	1.00	0.362	pCi/L	04/03/18 10:12	04/10/18 15:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	98.8		40 - 110					04/03/18 10:12	04/10/18 15:25	1
Y Carrier	95.0		40 - 110					04/03/18 10:12	04/10/18 15:25	1
Ba Carrier	98.8	Qualifier	40 - 110					04/03/18 10:12	04/10/18 15:25	

Method: Ra226 Ra	228 - Combined R	adium-226 a	nd Radiun	1-228					
_		Count	Total						
Analyte	Result Qualifier	Uncert. (2σ+/-)	Uncert. (2σ+/-)	RL	MDC U	Init	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.610	0.255	0.259	5.00	0.362 p	Ci/L		04/27/18 19:01	1

3

5

7

8

11

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWA-25

Date Collected: 03/27/18 10:45 Date Received: 03/29/18 10:20

Lab Sample ID: 400-151428-16

Matrix: Water

Method: 9315 - Ra	dium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0861		0.0566	0.0572	1.00	0.0723	pCi/L	04/03/18 09:45	04/25/18 06:14	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.6		40 - 110					04/03/18 09:45	04/25/18 06:14	1

GFPC) Count Uncert.	Total Uncert.						
Qualifier (2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.230	0.231	1.00	0.392	pCi/L	04/03/18 10:12	04/10/18 15:25	1
Qualifier Limits					Prepared	Analyzed	Dil Fac
40 - 110	_				04/03/18 10:12	04/10/18 15:25	1
40 - 110					04/03/18 10:12	04/10/18 15:25	1
J	0.230 walifier Limits 40 - 110	0.230 0.231	0.230 0.231 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	0.230 0.231 1.00 0.392	0.230 0.231 1.00 0.392 pCi/L Ualifier Limits 40 - 110	0.230 0.231 1.00 0.392 pCi/L 04/03/18 10:12	0.230 0.231 1.00 0.392 pCi/L 04/03/18 10:12 04/10/18 15:25 04/10/18 04/10/1

Method: Ra226_Ra2	228 - Com	nbined Ra	dium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.207	U	0.237	0.238	5.00	0.392	pCi/L		04/27/18 19:01	1

4/30/2018

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: EB-2 (AP)

Date Collected: 03/27/18 16:00 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-17

Matrix: Water

Method: 9315 - Rad	dium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0209	U	0.0442	0.0442	1.00	0.0808	pCi/L	04/04/18 11:24	04/26/18 09:38	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					04/04/18 11:24	04/26/18 09:38	1

										-
Method: 932	0 - Radium-228 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.208	Ū	0.219	0.220	1.00	0.357	pCi/L	04/04/18 12:42	04/11/18 15:21	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					04/04/18 12:42	04/11/18 15:21	1
Y Carrier	93.8		40 - 110					04/04/18 12:42	04/11/18 15:21	1

Method: Ra226_Ra2	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.229	U	0.223	0.224	5.00	0.357	pCi/L	_	04/27/18 19:01	1

3

7

0

10

11

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: FD-2 (AP)

Date Collected: 03/27/18 00:00 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-18

Matrix: Water

Method: 9315 - Ra	dium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0270	U	0.0480	0.0481	1.00	0.0850	pCi/L	04/03/18 09:45	04/25/18 06:15	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	102		40 - 110					04/03/18 09:45	04/25/18 06:15	1

102		40 - 110					04/03/10 09.43	04/23/10 00.13	,
adium-228 ((GFPC)								
	,	Count Uncert.	Total Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.0710	U	0.192	0.192	1.00	0.333	pCi/L	04/03/18 10:12	04/10/18 15:25	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
102		40 - 110					04/03/18 10:12	04/10/18 15:25	1
94.6		40 - 110					04/03/18 10:12	04/10/18 15:25	1
	Result 0.0710 %Yield 102	Result Qualifier 0.0710 U %Yield Qualifier 102	Count Uncert. (2σ+/-) 0.0710 U 0.192	Count Uncert. Uncert. (2σ+/-) (2σ+/-)	Count Total Uncert. Uncert. Uncert. Eesult O.0710 U O.192 O.192	Count Total Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC (2σ+/-) (Count Total Uncert. Uncert. Uncert. Count Uncert. Uncert. Uncert. Uncert. O.0710 U O.192 O.192 O.192 O.333 PCi/L Wyield Qualifier Limits 40 - 110 Uncert. Uncert. Uncert. Uncert. Uncert. Uncert. RL MDC Unit PCi/L Unit Uni	Count Total Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared 0.0710 U 0.192 0.192 1.00 0.333 pCi/L 04/03/18 10:12	Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared Analyzed 0.0710 U 0.192 0.192 1.00 0.333 pCi/L 04/03/18 10:12 04/10/18 15:25

_ Method: Ra226_Ra2	28 - Com	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.0980	U	0.198	0.198	5.00	0.333	pCi/L		04/27/18 19:01	1

+ 228

3

6

8

9

10

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWC-8

Date Collected: 03/27/18 09:25 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-19

Matrix: Water

Method: 9315 - R	adium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.495		0.114	0.123	1.00	0.0596	pCi/L	04/04/18 11:24	04/26/18 09:38	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	105		40 - 110					04/04/18 11:24	04/26/18 09:38	1

105		40 - 110					04/04/10 11.24	04/20/10 09.30	1
adium-228 ((GFPC)								
	,	Count Uncert.	Total Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
1.80		0.313	0.355	1.00	0.327	pCi/L	04/04/18 12:42	04/11/18 15:21	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
105		40 - 110					04/04/18 12:42	04/11/18 15:21	1
93.5		40 - 110					04/04/18 12:42	04/11/18 15:21	1
	Result 1.80 %Yield 105	Result Qualifier 1.80 WYield Qualifier 105	Count Uncert.	Count Uncert. Uncert. Uncert. (2σ+/-) (2σ+/-) (2σ+/-) (3π/2) (Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL (2π/-) (2π/-	Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC MDC MOC M	Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit PCi/L	Count Total Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared 1.80 0.313 0.355 1.00 0.327 pCi/L 04/04/18 12:42 Wyield Qualifier Limits Prepared 04/04/18 12:42 O4/04/18 O4/04/18 O4/04/18 O4/04/18 O4/04/18 O4/04/18 O4/04/18	Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared Analyzed O4/11/18 15:21

Method: Ra226_Ra	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	2.30		0.333	0.376	5.00	0.327	pCi/L		04/27/18 19:01	1

4

6

8

9

1 U

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWC-10

Date Collected: 03/27/18 11:20 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-20

Matrix: Water

Method: 9315 - Ra	dium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0320	U	0.0456	0.0457	1.00	0.0775	pCi/L	04/04/18 11:24	04/26/18 09:39	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	102		40 - 110					04/04/18 11:24	04/26/18 09:39	1

102		40 - 110					04/04/10 11.24	04/20/10 09.39	1
dium-228 ((GFPC)								
	,	Count Uncert.	Total Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.104	U	0.185	0.186	1.00	0.316	pCi/L	04/04/18 12:42	04/11/18 15:21	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
102		40 - 110					04/04/18 12:42	04/11/18 15:21	1
92.0		40 - 110					04/04/18 12:42	04/11/18 15:21	1
	Result 0.104 %Yield 102	Result Qualifier 0.104 U %Yield Qualifier 102	Count Uncert. (2σ+/-) 0.104 U 0.185	Count Total Uncert. Uncert. (2σ+/-) (2σ+/-)	Count Total Uncert. Uncert. Uncert. Count Total Uncert. U	Count Total Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) (2σ+/-) RL MDC MDC MOC M	Count Total Uncert. Uncert. Uncert. Count Uncert. Uncert.	Count Total Uncert. Uncert. Uncert. Uncert. Uncert. O.104 U O.185 O.186 O.186 O.316 PCi/L O.4/04/18 12:42	Count Total Uncert. Uncert. Uncert. Uncert. Uncert. O.104 U O.185 O.186 O.316 D.316 D.316 D.316 D.316 O.4/04/18 12:42 O.4/11/18 15:21

Method: Ra226_Ra2	228 - Com	nbined Ra	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.136	U	0.191	0.192	5.00	0.316	pCi/L		04/27/18 19:01	1

+ 228

3

4

6

8

9

10

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWC-11

Date Collected: 03/27/18 13:30 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-21

Matrix: Water

Method: 9315 - F	Radium-226 ((GFPC)	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.103		0.0613	0.0620	1.00	0.0747	pCi/L	04/04/18 11:24	04/26/18 09:39	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					04/04/18 11:24	04/26/18 09:39	1

	,	~~~~~							,,	
Ba Carrier	101		40 - 110					04/04/18 11:24	04/26/18 09:39	1
Method: 9320 - F	Radium-228 ((GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0689	U	0.180	0.180	1.00	0.313	pCi/L	04/04/18 12:42	04/11/18 15:21	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					04/04/18 12:42	04/11/18 15:21	1
Y Carrier	92.3		40 - 110					04/04/18 12:42	04/11/18 15:21	1

Method: Ra226_Ra2	228 - Con	nbined Rad	dium-226 a	nd Radium	-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.172	U	0.190	0.190	5.00	0.313	pCi/L	_	04/27/18 19:01	1

+ 228

3

5

7

8

3

11

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWC-12

Date Collected: 03/27/18 14:55 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-22

Matrix: Water

Method: 9315 - R	adium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0712		0.0525	0.0529	1.00	0.0710	pCi/L	04/04/18 11:24	04/26/18 09:39	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					04/04/18 11:24	04/26/18 09:39	1

Ba Carrier -	103		40 - 110					04/04/10 11.24	04/20/10 09.39	,
- Method: 9320 - I	Radium-228 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.374	U	0.247	0.249	1.00	0.385	pCi/L	04/04/18 12:42	04/11/18 15:21	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					04/04/18 12:42	04/11/18 15:21	1
Y Carrier	93.5		40 - 110					04/04/18 12:42	04/11/18 15:21	1
Y Carrier -	93.5		40 - 110					04/04/18 12:42	04/11/18 15:21	7

Method: Ra226_Ra	228 - Combined F	Radium-226 a	ınd Radiun	n-228					
_		Count	Total						
		Uncert.	Uncert.						
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC L	Jnit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.445	0.253	0.255	5.00	0.385 p	Ci/L		04/27/18 19:01	1

3

5

7

0

10

11

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWC-13

Date Collected: 03/27/18 16:05 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-23

Matrix: Water

Method: 9315 - R	adium-226 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte Radium-226	Result 0.0646	Qualifier U	(2σ+/-) 0.0493	(2 σ+/-) 0.0497	RL 1.00	MDC 0.0657	Unit pCi/L	Prepared 04/03/18 09:45	Analyzed 04/25/18 06:15	Dil Fac
Carrier Ba Carrier	95.9	Qualifier	Limits 40 - 110					Prepared 04/03/18 09:45	Analyzed 04/25/18 06:15	Dil Fac

- Da Garrier	30.3		40-110					04/03/10 03.40	04/20/10 00:10	,
- Method: 9320 - F	Radium-228 (GFPC)								
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0799	U	0.239	0.239	1.00	0.413	pCi/L	04/03/18 10:12	04/10/18 15:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.9		40 - 110					04/03/18 10:12	04/10/18 15:26	1
Y Carrier	91.2		40 - 110					04/03/18 10:12	04/10/18 15:26	1

Method: Ra226 Ra2	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.145	U	0.244	0.244	5.00	0.413	pCi/L		04/27/18 19:01	1

+ 228

3

6

8

9

11

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: FB-1 (AP)

Date Collected: 03/27/18 09:00 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-24

Matrix: Water

Method: 9315 - R	adium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0434	U	0.0401	0.0403	1.00	0.0573	pCi/L	04/04/18 11:24	04/26/18 09:39	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	105		40 - 110					04/04/18 11:24	04/26/18 09:39	1

105		40 - 110					04/04/10 11.24	04/20/10 03.33	,
adium-228 (GFPC)								
	•	Count Uncert.	Total Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.348		0.221	0.223	1.00	0.339	pCi/L	04/04/18 12:42	04/11/18 15:21	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
105		40 - 110					04/04/18 12:42	04/11/18 15:21	1
92.0		40 - 110					04/04/18 12:42	04/11/18 15:21	1
	Result 0.348 %Yield 105	Result Qualifier 0.348 %Yield Qualifier 105	Count Uncert. (2σ+/-) 0.348 0.221	Count Total Uncert. Uncert. (2σ+/-) (2σ+/-)	Count Total Uncert. Uncert.	Count Total Uncert. Uncert. Uncert. Count Uncert. Uncert.	Count Total Uncert. Uncert. Uncert. Uncert. Uncert. O.348 O.221 O.223 O.223 O.339 PCi/L	Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared O.348 O.221 O.223 O.223 O.339 PCi/L O4/04/18 12:42 Prepared O4/04/18 12:42 O4/04/18 O4/0	Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared O4/04/18 12:42 O4/11/18 15:21

Method: Ra226 Ra	228 - Combin	ed Radium-226	and Radiu	m-228					
_		Count Uncert.	Total Uncert.						
Analyte	Result Qua		(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.391	0.225	0.227	5.00	0.339	pCi/L		04/27/18 19:01	1

3

7

10

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: FB-2 (AP)

Date Collected: 03/27/18 10:40 Date Received: 03/29/18 10:20 Lab Sample ID: 400-151428-25

Matrix: Water

Method: 9315 - Ra	dium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0340	U	0.0426	0.0427	1.00	0.0693	pCi/L	04/04/18 11:24	04/26/18 09:39	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	109		40 - 110					04/04/18 11:24	04/26/18 09:39	1

109		40 - 110					04/04/18 11:24	04/26/18 09:39	1
adium-228 (GFPC)								
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.0387	U	0.184	0.184	1.00	0.323	pCi/L	04/04/18 12:42	04/11/18 15:21	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
109		40 - 110					04/04/18 12:42	04/11/18 15:21	1
92.3		40 - 110					04/04/18 12:42	04/11/18 15:21	1
	Result 0.0387	Result Qualifier 0.0387 U %Yield Qualifier 109	Count Uncert. (2σ+/-) 0.0387 U 0.184	Count Uncert. Uncert. (2σ+/-) (2σ+/-) (Count Total Uncert. Uncert. Uncert. Count Uncert. Uncert. Uncert. Count Uncert. Uncert. Uncert. Count Uncert. Uncert. Uncert. Count Uncert. Uncert.	Count Total Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC (2σ+/-) (Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit D.0387 U 0.184 0.184 1.00 0.323 pCi/L	Count Total Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared 0.0387 U 0.184 0.184 1.00 0.323 pCi/L 04/04/18 12:42 Wyield Qualifier Limits Prepared 04/04/18 12:42 O4/04/18 O4/04/18 O4/04/18 O4/04/18 O4/04/	Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit Prepared Analyzed O4/04/18 12:42 O4/11/18 15:21

Method: Ra226_Ra2	228 - Con	nbined Rad	dium-226 a	nd Radium	ı- 228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.0727	U	0.189	0.189	5.00	0.323	pCi/L	_	04/27/18 19:01	1

+ 228

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWC-9

Date Collected: 03/28/18 10:55 Date Received: 04/03/18 09:32 Lab Sample ID: 400-151428-26

Matrix: Water

Method: 9315 - F	Radium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0706		0.0468	0.0473	1.00	0.0563	pCi/L	04/03/18 09:45	04/25/18 06:16	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					04/03/18 09:45	04/25/18 06:16	1

Ba Carrier	104		40 - 110					04/03/18 09:45	04/25/18 06:16	1
Method: 9320 - Ra	dium-228 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.307	U	0.223	0.225	1.00	0.349	pCi/L	04/03/18 10:12	04/10/18 15:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					04/03/18 10:12	04/10/18 15:26	1
Y Carrier	96.1		40 - 110					04/03/18 10:12	04/10/18 15:26	1

Method: Ra226_Ra	228 - Con	nbined Ra	dium-226 a	nd Radiun	n-228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.378		0.228	0.230	5.00	0.349	pCi/L		04/27/18 19:01	1

0

8

9

11

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWC-18

Date Collected: 03/28/18 11:55 Date Received: 04/03/18 09:32 Lab Sample ID: 400-151428-27

Matrix: Water

Method: 9315 -	Radium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0467	U	0.0446	0.0448	1.00	0.0664	pCi/L	04/03/18 09:45	04/25/18 06:16	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					04/03/18 09:45	04/25/18 06:16	1

_	, , ,		70 - 770					0 17 007 10 00: 10	0 11/201 10 00:10	•
- Method: 9320 - F	Radium-228 ((GFPC)								
		,	Count Uncert.	Total Uncert.	DI	MDC	l l m i é	Drawavad	Analyzad	Dil Fac
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.381		0.213	0.216	1.00	0.317	pCi/L	04/03/18 10:12	04/10/18 15:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					04/03/18 10:12	04/10/18 15:26	1
Y Carrier	95.7		40 - 110					04/03/18 10:12	04/10/18 15:26	1
_										

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.428		0.218	0.221	5.00	0.317	pCi/L		04/27/18 19:01	1

3

5

7

8

10

11

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWC-19

Date Collected: 03/28/18 12:05 Date Received: 04/03/18 09:32 Lab Sample ID: 400-151428-28

Matrix: Water

Method: 9315	- Radium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0189	U	0.0321	0.0322	1.00	0.0575	pCi/L	04/03/18 09:45	04/25/18 06:16	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					04/03/18 09:45	04/25/18 06:16	1

- Da Garrier	703		40-110					04/03/10 03.40	0 11 201 10 00:10	,
- Method: 9320 - F	Radium-228 (GFPC)								
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.228	Ū	0.199	0.200	1.00	0.318	pCi/L	04/03/18 10:12	04/10/18 15:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					04/03/18 10:12	04/10/18 15:26	1
Y Carrier	94.2		40 - 110					04/03/18 10:12	04/10/18 15:26	1

Method: Ra226_Ra2	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.247	U	0.202	0.203	5.00	0.318	pCi/L	_	04/27/18 19:01	1

+ 228

3

5

7

8

9

11

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWC-20

Date Collected: 03/28/18 10:10 Date Received: 04/03/18 09:32 Lab Sample ID: 400-151428-29

Matrix: Water

Method: 9315	- Radium-226 ((GFPC)								
	·	,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0512	U	0.0557	0.0559	1.00	0.0882	pCi/L	04/03/18 12:53	04/25/18 06:21	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	102		40 - 110					04/03/18 12:53	04/25/18 06:21	1

_	702		10 - 110					0 1/ 00/ 10 12:00	0 1/20/ 10 00:21	•
- Method: 9320 - I	Radium-228 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.283	U	0.213	0.215	1.00	0.335	pCi/L	04/03/18 13:02	04/11/18 15:25	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	102		40 - 110					04/03/18 13:02	04/11/18 15:25	1
Y Carrier	92.7		40 - 110					04/03/18 13:02	04/11/18 15:25	1
_										

Method: Ra226_Ra2	228 - Con	bined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.334	U	0.220	0.222	5.00	0.335	pCi/L		04/27/18 19:01	1

2

4

_

9

11

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWC-21

Lab Sample ID: 400-151428-30

. Matrix: Water

Date Collected: 03/28/18 09:05 Date Received: 04/03/18 09:32

Method: 9315 - Ra	adium-226 ((GFPC)	Count Uncert.	Total Uncert.						
A se a le sta	Danult	O alifia			D.	MDC	11!4	Duamanad	A a l a d	D:: F
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0263	U	0.0458	0.0459	1.00	0.0813	pCi/L	04/03/18 12:53	04/25/18 06:21	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	105		40 - 110					04/03/18 12:53	04/25/18 06:21	1

_	700		10 - 110					0 17 007 10 12:00	0 11 201 10 00:21	•
- Method: 9320 - F	Radium-228 ((GFPC)								
		` ,	Count Uncert.	Total Uncert.						5 -
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.354		0.205	0.207	1.00	0.308	pCi/L	04/03/18 13:02	04/11/18 15:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	105		40 - 110					04/03/18 13:02	04/11/18 15:26	1
Y Carrier	93.8		40 - 110					04/03/18 13:02	04/11/18 15:26	1
_										

Method: Ra226_Ra	228 - Combined R	Radium-226 a	ınd Radiun	n-228					
_		Count	Total						
		Uncert.	Uncert.						
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.380	0.210	0.212	5.00	0.308	pCi/L		04/27/18 19:01	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: SGWC-22

Date Collected: 03/28/18 09:25 Date Received: 04/03/18 09:32 Lab Sample ID: 400-151428-31

Matrix: Water

Method: 9315 - Ra	dium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0532	U	0.0495	0.0497	1.00	0.0733	pCi/L	04/03/18 12:53	04/25/18 06:21	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	105		40 - 110					04/03/18 12:53	04/25/18 06:21	1

105		40 - 110					04/03/18 12:53	04/25/18 06:21	1
adium-228 ((GFPC)								
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.0129	U	0.196	0.196	1.00	0.348	pCi/L	04/03/18 13:02	04/11/18 15:26	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
105		40 - 110					04/03/18 13:02	04/11/18 15:26	1
93.1		40 - 110					04/03/18 13:02	04/11/18 15:26	1
	Result 0.0129 WYield 105	Result Qualifier 0.0129 U WYield Qualifier 105	Count Uncert. (2σ+/-) 0.0129 U 0.196	Count Uncert. Uncert. (2σ+/-) (2σ+/-) (Count Total Uncert. Uncert.	Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC MDC MDC M	Count Total Uncert. Uncert.	Count Total Uncert. Uncert. Uncert. Variable Vari	Count Total Uncert. Uncert. Uncert. Result Qualifier (2\sigma+/-) (2\sigma+/-) RL MDC Unit Prepared Analyzed O.0129 U O.196 O.196 O.196 O.348 PCi/L O4/03/18 13:02 O4/11/18 15:26

Method: Ra226_Ra2	28 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.0661	U	0.202	0.202	5.00	0.348	pCi/L	_	04/27/18 19:01	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: EB-3 (AP)

Date Collected: 03/28/18 13:00 Date Received: 04/03/18 09:32 Lab Sample ID: 400-151428-32

Matrix: Water

Method: 9315 - Ra	dium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0336	U	0.0418	0.0419	1.00	0.0682	pCi/L	04/03/18 12:53	04/25/18 06:21	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					04/03/18 12:53	04/25/18 06:21	1

Ba Carrier	104		40 - 110					04/03/18 12:53	04/25/18 06:21	1
Method: 9320 -	Radium-228 ((GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0936	U	0.193	0.193	1.00	0.330	pCi/L	04/03/18 13:02	04/11/18 15:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					04/03/18 13:02	04/11/18 15:26	1
Y Carrier	93.8		40 - 110					04/03/18 13:02	04/11/18 15:26	1

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.127	U	0.197	0.197	5.00	0.330	pCi/L	_	04/27/18 19:01	1

+ 228

3

5

7

8

10

11

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: FB-3 (AP)

Date Collected: 03/28/18 09:00 Date Received: 04/03/18 09:32 Lab Sample ID: 400-151428-33

Matrix: Water

Method: 9315 - Ra	adium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.00133	U	0.0417	0.0417	1.00	0.0877	pCi/L	04/03/18 12:53	04/25/18 06:21	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	106		40 - 110					04/03/18 12:53	04/25/18 06:21	1

Ba Carrier _	106		40 - 110					04/03/18 12:53	04/25/18 06:21	7
_ Method: 9320 -	Radium-228 ((GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.196	U	0.219	0.220	1.00	0.359	pCi/L	04/03/18 13:02	04/11/18 15:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	106		40 - 110					04/03/18 13:02	04/11/18 15:26	1
Y Carrier	94.2		40 - 110					04/03/18 13:02	04/11/18 15:26	1
_										

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.197	U	0.223	0.224	5.00	0.359	pCi/L	_	04/27/18 19:01	1

+ 228

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: FD-3 (AP)

Date Collected: 03/28/18 00:00 Date Received: 04/03/18 09:32 Lab Sample ID: 400-151428-34

Matrix: Water

Method: 9315 - Ra	adium-226 (GFPC)								
		•	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0744	U	0.0596	0.0600	1.00	0.0856	pCi/L	04/03/18 12:53	04/25/18 08:45	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	105		40 - 110					04/03/18 12:53	04/25/18 08:45	1

Da Carrier	105		40 - 110					04/03/16 12.53	04/25/16 06.45	,
Method: 9320 - Ra	dium-228 (GFPC)								
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.0114	Ū	0.198	0.198	1.00	0.356	pCi/L	04/03/18 13:02	04/11/18 15:26	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	105		40 - 110					04/03/18 13:02	04/11/18 15:26	1
Y Carrier	91.2		40 - 110					04/03/18 13:02	04/11/18 15:26	1

Method: Ra226_Ra2	28 - Con	nbined Ra	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.0631	U	0.207	0.207	5.00	0.356	pCi/L		04/27/18 19:01	1

+ 228

3

6

8

9

11

12

Definitions/Glossary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Qualifiers

Rad

Qualifier Qualifier Description

U Result is less than the sample detection limit.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2 SDG: Ash Pond

Client Sample ID: SGWA-24

Date Collected: 03/26/18 11:00 Date Received: 03/28/18 09:44

Lab Sample ID: 400-151428-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358654	04/03/18 09:45	TJT	TAL SL
Total/NA	Analysis	9315		1	362512	04/25/18 06:13	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358660	04/03/18 10:12	TJT	TAL SL
Total/NA	Analysis	9320		1	359778	04/10/18 15:24	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Lab Sample ID: 400-151428-2

Client Sample ID: SGWA-1 Date Collected: 03/26/18 14:40

Date Received: 03/28/18 09:44

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358654	04/03/18 09:45	TJT	TAL SL
Total/NA	Analysis	9315		1	362512	04/25/18 06:13	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358660	04/03/18 10:12	TJT	TAL SL
Total/NA	Analysis	9320		1	359778	04/10/18 15:24	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Client Sample ID: SGWA-2

Date Collected: 03/26/18 15:40

Date Received: 03/28/18 09:44

Lab Sample ID: 400-151428-3

Lab Sample ID: 400-151428-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358654	04/03/18 09:45	TJT	TAL SL
Total/NA	Analysis	9315		1	362512	04/25/18 06:13	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358660	04/03/18 10:12	TJT	TAL SL
Total/NA	Analysis	9320		1	359778	04/10/18 15:24	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Client Sample ID: FD-1 (AP)

Date Collected: 03/26/18 00:00

Date Received: 03/28/18 09:44

Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358654	04/03/18 09:45	TJT	TAL SL
Total/NA	Analysis	9315		1	362512	04/25/18 06:13	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358660	04/03/18 10:12	TJT	TAL SL
Total/NA	Analysis	9320		1	359778	04/10/18 15:24	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

TestAmerica Pensacola

Page 41 of 69

Matrix: Water

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: EB-1 (AP)

Date Collected: 03/26/18 16:15 Date Received: 03/28/18 09:44

Lab Sample ID: 400-151428-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358654	04/03/18 09:45	TJT	TAL SL
Total/NA	Analysis	9315		1	362512	04/25/18 06:13	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358660	04/03/18 10:12	TJT	TAL SL
Total/NA	Analysis	9320		1	359778	04/10/18 15:24	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Lab Sample ID: 400-151428-6 **Client Sample ID: SGWA-3 Matrix: Water**

Date Collected: 03/26/18 16:05 Date Received: 03/28/18 09:44

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358654	04/03/18 09:45	TJT	TAL SL
Total/NA	Analysis	9315		1	362512	04/25/18 06:13	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358660	04/03/18 10:12	TJT	TAL SL
Total/NA	Analysis	9320		1	359778	04/10/18 15:24	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Client Sample ID: SGWA-4 Lab Sample ID: 400-151428-7

Date Collected: 03/27/18 13:10 **Matrix: Water** Date Received: 03/29/18 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358654	04/03/18 09:45	TJT	TAL SL
Total/NA	Analysis	9315		1	362512	04/25/18 06:13	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358660	04/03/18 10:12	TJT	TAL SL
Total/NA	Analysis	9320		1	359778	04/10/18 15:24	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Lab Sample ID: 400-151428-8 **Client Sample ID: SGWA-5**

Date Collected: 03/27/18 09:35 **Matrix: Water**

Date Received: 03/29/18 10:20

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358654	04/03/18 09:45	TJT	TAL SL
Total/NA	Analysis	9315		1	362512	04/25/18 06:13	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358660	04/03/18 10:12	TJT	TAL SL
Total/NA	Analysis	9320		1	359778	04/10/18 15:25	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

TestAmerica Pensacola

TestAmerica Job ID: 400-151428-2 SDG: Ash Pond

Client Sample ID: SGWC-6

Project/Site: CCR - Plant Scherer

Client: Southern Company

Date Collected: 03/27/18 14:25 Date Received: 03/29/18 10:20

Lab Sample ID: 400-151428-9

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358654	04/03/18 09:45	TJT	TAL SL
Total/NA	Analysis	9315		1	362512	04/25/18 06:13	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358660	04/03/18 10:12	TJT	TAL SL
Total/NA	Analysis	9320		1	359778	04/10/18 15:25	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Lab Sample ID: 400-151428-10

Date Collected: 03/27/18 15:30 Date Received: 03/29/18 10:20

Client Sample ID: SGWC-7

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358654	04/03/18 09:45	TJT	TAL SL
Total/NA	Analysis	9315		1	362512	04/25/18 06:14	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358660	04/03/18 10:12	TJT	TAL SL
Total/NA	Analysis	9320		1	359778	04/10/18 15:25	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Lab Sample ID: 400-151428-11 Client Sample ID: SGWC-14 Date Collected: 03/27/18 09:25

Matrix: Water

Date Received: 03/29/18 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358654	04/03/18 09:45	TJT	TAL SL
Total/NA	Analysis	9315		1	362512	04/25/18 06:14	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358660	04/03/18 10:12	TJT	TAL SL
Total/NA	Analysis	9320		1	359778	04/10/18 15:25	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Client Sample ID: SGWC-15 Lab Sample ID: 400-151428-12

Date Collected: 03/27/18 10:45 Date Received: 03/29/18 10:20

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358654	04/03/18 09:45	TJT	TAL SL
Total/NA	Analysis	9315		1	362512	04/25/18 06:14	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358660	04/03/18 10:12	TJT	TAL SL
Total/NA	Analysis	9320		1	359778	04/10/18 15:25	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

TestAmerica Job ID: 400-151428-2

Client: Southern Company Project/Site: CCR - Plant Scherer

SDG: Ash Pond

Client Sample ID: SGWC-16

Date Received: 03/29/18 10:20

Lab Sample ID: 400-151428-13 Date Collected: 03/27/18 12:35

Matrix: Water

Batch Batch Dilution Batch **Prepared Prep Type** Туре Method Run **Factor** Number or Analyzed Analyst Lab TAL SL Total/NA Prep PrecSep-21 359081 04/05/18 11:12 TJT Total/NA Analysis 9315 363032 04/27/18 05:32 RTM TAL SL 1 Total/NA Prep PrecSep_0 359083 04/05/18 11:30 TJT TAL SL Total/NA Analysis 9320 360400 04/12/18 16:43 RTM TAL SL 1 Total/NA Analysis Ra226 Ra228 363121 04/27/18 19:01 RTM TAL SL

Client Sample ID: SGWC-17 Lab Sample ID: 400-151428-14

Matrix: Water

Date Collected: 03/27/18 14:05 Date Received: 03/29/18 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358955	04/04/18 11:24	TJT	TAL SL
Total/NA	Analysis	9315		1	362821	04/26/18 09:38	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358961	04/04/18 12:42	TJT	TAL SL
Total/NA	Analysis	9320		1	360144	04/11/18 15:20	ALD	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Client Sample ID: SGWC-23 Lab Sample ID: 400-151428-15

Matrix: Water

Date Collected: 03/27/18 15:10 Date Received: 03/29/18 10:20

Batch	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358654	04/03/18 09:45	TJT	TAL SL
Total/NA	Analysis	9315		1	362512	04/25/18 06:14	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358660	04/03/18 10:12	TJT	TAL SL
Total/NA	Analysis	9320		1	359778	04/10/18 15:25	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Client Sample ID: SGWA-25 Lab Sample ID: 400-151428-16

Date Collected: 03/27/18 10:45 **Matrix: Water**

Date Received: 03/29/18 10:20

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358654	04/03/18 09:45	TJT	TAL SL
Total/NA	Analysis	9315		1	362512	04/25/18 06:14	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358660	04/03/18 10:12	TJT	TAL SL
Total/NA	Analysis	9320		1	359778	04/10/18 15:25	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

TestAmerica Job ID: 400-151428-2 SDG: Ash Pond

Project/Site: CCR - Plant Scherer

Lab Sample ID: 400-151428-17

Matrix: Water

Date Collected: 03/27/18 16:00 Date Received: 03/29/18 10:20

Client Sample ID: EB-2 (AP)

Client: Southern Company

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358955	04/04/18 11:24	TJT	TAL SL
Total/NA	Analysis	9315		1	362821	04/26/18 09:38	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358961	04/04/18 12:42	TJT	TAL SL
Total/NA	Analysis	9320		1	360144	04/11/18 15:21	ALD	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Client Sample ID: FD-2 (AP) Lab Sample ID: 400-151428-18

Date Collected: 03/27/18 00:00 **Matrix: Water**

Date Received: 03/29/18 10:20

Batch		Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358654	04/03/18 09:45	TJT	TAL SL
Total/NA	Analysis	9315		1	362513	04/25/18 06:15	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358660	04/03/18 10:12	TJT	TAL SL
Total/NA	Analysis	9320		1	359778	04/10/18 15:25	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Client Sample ID: SGWC-8 Lab Sample ID: 400-151428-19

Date Collected: 03/27/18 09:25 **Matrix: Water** Date Received: 03/29/18 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358955	04/04/18 11:24	TJT	TAL SL
Total/NA	Analysis	9315		1	362821	04/26/18 09:38	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358961	04/04/18 12:42	TJT	TAL SL
Total/NA	Analysis	9320		1	360144	04/11/18 15:21	ALD	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Client Sample ID: SGWC-10 Lab Sample ID: 400-151428-20

Date Collected: 03/27/18 11:20 **Matrix: Water**

Date Received: 03/29/18 10:20

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358955	04/04/18 11:24	TJT	TAL SL
Total/NA	Analysis	9315		1	362821	04/26/18 09:39	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358961	04/04/18 12:42	TJT	TAL SL
Total/NA	Analysis	9320		1	360144	04/11/18 15:21	ALD	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

TestAmerica Pensacola

TestAmerica Job ID: 400-151428-2

Client: Southern Company Project/Site: CCR - Plant Scherer

SDG: Ash Pond

Client Sample ID: SGWC-11

Date Collected: 03/27/18 13:30 Date Received: 03/29/18 10:20

Lab Sample ID: 400-151428-21

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21		·	358955	04/04/18 11:24	TJT	TAL SL
Total/NA	Analysis	9315		1	362821	04/26/18 09:39	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358961	04/04/18 12:42	TJT	TAL SL
Total/NA	Analysis	9320		1	360144	04/11/18 15:21	ALD	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Client Sample ID: SGWC-12 Lab Sample ID: 400-151428-22

Date Collected: 03/27/18 14:55 **Matrix: Water**

Date Received: 03/29/18 10:20

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358955	04/04/18 11:24	TJT	TAL SL
Total/NA	Analysis	9315		1	362821	04/26/18 09:39	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358961	04/04/18 12:42	TJT	TAL SL
Total/NA	Analysis	9320		1	360144	04/11/18 15:21	ALD	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Client Sample ID: SGWC-13 Lab Sample ID: 400-151428-23

Date Collected: 03/27/18 16:05 **Matrix: Water**

Date Received: 03/29/18 10:20

Batch	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358654	04/03/18 09:45	TJT	TAL SL
Total/NA	Analysis	9315		1	362513	04/25/18 06:15	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358660	04/03/18 10:12	TJT	TAL SL
Total/NA	Analysis	9320		1	359778	04/10/18 15:26	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Lab Sample ID: 400-151428-24 **Client Sample ID: FB-1 (AP)**

Date Collected: 03/27/18 09:00 **Matrix: Water** Date Received: 03/29/18 10:20

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358955	04/04/18 11:24	TJT	TAL SL
Total/NA	Analysis	9315		1	362821	04/26/18 09:39	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358961	04/04/18 12:42	TJT	TAL SL
Total/NA	Analysis	9320		1	360144	04/11/18 15:21	ALD	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: FB-2 (AP)

Date Collected: 03/27/18 10:40 Date Received: 03/29/18 10:20

Lab Sample ID: 400-151428-25

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358955	04/04/18 11:24	TJT	TAL SL
Total/NA	Analysis	9315		1	362821	04/26/18 09:39	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358961	04/04/18 12:42	TJT	TAL SL
Total/NA	Analysis	9320		1	360144	04/11/18 15:21	ALD	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Lab Sample ID: 400-151428-26

Client Sample ID: SGWC-9 Date Collected: 03/28/18 10:55

Matrix: Water

Date Received: 04/03/18 09:32

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358654	04/03/18 09:45	TJT	TAL SL
Total/NA	Analysis	9315		1	362513	04/25/18 06:16	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358660	04/03/18 10:12	TJT	TAL SL
Total/NA	Analysis	9320		1	359778	04/10/18 15:26	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Client Sample ID: SGWC-18 Lab Sample ID: 400-151428-27 Date Collected: 03/28/18 11:55

Matrix: Water

Date Received: 04/03/18 09:32

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358654	04/03/18 09:45	TJT	TAL SL
Total/NA	Analysis	9315		1	362513	04/25/18 06:16	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358660	04/03/18 10:12	TJT	TAL SL
Total/NA	Analysis	9320		1	359778	04/10/18 15:26	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Client Sample ID: SGWC-19 Lab Sample ID: 400-151428-28

Date Collected: 03/28/18 12:05 **Matrix: Water**

Date Received: 04/03/18 09:32

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358654	04/03/18 09:45	TJT	TAL SL
Total/NA	Analysis	9315		1	362513	04/25/18 06:16	RTM	TAL SL
Total/NA	Prep	PrecSep_0			358660	04/03/18 10:12	TJT	TAL SL
Total/NA	Analysis	9320		1	359778	04/10/18 15:26	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2 SDG: Ash Pond

Lab Sample ID: 400-151428-29

Matrix: Water

Client Sample ID: SGWC-20 Date Collected: 03/28/18 10:10

Date Received: 04/03/18 09:32

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358694	04/03/18 12:53	TJT	TAL SL
Total/NA	Analysis	9315		1	362635	04/25/18 06:21	CDR	TAL SL
Total/NA	Prep	PrecSep_0			358695	04/03/18 13:02	TJT	TAL SL
Total/NA	Analysis	9320		1	360146	04/11/18 15:25	ALD	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Client Sample ID: SGWC-21 Lab Sample ID: 400-151428-30

Date Collected: 03/28/18 09:05 **Matrix: Water**

Date Received: 04/03/18 09:32

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358694	04/03/18 12:53	TJT	TAL SL
Total/NA	Analysis	9315		1	362635	04/25/18 06:21	CDR	TAL SL
Total/NA	Prep	PrecSep_0			358695	04/03/18 13:02	TJT	TAL SL
Total/NA	Analysis	9320		1	360146	04/11/18 15:26	ALD	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Client Sample ID: SGWC-22 Lab Sample ID: 400-151428-31

Date Collected: 03/28/18 09:25 **Matrix: Water** Date Received: 04/03/18 09:32

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358694	04/03/18 12:53	TJT	TAL SL
Total/NA	Analysis	9315		1	362635	04/25/18 06:21	CDR	TAL SL
Total/NA	Prep	PrecSep_0			358695	04/03/18 13:02	TJT	TAL SL
Total/NA	Analysis	9320		1	360146	04/11/18 15:26	ALD	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Lab Sample ID: 400-151428-32 Client Sample ID: EB-3 (AP)

Date Collected: 03/28/18 13:00 Date Received: 04/03/18 09:32

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358694	04/03/18 12:53	TJT	TAL SL
Total/NA	Analysis	9315		1	362635	04/25/18 06:21	CDR	TAL SL
Total/NA	Prep	PrecSep_0			358695	04/03/18 13:02	TJT	TAL SL
Total/NA	Analysis	9320		1	360146	04/11/18 15:26	ALD	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Matrix: Water

Lab Chronicle

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Client Sample ID: FB-3 (AP)

Date Collected: 03/28/18 09:00 Date Received: 04/03/18 09:32 Lab Sample ID: 400-151428-33

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358694	04/03/18 12:53	TJT	TAL SL
Total/NA	Analysis	9315		1	362635	04/25/18 06:21	CDR	TAL SL
Total/NA	Prep	PrecSep_0			358695	04/03/18 13:02	TJT	TAL SL
Total/NA	Analysis	9320		1	360146	04/11/18 15:26	ALD	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Client Sample ID: FD-3 (AP)

Lab Sample ID: 400-151428-34

Date Collected: 03/28/18 00:00 Matrix: Water

Date Received: 04/03/18 09:32

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep-21			358694	04/03/18 12:53	TJT	TAL SL
Total/NA	Analysis	9315		1	362635	04/25/18 08:45	CDR	TAL SL
Total/NA	Prep	PrecSep_0			358695	04/03/18 13:02	TJT	TAL SL
Total/NA	Analysis	9320		1	360146	04/11/18 15:26	ALD	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	363121	04/27/18 19:01	RTM	TAL SL

Laboratory References:

TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

5

6

8

9

10

12

QC Association Summary

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Rad

Prep Batch: 358654

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-1	SGWA-24	Total/NA	Water	PrecSep-21	
400-151428-2	SGWA-1	Total/NA	Water	PrecSep-21	
400-151428-3	SGWA-2	Total/NA	Water	PrecSep-21	
400-151428-4	FD-1 (AP)	Total/NA	Water	PrecSep-21	
400-151428-5	EB-1 (AP)	Total/NA	Water	PrecSep-21	
400-151428-6	SGWA-3	Total/NA	Water	PrecSep-21	
400-151428-7	SGWA-4	Total/NA	Water	PrecSep-21	
400-151428-8	SGWA-5	Total/NA	Water	PrecSep-21	
400-151428-9	SGWC-6	Total/NA	Water	PrecSep-21	
400-151428-10	SGWC-7	Total/NA	Water	PrecSep-21	
400-151428-11	SGWC-14	Total/NA	Water	PrecSep-21	
400-151428-12	SGWC-15	Total/NA	Water	PrecSep-21	
400-151428-15	SGWC-23	Total/NA	Water	PrecSep-21	
400-151428-16	SGWA-25	Total/NA	Water	PrecSep-21	
400-151428-18	FD-2 (AP)	Total/NA	Water	PrecSep-21	
400-151428-23	SGWC-13	Total/NA	Water	PrecSep-21	
400-151428-26	SGWC-9	Total/NA	Water	PrecSep-21	
400-151428-27	SGWC-18	Total/NA	Water	PrecSep-21	
400-151428-28	SGWC-19	Total/NA	Water	PrecSep-21	
MB 160-358654/23-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-358654/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
400-151428-1 DU	SGWA-24	Total/NA	Water	PrecSep-21	

Prep Batch: 358660

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
400-151428-1	SGWA-24	Total/NA	Water	PrecSep_0	
400-151428-2	SGWA-1	Total/NA	Water	PrecSep_0	
400-151428-3	SGWA-2	Total/NA	Water	PrecSep_0	
400-151428-4	FD-1 (AP)	Total/NA	Water	PrecSep_0	
400-151428-5	EB-1 (AP)	Total/NA	Water	PrecSep_0	
400-151428-6	SGWA-3	Total/NA	Water	PrecSep_0	
400-151428-7	SGWA-4	Total/NA	Water	PrecSep_0	
400-151428-8	SGWA-5	Total/NA	Water	PrecSep_0	
400-151428-9	SGWC-6	Total/NA	Water	PrecSep_0	
00-151428-10	SGWC-7	Total/NA	Water	PrecSep_0	
100-151428-11	SGWC-14	Total/NA	Water	PrecSep_0	
100-151428-12	SGWC-15	Total/NA	Water	PrecSep_0	
100-151428-15	SGWC-23	Total/NA	Water	PrecSep_0	
00-151428-16	SGWA-25	Total/NA	Water	PrecSep_0	
400-151428-18	FD-2 (AP)	Total/NA	Water	PrecSep_0	
00-151428-23	SGWC-13	Total/NA	Water	PrecSep_0	
100-151428-26	SGWC-9	Total/NA	Water	PrecSep_0	
400-151428-27	SGWC-18	Total/NA	Water	PrecSep_0	
100-151428-28	SGWC-19	Total/NA	Water	PrecSep_0	
MB 160-358660/23-A	Method Blank	Total/NA	Water	PrecSep_0	
CS 160-358660/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
400-151428-1 DU	SGWA-24	Total/NA	Water	PrecSep_0	

Prep Batch: 358694

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-29	SGWC-20	Total/NA	Water	PrecSep-21	

TestAmerica Pensacola

4/30/2018

Page 50 of 69

QC Association Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2 SDG: Ash Pond

Rad (Continued)

Prep Batch: 358694 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-30	SGWC-21	Total/NA	Water	PrecSep-21	
400-151428-31	SGWC-22	Total/NA	Water	PrecSep-21	
400-151428-32	EB-3 (AP)	Total/NA	Water	PrecSep-21	
400-151428-33	FB-3 (AP)	Total/NA	Water	PrecSep-21	
400-151428-34	FD-3 (AP)	Total/NA	Water	PrecSep-21	
MB 160-358694/12-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-358694/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
400-151428-29 DU	SGWC-20	Total/NA	Water	PrecSep-21	

Prep Batch: 358695

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-29	SGWC-20	Total/NA	Water	PrecSep_0	
400-151428-30	SGWC-21	Total/NA	Water	PrecSep_0	
400-151428-31	SGWC-22	Total/NA	Water	PrecSep_0	
400-151428-32	EB-3 (AP)	Total/NA	Water	PrecSep_0	
400-151428-33	FB-3 (AP)	Total/NA	Water	PrecSep_0	
400-151428-34	FD-3 (AP)	Total/NA	Water	PrecSep_0	
MB 160-358695/12-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-358695/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
400-151428-29 DU	SGWC-20	Total/NA	Water	PrecSep_0	

Prep Batch: 358955

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-14	SGWC-17	Total/NA	Water	PrecSep-21	
400-151428-17	EB-2 (AP)	Total/NA	Water	PrecSep-21	
400-151428-19	SGWC-8	Total/NA	Water	PrecSep-21	
400-151428-20	SGWC-10	Total/NA	Water	PrecSep-21	
400-151428-21	SGWC-11	Total/NA	Water	PrecSep-21	
400-151428-22	SGWC-12	Total/NA	Water	PrecSep-21	
400-151428-24	FB-1 (AP)	Total/NA	Water	PrecSep-21	
400-151428-25	FB-2 (AP)	Total/NA	Water	PrecSep-21	
MB 160-358955/19-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-358955/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
LCSD 160-358955/2-A	Lab Control Sample Dup	Total/NA	Water	PrecSep-21	

Prep Batch: 358961

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-14	SGWC-17	Total/NA	Water	PrecSep_0	
400-151428-17	EB-2 (AP)	Total/NA	Water	PrecSep_0	
400-151428-19	SGWC-8	Total/NA	Water	PrecSep_0	
400-151428-20	SGWC-10	Total/NA	Water	PrecSep_0	
400-151428-21	SGWC-11	Total/NA	Water	PrecSep_0	
400-151428-22	SGWC-12	Total/NA	Water	PrecSep_0	
400-151428-24	FB-1 (AP)	Total/NA	Water	PrecSep_0	
400-151428-25	FB-2 (AP)	Total/NA	Water	PrecSep_0	
MB 160-358961/19-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-358961/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
LCSD 160-358961/2-A	Lab Control Sample Dup	Total/NA	Water	PrecSep_0	

QC Association Summary

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Rad (Continued)

Prep Batch: 359081

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-13	SGWC-16	Total/NA	Water	PrecSep-21	
MB 160-359081/10-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-359081/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
400-151428-13 DU	SGWC-16	Total/NA	Water	PrecSep-21	

Prep Batch: 359083

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-151428-13	SGWC-16	Total/NA	Water	PrecSep_0	
MB 160-359083/10-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-359083/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
400-151428-13 DU	SGWC-16	Total/NA	Water	PrecSep_0	

TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Method: 9315 - Radium-226 (GFPC)

Lab Sample ID: MB 160-358654/23-A

Matrix: Water

Analysis Batch: 362513

Client: Southern Company

Project/Site: CCR - Plant Scherer

Client Sample ID: Method Blank Prep Type: Total/NA **Prep Batch: 358654**

мв мв Uncert. Uncert. Result Qualifier Analyte $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.0006120 U 0.0287 0.0287 1.00 0.0651 pCi/L 04/03/18 09:45 04/25/18 06:16

Total

Count

MB MB

Carrier %Yield Qualifier Limits Ba Carrier 97.6 40 - 110

04/03/18 09:45 04/25/18 06:16 **Client Sample ID: Lab Control Sample**

Prepared

Lab Sample ID: LCS 160-358654/1-A **Matrix: Water** Prep Type: Total/NA Analysis Batch: 362512

Prep Batch: 358654

Analyzed

Total Spike LCS LCS Uncert. %Rec. Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-226 11.8 11.29 1.15 1.00 0.0909 pCi/L 96 68 - 137

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 92.6 40 - 110

Lab Sample ID: 400-151428-1 DU Client Sample ID: SGWA-24 Prep Type: Total/NA

Matrix: Water Analysis Batch: 362512

Total

Sample Sample DU DU Uncert. **RER** Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-226 0.00556 U 0.03407 U 0.0444 1.00 0.0736 pCi/L 0.32

DU DU Carrier %Yield Qualifier Limits Ba Carrier 97.1 40 - 110

Lab Sample ID: MB 160-358694/12-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 362635

Prep Batch: 358694 Total Count MB MB Uncert. Uncert. Result Qualifier $(2\sigma + / -)$ Analyte $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac

0.0782 pCi/L

Radium-226 0.02737 Ū 0.0445 0.0446 1.00 MR MR

Carrier Qualifier Limits Prepared Dil Fac %Yield Analyzed Ba Carrier 40 - 110 04/03/18 12:53 04/25/18 06:20 104

Lab Sample ID: LCS 160-358694/1-A

Matrix: Water Prep Type: Total/NA **Analysis Batch: 362635 Prep Batch: 358694** Total

Spike LCS LCS Uncert. %Rec. Analyte Added Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits Radium-226 11.8 11.43 1.17 1.00 0.0871 pCi/L 97 68 - 137

TestAmerica Pensacola

Dil Fac

10

Prep Type: Total/NA

04/03/18 12:53 04/25/18 06:20

Client Sample ID: Lab Control Sample

Prep Batch: 358654

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Method: 9315 - Radium-226 (GFPC) (Continued)

Lab Sample ID: LCS 160-358694/1-A

Matrix: Water

Analysis Batch: 362635

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 40 - 110 103

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 358694**

Lab Sample ID: 400-151428-29 DU

Matrix: Water

Analysis Batch: 362635

Client Sample ID: SGWC-20

Prep Type: Total/NA

Prep Batch: 358694

Total Sample Sample DU DU RER Uncert. Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit 0.0512 U Radium-226 0.02892 U 0.0449 1.00 0.0779 pCi/L 0.22 1

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 99.4 40 - 110

Client Sample ID: Method Blank

Lab Sample ID: MB 160-358955/19-A **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 362821

Prep Batch: 358955

Dil Fac

			Count	Total						
	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.07453	U	0.0556	0.0560	1.00	0.0764	pCi/L	04/04/18 11:24	04/26/18 09:40	1
	МВ	МВ								

%Yield Qualifier

Carrier Limits Ba Carrier 103 40 - 110

Analyzed 04/04/18 11:24 04/26/18 09:40

Prepared

Lab Sample ID: LCS 160-358955/1-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA** Analysis Batch: 362821

Prep Batch: 358955

Total **Spike** LCS LCS Uncert. %Rec. Analyte Added $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Result Qual Radium-226 11.8 9.789 0.998 1.00 0.0658 pCi/L 83 68 - 137

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 109 40 - 110

Lab Sample ID: LCSD 160-358955/2-A

Matrix: Water

Analysis Batch: 362821

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 358955

Total LCSD LCSD Spike Uncert. %Rec. **RER** Analyte Added RL **MDC** Unit Limits Limit Result Qual $(2\sigma + / -)$ %Rec RER Radium-226 10.69 1.09 1.00 0.0741 pCi/L 68 - 137 0.43 11.8

LCSD LCSD

Carrier %Yield Qualifier Limits Ba Carrier 40 - 110 109

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Method: 9315 - Radium-226 (GFPC) (Continued)

Lab Sample ID: MB 160-359081/10-A Client Sample ID: Method Blank **Matrix: Water**

Prep Type: Total/NA **Analysis Batch: 363032 Prep Batch: 359081** Count Total

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.02683 U 0.0476 0.0477 1.00 0.0845 pCi/L 04/05/18 11:12 04/27/18 05:33

MB MB Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac 40 - 110 Ba Carrier 96.5 04/05/18 11:12 04/27/18 05:33

Lab Sample ID: LCS 160-359081/1-A

Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA **Analysis Batch: 363032 Prep Batch: 359081**

Total Spike LCS LCS Uncert. %Rec. Analyte Added Result Qual $(2\sigma + / -)$ RL**MDC** Unit %Rec Limits Radium-226 11.8 11.51 1.17 1.00 0.0725 pCi/L 97 68 - 137

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 40 - 110 96.8

Lab Sample ID: 400-151428-13 DU Client Sample ID: SGWC-16

Matrix: Water Analysis Batch: 363032

MB MB

Prep Batch: 359081 Total Sample Sample DU DU Uncert. **RER**

Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-226 0.00983 U 0.02649 U 1.00 0.0454 0.0803 pCi/L 0.22

DU DU Carrier %Yield Qualifier Limits Ba Carrier 97.3 40 - 110

Method: 9320 - Radium-228 (GFPC)

Lab Sample ID: MB 160-358660/23-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 359778 Prep Batch: 358660**

Total MB MB Uncert. Uncert.

Count

Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-228 -0.06645 U 0.192 0.193 1.00 0.358 pCi/L 04/03/18 10:12 04/10/18 15:26

Carrier **%Yield Qualifier** Limits Prepared Dil Fac Analyzed 40 - 110 04/03/18 10:12 04/10/18 15:26 Ba Carrier 97.6 Y Carrier 96.1 40 - 110 04/03/18 10:12 04/10/18 15:26

Prep Type: Total/NA

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCS 160-358660/1-A

Matrix: Water

Analysis Batch: 359778

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 358660

Total Uncert. %Rec.

Spike LCS LCS Added **Analyte** Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits Radium-228 8.41 8.158 0.986 1.00 0.393 pCi/L 97 56 - 140

LCS LCS Carrier %Yield Qualifier I imits Ba Carrier 92.6 40 - 110 Y Carrier 92.0 40 - 110

Lab Sample ID: 400-151428-1 DU

Matrix: Water

Analysis Batch: 359778

Client Sample ID: SGWA-24

Prep Type: Total/NA Prep Batch: 358660

Total Sample Sample DU DU Uncert. **RER** Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-228 0.135 U 0.1035 U 0.218 1.00 0.373 pCi/L 0.07

DU DU Carrier %Yield Qualifier Limits Ba Carrier 97.1 40 - 110 Y Carrier 92.0 40 - 110

Lab Sample ID: MB 160-358695/12-A

Matrix: Water

Analysis Batch: 360146

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 358695**

Count Total MB MB Uncert. Uncert. **MDC** Unit Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL Prepared Analyzed Dil Fac Radium-228 04/03/18 13:02 04/11/18 15:26 0.1792 Ū 0.194 0.195 1.00 0.317 pCi/L

MB MB Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 104 40 - 110 04/03/18 13:02 04/11/18 15:26 04/03/18 13:02 04/11/18 15:26 Y Carrier 93.1 40 - 110

0.946

1.00

0.313 pCi/L

Lab Sample ID: LCS 160-358695/1-A

Matrix: Water

Radium-228

Analysis Batch: 360144

Client Sample ID: Lab Control Sample

56 - 140

96

Prep Type: Total/NA **Prep Batch: 358695**

Total Spike %Rec. LCS LCS Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits

8.40

8.088

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 103 40 - 110 Y Carrier 90.5 40 - 110

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample ID: 400-151428-29 DU

Matrix: Water

Analysis Batch: 360146

Client Sample ID: SGWC-20

Prep Type: Total/NA

Prep Batch: 358695

					i Otai						
	Sample	Sample	DU	DU	Uncert.						RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit		RER	Limit
Radium-228	0.283	U	0.2237	U	0.217	1.00	0.349	pCi/L	 	0.14	1

Total

DU DU

Carrier	%Yield	Qualifier	Limits
Ba Carrier	99.4		40 - 110
Y Carrier	93.1		40 - 110

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 358961

Lab Sample ID: MB 160-358961/19-A

Matrix: Water

Analysis Batch: 360144

			Count	rotai						
	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.04409	U	0.203	0.203	1.00	0.355	pCi/L	04/04/18 12:42	04/11/18 15:22	1

MB MB Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 103 40 - 110 04/04/18 12:42 04/11/18 15:22 Y Carrier 90.1 40 - 110 04/04/18 12:42 04/11/18 15:22

Lab Sample ID: LCS 160-358961/1-A

Matrix: Water

Analysis Batch: 360144

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 358961

			Total					
	Spike	LCS LCS	Uncert.				%Rec.	
Analyte	Added	Result Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	
Radium-228	8.40	7.616	0.889	1.00	0.314 pCi/L	91	56 - 140	

	LCS	LCS	
Carrier	%Yield	Qualifier	Limits
Ba Carrier	109		40 - 110
Y Carrier	92.3		40 - 110

Lab Sample ID: LCSD 160-358961/2-A

Matrix: Water

Analysis Batch: 360144

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 358961

	Spike	LCSD	LCSD	Uncert.				%Rec.		RER
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	RER	Limit
Radium-228	8.40	7.448		0.875	1.00	0.308 pCi/L	89	56 - 140	0.09	1

Total

LCSD LCSD

Carrier	%Yield	Qualifier	Limits
Ba Carrier	109		40 - 110
Y Carrier	93.5		40 - 110

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 359083

SDG: Ash Pond

Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample ID: MB 160-359083/10-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 360400 Prep Batch: 359083** Count Total

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-228 0.1450 U 0.211 0.212 1.00 0.354 pCi/L 04/05/18 11:30 04/12/18 16:44

MB MB Carrier **%Yield Qualifier** Limits Prepared Analyzed Dil Fac Ba Carrier 96.5 40 - 110 04/05/18 11:30 04/12/18 16:44 Y Carrier 91.2 40 - 110 04/05/18 11:30 04/12/18 16:44

Lab Sample ID: LCS 160-359083/1-A

Matrix: Water

Analysis Batch: 360400

Prep Batch: 359083 Total **Spike** LCS LCS Uncert. %Rec. Limits Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Radium-228 8.40 9.154 1.05 1.00 0.350 pCi/L 109 56 - 140

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 96.8 40 - 110 Y Carrier 91.2 40 - 110

Lab Sample ID: 400-151428-13 DU Client Sample ID: SGWC-16

Matrix: Water

Analysis Batch: 360400

Total DU DU Sample Sample Uncert. **RER MDC** Unit Analyte Result Qual Result Qual $(2\sigma + / -)$ RL RER Limit 0.377 U Radium-228 0.05813 U 0.216 1.00 0.377 pCi/L 0.67

DU DU Carrier %Yield Qualifier Limits Ba Carrier 97.3 40 - 110 Y Carrier 90.8 40 - 110

Method: Ra226 Ra228 - Combined Radium-226 and Radium-228

Lab Sample ID: 400-151428-1 DU Client Sample ID: SGWA-24

Matrix: Water

Analysis Batch: 363121

, , .					Total						
	Sample	Sample	DU	DU	Uncert.						RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit		RER	Limit
Combined	0.141	<u>U</u>	0.1376	U	0.222	5.00	0.373	pCi/L		0.01	

Radium 226 +

228

TestAmerica Pensacola

10

Prep Type: Total/NA

QC Sample Results

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-151428-2

SDG: Ash Pond

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228 (Continued)

DU DU

0.08462 U

Lab Sample ID: 400-151428-13 DU

Sample Sample

Result Qual

0.387 U

Matrix: Water

Analysis Batch: 363121

Client Sample ID: SGWC-16

Prep Type: Total/NA

Total Uncert. RER Result Qual MDC Unit Limit $(2\sigma + / -)$ RL RER 0.221 5.00 0.377 pCi/L 0.63

Combined Radium 226 + 228

Analyte

Lab Sample ID: 400-151428-29 DU Client Sample ID: SGWC-20

Matrix: Water Prep Type: Total/NA

Analysis Batch: 363121

Total Sample Sample DU DU Uncert. RER MDC Unit Analyte Result Qual Result Qual $(2\sigma + / -)$ RL RER Limit 0.334 U Combined 0.2526 U 0.222 5.00 0.349 pCi/L 0.18

Radium 226 +

228

TestAmerica Pensacola

4/30/2018

Chain of Custody Record

TestAmerica Pensacola											Toch	Tach Amarica
3355 McLemore Drive Pensacola FL 32514	ਠੋ	ain o	f Cus	Chain of Custody Record	Score	~						
Phone (850) 474-1001 Fax (850) 478-2671											THE LEADER	THE LEADER IN ENVIRONMENTAL TESTING
Client Information	Sampler: Ben Hodges			Lab PN Whitn	t iire, Chey	enne F	~		Carrier Tracking No(s)	ng No(s):	COC No. 400-57303-24790	4790
Client Contact: Joju Abraham	Phone:			E-Mail: cheye	nne.whitr	mire@t	estame	E-Mait: cheyenne.whitmire@testamericainc.com			Page: 1 of 1	
Company: Southern Company							٩	Analysis Requested	quested		Job #:	
Address: 241 Ralph McGill Blvd SE B10185	Due Date Requested:						-				Preservation Codes	
City. Atlanta	TAT Requested (days):	::				gH-A0	-				B - NaOH C - Zn Acetate	
State, Zip: GA, 30308)7 ≱ 7 ,⊓	EbC		3		D - Nitric Acid E - NaHSO4	
Phone:	PO#:				10	r,92,0l	228_G				G - Amchlor	
Email: JAbraham@southernco.com	WO#:				_	Pb,Li,M	1226Ra	400	400-151428 COC	(
Project Name: CCR - Scherer	Project #: 40007041				TO 29		228,Ra	_			K-EDTA L-EDA	W - ph 4-5 Z - other (specify)
Site: Ash Pond	SSOW#;				A) asi		120_Ra				of cor	
Samula Identification	Sample Date	Sample	Sample Type (C=comp,	Watrix (w-water, S-solid, O-wastefoll,	Field Filtered Perform MS/M 300_0RGFM_2	,s8,eA,d2-020	315_Ra226, 93				TedmuM leto	Special Instrumetions Makes
	X	1		1	X	0	0				L	
SGWA-24	3/26/18	1100	O	Water	Z	-	2				4 Extra Radium	
SGWA-1	3/26/18	1440	9	Water	Z	-	-				3 RA	1-57 Low. S
SGWA-2	3/26/18	1540	ဖ	Water	Z	-	-				6	
FD-1(AP)	3/26/18	1	တ	Water	z	-	-				8	
EB-1(AP)	3/26/18	1615	9	Water	Z	-	-				8	
SGWA-3	3/26/18	1605	O	Water	z	-	-				8	
							H					
					+		+		+			
							\vdash					
Possible Hazard Identification Non-Hazard Temmable Skin Irritant Poison B	son B Unknown		Radiological		Samp	le Disposal (A i Return To Client	osal () To Clie	I fee may be	assessed if san Disposal By Lab	samples are	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Mont	an 1 month) Months
, III, IV, Other (specify)					Specia	I Instru	ctions/	Requirem	ents:			
Empty Kit Relinquished by:	П	Date:		П	Time:				Method	Method of Shipment:		
Relinquished by: Ben Hodges	Date/Time: 7/8	0800		Company Golder	Re	Received by:	<i></i>	113-	20	Date/Time:	18 6800	
Relinquished by: $+ E/O2$	Date/Time: 5-17-18	1005		No	Re Re	Received by	. 5	C	3/2	1	10:05	Company
M	Date/Time:	71	10:	Company	Re	Received by:	0	0	-	Date/Time:		Company
A Yes A No	,				3	oler rem	perature	Cooler Temperature(s) °C and Other Remarks:	Remarks:			

1851-America Pensacola 3355 McLemore Drive Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671		hain c	of Cus	Chain of Custody Record	ecor	70					Test.	TestAmerica
	Sampler: Ben Hodges			Lab Pi Whitr	Lab PM: Whitmire, Cheyenne R	yenne	α	Cal	Camer Tracking No(s)		COC No:	247bh
	Phone:			E-Mail: cheye	nne.whi	tmire@	E-Mail: cheyenne.whitmire@testamericainc.com	ainc.com			Page: 1 of 1	24/80
							Ans	Analysis Requested	stad		Job #:	
Address: 241 Ralph McGill Blvd SE B10185	Due Date Requested:	#								E	Preservation Codes:	
City: Atlanta	TAT Requested (days):	(8):				eH-A			1	1938	A-HCL B-NaOH	
State, Zip: GA, 30308						0 1	Ods		9	1951	D - Nitric Acid	
Phone:	PO#:				(6	T, 5 2,0	15 <u>_85</u> 5				F - MeOH G - Amchlor	
Email: JAbraham@southernco.com	WO#:					M,LJ,d	126Ras		400-151428 COC		H - Ascorbic Acid I - Ica	cid T - TSP Dodecahydrate U - Acetone V - MCAA
Project Name: CCR - Scherer	Project #: 40007041				10 se		EN,855					
Site: Ash Pand	SSOW#:				A) as		20_Ra				Other	
Sample Identification	Sample Date	Sample	Sample Type (C=comp, G=qrab)	Matrix (w-wres, 8-sold, O-westelod, 61-Tress Andu)	Field Filtered S MSM mohen	3020_00E 1,48,6A,d2-0208	9315_Ra226, 93.				ofal Number o	
	X	X	- 655	-	×		3 0				1	Special instructions/Note:
SGWA-4	3/27/18	1310	O		Z		-				(0)	
SGWA-5	3/27/18	0935	O	Water	Z	-	-				60	
SGWC-6	3/27/18	1425	Ø	Water	Z	-	-				60	
SGWC-7	3/27/18	1530	O	Water	z	-	-				60	
SGWC-14	3/27/18	0925	O	Water	Z	-	-				m	
SGWC-15	3/27/18	1045	Ø	Water	Z	-	-				60	
SGWC-16	3/27/18	1235	O	Water	Z	4	2				4 Extra Radium	
SGWC-17	3/27/18	1405	တ	Water	Z	-	-				60	
SGWC-23	3/27/18	1510	U	Water	Z	-	-				3	
SGWA-25	3/27/18	1045	ဖ	Water	z		-				60	
EB-2(AP)	3/27/18	1600	O	Water	z	1	4.				60	
FD-2(AP)	3/27/18	1	O	Water	Z	1	-				60	
ant	Poison B Unknown		Rediological		Same	le Disp	ile Disposal (A fe Return To Client	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	assessed if samp	les are reta	retained longer that	an 1 month)
, III, IV, Other (specify)					Speci	al Instru	ctions/QC	Special Instructions/QC Requirements:	and to man	Ž.	ine roi	MONINS
Empty Kit Relinquished by:		Date:		Г	Time:				Method of Shipment:	ment		
Relinquished by: Alerra, All Marra	Date/Time:	1 0800		Company Golder	R	Received by:	-	BAH	Date	Date/Time;	8:00	Company
	3-23-(8	6	.47	C · Now		Received by		1	Dater	NE Country		C, Company
Nemingulation by.	1/86/5	20	800	Company	0	Received by:	N	- 3/2	81/12	35/1/2	TO SA	2) Louis
	, ,				<u>చి</u>	oler Tem	perature(s) º	Cooler Temperature(s) °C and Ownr Rema	ST.	5.2	1	W. 8

stnsltA-188

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671	_	hain	of Cus	Chain of Custody Record	Seco	2					Test	TestAmerica
Client Information	Sampler. Ben Hodges			Lab	Lab PM: Whitmire, Chevenne	heyen	96. R.		Carrier Tracking No(s)	Na(s):	COC No:	4700
Cilent Contect:	Phone:			E-Mail:	it: /enne.v	hitmir	@testai	E-Mait: cheyenne.whitmire@testamericainc.com	T		Page:	08.14
Company: Southern Company								Analysis Requested	lequested		Job #:	
Address: 241 Ralph McGill Blvd SE B10185	Due Date Requested:	Ö									Preservation Codes	
City. Atlanta Stata Zirv	TAT Requested (days):	iys):					Bu-waz				A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
GA, 30308	7.00						_				E - NaHSO4	
Priories	# 0				(0		_				G - Amchlor	
Email: JAbraham@southem.co.com	WO #:											
Project Name: CCR ~ Scherer	Project #: 40007041					_	_					W - ph 4-5 Z - other (specify)
Site: Ash Pond	SSOW#:					_	_				of cot	
Semple Identification	Sample Date	Sample	Sample Type (C=comp, G=crab)	(Wwwater, Seatolid, Oewastaloli, BTe Tasue, A=Air)	benetiliii bleii Mica mones	300_0RGFM_2	0020-56,88,88, 0020-56,93				TedmuM latol	Canada Indiana Indiana
	X	X	Preserva	Preservation Code:		2	+					il little actions/mote:
SGWC-8	3/27/18	0825	O	Water	z	-					67	
SGWC-10	3/27/18	1120	Ø	Water	Z	-	-				m	
SGWC-11	3/27/18	1330	Ø	Water	Z	-	-				m	
SGWC-12	3/27/18	1455	O	Water	Z	-	-				8	
SGWC-13	3/27/18	1805	Ø	Water	2	-	-				60	
FB-1(AP)	3/27/18	0060	Ð	Water	z	-	-				60	
FB-2(AP)	3/27/18	1040	Ø	Water	Z	-	1 1				m	
Possible Hazard Identification Non-Hazard — Flammable Skin Initiant	Poison B Unknown	Own	Radiological	je	Sa	mple L	le Disposal (A l Return To Client	(A fee may I	Sample Disposel (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	amples are reta	tained longer the Archive For	an 1 month) Months
Deliverable Requested: 1, II, III, IV, Other (specify)					Sp	scial fr	struction	Special Instructions/QC Requirements:	ments:			
iquished by:		Date:			Time:	П			Method of	Method of Shipment:		
Refinantished by:	3-48-18	10800	35	Сотрану		Received by:	od by:	1 BA	キ	Date/Time:	8:00	COMPANY CANNA
Reinquished by:	3-23-15 DataEim	2.2	77	Company	MOE	Received by	i g	1)	N.		118 9	Сотрану.
Custody Seals Intact. Custody Seal No.	de/s	20	leco		4	Cooler	femperant	received by. Cooler Temperaturels) *C. and Other Remarks	Remarks	The state of the s	PH 8	Comment
A Yes A No										1/ Hele	1. 9. 1.	

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-267		hain o	Chain of Custody Record	ody Re	COL	ō							THE LEADS	TestAmerico	TICO
Client Information	mpler:			Lab PN	ire Ch	ndeve	1 00			arder Trac	Carrier Tracking No(s);		COC No:	3-24790	
Client Contact.	hone:			E-Mail:	dw end	imina	Steets	E-Mail: chevenne whitmine@testamericainc.com	1				Page: 1 of 1		
Company Southern Company								Analysis Reguested	Red	ested			Job#:		
Address: 241 Rainh McGill Blvd SF B10185	Due Date Requested:					-	L			F	F	-	Preservation Codes	18	
City Atlanta	TAT Requested (days):	ys):			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	pH-A0				0	3		A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None are O - AsNaCA	2 8
State, Zp: GA, 30308						747.17							E-NaHSO	4 Q-Ne20	48
Phone:	PO#				10	.98.0l	_	_			8		G-Amedia H-Ascorbi	R-NaZS	203 4 odecshydrate
Email: JAbraham@southernco.com	WO#:					VITI-94		_		00-151	400-151428 COC	0	1-109 J-DI Water	U-Aceto	U-Acetone V-MCAA
Project Name: CGR - Scherer	Project #: 40007041								_	_	_				(specify)
Site: Ash Pond	SSOW#:												Octo Company		
		Sample			benetilit blej Maliji mosto	000_ORGFM_2 020_Sb,As,Ba,	315_Ra226, 93						redmuM Jato	A Property of the Property of	, and a second
Sample trentification	Sample Lake	X	Preservation Code:	3	X	-	+-	1	-					Cold High deal	initione.
SGWC-9	3/28/18	1055	9	Water	z	-	1-				-		. 67		
SGWC-18	3/28/18	1155	O	Water	z	-	-		-	-			œ.		
SGWC-19	3/28/18	1205	Ø	Water	Z	-	1						.3		
SGWC-20	3/28/18	1010	O	Water	z	-	1 2						4 Extra Radium	חח	
SGWC-21	3/28/18	9060	9	Water	Z	+	1 1						ĸ,		
SGWC-22	3/28/18	0925	9	Water	Z	1	1 1						3.		
EB-3(AP)	3/28/18	1300	O	Water	Z	-	1 1						6		
FB-3(AP)	3/28/18	0060	G	Water	Z	-	1			-			'n.		
FD-3(AP)	3/28/18	1	ŋ	Water	z	-	-			-	-		io.		
					-	1	-		-	-			- 2		
			1		7	+	+		+	+	1	1			
Possible Hazard Identification					San	- Dole	ispos	I (A fee m.	ay be a	ssessed	if samp	es are r	stained longer	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	
Non-Hazard Flammable Skin Initant Poison B	son B Unknown		Radiological			L Reg	Return To Client	Client		Disposal By Lab	yLab		Archive For	Months	hs
Deiverable Requested: I, II, III, N, Other (specify)					Spe	cial In	structic	Special Instructions/QC Requirements:	uiremei						
Empty Kit Relinquished by:		Date:			Time:					Mett	Method of Shipment	nent			
Relinquished by:	6	811821	0.0	4	16:15	Repelved by	78	18		a	Nº	1 00	(6:18	Sompany	ě.
Relinglished Dr. 3 28 18	Data/Time:	16:4	1	Company		Repeived by	of by	1. A	1		P Car	373	PB 19:05		NA
/ remodusined do	Date inte.			Company	1	A A A	W			-	-	13/1	06	1932	11/6
Custody Seals Intagt: Custody Seal No.: △ Yes △ No						Cooler	emper	Cooler Temperature(s) "C and Other Remarks:	Other R	smarks:	0.8	,	0,50	The	7

Job Number: 400-151428-2 SDG Number: Ash Pond

List Source: TestAmerica Pensacola

Login Number: 151428 List Number: 1

Creator: Whitmire, Cheyenne R

Creator: wnitmire, Cheyenne R		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.0°C IR7, 0.5°C IR-8 (4/3/18)
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Login Number: 151428

Job Number: 400-151428-2 SDG Number: Ash Pond

List Source: TestAmerica St. Louis

List Creation: 03/29/18 02:45 PM

List Number: 2
Creator: Taylor. Kristene N

Creator: Taylor, Kristene N		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	18.0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 400-151428-2 SDG Number: Ash Pond

Login Number: 151428 List Source: TestAmerica St. Louis List Number: 5

List Creation: 03/31/18 09:58 AM

Creator: Taylor, Kristene N

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	22.0,22.0,22.0,22.0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 400-151428-2 SDG Number: Ash Pond

Login Number: 151428
List Source: TestAmerica St. Louis
List Number: 7
List Creation: 04/04/18 12:20 PM

Creator: Clarke, Jill C

Creator: Clarke, Jill C				
Question	Answer	Comment		
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True			
The cooler's custody seal, if present, is intact.	True			
Sample custody seals, if present, are intact.	N/A			
The cooler or samples do not appear to have been compromised or tampered with.	True			
Samples were received on ice.	True			
Cooler Temperature is acceptable.	True			
Cooler Temperature is recorded.	True	0.2		
COC is present.	True			
COC is filled out in ink and legible.	True			
COC is filled out with all pertinent information.	True			
Is the Field Sampler's name present on COC?	False			
There are no discrepancies between the containers received and the COC.	True			
Samples are received within Holding Time (excluding tests with immediate HTs)	True			
Sample containers have legible labels.	True			
Containers are not broken or leaking.	True			
Sample collection date/times are provided.	True			
Appropriate sample containers are used.	True			
Sample bottles are completely filled.	True			
Sample Preservation Verified.	True			
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True			
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A			
Multiphasic samples are not present.	True			
Samples do not require splitting or compositing.	True			
Residual Chlorine Checked.	False			

TestAmerica Pensacola

Accreditation/Certification Summary

Client: Southern Company

Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-151428-2
SDG: Ash Pond

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-18
ANAB	ISO/IEC 17025		L2471	02-22-20
Arizona	State Program	9	AZ0710	01-12-19
Arkansas DEQ	State Program	6	88-0689	09-01-18
California	ELAP	9	2510	03-31-18 *
Florida	NELAP	4	E81010	06-30-18
Georgia	State Program	4	N/A	06-30-18
Illinois	NELAP	5	200041	10-09-18
Iowa	State Program	7	367	08-01-18
Kansas	NELAP	7	E-10253	10-31-18
Kentucky (UST)	State Program	4	53	06-30-18
Kentucky (WW)	State Program	4	98030	12-31-18
Louisiana	NELAP	6	30976	06-30-18
Louisiana (DW)	NELAP	6	LA170005	12-31-18
Maryland	State Program	3	233	09-30-18
Massachusetts	State Program	1	M-FL094	06-30-18
Michigan	State Program	5	9912	06-30-18
New Jersey	NELAP	2	FL006	06-30-18
North Carolina (WW/SW)	State Program	4	314	12-31-18
Oklahoma	State Program	6	9810	08-31-18
Pennsylvania	NELAP	3	68-00467	01-31-19
Rhode Island	State Program	1	LAO00307	12-30-18
South Carolina	State Program	4	96026	06-30-18
Tennessee	State Program	4	TN02907	06-30-18
Texas	NELAP	6	T104704286-17-12	09-30-18
USDA	Federal		P330-16-00172	05-24-19
Virginia	NELAP	3	460166	06-14-18
Washington	State Program	10	C915	05-15-18
West Virginia DEP	State Program	3	136	06-30-18

Laboratory: TestAmerica St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska	State Program	10	MO00054	06-30-18 *
Arizona	State Program	9	AZ0813	12-08-18
California	State Program	9	2886	06-30-18 *
Connecticut	State Program	1	PH-0241	03-31-19
Florida	NELAP	4	E87689	06-30-18 *
Illinois	NELAP	5	200023	11-30-18
Iowa	State Program	7	373	12-01-18
Kansas	NELAP	7	E-10236	10-31-18
Kentucky (DW)	State Program	4	90125	12-31-18
L-A-B	DoD ELAP		L2305	04-06-19
Louisiana	NELAP	6	04080	06-30-18
Louisiana (DW)	NELAP	6	LA180017	12-31-18
Maryland	State Program	3	310	09-30-18
Michigan	State Program	5	9005	06-30-18
Missouri	State Program	7	780	06-30-18
Nevada	State Program	9	MO000542018-1	07-31-18

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Pensacola

3

5

7

10

11

12

13

Accreditation/Certification Summary

Client: Southern Company TestAmerica Job ID: 400-151428-2 Project/Site: CCR - Plant Scherer SDG: Ash Pond

Laboratory: TestAmerica St. Louis (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
New Jersey	NELAP	2	MO002	06-30-18 *
New York	NELAP	2	11616	03-31-19
North Dakota	State Program	8	R207	06-30-18
NRC	NRC		24-24817-01	12-31-22
Oklahoma	State Program	6	9997	08-31-18
Pennsylvania	NELAP	3	68-00540	02-28-19
South Carolina	State Program	4	85002001	06-30-18
Texas	NELAP	6	T104704193-17-11	07-31-18
US Fish & Wildlife	Federal		058448	08-31-18
USDA	Federal		P330-17-0028	02-02-20
Utah	NELAP	8	MO000542016-8	07-31-18
Virginia	NELAP	3	460230	06-14-18 *
Washington	State Program	10	C592	08-30-18
West Virginia DEP	State Program	3	381	08-31-18 *

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Pensacola

ANALYTICAL DATA REPORTS JUNE 2018

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-154761-1

TestAmerica Sample Delivery Group: Ash Pond

Client Project/Site: CCR - Plant Scherer

For:

Southern Company 241 Ralph McGill Blvd SE B10185 Atlanta, Georgia 30308

Attn: Joju Abraham

Authorized for release by: 7/16/2018 2:59:18 PM

Cheyenne Whitmire, Project Manager II (850)471-6222

chevenne.whitmire@testamericainc.com

·····LINKS ·······

Review your project results through **Total Access**

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

TestAmerica Job ID: 400-154761-1 SDG: Ash Pond

Client: Southern Company Project/Site: CCR - Plant Scherer

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	13
Sample Summary	14
Client Sample Results	15
Definitions	62
Chronicle	63
QC Association	77
QC Sample Results	86
Chain of Custody	100
Receipt Checklists	104
Certification Summary	107

4

5

7

9

10

12

13

14

Case Narrative

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Job ID: 400-154761-1

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-154761-1

HPLC/IC

Method(s) 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: SGWC-8 (400-154761-13), SGWC-9 (400-154761-17), SGWC-13 (400-154761-21), SGWC-14 (400-154761-22), SGWC-15 (400-154761-23), SGWC-17 (400-154761-25), SGWC-20 (400-154761-26), SGWC-21 (400-154761-27), SGWC-22 (400-154761-28), SGWC-23 (400-154761-29), FD-3(AP) (400-154761-31), SGWC-18 (400-154761-33) and SGWC-19 (400-154761-34). Elevated reporting limits (RLs) are provided.

RAD

Method(s) 9320: Radium-228 Prep Batch 160-371128: The following sample exhibited a negative result greater in magnitude than the 3 sigma TPU: EB-2(AP) (400-154761-16). This occurrence was evaluated and determined to be random in nature. Sporadic occurrences such as this are statistically expected. No further action is required.

Metals

Method(s) 6020: The method blank for preparation batch 401724 and 401725 and analytical batch 401891 contained Selenium above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 6020: The following samples were diluted to bring the concentration of target analytes within the calibration range: SGWC-20 (400-154761-26), SGWC-18 (400-154761-33) and SGWC-19 (400-154761-34). Elevated reporting limits (RLs) are provided.

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWA-1

Lab Sample ID: 400-154761-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	lethod	Prep Type
Chloride	1.7		1.0	0.89	mg/L	1	_ 3	0.00	Total/NA
Barium	0.058		0.0025	0.00049	mg/L	5	6	020	Total Recoverable
Calcium	2.6		0.25	0.13	mg/L	5	6	020	Total Recoverable
Chromium	0.0014	J	0.0025	0.0011	mg/L	5	6	020	Total Recoverable
Cobalt	0.0028		0.0025	0.00040	mg/L	5	6	020	Total Recoverable
Lithium	0.0018	J	0.0050	0.0011	mg/L	5	6	020	Total Recoverable
Selenium	0.00065	JB	0.0013	0.00024	mg/L	5	6	020	Total Recoverable
Total Dissolved Solids	8.0		5.0	3.4	mg/L	1	S	SM 2540C	Total/NA

Client Sample ID: SGWA-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	1.3		1.0	0.89	mg/L		_	300.0	Total/NA
Barium	0.038		0.0025	0.00049	mg/L	5		6020	Total Recoverable
Calcium	11		0.25	0.13	mg/L	5		6020	Total Recoverable
Chromium	0.014		0.0025	0.0011	mg/L	5		6020	Total Recoverable
Selenium	0.00098	JB	0.0013	0.00024	mg/L	5		6020	Total Recoverable
Total Dissolved Solids	74		5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SGWA-24

Lab Sample ID: 400-154761-3

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	1.9		1.0	0.89	mg/L	1	_	300.0	Total/NA
Barium	0.022		0.0025	0.00049	mg/L	5		6020	Total
									Recoverable
Calcium	13		0.25	0.13	mg/L	5		6020	Total
									Recoverable
Chromium	0.0046		0.0025	0.0011	mg/L	5		6020	Total
									Recoverable
Lithium	0.0011 J	J	0.0050	0.0011	mg/L	5		6020	Total
									Recoverable
Selenium	0.00041 J	JB	0.0013	0.00024	mg/L	5		6020	Total
									Recoverable
Total Dissolved Solids	76		5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SGWA-25

Lab Sample ID: 400-154761-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chloride	2.0		1.0	0.89	mg/L		300.0	Total/NA
Barium	0.024		0.0025	0.00049	mg/L	5	6020	Total Recoverable
Calcium	9.7		0.25	0.13	mg/L	5	6020	Total Recoverable
Cobalt	0.0095		0.0025	0.00040	mg/L	5	6020	Total Recoverable

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

Page 4 of 108

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWA-25 (Continued)

Lab Sample ID: 400-154761-4

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Lithium	0.0015 J		0.0050	0.0011	mg/L	5	_	6020	Total
									Recoverable
Selenium	0.00029 J	ΙB	0.0013	0.00024	mg/L	5		6020	Total
									Recoverable
Mercury	0.000075 J	l	0.00020	0.000070	mg/L	1		7470A	Total/NA
Total Dissolved Solids	80		5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SGWA-5

Lab Sample ID: 400-154761-5

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	1.6		1.0	0.89	mg/L	1	_	300.0	Total/NA
Barium	0.011		0.0025	0.00049	mg/L	5		6020	Total Recoverable
Calcium	1.5		0.25	0.13	mg/L	5		6020	Total Recoverable
Selenium	0.00039 J	JB	0.0013	0.00024	mg/L	5		6020	Total Recoverable
Total Dissolved Solids	50		5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: FB-1(AP)

Lab Sample ID: 400-154761-6

No Detections.

Client Sample ID: FD-1(AP)

Lab Sample ID: 400-154761-7

Analyte	Result Quali	fier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	1.3	1.0	0.89	mg/L	1	_	300.0	Total/NA
Barium	0.039	0.0025	0.00049	mg/L	5		6020	Total
Calcium	11	0.25	0.13	mg/L	5		6020	Recoverable Total Recoverable
Chromium	0.014	0.0025	0.0011	mg/L	5		6020	Total Recoverable
Mercury	0.000072 J	0.00020	0.000070	mg/L	1		7470A	Total/NA
Total Dissolved Solids	94	5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: EB-1(AP)

Lab Sample ID: 400-154761-8

No Detections.

Client Sample ID: SGWA-3

Lab Sample ID: 400-154761-9

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	2.0	1.0	0.89	mg/L	1	_	300.0	Total/NA
Sulfate	1.8	1.0	0.70	mg/L	1		300.0	Total/NA
Barium	0.036	0.0025	0.00049	mg/L	5		6020	Total Recoverable
Calcium	4.1	0.25	0.13	mg/L	5		6020	Total Recoverable
Chromium	0.015	0.0025	0.0011	mg/L	5		6020	Total Recoverable
Total Dissolved Solids	46	5.0	3.4	mg/L	1		SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

7/16/2018

Detection Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWA-4

Lab Sample ID: 400-154761-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	1.1		1.0	0.89	mg/L	1	_	300.0	Total/NA
Sulfate	0.89	J	1.0	0.70	mg/L	1		300.0	Total/NA
Barium	0.058		0.0025	0.00049	mg/L	5		6020	Total Recoverable
Calcium	18		0.25	0.13	mg/L	5		6020	Total Recoverable
Chromium	0.0048		0.0025	0.0011	mg/L	5		6020	Total Recoverable
Total Dissolved Solids	120		5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SGWC-6 Lab Sample ID: 400-154761-11

Analyte	Result Qua	alifier RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chloride	1.3	1.0	0.89	mg/L	1	300.0	Total/NA
Barium	0.014	0.0025	0.00049	mg/L	5	6020	Total Recoverable
Calcium	4.2	0.25	0.13	mg/L	5	6020	Total Recoverable
Cobalt	0.0021 J	0.0025	0.00040	mg/L	5	6020	Total Recoverable
Selenium	0.00032 JB	0.0013	0.00024	mg/L	5	6020	Total Recoverable
Total Dissolved Solids	100	5.0	3.4	mg/L	1	SM 2540C	Total/NA

Client Sample ID: SGWC-7 Lab Sample ID: 400-154761-12

Analyte	Result Qua	alifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	4.6	1.0	0.89	mg/L	1	_	300.0	Total/NA
Fluoride	0.20	0.20	0.082	mg/L	1		300.0	Total/NA
Sulfate	14	1.0	0.70	mg/L	1		300.0	Total/NA
Barium	0.24	0.0025	0.00049	mg/L	5		6020	Total Recoverable
Calcium	19	0.25	0.13	mg/L	5		6020	Total Recoverable
Cobalt	0.0034	0.0025	0.00040	mg/L	5		6020	Total Recoverable
Lithium	0.0040 J	0.0050	0.0011	mg/L	5		6020	Total Recoverable
Total Dissolved Solids	210	5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SGWC-8 Lab Sample ID: 400-154761-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	11		1.0	0.89	mg/L	1	_	300.0	Total/NA
Fluoride	0.40		0.20	0.082	mg/L	1		300.0	Total/NA
Sulfate - DL	74		5.0	3.5	mg/L	5		300.0	Total/NA
Barium	0.18		0.0025	0.00049	mg/L	5		6020	Total Recoverable
Boron	0.059		0.050	0.021	mg/L	5		6020	Total Recoverable
Calcium	51		0.25	0.13	mg/L	5		6020	Total Recoverable
Chromium	0.0013	J	0.0025	0.0011	mg/L	5		6020	Total Recoverable

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

7/16/2018

Page 6 of 108

TestAmerica Job ID: 400-154761-1

Lab Sample ID: 400-154761-13

SDG: Ash Pond

Client Sample ID: SGWC-8 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Lithium	0.0018	J	0.0050	0.0011	mg/L	5	6020	Total
Total Dissolved Solids	410		5.0	3.4	mg/L	1	SM 2540C	Recoverable Total/NA

Client Sample ID: FB-2(AP) Lab Sample ID: 400-154761-14

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Total Dissolved Solids	32	5.0	3.4 mg/L	1 SM 2540C	Total/NA

Lab Sample ID: 400-154761-15 Client Sample ID: FD-2(AP)

Analyte	Result Qu	ualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	7.4	1.0	0.89	mg/L		_	300.0	Total/NA
Sulfate	0.78 J	1.0	0.70	mg/L	1		300.0	Total/NA
Barium	0.040	0.0025	0.00049	mg/L	5		6020	Total Recoverable
Boron	0.35	0.050	0.021	mg/L	5		6020	Total Recoverable
Calcium	1.8	0.25	0.13	mg/L	5		6020	Total Recoverable
Cobalt	0.026	0.0025	0.00040	mg/L	5		6020	Total Recoverable
Lithium	0.0019 J	0.0050	0.0011	mg/L	5		6020	Total Recoverable
Total Dissolved Solids	10	5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: EB-2(AP) Lab Sample ID: 400-154761-16

No Detections.

Client Sample ID: SGWC-9 Lab Sample ID: 400-154761-17

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	12	1.0	0.89	mg/L	1	_	300.0	Total/NA
Sulfate - DL	320	10	7.0	mg/L	10		300.0	Total/NA
Barium	0.069	0.0025	0.00049	mg/L	5		6020	Total Recoverable
Boron	1.8	0.050	0.021	mg/L	5		6020	Total Recoverable
Calcium	54	0.25	0.13	mg/L	5		6020	Total Recoverable
Cobalt	0.0064	0.0025	0.00040	mg/L	5		6020	Total Recoverable
Total Dissolved Solids	590	5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SGWC-10 Lab Sample ID: 400-154761-18

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	8.6		1.0	0.89	mg/L		_	300.0	Total/NA
Sulfate	2.9		1.0	0.70	mg/L	1		300.0	Total/NA
Barium	0.027		0.0025	0.00049	mg/L	5		6020	Total Recoverable
Boron	0.070		0.050	0.021	mg/L	5		6020	Total Recoverable

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

Page 7 of 108

7/16/2018

TestAmerica Job ID: 400-154761-1

Lab Sample ID: 400-154761-18

Lab Sample ID: 400-154761-19

Lab Sample ID: 400-154761-20

Lab Sample ID: 400-154761-21

SDG: Ash Pond

Client Sample ID: SGWC-10 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Calcium	1.2		0.25	0.13	mg/L	5	6020	Total
Cab all	0.040		0.0005	0.00040	/I	-	0000	Recoverable
Cobalt	0.018		0.0025	0.00040	mg/L	5	6020	Total Recoverable
Total Dissolved Solids	38		5.0	3.4	mg/L		SM 2540C	Total/NA

Client Sample ID: SGWC-11

<u> </u>						_		
_ Analyte	Result Qualifie	r RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	7.5	1.0	0.89	mg/L		_	300.0	Total/NA
Sulfate	0.89 J	1.0	0.70	mg/L	1		300.0	Total/NA
Barium	0.041	0.0025	0.00049	mg/L	5		6020	Total Recoverable
Boron	0.37	0.050	0.021	mg/L	5		6020	Total Recoverable
Calcium	1.8	0.25	0.13	mg/L	5		6020	Total Recoverable
Cobalt	0.026	0.0025	0.00040	mg/L	5		6020	Total Recoverable
Lithium	0.0017 J	0.0050	0.0011	mg/L	5		6020	Total Recoverable
Total Dissolved Solids	40	5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SGWC-12

Analyte	Result Qualifie	r RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	8.8	1.0	0.89	mg/L		_	300.0	Total/NA
Sulfate	41	1.0	0.70	mg/L	1		300.0	Total/NA
Barium	0.048	0.0025	0.00049	mg/L	5		6020	Total
								Recoverable
Calcium	22	0.25	0.13	mg/L	5		6020	Total
								Recoverable
Cobalt	0.0038	0.0025	0.00040	mg/L	5		6020	Total
								Recoverable
Total Dissolved Solids	260	5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SGWC-13

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chloride	6.2	1.0	0.89	mg/L	1	300.0	Total/NA
Sulfate - DL	69	5.0	3.5	mg/L	5	300.0	Total/NA
Barium	0.032	0.0025	0.00049	mg/L	5	6020	Total Recoverable
Boron	0.45	0.050	0.021	mg/L	5	6020	Total Recoverable
Calcium	15	0.25	0.13	mg/L	5	6020	Total Recoverable
Cobalt	0.0039	0.0025	0.00040	mg/L	5	6020	Total Recoverable
Selenium	0.00064 JB	0.0013	0.00024	mg/L	5	6020	Total Recoverable
Total Dissolved Solids	190	5.0	3.4	mg/L	1	SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-14

Lab Sample ID: 400-154761-22

Analyte	Result Qualifie	r RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chloride	10	1.0	0.89	mg/L		300.0	Total/NA
Sulfate - DL	190	5.0	3.5	mg/L	5	300.0	Total/NA
Barium	0.057	0.0025	0.00049	mg/L	5	6020	Total Recoverable
Boron	1.6	0.050	0.021	mg/L	5	6020	Total Recoverable
Calcium	44	0.25	0.13	mg/L	5	6020	Total Recoverable
Cobalt	0.0025	0.0025	0.00040	mg/L	5	6020	Total Recoverable
Selenium	0.00084 JB	0.0013	0.00024	mg/L	5	6020	Total Recoverable
Total Dissolved Solids	340	5.0	3.4	mg/L	1	SM 2540C	Total/NA

Client Sample ID: SGWC-15

Lab Sample ID: 400-154761-23

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	9.3		1.0	0.89	mg/L	1	_	300.0	Total/NA
Fluoride	0.14	J	0.20	0.082	mg/L	1		300.0	Total/NA
Sulfate - DL	190		5.0	3.5	mg/L	5		300.0	Total/NA
Barium	0.035		0.0025	0.00049	mg/L	5		6020	Total Recoverable
Beryllium	0.00038	J	0.0025	0.00034	mg/L	5		6020	Total Recoverable
Boron	1.7		0.050	0.021	mg/L	5		6020	Total Recoverable
Calcium	16		0.25	0.13	mg/L	5		6020	Total Recoverable
Chromium	0.032		0.0025	0.0011	mg/L	5		6020	Total Recoverable
Cobalt	0.30		0.0025	0.00040	mg/L	5		6020	Total Recoverable
Lithium	0.0030	J	0.0050	0.0011	mg/L	5		6020	Total Recoverable
Selenium	0.0014	В	0.0013	0.00024	mg/L	5		6020	Total Recoverable
Mercury	0.00013	J	0.00020	0.000070	mg/L	1		7470A	Total/NA
Total Dissolved Solids	310		5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SGWC-16

Lab Sample ID: 400-154761-24

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	7.7		1.0	0.89	mg/L		_	300.0	Total/NA
Sulfate	25		1.0	0.70	mg/L	1		300.0	Total/NA
Barium	0.022		0.0025	0.00049	mg/L	5		6020	Total Recoverable
Boron	0.59		0.050	0.021	mg/L	5		6020	Total Recoverable
Calcium	0.84		0.25	0.13	mg/L	5		6020	Total Recoverable
Chromium	0.010		0.0025	0.0011	mg/L	5		6020	Total Recoverable
Cobalt	0.0037		0.0025	0.00040	mg/L	5		6020	Total Recoverable

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-16 (Continued)

Lab Sample	ID: 4	00-154	1761-24
------------	-------	--------	----------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Selenium	0.0013	В	0.0013	0.00024	mg/L	5	_	6020	Total
Total Dissolved Solids	74		5.0	3.4	mg/L	1		SM 2540C	Recoverable Total/NA

Client Sample ID: SGWC-17 Lab Sample ID: 400-154761-25

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	8.0		1.0	0.89	mg/L		_	300.0	Total/NA
Sulfate - DL	170		5.0	3.5	mg/L	5		300.0	Total/NA
Barium	0.020		0.0025	0.00049	mg/L	5		6020	Total Recoverable
Boron	0.35		0.050	0.021	mg/L	5		6020	Total Recoverable
Calcium	49		0.25	0.13	mg/L	5		6020	Total Recoverable
Chromium	0.0083		0.0025	0.0011	mg/L	5		6020	Total Recoverable
Selenium	0.00064	JB	0.0013	0.00024	mg/L	5		6020	Total Recoverable
Mercury	0.00011	J (0.00020	0.000070	mg/L	1		7470A	Total/NA
Total Dissolved Solids	360		5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SGWC-20

Lab Sample ID: 400-154761-26

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	9.9		1.0	0.89	mg/L	1	_	300.0	Total/NA
Fluoride	0.21		0.20	0.082	mg/L	1		300.0	Total/NA
Sulfate - DL	210		5.0	3.5	mg/L	5		300.0	Total/NA
Barium	0.029		0.0025	0.00049	mg/L	5		6020	Total Recoverable
Beryllium	0.00086	J	0.0025	0.00034	mg/L	5		6020	Total Recoverable
Calcium	11		0.25	0.13	mg/L	5		6020	Total Recoverable
Cobalt	0.21		0.0025	0.00040	mg/L	5		6020	Total Recoverable
Lithium	0.0038	J	0.0050	0.0011	mg/L	5		6020	Total Recoverable
Selenium	0.00066	JB	0.0013	0.00024	mg/L	5		6020	Total Recoverable
Thallium	0.00014	J	0.00050	0.000085	mg/L	5		6020	Total Recoverable
Boron - DL	2.1		0.25	0.11	mg/L	25		6020	Total Recoverable
Mercury	0.000082	J	0.00020	0.000070	mg/L	1		7470A	Total/NA
Total Dissolved Solids	320		5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SGWC-21

Lab Sample ID: 400-154761-27

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	8.6		1.0	0.89	mg/L	1	_	300.0	Total/NA
Sulfate - DL	79		5.0	3.5	mg/L	5		300.0	Total/NA
Barium	0.092		0.0025	0.00049	mg/L	5		6020	Total Recoverable

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

7/16/2018

Page 10 of 108

TestAmerica Job ID: 400-154761-1

Lab Sample ID: 400-154761-27

SM 2540C

SDG: Ash Pond

Total/NA

Client Sample ID: SGWC-21 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	1.4		0.050	0.021	mg/L	5	_	6020	Total Recoverable
Calcium	29		0.25	0.13	mg/L	5		6020	Total
Lithium	0.0013	J	0.0050	0.0011	mg/L	5		6020	Recoverable Total

Total Dissolved Solids

Client Sample ID: SGWC-22				Lab Sample ID: 40	0-154761-28
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type

Analyte	Result Qua	ilifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	10	1.0	0.89	mg/L		_	300.0	Total/NA
Sulfate - DL	94	5.0	3.5	mg/L	5		300.0	Total/NA
Barium	0.084	0.0025	0.00049	mg/L	5		6020	Total
								Recoverable
Boron	0.41	0.050	0.021	mg/L	5		6020	Total
								Recoverable
Calcium	26	0.25	0.13	mg/L	5		6020	Total
								Recoverable
Cobalt	0.0022 J	0.0025	0.00040	mg/L	5		6020	Total
								Recoverable
Total Dissolved Solids	210	5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sampl

ole ID: SGWC-23	Lab Sample ID: 400-154761-29
ne id. 30vvc-23	Lab Sample 10. 400-134761-29

3.4 mg/L

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	10		1.0	0.89	mg/L	1	_	300.0	Total/NA
Sulfate - DL	100		5.0	3.5	mg/L	5		300.0	Total/NA
Barium	0.082		0.0025	0.00049	mg/L	5		6020	Total
									Recoverable
Boron	0.71		0.050	0.021	mg/L	5		6020	Total
									Recoverable
Calcium	25		0.25	0.13	mg/L	5		6020	Total
									Recoverable
Lithium	0.0027 J		0.0050	0.0011	mg/L	5		6020	Total
									Recoverable
Mercury	0.00028		0.00020	0.000070	mg/L	1		7470A	Total/NA
Total Dissolved Solids	220		5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: FB-3(AP)

Lab Sample ID: 400-154761-30

No Detections.

Lab Sample ID: 400-154761-31 Client Sample ID: FD-3(AP)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chloride	6.2		1.0	0.89	mg/L	1	300.0	Total/NA
Sulfate - DL	70		5.0	3.5	mg/L	5	300.0	Total/NA
Barium	0.032		0.0025	0.00049	mg/L	5	6020	Total Recoverable
Boron	0.45		0.050	0.021	mg/L	5	6020	Total Recoverable
Calcium	15		0.25	0.13	mg/L	5	6020	Total Recoverable

This Detection Summary does not include radiochemical test results.

7/16/2018

Page 11 of 108

Detection Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: FD-3(AP) (Continued)

Lab Sample ID: 400-154761-31

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	0.0040		0.0025	0.00040	mg/L	5	_	6020	Total
									Recoverable
Total Dissolved Solids	12		5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: EB-3(AP) Lab Sample ID: 400-154761-32

No Detections.

Client Sample ID: SGWC-18 Lab Sample ID: 400-154761-33

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chloride	9.0		1.0	0.89	mg/L		300.0	Total/NA
Sulfate - DL	870		20	14	mg/L	20	300.0	Total/NA
Arsenic	0.0020		0.0013	0.00046	mg/L	5	6020	Total
								Recoverable
Barium	0.032		0.0025	0.00049	mg/L	5	6020	Total
								Recoverable
Beryllium	0.00035	J	0.0025	0.00034	mg/L	5	6020	Total
								Recoverable
Calcium	90		0.25	0.13	mg/L	5	6020	Total
a:						<u>.</u>		Recoverable
Chromium	0.0086		0.0025	0.0011	mg/L	5	6020	Total
0.1.11	0.40		0.0005	0.00040		_	2000	Recoverable
Cobalt	0.19		0.0025	0.00040	mg/L	5	6020	Total
Lithium	0.0042		0.0050	0.0011	m a /I	-	6020	Recoverable
Littium	0.0042	J	0.0050	0.0011	mg/L	5	6020	Total
Selenium	0.014	R	0.0013	0.00024	ma/l	5	6020	Recoverable Total
Cicinani	0.014	5	0.0013	0.00024	mg/L	3	0020	Recoverable
Thallium	0.00019	J	0.00050	0.000085	ma/L	5	6020	Total
								Recoverable
Boron - DL	4.3		0.25	0.11	mg/L	25	6020	Total
					Ū			Recoverable
Mercury	0.00014	J	0.00020	0.000070	mg/L	1	7470A	Total/NA
Total Dissolved Solids	820		10	6.8	mg/L	1	SM 2540C	Total/NA

Client Sample ID: SGWC-19 Lab Sample ID: 400-154761-34

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	7.2		1.0	0.89	mg/L		_	300.0	Total/NA
Sulfate - DL	220		5.0	3.5	mg/L	5		300.0	Total/NA
Barium	0.035		0.0025	0.00049	mg/L	5		6020	Total Recoverable
Calcium	37		0.25	0.13	mg/L	5		6020	Total Recoverable
Chromium	0.015		0.0025	0.0011	mg/L	5		6020	Total Recoverable
Lithium	0.0022	J	0.0050	0.0011	mg/L	5		6020	Total Recoverable
Selenium	0.00063	JB	0.0013	0.00024	mg/L	5		6020	Total Recoverable
Boron - DL	1.8		0.25	0.11	mg/L	25		6020	Total Recoverable
Total Dissolved Solids	320		5.0	3.4	mg/L	1		SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

Page 12 of 108

7/16/2018

Method Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	TAL PEN
6020	Metals (ICP/MS)	SW846	TAL PEN
7470A	Mercury (CVAA)	SW846	TAL PEN
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL PEN
9315	Radium-226 (GFPC)	SW846	TAL SL
9320	Radium-228 (GFPC)	SW846	TAL SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	TAL SL
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PEN
7470A	Preparation, Mercury	SW846	TAL PEN
PrecSep_0	Preparation, Precipitate Separation	None	TAL SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	TAL SL

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Sample Summary

Matrix

Water

Client: Southern Company Project/Site: CCR - Plant Scherer

Client Sample ID

SGWA-1

SGWA-2

SGWA-24

SGWA-25

SGWA-5

FB-1(AP)

FD-1(AP)

EB-1(AP)

SGWA-3

SGWA-4

SGWC-6

SGWC-7

SGWC-8

FB-2(AP)

FD-2(AP)

EB-2(AP)

SGWC-9

SGWC-10

SGWC-11

SGWC-12

SGWC-13

SGWC-14

SGWC-15

SGWC-16

SGWC-17

SGWC-20

SGWC-21

SGWC-22

SGWC-23

FB-3(AP)

FD-3(AP)

EB-3(AP)

SGWC-18

SGWC-19

Lab Sample ID

400-154761-1

400-154761-2

400-154761-3

400-154761-4

400-154761-5

400-154761-6

400-154761-7

400-154761-8

400-154761-9

400-154761-10

400-154761-11

400-154761-12

400-154761-13

400-154761-14

400-154761-15

400-154761-16

400-154761-17

400-154761-18

400-154761-19

400-154761-20

400-154761-21

400-154761-22

400-154761-23

400-154761-24

400-154761-25

400-154761-26

400-154761-27

400-154761-28

400-154761-29

400-154761-30

400-154761-31

400-154761-32

400-154761-33

400-154761-34

	00-154761-1 G: Ash Pond	nerica Job ID: 4 SD
	Received	Collected
	06/07/18 10:09	06/05/18 14:30
	06/07/18 10:09	06/05/18 15:30
5	06/07/18 10:09	06/05/18 14:50
	06/07/18 10:09	06/05/18 17:00
6	06/07/18 10:09	06/05/18 16:30
	06/07/18 10:09	06/05/18 14:20
	06/07/18 10:09	06/05/18 00:00
	06/07/18 10:09	06/05/18 17:30
0	06/08/18 09:17	06/06/18 09:40
0	06/08/18 09:17	06/06/18 11:20
	06/08/18 09:17	06/06/18 09:40
9	06/08/18 09:17	06/06/18 11:00
	06/08/18 09:17	06/06/18 13:30
	06/08/18 09:17	06/06/18 09:20
	06/08/18 09:17	06/06/18 00:00
	06/08/18 09:17	06/06/18 17:25
	06/08/18 09:17	06/06/18 14:45
	06/08/18 09:17	06/06/18 15:50
	06/08/18 09:17	06/06/18 14:35
	06/08/18 09:17	06/06/18 16:25
10	06/09/18 08:26	06/07/18 09:15
	06/09/18 08:26	06/07/18 10:30
	06/09/18 08:26	06/07/18 12:10
	06/09/18 08:26	06/07/18 14:00
	06/09/18 08:26	06/07/18 15:00

06/07/18 14:10

06/07/18 10:25

06/07/18 00:00

06/07/18 16:00

06/08/18 09:20

06/07/18 10:20 06/09/18 08:26

06/08/18 09:05 06/09/18 08:26

06/09/18 08:26

06/09/18 08:26

06/09/18 08:26

06/07/18 15:25 06/09/18 08:26 06/09/18 08:26 06/09/18 08:26 06/07/18 09:15 06/09/18 08:26

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWA-1

Date Collected: 06/05/18 14:30 Date Received: 06/07/18 10:09

Total Dissolved Solids

Lab Sample ID: 400-154761-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.7		1.0	0.89	mg/L			06/25/18 14:42	1
Fluoride	<0.082		0.20	0.082	mg/L			06/25/18 14:42	1
Sulfate	<0.70		1.0	0.70	mg/L			06/25/18 14:42	1
Method: 6020 - Metals (IC	CP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:24	06/20/18 14:06	- 5
Barium	0.058		0.0025	0.00049	mg/L		06/20/18 08:24	06/20/18 14:06	5
Beryllium	< 0.00034		0.0025	0.00034	mg/L		06/20/18 08:24	06/20/18 14:06	5
Boron	<0.021		0.050	0.021	mg/L		06/20/18 08:24	06/20/18 14:06	5
Calcium	2.6		0.25	0.13	mg/L		06/20/18 08:24	06/20/18 14:06	5
Chromium	0.0014	J	0.0025	0.0011	mg/L		06/20/18 08:24	06/20/18 14:06	5
Cobalt	0.0028		0.0025	0.00040	mg/L		06/20/18 08:24	06/20/18 14:06	5
Lead	< 0.00035		0.0013	0.00035	mg/L		06/20/18 08:24	06/20/18 14:06	5
Lithium	0.0018	J	0.0050	0.0011	mg/L		06/20/18 08:24	06/20/18 14:06	5
Selenium	0.00065	JB	0.0013	0.00024	mg/L		06/20/18 08:24	06/20/18 14:06	5
Thallium	<0.000085		0.00050	0.000085	mg/L		06/20/18 08:24	06/20/18 14:06	5
Method: 7470A - Mercury	y (CVAA)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 11:43	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: 9315 - R	Radium-226 (GFPC)	Count Uncert.	Total Uncert.					
Analyte Radium-226	Result 0.0431	Qualifier U	(2σ+/-) 0.135	(2σ+/-) 0.135	1.00	Unit pCi/L	Prepared 06/19/18 08:49	Analyzed 07/11/18 19:09	Dil Fac
Carrier Ba Carrier		Qualifier	Limits 40 - 110				Prepared 06/19/18 08:49	Analyzed 07/11/18 19:09	Dil Fac

5.0

8.0

3.4 mg/L

Method: 9320 - F	Radium-228 (GFPC)								
	·	•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0632	U	0.179	0.179	1.00	0.311	pCi/L	06/19/18 09:16	07/11/18 15:18	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	110		40 - 110					06/19/18 09:16	07/11/18 15:18	1
Y Carrier	92.7		40 - 110					06/19/18 09:16	07/11/18 15:18	1

Method: Ra226_Ra2	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.106	Ū	0.224	0.224	5.00	0.311	pCi/L		07/16/18 10:51	1

TestAmerica Pensacola

06/11/18 17:02

1-1 and

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1 SDG: Ash Pond

SDG. ASITI GIIG

Client Sample ID: SGWA-2

Date Collected: 06/05/18 15:30 Date Received: 06/07/18 10:09 Lab Sample ID: 400-154761-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.3		1.0	0.89	mg/L			06/25/18 17:45	1
Fluoride	<0.082		0.20	0.082	mg/L			06/25/18 17:45	1
Sulfate	<0.70		1.0	0.70	mg/L			06/25/18 17:45	1
Method: 6020 - Metals (ICI	P/MS) - Total Re	ecoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:24	06/20/18 14:29	5
Barium	0.038		0.0025	0.00049	mg/L		06/20/18 08:24	06/20/18 14:29	5
Beryllium	< 0.00034		0.0025	0.00034	mg/L		06/20/18 08:24	06/20/18 14:29	5
Boron	<0.021		0.050	0.021	mg/L		06/20/18 08:24	06/20/18 14:29	5
Calcium	11		0.25	0.13	mg/L		06/20/18 08:24	06/20/18 14:29	5
Chromium	0.014		0.0025	0.0011	mg/L		06/20/18 08:24	06/20/18 14:29	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		06/20/18 08:24	06/20/18 14:29	5
Lead	< 0.00035		0.0013	0.00035	mg/L		06/20/18 08:24	06/20/18 14:29	5
Lithium	< 0.0011		0.0050	0.0011	mg/L		06/20/18 08:24	06/20/18 14:29	5
Selenium	0.00098	JB	0.0013	0.00024	mg/L		06/20/18 08:24	06/20/18 14:29	5
Thallium	<0.000085		0.00050	0.000085	mg/L		06/20/18 08:24	06/20/18 14:29	5
Method: 7470A - Mercury	(CVAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 11:45	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	74		5.0	3.4	mg/L			06/11/18 17:02	1

adium-226 ((GFPC)								
		Count	Total						
		Uncert.	Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.0606	U	0.145	0.145	1.00	0.270	pCi/L	06/19/18 08:49	07/11/18 19:10	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
104		40 - 110					06/19/18 08:49	07/11/18 19:10	1
	Result 0.0606 %Yield	Result Qualifier 0.0606 U Wield Qualifier Myield Qualifier	Count Uncert.	Count Uncert. Uncert.	Count Total Uncert. Uncert. Uncert. Uncert. Count Uncert. Uncert. Uncert. Count Uncert. U	Count Uncert. Uncert. Variety Variety	Count Total Uncert. Uncert. Uncert. Result Qualifier (2σ+/-) (2σ+/-) RL MDC Unit PCi/L	Count Uncert. Uncert. Uncert.	Count Uncert. Uncert. Uncert. Variety V

Method: 9320 - I	Radium-228 (GFPC)								
		·	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.0110	U	0.174	0.174	1.00	0.315	pCi/L	06/19/18 09:16	07/11/18 15:18	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					06/19/18 09:16	07/11/18 15:18	1
Y Carrier	94.2		40 - 110					06/19/18 09:16	07/11/18 15:18	1

Method: Ra226_Ra2	28 - Con	bined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.0496	Ū	0.226	0.226	5.00	0.315	pCi/L		07/16/18 10:51	1

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWA-24

Date Collected: 06/05/18 14:50 Date Received: 06/07/18 10:09

Total Dissolved Solids

Lab Sample ID: 400-154761-3

Matrix: Water

06/11/18 17:02

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.9		1.0	0.89	mg/L			06/25/18 18:08	1
Fluoride	<0.082		0.20	0.082	mg/L			06/25/18 18:08	1
Sulfate	<0.70		1.0	0.70	mg/L			06/25/18 18:08	1
Method: 6020 - Metals (IC	P/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:24	06/20/18 14:33	5
Barium	0.022		0.0025	0.00049	mg/L		06/20/18 08:24	06/20/18 14:33	5
Beryllium	< 0.00034		0.0025	0.00034	mg/L		06/20/18 08:24	06/20/18 14:33	5
Boron	<0.021		0.050	0.021	mg/L		06/20/18 08:24	06/20/18 14:33	5
Calcium	13		0.25	0.13	mg/L		06/20/18 08:24	06/20/18 14:33	5
Chromium	0.0046		0.0025	0.0011	mg/L		06/20/18 08:24	06/20/18 14:33	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		06/20/18 08:24	06/20/18 14:33	5
Lead	< 0.00035		0.0013	0.00035	mg/L		06/20/18 08:24	06/20/18 14:33	5
Lithium	0.0011	J	0.0050	0.0011	mg/L		06/20/18 08:24	06/20/18 14:33	5
Selenium	0.00041	JB	0.0013	0.00024	mg/L		06/20/18 08:24	06/20/18 14:33	5
Thallium	<0.000085		0.00050	0.000085	mg/L		06/20/18 08:24	06/20/18 14:33	5
Method: 7470A - Mercury	(CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 12:04	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0847	U	0.127	0.128	1.00	0.220	pCi/L	06/19/18 08:49	07/11/18 19:10	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					06/19/18 08:49	07/11/18 19:10	1

5.0

76

3.4 mg/L

Method: 9320 - R	adium-228 (GFPC)								
	·	•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0788	U	0.190	0.190	1.00	0.328	pCi/L	06/19/18 09:16	07/11/18 15:19	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					06/19/18 09:16	07/11/18 15:19	1
Y Carrier	93.1		40 - 110					06/19/18 09:16	07/11/18 15:19	1

Method: Ra226_Ra2	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.163	U	0.229	0.229	5.00	0.328	pCi/L		07/16/18 10:51	1

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWA-25

Date Collected: 06/05/18 17:00 Date Received: 06/07/18 10:09 Lab Sample ID: 400-154761-4

Matrix: Water

Analyte		Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Chloride		2.0		1.0	0.89	mg/L			06/25/18 18:31	
Fluoride		<0.082		0.20	0.082	mg/L			06/25/18 18:31	
Sulfate		<0.70		1.0	0.70	mg/L			06/25/18 18:31	
Method: 6020 - Meta Analyte	Is (ICP/N		ecoverabl Qualifier	e RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic		<0.00046	Qualifier	0.0013	0.00046			06/20/18 08:24	06/20/18 14:38	DIIF
Barium		0.0040		0.0015	0.00040	-		06/20/18 08:24	06/20/18 14:38	
Beryllium		<0.0034		0.0025	0.00049	-		06/20/18 08:24		
Boron		<0.0034		0.0023	0.00034	mg/L			06/20/18 14:38	
Calcium		9.7		0.030		mg/L			06/20/18 14:38	
Calcium Chromium		<0.0011		0.0025	0.0011	-			06/20/18 14:38	
				0.0025	0.00011				06/20/18 14:38	
Cobalt Lead		0.0095 < 0.00035		0.0025	0.00040	-			06/20/18 14:38	
Lithium		0.0005		0.0013	0.00033	J			06/20/18 14:38	
				0.0030	0.00011				06/20/18 14:38	
Selenium 		0.00029	JB			•				
Method: 7470A - Mei Analyte	rcury (C\	Result	Qualifier	0.00050		Unit	D	06/20/18 08:24 Prepared	Analyzed	Dil F
Method: 7470A - Mei Analyte Mercury	rcury (C\	/AA)				Unit	_ <u>D</u>			Dil F
Method: 7470A - Mei Analyte Mercury General Chemistry	rcury (C\	/AA) Result 0.000075	J	RL 0.00020	MDL 0.000070	Unit	<u>D</u> 	Prepared 06/23/18 14:33	Analyzed 06/25/18 12:06	
Thallium Method: 7470A - Mer Analyte Mercury General Chemistry Analyte Total Dissolved Solids	rcury (C\	/AA) Result 0.000075		RL	MDL 0.000070	Unit mg/L		Prepared	Analyzed	Dil F
Method: 7470A - Mer Analyte Mercury General Chemistry Analyte Total Dissolved Solids		/AA) Result 0.000075 Result 80	J	RL 0.00020	MDL 0.000070	Unit mg/L		Prepared 06/23/18 14:33	Analyzed 06/25/18 12:06 Analyzed	
Method: 7470A - Mer Analyte Mercury General Chemistry Analyte Total Dissolved Solids		/AA) Result 0.000075 Result 80	J	RL 0.00020	MDL 0.000070	Unit mg/L		Prepared 06/23/18 14:33	Analyzed 06/25/18 12:06 Analyzed	
Method: 7470A - Mer Analyte Mercury General Chemistry Analyte Total Dissolved Solids		Result 0.000075 Result 80 GFPC)	J Qualifier	RL 5.0	MDL 0.000070	Unit mg/L		Prepared 06/23/18 14:33	Analyzed 06/25/18 12:06 Analyzed	
Method: 7470A - Mer Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radio	um-226 (Result 0.000075 Result 80 GFPC)	Qualifier Count	RL 0.00020 RL 5.0	MDL 0.000070 MDL 3.4	Unit mg/L		Prepared 06/23/18 14:33	Analyzed 06/25/18 12:06 Analyzed	Dil F
Method: 7470A - Mer Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radio	um-226 (Result 0.000075 Result 80 GFPC)	Qualifier Count Uncert.	RL 0.00020 RL 5.0 Total Uncert.	MDL 0.000070 MDL 3.4	Unit mg/L Unit mg/L		Prepared 06/23/18 14:33 Prepared	Analyzed 06/25/18 12:06 Analyzed 06/11/18 17:02	Dil F
Method: 7470A - Mer Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radio	um-226 (Result 0.166	Result 0.000075 Result 80 GFPC)	Qualifier Count Uncert. (2σ+/-)	RL 0.00020 RL 5.0 Total Uncert. (2σ+/-)	MDL 0.000070 MDL 3.4	Unit mg/L Unit mg/L		Prepared O6/23/18 14:33 Prepared Prepared	Analyzed 06/25/18 12:06 Analyzed 06/11/18 17:02 Analyzed	Dil F
Method: 7470A - Mei Analyte Mercury General Chemistry Analyte	um-226 (Result 0.166	/AA) Result 0.000075 Result 80 GFPC) Qualifier U	Qualifier Count Uncert. (2σ+/-) 0.165	RL 0.00020 RL 5.0 Total Uncert. (2σ+/-)	MDL 0.000070 MDL 3.4	Unit mg/L Unit mg/L		Prepared Prepared Prepared 06/19/18 08:49	Analyzed 06/25/18 12:06 Analyzed 06/11/18 17:02 Analyzed 07/11/18 19:10	
Method: 7470A - Mer Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radiu Analyte Radium-226 Carrier	wm-226 (Result 0.166 %Yield 99.4	Result 0.000075 Result 80 GFPC) Qualifier U Qualifier	Qualifier Count Uncert. (2σ+/-) 0.165 Limits	RL 0.00020 RL 5.0 Total Uncert. (2σ+/-)	MDL 0.000070 MDL 3.4	Unit mg/L Unit mg/L		Prepared 06/23/18 14:33 Prepared Prepared 06/19/18 08:49 Prepared	Analyzed 06/25/18 12:06 Analyzed 06/11/18 17:02 Analyzed 07/11/18 19:10 Analyzed	Dil F
Method: 7470A - Meranalyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radio Analyte Radium-226 Carrier Ba Carrier	wm-226 (Result 0.166 %Yield 99.4	Result 0.000075 Result 80 GFPC) Qualifier Qualifier GFPC)	Qualifier Count Uncert. (2σ+/-) 0.165 Limits	RL 0.00020 RL 5.0 Total Uncert. (2σ+/-)	MDL 0.000070 MDL 3.4	Unit mg/L Unit mg/L		Prepared 06/23/18 14:33 Prepared Prepared 06/19/18 08:49 Prepared	Analyzed 06/25/18 12:06 Analyzed 06/11/18 17:02 Analyzed 07/11/18 19:10 Analyzed	Dil F

Analyte Radium-228	-0.203	Qualifier U	(2σ+/-) 0.169	(2σ+/-) 0.170	1.00	MDC 0.346	Unit pCi/L	Prepared 06/19/18 09:16	Analyzed 07/11/18 15:19	Dil Fac
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.4		40 - 110					06/19/18 09:16	07/11/18 15:19	1
			40 - 110						07/11/18 15:19	

Method: Ra226_Ra2	228 - Con	bined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	-0.0364	Ū	0.236	0.238	5.00	0.346	pCi/L		07/16/18 10:51	1

TestAmerica Pensacola

, ,

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWA-5

Total Dissolved Solids

Date Collected: 06/05/18 16:30 Date Received: 06/07/18 10:09 Lab Sample ID: 400-154761-5

. Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.6		1.0	0.89	mg/L			06/25/18 18:54	1
Fluoride	<0.082		0.20	0.082	mg/L			06/25/18 18:54	1
Sulfate	<0.70		1.0	0.70	mg/L			06/25/18 18:54	1
Method: 6020 - Metals (IC	CP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:24	06/20/18 15:05	5
Barium	0.011		0.0025	0.00049	mg/L		06/20/18 08:24	06/20/18 15:05	5
Beryllium	< 0.00034		0.0025	0.00034	mg/L		06/20/18 08:24	06/20/18 15:05	5
Boron	<0.021		0.050	0.021	mg/L		06/20/18 08:24	06/20/18 15:05	5
Calcium	1.5		0.25	0.13	mg/L		06/20/18 08:24	06/20/18 15:05	5
Chromium	<0.0011		0.0025	0.0011	mg/L		06/20/18 08:24	06/20/18 15:05	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		06/20/18 08:24	06/20/18 15:05	5
Lead	< 0.00035		0.0013	0.00035	mg/L		06/20/18 08:24	06/20/18 15:05	5
Lithium	<0.0011		0.0050	0.0011	mg/L		06/20/18 08:24	06/20/18 15:05	5
Selenium	0.00039	JB	0.0013	0.00024	mg/L		06/20/18 08:24	06/20/18 15:05	5
Thallium	<0.000085		0.00050	0.000085	mg/L		06/20/18 08:24	06/20/18 15:05	5
Method: 7470A - Mercury	(CVAA)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 12:08	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: 9315 - Ra	adium-226 ((GFPC)	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0662	U	0.142	0.142	1.00	0.261	pCi/L	06/19/18 08:49	07/11/18 19:10	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					06/19/18 08:49	07/11/18 19:10	1

5.0

50

3.4 mg/L

Method: 9320 - R	Radium-228 (GFPC)								
	·	•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.189	U	0.188	0.188	1.00	0.304	pCi/L	06/19/18 09:16	07/11/18 15:19	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					06/19/18 09:16	07/11/18 15:19	1
Y Carrier	97.9		40 - 110					06/19/18 09:16	07/11/18 15:19	1

Method: Ra226_Ra2	28 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.255	Ū	0.236	0.236	5.00	0.304	pCi/L		07/16/18 10:51	1

TestAmerica Pensacola

06/11/18 17:02

2

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: FB-1(AP)
Date Collected: 06/05/18 14:20

Lab Sample ID: 400-154761-6

Matrix: Water

Duto	Conceteu.	00/00/10	17.20
Date	Received:	06/07/18	10:09

Method: 300.0 - Anion	s, Ion Chromatogra	phy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89		1.0	0.89	mg/L			06/25/18 20:02	1
Fluoride	<0.082		0.20	0.082	mg/L			06/25/18 20:02	1
Sulfate	<0.70		1.0	0.70	mg/L			06/25/18 20:02	1
_ Method: 6020 - Metals	(ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:24	06/20/18 15:09	5
Barium	< 0.00049		0.0025	0.00049	mg/L		06/20/18 08:24	06/20/18 15:09	5
Beryllium	< 0.00034		0.0025	0.00034	mg/L		06/20/18 08:24	06/20/18 15:09	5
Boron	<0.021		0.050	0.021	mg/L		06/20/18 08:24	06/20/18 15:09	5
Calcium	<0.13		0.25	0.13	mg/L		06/20/18 08:24	06/20/18 15:09	5
Chromium	<0.0011		0.0025	0.0011	mg/L		06/20/18 08:24	06/20/18 15:09	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		06/20/18 08:24	06/20/18 15:09	5
Lead	< 0.00035		0.0013	0.00035	mg/L		06/20/18 08:24	06/20/18 15:09	5
Lithium	<0.0011		0.0050	0.0011	mg/L		06/20/18 08:24	06/20/18 15:09	5
Selenium	<0.00024		0.0013	0.00024	mg/L		06/20/18 08:24	06/20/18 15:09	5
Thallium _	<0.000085		0.00050	0.000085	mg/L		06/20/18 08:24	06/20/18 15:09	5
_ Method: 7470A - Merc	ury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 12:09	1

General	Chemistry

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	<3.4	5.0	3.4 mg/L			06/11/18 17:02	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC U	Init	Prepared	Analyzed	Dil Fac
Radium-226	0.113	Ū	0.147	0.147	1.00	0.244 pt	Ci/L	06/19/18 08:49	07/11/18 19:10	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	109		40 - 110					06/19/18 08:49	07/11/18 19:10	

Method: 9320 - Radium-228 (GFPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0381	U	0.158	0.158	1.00	0.278	pCi/L	06/19/18 09:16	07/11/18 15:19	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	109		40 - 110					06/19/18 09:16	07/11/18 15:19	1
Y Carrier	96.1		40 - 110					06/19/18 09:16	07/11/18 15:19	1

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC U	Jnit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.151	U	0.216	0.216	5.00	0.278 p	Ci/L		07/16/18 10:51	1

+ 228

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: FD-1(AP) Date Collected: 06/05/18 00:00

Lab Sample ID: 400-154761-7 **Matrix: Water**

Date Received: 06/07/18 10:09

Method: 300.0 - Anions, Ion	Chromatography							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.3	1.0	0.89	mg/L			06/25/18 20:25	1
Fluoride	<0.082	0.20	0.082	mg/L			06/25/18 20:25	1
Sulfate	<0.70	1.0	0.70	mg/L			06/25/18 20:25	1
Method: 6020 - Metals (ICP/	MS) - Total Recoverable				_	_		

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:24	06/20/18 15:14	5
Barium	0.039		0.0025	0.00049	mg/L		06/20/18 08:24	06/20/18 15:14	5
Beryllium	< 0.00034		0.0025	0.00034	mg/L		06/20/18 08:24	06/20/18 15:14	5
Boron	<0.021		0.050	0.021	mg/L		06/20/18 08:24	06/20/18 15:14	5
Calcium	11		0.25	0.13	mg/L		06/20/18 08:24	06/20/18 15:14	5
Chromium	0.014		0.0025	0.0011	mg/L		06/20/18 08:24	06/20/18 15:14	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		06/20/18 08:24	06/20/18 15:14	5
Lead	<0.00035		0.0013	0.00035	mg/L		06/20/18 08:24	06/20/18 15:14	5
Lithium	<0.0011		0.0050	0.0011	mg/L		06/20/18 08:24	06/20/18 15:14	5
Selenium	<0.00024		0.0013	0.00024	mg/L		06/20/18 08:24	06/20/18 15:14	5
Thallium	<0.00085		0.00050	0.000085	mg/L		06/20/18 08:24	06/20/18 15:14	5

Method. 1410A - Mercury (CV	AA)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000072 J	0.00020	0.000070 mg/L		06/23/18 14:33	06/25/18 12:11	1
_							

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	94		5.0	3.4	mg/L			06/10/18 09:45	1

Method: 9315 - I	Radium-226 (GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0801	U	0.134	0.134	1.00	0.237	pCi/L	06/19/18 08:49	07/11/18 19:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					06/19/18 08:49	07/11/18 19:11	1

Method: 9320 - F	Radium-228 (GFPC)								
	·	•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.186	U	0.181	0.182	1.00	0.293	pCi/L	06/19/18 09:16	07/11/18 15:19	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					06/19/18 09:16	07/11/18 15:19	1
Y Carrier	92.7		40 - 110					06/19/18 09:16	07/11/18 15:19	1

Method: Ra226_Ra2	28 - Con	nbined Ra	dium-226 a	nd Radium	-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.266	Ū	0.225	0.226	5.00	0.293	pCi/L		07/16/18 10:51	1

2

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: EB-1(AP)
Date Collected: 06/05/18 17:30

Lab Sample ID: 400-154761-8

Matrix: Water

Date Received: 06/07/18 10:09

Carrier

Ba Carrier

%Yield Qualifier

106

Limits

40 - 110

Analyte		Result	Qualifier	RL	MDL	Unit	ı	D	Prepared	Analyzed	Dil Fa
Chloride		<0.89		1.0	0.89	mg/L		_		06/25/18 20:48	
Fluoride		<0.082		0.20	0.082	mg/L				06/25/18 20:48	
Sulfate		<0.70		1.0	0.70	mg/L				06/25/18 20:48	
Method: 6020 - Me	tals (ICP/N	/IS) - Total Re	ecoverabl	e							
Analyte	•		Qualifier	RL	MDL	Unit	ı	D	Prepared	Analyzed	Dil Fa
Arsenic		<0.00046		0.0013	0.00046	mg/L	 -	_	06/20/18 08:24	06/20/18 15:18	-
Barium		< 0.00049		0.0025	0.00049	mg/L			06/20/18 08:24	06/20/18 15:18	
Beryllium		< 0.00034		0.0025	0.00034	mg/L			06/20/18 08:24	06/20/18 15:18	
Boron		<0.021		0.050	0.021	mg/L			06/20/18 08:24	06/20/18 15:18	
Calcium		<0.13		0.25	0.13	mg/L			06/20/18 08:24	06/20/18 15:18	
Chromium		<0.0011		0.0025	0.0011	mg/L			06/20/18 08:24	06/20/18 15:18	:
Cobalt		<0.00040		0.0025	0.00040	mg/L			06/20/18 08:24	06/20/18 15:18	
Lead		< 0.00035		0.0013	0.00035	mg/L			06/20/18 08:24	06/20/18 15:18	
Lithium		<0.0011		0.0050	0.0011	mg/L			06/20/18 08:24	06/20/18 15:18	:
Selenium		<0.00024		0.0013	0.00024	mg/L			06/20/18 08:24	06/20/18 15:18	
Thallium		<0.000085		0.00050	0.000085	mg/L			06/20/18 08:24	06/20/18 15:18	
Method: 7470A - N	lercury (C	VAA)									
Analyte			Qualifier	RL		Unit		D	Prepared	Analyzed	Dil Fa
Mercury		<0.000070		0.00020	0.000070	mg/L			06/23/18 14:33	06/25/18 12:13	
General Chemistry	/										
Analyte			Qualifier	RL		Unit	-	D	Prepared	Analyzed	Dil Fa
Total Dissolved Solids		<3.4		5.0	3.4	mg/L				06/11/18 17:02	•
Method: 9315 - Ra	dium-226 ((GFPC)									
			Count	Total							
			Uncert.	Uncert.							
		O	(2-1/)	(2-1/)	RL I	MDC	11:4		Daniel and a second	A	Dil Fa
Analyte Radium-226	0.0422	Qualifier	(2σ+/-) 0.132	(2 σ+/-) 0.132		.255		_	Prepared 06/19/18 08:49	Analyzed 07/11/18 19:11	DII Fa

Method: 9320 - I	Radium-228 (GFPC)								
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0584	U	0.142	0.142	1.00	0.247	pCi/L	06/19/18 09:16	07/11/18 15:20	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	106		40 - 110					06/19/18 09:16	07/11/18 15:20	1
Y Carrier	99.1		40 - 110					06/19/18 09:16	07/11/18 15:20	1

Method: Ra226_Ra2	228 - Con	nbined Ra	dium-226 a	nd Radium	-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.101	U	0.194	0.194	5.00	0.255	pCi/L		07/16/18 10:51	1

TestAmerica Pensacola

Analyzed

Dil Fac

Prepared

06/19/18 08:49 07/11/18 19:11

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWA-3 Date Collected: 06/06/18 09:40

Lab Sample ID: 400-154761-9 **Matrix: Water**

Date Received: 06/08/18 09:17

Method: 300.0 - Anio	•					_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2.0		1.0	0.89	mg/L			06/25/18 19:17	1
Fluoride	<0.082		0.20	0.082	mg/L			06/25/18 19:17	1
Sulfate	1.8		1.0	0.70	mg/L			06/25/18 19:17	1
- Method: 6020 - Metal	ls (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:24	06/20/18 15:42	5
Barium	0.036		0.0025	0.00049	mg/L		06/20/18 08:24	06/20/18 15:42	5
Beryllium	< 0.00034		0.0025	0.00034	mg/L		06/20/18 08:24	06/20/18 15:42	5
Boron	<0.021		0.050	0.021	mg/L		06/20/18 08:24	06/20/18 15:42	5
Calcium	4.1		0.25	0.13	mg/L		06/20/18 08:24	06/20/18 15:42	5
Chromium	0.015		0.0025	0.0011	mg/L		06/20/18 08:24	06/20/18 15:42	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		06/20/18 08:24	06/20/18 15:42	5
Lead	< 0.00035		0.0013	0.00035	mg/L		06/20/18 08:24	06/20/18 15:42	5
Lithium	<0.0011		0.0050	0.0011	mg/L		06/20/18 08:24	06/20/18 15:42	5
Selenium	<0.00024		0.0013	0.00024	mg/L		06/20/18 08:24	06/20/18 15:42	5
Thallium	<0.000085		0.00050	0.000085	mg/L		06/20/18 08:24	06/20/18 15:42	5

Analyte	Result	Qualifier	RL	MDL	Unit	0)	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		06	3/23/18 14:33	06/25/18 12:15	1

General	Chemistry
Δnalvto	_

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	46	5.0	3.4 mg/L			06/12/18 13:36	1

Method: 9315	- Radium-226	(GFPC)
---------------------	--------------	--------

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.171	U	0.160	0.160	1.00	0.236	pCi/L	06/19/18 08:49	07/11/18 19:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	106		40 - 110					06/19/18 08:49	07/11/18 19:11	1

Method: 9320 - Radium-228 (GFPC)

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.00359	Ū	0.169	0.169	1.00	0.304	pCi/L	06/19/18 09:16	07/11/18 15:20	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	106		40 - 110					06/19/18 09:16	07/11/18 15:20	1
Y Carrier	94.2		40 - 110					06/19/18 09:16	07/11/18 15:20	1

Method: Ra226 Ra228 - Combined Radium-226 and Rad	ium_222

			a.a 							
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.175	Ū	0.233	0.233	5.00	0.304	pCi/L		07/16/18 10:51	1

2

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWA-4

Carrier

Ba Carrier

%Yield Qualifier

105

Limits

40 - 110

Date Collected: 06/06/18 11:20 Date Received: 06/08/18 09:17 Lab Sample ID: 400-154761-10

Matrix: Water

Chloride Fluoride Sulfate Method: 6020 - Metals (ICAnalyte Arsenic Barium Beryllium Boron Calcium Chromium Cobalt Lead Lithium Selenium Thallium			1.0 0.20 1.0 8 RL 0.0013 0.0025 0.0025 0.050 0.25	0.082 0.70 MDL 0.00046	mg/L mg/L Unit mg/L mg/L	D	Prepared 06/20/18 08:24 06/20/18 08:24	06/25/18 21:57 06/25/18 21:57 06/25/18 21:57 06/25/18 21:57 Analyzed 06/20/18 15:47 06/20/18 15:47	-
Method: 6020 - Metals (ICAnalyte Arsenic Barium Beryllium Boron Calcium Chromium Cobalt Lead Lithium Selenium	0.89 CP/MS) - Total Result <0.00046 0.058 <0.00034 <0.021 18 0.0048	ecoverable	1.0 RL 0.0013 0.0025 0.0025 0.050	0.70 MDL 0.00046 0.00049 0.00034	mg/L Unit mg/L mg/L	<u>D</u>	06/20/18 08:24	06/25/18 21:57 Analyzed 06/20/18 15:47	- 5
Method: 6020 - Metals (ICAnalyte Arsenic Barium Beryllium Boron Calcium Chromium Cobalt Lead Lithium Selenium	CP/MS) - Total Result <0.00046 0.058 <0.00034 <0.021 18 0.0048	ecoverable	RL 0.0013 0.0025 0.0025 0.050	MDL 0.00046 0.00049 0.00034	Unit mg/L mg/L	<u>D</u>	06/20/18 08:24	Analyzed 06/20/18 15:47	5
Analyte Arsenic Barium Beryllium Boron Calcium Chromium Cobalt Lead Lithium Selenium	Result <0.00046 0.058 <0.00034 <0.021 18 0.0048		RL 0.0013 0.0025 0.0025 0.050	0.00046 0.00049 0.00034	mg/L mg/L	_ <u>D</u>	06/20/18 08:24	06/20/18 15:47	5
Analyte Arsenic Barium Beryllium Boron Calcium Chromium Cobalt Lead Lithium Selenium	Result <0.00046 0.058 <0.00034 <0.021 18 0.0048		RL 0.0013 0.0025 0.0025 0.050	0.00046 0.00049 0.00034	mg/L mg/L	_ <u>D</u>	06/20/18 08:24	06/20/18 15:47	5
Barium Beryllium Boron Calcium Chromium Cobalt Lead Lithium Selenium	0.058 <0.00034 <0.021 18 0.0048		0.0025 0.0025 0.050	0.00049 0.00034	mg/L				5
Beryllium Boron Calcium Chromium Cobalt Lead Lithium Selenium	<0.00034 <0.021 18 0.0048		0.0025 0.050	0.00034	J		06/20/18 08:24	06/20/10 15:47	_
Boron Calcium Chromium Cobalt Lead Lithium Selenium	<0.021 18 0.0048		0.050		ma/l			00/20/10 15:47	5
Calcium Chromium Cobalt Lead Lithium Selenium	18 0.0048			0.021	9/ =		06/20/18 08:24	06/20/18 15:47	5
Chromium Cobalt Lead Lithium Selenium	0.0048		0.25	0.021	mg/L		06/20/18 08:24	06/20/18 15:47	5
Cobalt Lead Lithium Selenium				0.13	mg/L		06/20/18 08:24	06/20/18 15:47	5
Lead Lithium Selenium	<0.00040		0.0025	0.0011	mg/L		06/20/18 08:24	06/20/18 15:47	5
Lithium Selenium			0.0025	0.00040	mg/L		06/20/18 08:24	06/20/18 15:47	5
Selenium	<0.00035		0.0013	0.00035	mg/L		06/20/18 08:24	06/20/18 15:47	5
	<0.0011		0.0050	0.0011	mg/L		06/20/18 08:24	06/20/18 15:47	5
Thallium	<0.00024		0.0013	0.00024	mg/L		06/20/18 08:24	06/20/18 15:47	5
-	<0.000085		0.00050	0.000085	mg/L		06/20/18 08:24	06/20/18 15:47	5
Method: 7470A - Mercury	v (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 12:17	1
General Chemistry									
Analyte		Qualifier	RL	MDL		_ D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	120		5.0	3.4	mg/L			06/12/18 13:36	1
Method: 9315 - Radium-2	226 (GFPC)								
		Count	Total						
		Uncert.	Uncert.						
Analyte Re	esult Qualifier	(2σ+/-)	(2σ+/-)	RL M	IDC Unit		Prepared	Analyzed	Dil Fac

Method: 9320 - F	Radium-228 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.329		0.190	0.193	1.00	0.282	pCi/L	06/19/18 09:16	07/11/18 15:20	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	105		40 - 110					06/19/18 09:16	07/11/18 15:20	1
Y Carrier	96.1		40 - 110					06/19/18 09:16	07/11/18 15:20	1

Method: Ra226_Ra	228 - Con	nbined Ra	dium-226 a	nd Radium	-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.308		0.214	0.216	5.00	0.282	pCi/L		07/16/18 10:51	1

TestAmerica Pensacola

Analyzed

Dil Fac

Prepared

<u>06/19/18 08:49</u> <u>07/11/18 19:06</u>

2

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-6

Date Collected: 06/06/18 09:40 Date Received: 06/08/18 09:17

Total Dissolved Solids

Lab Sample ID: 400-154761-11

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.3		1.0	0.89	mg/L			06/25/18 22:20	1
Fluoride	<0.082		0.20	0.082	mg/L			06/25/18 22:20	1
Sulfate	<0.70		1.0	0.70	mg/L			06/25/18 22:20	1
Method: 6020 - Meta	ls (ICP/MS) - Total Re	ecoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:24	06/20/18 16:14	5
Barium	0.014		0.0025	0.00049	mg/L		06/20/18 08:24	06/20/18 16:14	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		06/20/18 08:24	06/20/18 16:14	5
Boron	<0.021		0.050	0.021	mg/L		06/20/18 08:24	06/20/18 16:14	5
Calcium	4.2		0.25	0.13	mg/L		06/20/18 08:24	06/20/18 16:14	5
Chromium	<0.0011		0.0025	0.0011	mg/L		06/20/18 08:24	06/20/18 16:14	5
Cobalt	0.0021	J	0.0025	0.00040	mg/L		06/20/18 08:24	06/20/18 16:14	5
Lead	<0.00035		0.0013	0.00035	mg/L		06/20/18 08:24	06/20/18 16:14	5
Lithium	<0.0011		0.0050	0.0011	mg/L		06/20/18 08:24	06/20/18 16:14	5
Selenium	0.00032	JB	0.0013	0.00024	mg/L		06/20/18 08:24	06/20/18 16:14	5
Thallium	<0.000085		0.00050	0.000085	mg/L		06/20/18 08:24	06/20/18 16:14	5
- Method: 7470A - Me	rcury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 12:19	1

Mercury	<0.000070	0.00020	0.000070 mg/L		06/23/18 14:33	06/25/18 12:19	1
General Chemistry							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

100

5.0

3.4 mg/L

Method: 9315 - Ra	dium-226 (GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0117	U	0.0999	0.0999	1.00	0.215	pCi/L	06/19/18 08:49	07/11/18 19:06	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	107		40 - 110					06/19/18 08:49	07/11/18 19:06	1

Method: 9320 - F	Radium-228 (GFPC)								
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.115	U	0.188	0.189	1.00	0.318	pCi/L	06/19/18 09:16	07/11/18 15:22	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	107		40 - 110					06/19/18 09:16	07/11/18 15:22	1
Y Carrier	95.0		40 - 110					06/19/18 09:16	07/11/18 15:22	1

Method: Ra226_Ra2	28 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.127	Ū	0.213	0.214	5.00	0.318	pCi/L		07/16/18 10:51	1

TestAmerica Pensacola

06/12/18 13:36

ond

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-7

Analyte

Total Dissolved Solids

Date Collected: 06/06/18 11:00 Date Received: 06/08/18 09:17 Lab Sample ID: 400-154761-12

. Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4.6		1.0	0.89	mg/L			06/25/18 22:43	1
Fluoride	0.20		0.20	0.082	mg/L			06/25/18 22:43	1
Sulfate	14		1.0	0.70	mg/L			06/25/18 22:43	1
Method: 6020 - Met	als (ICP/MS) - Total Re	ecoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:24	06/20/18 16:19	5
Barium	0.24		0.0025	0.00049	mg/L		06/20/18 08:24	06/20/18 16:19	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		06/20/18 08:24	06/20/18 16:19	5
Boron	<0.021		0.050	0.021	mg/L		06/20/18 08:24	06/20/18 16:19	5
Calcium	19		0.25	0.13	mg/L		06/20/18 08:24	06/20/18 16:19	5
Chromium	<0.0011		0.0025	0.0011	mg/L		06/20/18 08:24	06/20/18 16:19	5
Cobalt	0.0034		0.0025	0.00040	mg/L		06/20/18 08:24	06/20/18 16:19	5
Lead	<0.00035		0.0013	0.00035	mg/L		06/20/18 08:24	06/20/18 16:19	5
Lithium	0.0040	J	0.0050	0.0011	mg/L		06/20/18 08:24	06/20/18 16:19	5
Selenium	<0.00024		0.0013	0.00024	mg/L		06/20/18 08:24	06/20/18 16:19	5
Thallium	<0.000085		0.00050	0.000085	mg/L		06/20/18 08:24	06/20/18 16:19	5
Method: 7470A - Me	ercury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00070		0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 12:21	1

Method: 9315 - I	Radium-226 (GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0540	U	0.101	0.101	1.00	0.185	pCi/L	06/19/18 08:49	07/11/18 19:06	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	106		40 - 110					06/19/18 08:49	07/11/18 19:06	

RL

5.0

MDL Unit

3.4 mg/L

D

Prepared

Analyzed

06/12/18 13:36

Dil Fac

Result Qualifier

210

Method: 9320 - F	Radium-228 (GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.111	U	0.190	0.190	1.00	0.322	pCi/L	06/19/18 09:16	07/11/18 15:22	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	106		40 - 110					06/19/18 09:16	07/11/18 15:22	1
Y Carrier	93.8		40 - 110					06/19/18 09:16	07/11/18 15:22	1

Method: Ra226_Ra2	28 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.165	Ū	0.215	0.215	5.00	0.322	pCi/L		07/16/18 10:51	1

Client Sample Results

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-8

Date Collected: 06/06/18 13:30 Date Received: 06/08/18 09:17

Ba Carrier

Analyte

Carrier

Ba Carrier

Y Carrier

Radium-228

103

1.09

103

97.6

Result Qualifier

%Yield Qualifier

Method: 9320 - Radium-228 (GFPC)

40 - 110

Count

Uncert.

(2σ+/-)

0.277

Limits

40 - 110

40 - 110

Total

Uncert.

(2σ+/-)

0.294

MDC Unit

0.346 pCi/L

RL

1.00

Lab Sample ID: 400-154761-13

Matrix: Water

Analyte	Res	sult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride		11	1.0	0.89	mg/L			06/25/18 23:06	
Fluoride	0	.40	0.20	0.082	mg/L			06/25/18 23:06	
Method: 300.0 - Anio	ns, Ion Chromato	graphy - D	L						
Analyte	Res	sult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Sulfate		74	5.0	3.5	mg/L			06/26/18 18:40	
Method: 6020 - Metal	s (ICP/MS) - Total	Recovera	ble						
Analyte	Res	sult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	<0.00	046	0.0013	0.00046	mg/L		06/20/18 08:24	06/20/18 16:24	
Barium	0	.18	0.0025	0.00049	mg/L		06/20/18 08:24	06/20/18 16:24	:
Beryllium	<0.00	034	0.0025	0.00034	mg/L		06/20/18 08:24	06/20/18 16:24	
Boron	0.0	059	0.050	0.021	mg/L		06/20/18 08:24	06/20/18 16:24	
Calcium		51	0.25	0.13	mg/L		06/20/18 08:24	06/20/18 16:24	
Chromium	0.0	013 J	0.0025	0.0011	mg/L		06/20/18 08:24	06/20/18 16:24	
Cobalt	<0.00	040	0.0025	0.00040	mg/L		06/20/18 08:24	06/20/18 16:24	
Lead	<0.00	035	0.0013	0.00035	mg/L		06/20/18 08:24	06/20/18 16:24	
Lithium	0.0	018 J	0.0050	0.0011	mg/L		06/20/18 08:24	06/20/18 16:24	
Selenium	<0.00	024	0.0013	0.00024	mg/L		06/20/18 08:24	06/20/18 16:24	
Thallium	<0.000	085	0.00050	0.000085	mg/L		06/20/18 08:24	06/20/18 16:24	
Method: 7470A - Mer	cury (CVAA)								
Analyte		sult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.000	070	0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 12:33	
General Chemistry									
_			· RL	MDI	l lmi4	_	Droporod	Analyzad	
Analyte	Res	sult Qualifier	KL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Analyzed

Analyzed

06/19/18 08:49 07/11/18 19:06

06/19/18 09:16 07/11/18 15:23

06/19/18 09:16 07/11/18 15:23

06/19/18 09:16 07/11/18 15:23

Prepared

Prepared

Dil Fac

Dil Fac

3

4

6

1

9

1U 11

12

13

Client Sample Results

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Lab Sample ID: 400-154761-13 **Client Sample ID: SGWC-8** Date Collected: 06/06/18 13:30

Matrix: Water

Date Received: 06/08/18 09:17

Method: Ra226	_Ra228 -	Combined	Radium-226	and Radium-228	
			Count	Total	

		Count	iotai			
		Uncert.	Uncert.			
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Р

Prepared Analyzed Dil Fac 07/16/18 10:51 0.356 0.372 5.00 0.346 pCi/L 1.59 **Combined Radium**

226 + 228

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: FB-2(AP)

Date Received: 06/08/18 09:17

Lab Sample ID: 400-154761-14 Date Collected: 06/06/18 09:20

Matrix: Water

Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride		<0.89		1.0	0.89	mg/L			06/25/18 23:29	
Fluoride		<0.082		0.20	0.082	mg/L			06/25/18 23:29	
Sulfate		<0.70		1.0	0.70	mg/L			06/25/18 23:29	
Method: 6020 - Meta	s (ICP/N	/IS) - Total Re	ecoverab	e						
Analyte		Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Arsenic		<0.00046		0.0013	0.00046	ū		06/20/18 08:24	06/20/18 16:28	
Barium		<0.00049		0.0025	0.00049	mg/L		06/20/18 08:24	06/20/18 16:28	
Beryllium		< 0.00034		0.0025	0.00034	mg/L		06/20/18 08:24	06/20/18 16:28	
Boron		<0.021		0.050	0.021	mg/L		06/20/18 08:24	06/20/18 16:28	
Calcium		<0.13		0.25	0.13	mg/L		06/20/18 08:24	06/20/18 16:28	
Chromium		< 0.0011		0.0025	0.0011	mg/L		06/20/18 08:24	06/20/18 16:28	
Cobalt		<0.00040		0.0025	0.00040	mg/L		06/20/18 08:24	06/20/18 16:28	
Lead		<0.00035		0.0013	0.00035	mg/L		06/20/18 08:24	06/20/18 16:28	
Lithium		<0.0011		0.0050	0.0011	mg/L		06/20/18 08:24	06/20/18 16:28	
Selenium		<0.00024		0.0013	0.00024	mg/L		06/20/18 08:24	06/20/18 16:28	
Thallium		<0.000085		0.00050	0.000085	mg/L		06/20/18 08:24	06/20/18 16:28	
Analyte Mercury		<0.000070	Qualifier	RL 0.00020	MDL 0.000070	Unit mg/l	_ D	Prepared 06/23/18 14:33	Analyzed 06/25/18 12:35	Dil F
Mercury - -		<0.000070		0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 12:35	
General Chemistry		Decul	O	DI.	MDI	1114	_	Duamanad	A sa a la seca al	Dil E
Analyte			Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil F
Total Dissolved Solids		32		5.0	3.4	mg/L			06/12/18 13:36	
Method: 9315 - Radio	ım-226 ((GFPC)								
		•	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC Unit		Prepared	Analyzed	Dil F
Radium-226	0.158	<u>U</u>	0.155	0.156	1.00 0	.236 pCi/L		06/19/18 08:49	07/11/18 19:06	
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil F
Ba Carrier	99.7		40 - 110					06/19/18 08:49	07/11/18 19:06	
	ım-228 ((GFPC)								
-	ım-228 ((GFPC)	Count	Total						
Method: 9320 - Radiu	um-228 ((GFPC)	Count Uncert.	Total Uncert.						

Method: Ra226	Ra228 - Combined Radium-226 and Radium-228

0.179

Limits

40 - 110

40 - 110

0.0481 U

99.7

95.0

%Yield Qualifier

			Count	rotai					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	t Prepared	Analyzed	Dil Fac
Combined Radium 226	0.207	U	0.237	0.237	5.00	0.315 pCi/	/L	07/16/18 10:51	1

0.179

1.00

0.315 pCi/L

+ 228

Radium-228

Carrier

Ba Carrier

Y Carrier

TestAmerica Pensacola

06/19/18 09:16 07/11/18 15:23

06/19/18 09:16 07/11/18 15:23

06/19/18 09:16 07/11/18 15:23

Analyzed

Prepared

Dil Fac

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: FD-2(AP)

Date Collected: 06/06/18 00:00 Date Received: 06/08/18 09:17

Lab Sample ID: 400-154761-15

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.4		1.0	0.89	mg/L			06/25/18 23:51	1
Fluoride	<0.082		0.20	0.082	mg/L			06/25/18 23:51	1
Sulfate	0.78	J	1.0	0.70	mg/L			06/25/18 23:51	1
Method: 6020 - Metals (ICI	P/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:24	06/20/18 16:33	5
Barium	0.040		0.0025	0.00049	mg/L		06/20/18 08:24	06/20/18 16:33	5
Beryllium	< 0.00034		0.0025	0.00034	mg/L		06/20/18 08:24	06/20/18 16:33	5
Boron	0.35		0.050	0.021	mg/L		06/20/18 08:24	06/20/18 16:33	5
Calcium	1.8		0.25	0.13	mg/L		06/20/18 08:24	06/20/18 16:33	5
Chromium	<0.0011		0.0025	0.0011	mg/L		06/20/18 08:24	06/20/18 16:33	5
Cobalt	0.026		0.0025	0.00040	mg/L		06/20/18 08:24	06/20/18 16:33	5
Lead	< 0.00035		0.0013	0.00035	mg/L		06/20/18 08:24	06/20/18 16:33	5
Lithium	0.0019	J	0.0050	0.0011	mg/L		06/20/18 08:24	06/20/18 16:33	5
Selenium	<0.00024		0.0013	0.00024	mg/L		06/20/18 08:24	06/20/18 16:33	5
Thallium -	<0.000085		0.00050	0.000085	mg/L		06/20/18 08:24	06/20/18 16:33	5
Method: 7470A - Mercury	(CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 12:36	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids			5.0	3.4	mg/L			06/11/18 17:02	1

Method: 9315 -	Radium-226 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0787	U	0.135	0.135	1.00	0.239	pCi/L	06/19/18 08:49	07/11/18 19:06	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					06/19/18 08:49	07/11/18 19:06	1

Method: 9320 - Radium-228 (GFPC)													
	·	,	Count Uncert.	Total Uncert.									
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac			
Radium-228	-0.188	U	0.215	0.216	1.00	0.408	pCi/L	06/19/18 09:16	07/11/18 15:23	1			
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac			
Ba Carrier	103		40 - 110					06/19/18 09:16	07/11/18 15:23	1			
Y Carrier	93.8		40 - 110					06/19/18 09:16	07/11/18 15:23	1			

Method: Ra226_Ra2	28 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	-0.109	Ū	0.254	0.255	5.00	0.408	pCi/L		07/16/18 10:51	1

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Lab Sample ID: 400-154761-16 **Client Sample ID: EB-2(AP)** Date Collected: 06/06/18 17:25

Matrix: Water

Date Received: 06/08/18 09:17

Method: 300.0 - Anions, Ion Ch	_					_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Chloride	<0.89		1.0		•			06/26/18 03:19	1
Fluoride	<0.082		0.20	0.082	mg/L			06/26/18 03:19	1
Sulfate	<0.70		1.0	0.70	mg/L			06/26/18 03:19	1
Method: 6020 - Metals (ICP/MS)	- Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:24	06/20/18 16:38	5
Barium	<0.00049		0.0025	0.00049	mg/L		06/20/18 08:24	06/20/18 16:38	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		06/20/18 08:24	06/20/18 16:38	5
Boron	<0.021		0.050	0.021	mg/L		06/20/18 08:24	06/20/18 16:38	5
Calcium	<0.13		0.25	0.13	mg/L		06/20/18 08:24	06/20/18 16:38	5
Chromium	< 0.0011		0.0025	0.0011	mg/L		06/20/18 08:24	06/20/18 16:38	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		06/20/18 08:24	06/20/18 16:38	5
Lead	<0.00035		0.0013	0.00035	mg/L		06/20/18 08:24	06/20/18 16:38	5
Lithium	< 0.0011		0.0050	0.0011	mg/L		06/20/18 08:24	06/20/18 16:38	5
Selenium	<0.00024		0.0013	0.00024	mg/L		06/20/18 08:24	06/20/18 16:38	5
Thallium -	<0.000085		0.00050	0.000085	mg/L		06/20/18 08:24	06/20/18 16:38	5
- Method: 7470A - Mercury (CVA)	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 12:38	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	<3.4		5.0	3.4	mg/L			06/12/18 13:36	1

Method: 9315 - I	Radium-226 (GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0488	Ū	0.134	0.134	1.00	0.255	pCi/L	06/19/18 08:49	07/11/18 19:06	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	105		40 - 110					06/19/18 08:49	07/11/18 19:06	1

Method: 9320 - Ra	adium-228 (GFPC)	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.379	Ū	0.181	0.185	1.00	0.383	pCi/L	06/19/18 09:16	07/11/18 15:23	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	105		40 - 110					06/19/18 09:16	07/11/18 15:23	1
Y Carrier	95.7		40 - 110					06/19/18 09:16	07/11/18 15:23	1

Method: Ra226_Ra2	28 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	-0.330	Ū	0.225	0.228	5.00	0.383	pCi/L		07/16/18 10:51	1

Client Sample Results

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-9 Date Collected: 06/06/18 14:45

Lab Sample ID: 400-154761-17 **Matrix: Water**

Date Received: 06/08/18 09:17

Method: 300.0 - Anions, Ion Chromatography											
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Chloride	12	1.0	0.89	mg/L			06/26/18 02:10	1			
Fluoride	<0.082	0.20	0.082	mg/L			06/26/18 02:10	1			

Method: 300.0 - Anions, Ion Chromatography - DL											
	Analyte	Result	Qualifier	RL	MDL	Unit	D		Prepared	Analyzed	Dil Fac
	Sulfate	320		10	7.0	mg/L				06/26/18 19:03	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:24	06/20/18 16:42	5
Barium	0.069		0.0025	0.00049	mg/L		06/20/18 08:24	06/20/18 16:42	5
Beryllium	< 0.00034		0.0025	0.00034	mg/L		06/20/18 08:24	06/20/18 16:42	5
Boron	1.8		0.050	0.021	mg/L		06/20/18 08:24	06/20/18 16:42	5
Calcium	54		0.25	0.13	mg/L		06/20/18 08:24	06/20/18 16:42	5
Chromium	<0.0011		0.0025	0.0011	mg/L		06/20/18 08:24	06/20/18 16:42	5
Cobalt	0.0064		0.0025	0.00040	mg/L		06/20/18 08:24	06/20/18 16:42	5
Lead	< 0.00035		0.0013	0.00035	mg/L		06/20/18 08:24	06/20/18 16:42	5
Lithium	<0.0011		0.0050	0.0011	mg/L		06/20/18 08:24	06/20/18 16:42	5
Selenium	<0.00024		0.0013	0.00024	mg/L		06/20/18 08:24	06/20/18 16:42	5
Thallium	<0.000085		0.00050	0.000085	mg/L		06/20/18 08:24	06/20/18 16:42	5

Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 12:40	1
On the second of									

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	590		5.0	3.4	mg/L			06/12/18 13:36	1

Method: 9315 -	Radium-226	GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.00618	Ū	0.122	0.122	1.00	0.259	pCi/L	06/19/18 08:49	07/11/18 19:08	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.7		40 - 110					06/19/18 08:49	07/11/18 19:08	1

Method: 9320 - R	adium-228 ((GFPC)	0	T.4.1						
			Count Uncert.	Total Uncert.						
			Uncert.	Officert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.0333	U	0.391	0.391	1.00	0.711	pCi/L	06/19/18 09:16	07/11/18 22:31	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.7		40 - 110					06/19/18 09:16	07/11/18 22:31	
Y Carrier	97.6		40 - 110					06/19/18 09:16	07/11/18 22:31	1

Client Sample Results

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-9

Lab Sample ID: 400-154761-17

Matrix: Water

Date Collected: 06/06/18 14:45 Date Received: 06/08/18 09:17

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Count	Total
Uncert.	Uncert.

Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	-0.0272	П	0.410	0.410	5.00	0.711 nCi/l		07/16/18 10:51	1

+ 228

5

6

7

10

10

13

14

Pond

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-10

Date Collected: 06/06/18 15:50 Date Received: 06/08/18 09:17

Total Dissolved Solids

Lab Sample ID: 400-154761-18

. Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.6		1.0	0.89	mg/L			06/26/18 03:42	1
Fluoride	<0.082		0.20	0.082	mg/L			06/26/18 03:42	1
Sulfate	2.9		1.0	0.70	mg/L			06/26/18 03:42	1
Method: 6020 - Metals (IC	CP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:24	06/20/18 16:47	5
Barium	0.027		0.0025	0.00049	mg/L		06/20/18 08:24	06/20/18 16:47	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		06/20/18 08:24	06/20/18 16:47	5
Boron	0.070		0.050	0.021	mg/L		06/20/18 08:24	06/20/18 16:47	5
Calcium	1.2		0.25	0.13	mg/L		06/20/18 08:24	06/20/18 16:47	5
Chromium	<0.0011		0.0025	0.0011	mg/L		06/20/18 08:24	06/20/18 16:47	5
Cobalt	0.018		0.0025	0.00040	mg/L		06/20/18 08:24	06/20/18 16:47	5
Lead	<0.00035		0.0013	0.00035	mg/L		06/20/18 08:24	06/20/18 16:47	5
Lithium	<0.0011		0.0050	0.0011	mg/L		06/20/18 08:24	06/20/18 16:47	5
Selenium	<0.00024		0.0013	0.00024	mg/L		06/20/18 08:24	06/20/18 16:47	5
Thallium	<0.000085		0.00050	0.000085	mg/L		06/20/18 08:24	06/20/18 16:47	5
Method: 7470A - Mercury	(CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 12:42	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: 9315 - Ra	adium-226 (GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0311	U	0.121	0.121	1.00	0.241	pCi/L	06/19/18 08:49	07/11/18 19:07	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	106		40 - 110					06/19/18 08:49	07/11/18 19:07	1

5.0

38

3.4 mg/L

Method: 9320 - I	Radium-228 (GFPC)								
Analyte		Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analvzed	Dil Fac
Radium-228	0.0921		0.177	0.177	1.00	0.302			07/11/18 15:23	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	106		40 - 110					06/19/18 09:16	07/11/18 15:23	1
Y Carrier	97.2		40 - 110					06/19/18 09:16	07/11/18 15:23	1

Method: Ra226_Ra2	28 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.123	Ū	0.214	0.214	5.00	0.302	pCi/L		07/16/18 10:51	1

TestAmerica Pensacola

06/12/18 14:04

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-11

Date Collected: 06/06/18 14:35 Date Received: 06/08/18 09:17

Lab Sample ID: 400-154761-19

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.5		1.0	0.89	mg/L			06/26/18 04:05	1
Fluoride	<0.082		0.20	0.082	mg/L			06/26/18 04:05	1
Sulfate	0.89	J	1.0	0.70	mg/L			06/26/18 04:05	1
Method: 6020 - Metals (ICI	P/MS) - Total Re	ecoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:24	06/20/18 16:51	- 5
Barium	0.041		0.0025	0.00049	mg/L		06/20/18 08:24	06/20/18 16:51	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		06/20/18 08:24	06/20/18 16:51	5
Boron	0.37		0.050	0.021	mg/L		06/20/18 08:24	06/20/18 16:51	5
Calcium	1.8		0.25	0.13	mg/L		06/20/18 08:24	06/20/18 16:51	5
Chromium	<0.0011		0.0025	0.0011	mg/L		06/20/18 08:24	06/20/18 16:51	5
Cobalt	0.026		0.0025	0.00040	mg/L		06/20/18 08:24	06/20/18 16:51	5
Lead	< 0.00035		0.0013	0.00035	mg/L		06/20/18 08:24	06/20/18 16:51	5
Lithium	0.0017	J	0.0050	0.0011	mg/L		06/20/18 08:24	06/20/18 16:51	5
Selenium	<0.00024		0.0013	0.00024	mg/L		06/20/18 08:24	06/20/18 16:51	5
Thallium	<0.000085		0.00050	0.000085	mg/L		06/20/18 08:24	06/20/18 16:51	5
Method: 7470A - Mercury	(CVAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 12:44	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	40		5.0	3.4	mg/L			06/12/18 14:04	1

Method: 9315 - Ra	dium-226 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	-0.0328	U	0.116	0.116	1.00	0.261	pCi/L	06/19/18 08:49	07/11/18 19:07	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					06/19/18 08:49	07/11/18 19:07	1

Method: 9320 - R	Radium-228 (GFPC)								
	·	•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.186	U	0.178	0.179	1.00	0.287	pCi/L	06/19/18 09:16	07/11/18 15:23	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					06/19/18 09:16	07/11/18 15:23	1
Y Carrier	96.1		40 - 110					06/19/18 09:16	07/11/18 15:23	1

Method: Ra226_Ra2	28 - Con	nbined Rad	dium- <mark>226</mark> a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.153	Ū	0.212	0.213	5.00	0.287	pCi/L		07/16/18 10:51	1

TestAmerica Pensacola

2

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-12

Lab Sample ID: 400-154761-20

Date Collected: 06/06/18 16:25 Date Received: 06/08/18 09:17

atrix: Water	

Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Chloride		8.8		1.0	0.89	mg/L			06/26/18 04:28	
Fluoride		<0.082		0.20	0.082	mg/L			06/26/18 04:28	
Sulfate		41		1.0	0.70	mg/L			06/26/18 04:28	
Method: 6020 - Metal	s (ICP/N	IS) - Total Re	coverable)						
Analyte	() - 1 - 1 - 1		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Arsenic		<0.00046		0.0013	0.00046	mg/L		06/20/18 08:24	06/20/18 16:56	-
Barium		0.048		0.0025	0.00049	mg/L		06/20/18 08:24	06/20/18 16:56	
Beryllium		< 0.00034		0.0025	0.00034	mg/L		06/20/18 08:24	06/20/18 16:56	
Boron		<0.021		0.050	0.021	mg/L		06/20/18 08:24	06/20/18 16:56	
Calcium		22		0.25	0.13	mg/L		06/20/18 08:24	06/20/18 16:56	
Chromium		< 0.0011		0.0025	0.0011	mg/L		06/20/18 08:24	06/20/18 16:56	
Cobalt		0.0038		0.0025	0.00040	mg/L		06/20/18 08:24	06/20/18 16:56	
Lead		< 0.00035		0.0013	0.00035	mg/L		06/20/18 08:24	06/20/18 16:56	
Lithium		< 0.0011		0.0050	0.0011	mg/L		06/20/18 08:24	06/20/18 16:56	
Selenium		<0.00024		0.0013	0.00024	mg/L		06/20/18 08:24	06/20/18 16:56	
Thallium		<0.000085		0.00050	0.000085	mg/L		06/20/18 08:24	06/20/18 16:56	
Mercury General Chemistry Analyte		Result	Qualifier	RL	0.000070 MDL	Ü	D	Prepared	Analyzed	Dil F
Total Dissolved Solids		260		5.0	3.4	mg/L			06/12/18 13:36	
Method: 9315 - Radiu	um-226 (•	Count Uncert.	Total Uncert.						
							*4		Analyzed	
		Qualifier	(2σ+/-)	(2σ+/-)		IDC U		Prepared		DIL
	0.0406		(2σ+/-) 0.120	(2σ+/-) 0.120		/IDC U		Prepared 06/19/18 08:49	07/11/18 19:07	Dil F
Radium-226 Carrier	0.0406 %Yield		0.120					06/19/18 08:49 Prepared	07/11/18 19:07 <i>Analyzed</i>	
Radium-226 Carrier	0.0406	U	0.120					06/19/18 08:49	07/11/18 19:07 <i>Analyzed</i>	
Radium-226 Carrier Ba Carrier	0.0406 %Yield 106	Qualifier	0.120 Limits 40 - 110	0.120				06/19/18 08:49 Prepared	07/11/18 19:07 <i>Analyzed</i>	
Radium-226 Carrier Ba Carrier	0.0406 %Yield 106	Qualifier GFPC)	0.120 Limits 40 - 110 Count	0.120 Total				06/19/18 08:49 Prepared	07/11/18 19:07 <i>Analyzed</i>	
Radium-226 Carrier Ba Carrier	0.0406 %Yield 106	Qualifier GFPC)	0.120 Limits 40 - 110	0.120	1.00 0			06/19/18 08:49 Prepared	07/11/18 19:07 <i>Analyzed</i>	Dil F
Analyte Radium-226 Carrier Ba Carrier Method: 9320 - Radiu Analyte Radium-228	0.0406 %Yield 106 JIM-228 (Qualifier GFPC) Qualifier	0.120 Limits 40 - 110 Count	0.120 Total	1.00 0		Ci/L	06/19/18 08:49 Prepared 06/19/18 08:49 Prepared	07/11/18 19:07 <i>Analyzed</i>	Dil F

Method: Ra226_	_Ra228 -	Combined	Radium-226	and Radium-228	
			Count	Total	

Limits

40 - 110

40 - 110

%Yield Qualifier

106

97.2

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.0775	U	0.209	0.209	5.00	0.301	pCi/L		07/16/18 10:51	1

. 220

Carrier

Ba Carrier

Y Carrier

TestAmerica Pensacola

Analyzed

Prepared

06/19/18 09:16 07/11/18 15:23

06/19/18 09:16 07/11/18 15:23

Dil Fac

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-13 Date Collected: 06/07/18 09:15 Lab Sample ID: 400-154761-21

Matrix: Water

Date Received: 06/09/18 08:26

Carrier

Ba Carrier

Y Carrier

%Yield Qualifier

104

89.0

Limits

40 - 110

40 - 110

Analyte		Result	Qualifier	RL		Unit		D	Prepared	Analyzed	Dil Fa
Chloride		6.2		1.0	0.89	mg/L		_		06/26/18 05:37	
Fluoride		<0.082		0.20	0.082	mg/L				06/26/18 05:37	
Method: 300.0 - Anio	ns, lon (_									
Analyte			Qualifier	RL		Unit		D	Prepared	Analyzed	Dil F
Sulfate		69		5.0	3.5	mg/L				06/26/18 19:26	
Method: 6020 - Metal	s (ICP/N	•									
Analyte			Qualifier	RL		Unit		D	Prepared	Analyzed	Dil F
Arsenic		<0.00046		0.0013	0.00046	-			06/20/18 08:27		
Barium		0.032		0.0025	0.00049	-				06/20/18 17:36	
Beryllium		<0.00034		0.0025	0.00034	-				06/20/18 17:36	
Boron		0.45		0.050	0.021				06/20/18 08:27	06/20/18 17:36	
Calcium		15		0.25		mg/L				06/20/18 17:36	
Chromium		<0.0011		0.0025	0.0011					06/20/18 17:36	
Cobalt		0.0039		0.0025	0.00040	•			06/20/18 08:27	06/20/18 17:36	
Lead		<0.00035		0.0013	0.00035	mg/L			06/20/18 08:27	06/20/18 17:36	
Lithium		<0.0011		0.0050	0.0011					06/20/18 17:36	
Selenium		0.00064	JB	0.0013	0.00024	mg/L			06/20/18 08:27	06/20/18 17:36	
Thallium		< 0.000085		0.00050	0.000085	ma/l			06/20/18 08:27	06/20/18 17:36	
· · · · · · · · · · · · · · · · · · ·		<0.000003		0.00030	0.000000	g, <u>_</u>			00/20/10 00:2/		
Method: 7470A - Mer	cury (C\			0.00030	0.000000	g/L			00,20, 10 00.21		
	cury (C\	/AA)	Qualifier	0.00030 RL		Unit		D	Prepared	Analyzed	Dil F
Method: 7470A - Mer Analyte	cury (C\	/AA)	Qualifier			Unit		D		Analyzed	Dil F
Method: 7470A - Mer Analyte Mercury	cury (C\	/AA) Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil F
Method: 7470A - Mer Analyte Mercury General Chemistry	cury (C\	/AA) Result <0.000070	Qualifier Qualifier	RL 0.00020	MDL 0.000070	Unit		<u>D</u> _	Prepared	Analyzed	
Method: 7470A - Mer Analyte Mercury General Chemistry Analyte	cury (C\	/AA) Result <0.000070	<u> </u>	RL 0.00020	MDL 0.000070	Unit mg/L		_	Prepared 06/23/18 14:33	Analyzed 06/25/18 13:14	
Method: 7470A - Mer Analyte Mercury General Chemistry Analyte Total Dissolved Solids		/AA) Result <	<u> </u>	RL 0.00020	MDL 0.000070	Unit mg/L		_	Prepared 06/23/18 14:33	Analyzed 06/25/18 13:14 Analyzed	
: Method: 7470A - Mer		/AA) Result <	<u> </u>	RL 0.00020	MDL 0.000070	Unit mg/L		_	Prepared 06/23/18 14:33	Analyzed 06/25/18 13:14 Analyzed	
Method: 7470A - Mer Analyte Mercury General Chemistry Analyte Total Dissolved Solids		Result <0.000070 Result 190 GFPC)	Qualifier	RL 5.0	MDL 0.000070	Unit mg/L		_	Prepared 06/23/18 14:33	Analyzed 06/25/18 13:14 Analyzed	
Method: 7470A - Mer Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radiu	um-226 (Result <0.000070 Result 190 GFPC)	Qualifier	RL 0.00020 RL 5.0	MDL 0.000070 MDL 3.4	Unit mg/L	Jnit	_	Prepared 06/23/18 14:33	Analyzed 06/25/18 13:14 Analyzed	Dil F
Method: 7470A - Mer Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radiu	um-226 (Result	Qualifier Count Uncert.	RL 0.00020 RL 5.0 Total Uncert.	MDL 0.000070 MDL 3.4	Unit mg/L Unit mg/L		_	Prepared 06/23/18 14:33 Prepared Prepared	Analyzed 06/25/18 13:14 Analyzed 06/13/18 16:43	Dil F
Method: 7470A - Mer Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radiu Analyte Radium-226	Result 0.0347	Result	Qualifier Count Uncert. (2σ+/-)	RL 0.00020 RL 5.0 Total Uncert. (2σ+/-)	MDL 0.000070 MDL 3.4	Unit mg/L Unit mg/L		_	Prepared 06/23/18 14:33 Prepared Prepared	Analyzed 06/25/18 13:14 Analyzed 06/13/18 16:43 Analyzed	Dil F
Method: 7470A - Mer Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radiu Analyte Radium-226 Carrier	Result 0.0347	Result <0.000070 Result 190 GFPC) Qualifier U Qualifier	Qualifier Count Uncert. (2σ+/-) 0.113	RL 0.00020 RL 5.0 Total Uncert. (2σ+/-)	MDL 0.000070 MDL 3.4	Unit mg/L Unit mg/L		_	Prepared 06/23/18 14:33 Prepared Prepared 06/19/18 10:05 Prepared	Analyzed 06/25/18 13:14 Analyzed 06/13/18 16:43 Analyzed 07/12/18 14:56	Dil F
Method: 7470A - Mer Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radiu Analyte Radium-226 Carrier Ba Carrier	Result 0.0347 %Yield 104	Result Result 190 GFPC) Qualifier Qualifier	Qualifier Count Uncert. (2σ+/-) 0.113 Limits	RL 0.00020 RL 5.0 Total Uncert. (2σ+/-) 0.113	MDL 0.000070 MDL 3.4	Unit mg/L Unit mg/L		_	Prepared 06/23/18 14:33 Prepared Prepared 06/19/18 10:05 Prepared	Analyzed 06/25/18 13:14 Analyzed 06/13/18 16:43 Analyzed 07/12/18 14:56 Analyzed	Dil F
Method: 7470A - Mer Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radiu Analyte Radium-226 Carrier Ba Carrier	Result 0.0347 %Yield 104	Result Result 190 GFPC) Qualifier Qualifier	Qualifier Count Uncert. (2σ+/-) 0.113 Limits	RL 0.00020 RL 5.0 Total Uncert. (2σ+/-)	MDL 0.000070 MDL 3.4	Unit mg/L Unit mg/L		_	Prepared 06/23/18 14:33 Prepared Prepared 06/19/18 10:05 Prepared	Analyzed 06/25/18 13:14 Analyzed 06/13/18 16:43 Analyzed 07/12/18 14:56 Analyzed	Dil F
Method: 7470A - Mer Analyte Mercury General Chemistry Analyte Total Dissolved Solids	Result 0.0347 %Yield 104	Result Result 190 GFPC) Qualifier Qualifier GFPC)	Qualifier Count Uncert. (2σ+/-) 0.113 Limits 40 - 110	RL 0.00020 RL 5.0 Total Uncert. (2σ+/-) 0.113	MDL 0.000070 MDL 3.4	Unit mg/L Unit mg/L		_	Prepared 06/23/18 14:33 Prepared Prepared 06/19/18 10:05 Prepared	Analyzed 06/25/18 13:14 Analyzed 06/13/18 16:43 Analyzed 07/12/18 14:56 Analyzed	Dil F
Method: 7470A - Mer Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radiu Analyte Radium-226 Carrier Ba Carrier	Result 0.0347 %Yield 104	Result Result 190 GFPC) Qualifier Qualifier GFPC)	Qualifier Count Uncert. (2σ+/-) 0.113 Limits 40 - 110 Count	RL 0.00020 RL 5.0 Total Uncert. (2σ+/-) 0.113	MDL 3.4 RL 1 RL 1	Unit mg/L Unit mg/L	Jnit	_	Prepared 06/23/18 14:33 Prepared Prepared 06/19/18 10:05 Prepared	Analyzed 06/25/18 13:14 Analyzed 06/13/18 16:43 Analyzed 07/12/18 14:56 Analyzed	Dil F

Analyzed

Prepared

<u>06/19/18 10:53</u> <u>07/12/18 09:42</u>

06/19/18 10:53 07/12/18 09:42

Dil Fac

4

5

7

10

12

13

Client: Southern Company
Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-13 Lab Sample ID: 400-154761-21

Date Collected: 06/07/18 09:15
Date Received: 06/09/18 08:26

Matrix: Water

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228
--

_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.235	U	0.226	0.227	5.00	0.318	pCi/L		07/16/18 10:51	1

+ 228

7

8

10

11

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-14 Date Collected: 06/07/18 10:30

Lab Sample ID: 400-154761-22 **Matrix: Water**

Date Received: 06/09/18 08:26

Method: 300.0 - Anions, Ion Chromatography										
4	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	10		1.0	0.89	mg/L			06/26/18 06:00	1
L	Fluoride	<0.082		0.20	0.082	mg/L			06/26/18 06:00	1

Method: 300.0 - Anions, Ion Chromatography - DL									
	Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Sulfate	190	5.0	3.5	mg/L			06/26/18 20:12	5

Analyte	ls (ICP/MS) - Total Re Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:27	06/20/18 17:59	5
Barium	0.057		0.0025	0.00049	mg/L		06/20/18 08:27	06/20/18 17:59	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		06/20/18 08:27	06/20/18 17:59	5
Boron	1.6		0.050	0.021	mg/L		06/20/18 08:27	06/20/18 17:59	5
Calcium	44		0.25	0.13	mg/L		06/20/18 08:27	06/20/18 17:59	5
Chromium	<0.0011		0.0025	0.0011	mg/L		06/20/18 08:27	06/20/18 17:59	5
Cobalt	0.0025		0.0025	0.00040	mg/L		06/20/18 08:27	06/20/18 17:59	5
Lead	<0.00035		0.0013	0.00035	mg/L		06/20/18 08:27	06/20/18 17:59	5
Lithium	<0.0011		0.0050	0.0011	mg/L		06/20/18 08:27	06/20/18 17:59	5
Selenium	0.00084	JB	0.0013	0.00024	mg/L		06/20/18 08:27	06/20/18 17:59	5
Thallium	<0.000085		0.00050	0.000085	mg/L		06/20/18 08:27	06/20/18 17:59	5

Method: 7470A - Mercury (CVAA)											
	Analyte	Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
	Mercury	<0.000070		0.00020	0.000070	mg/L		_ C	06/23/18 14:33	06/25/18 13:16	1
	_										

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	340		5.0	3.4	mg/L			06/13/18 16:43	1

Method: 9315 -	Radium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0667	U	0.128	0.128	1.00	0.233	pCi/L	06/19/18 10:05	07/12/18 14:56	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					06/19/18 10:05	07/12/18 14:56	

Method: 9320 - I	Radium-228 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.144	U	0.267	0.267	1.00	0.451	pCi/L	06/19/18 10:53	07/12/18 09:46	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					06/19/18 10:53	07/12/18 09:46	1
Y Carrier	89.7		40 - 110					06/19/18 10:53	07/12/18 09:46	1

Client: Southern Company
Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-14

Lab Sample ID: 400-154761-22

Matrix: Water

Date Collected: 06/07/18 10:30 Date Received: 06/09/18 08:26

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Count	Total
Uncert.	Uncert.

Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.211 U	0.296	0.296	5.00	0.451 pCi/L		07/16/18 10:51	1

+ 228

5

9

4 4

12

13

Client: Southern Company Project/Site: CCR - Plant Scherer

Date Received: 06/09/18 08:26

Selenium

Thallium

TestAmerica Job ID: 400-154761-1

06/20/18 08:27 06/20/18 18:03

06/20/18 08:27 06/20/18 18:03

SDG: Ash Pond

Client Sample ID: SGWC-15 Lab Sample ID: 400-154761-23 Date Collected: 06/07/18 12:10

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9.3		1.0	0.89	mg/L			06/26/18 06:23	1
Fluoride	0.14	J	0.20	0.082	mg/L			06/26/18 06:23	1
Method: 300.0 - Anior	ns, Ion Chromatogra	phy - DL							
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	190		5.0	3.5	mg/L			06/26/18 20:35	5
Analyte	s (ICP/MS) - Total Re Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result					D	<u> </u>		Dil Fac
Analyte Arsenic	Result <0.00046		0.0013	0.00046	mg/L	D	06/20/18 08:27	06/20/18 18:03	5
Analyte Arsenic	Result			0.00046 0.00049	mg/L mg/L	D	<u> </u>		5
Analyte Arsenic	Result <0.00046	Qualifier	0.0013	0.00046	mg/L mg/L	<u>D</u>	06/20/18 08:27	06/20/18 18:03 06/20/18 18:03	
Analyte Arsenic Barium	Result <0.00046 0.035	Qualifier	0.0013 0.0025	0.00046 0.00049 0.00034	mg/L mg/L mg/L	<u>D</u>	06/20/18 08:27 06/20/18 08:27 06/20/18 08:27	06/20/18 18:03 06/20/18 18:03	5
Analyte Arsenic Barium Beryllium	Result <0.00046 0.035 0.00038	Qualifier	0.0013 0.0025 0.0025	0.00046 0.00049 0.00034 0.021	mg/L mg/L mg/L	<u>D</u>	06/20/18 08:27 06/20/18 08:27 06/20/18 08:27	06/20/18 18:03 06/20/18 18:03 06/20/18 18:03 06/20/18 18:03	5 5 5
Analyte Arsenic Barium Beryllium Boron	Result <0.00046 0.035 0.00038 1.7	Qualifier	0.0013 0.0025 0.0025 0.050	0.00046 0.00049 0.00034 0.021	mg/L mg/L mg/L mg/L mg/L	D	06/20/18 08:27 06/20/18 08:27 06/20/18 08:27 06/20/18 08:27	06/20/18 18:03 06/20/18 18:03 06/20/18 18:03 06/20/18 18:03 06/20/18 18:03	5 5 5 5
Analyte Arsenic Barium Beryllium Boron Calcium	Result <0.00046 0.035 0.00038 1.7 16	Qualifier	0.0013 0.0025 0.0025 0.050 0.25	0.00046 0.00049 0.00034 0.021 0.13	mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	06/20/18 08:27 06/20/18 08:27 06/20/18 08:27 06/20/18 08:27 06/20/18 08:27	06/20/18 18:03 06/20/18 18:03 06/20/18 18:03 06/20/18 18:03 06/20/18 18:03 06/20/18 18:03	5 5 5 5 5
Analyte Arsenic Barium Beryllium Boron Calcium Chromium	Result <0.00046 0.035 0.00038 1.7 16 0.032	Qualifier	0.0013 0.0025 0.0025 0.050 0.25 0.0025	0.00046 0.00049 0.00034 0.021 0.13 0.0011	mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	06/20/18 08:27 06/20/18 08:27 06/20/18 08:27 06/20/18 08:27 06/20/18 08:27 06/20/18 08:27	06/20/18 18:03 06/20/18 18:03 06/20/18 18:03 06/20/18 18:03 06/20/18 18:03 06/20/18 18:03 06/20/18 18:03	5 5 5 5 5 5

Method: 7470A - Mercury (CVA	(A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00013	J	0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 13:17	1
General Chemistry									

0.0013

0.00050

0.00024 mg/L

0.000085 mg/L

0.0014 B

<0.000085

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	310	5.0	3.4	mg/L			06/13/18 16:43	1
Г., .,								

Method: 9315 - Ra	adium-226 (GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.127	Ū	0.152	0.152	1.00	0.248	pCi/L	06/19/18 10:05	07/12/18 14:56	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.4		40 - 110					06/19/18 10:05	07/12/18 14:56	1

	Radium-228 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.514		0.240	0.245	1.00	0.350	pCi/L	06/19/18 10:53	07/12/18 09:46	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.4		40 - 110					06/19/18 10:53	07/12/18 09:46	1
Y Carrier	96.8		40 - 110					06/19/18 10:53	07/12/18 09:46	1

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-15 Lab Sample ID: 400-154761-23 Date Collected: 06/07/18 12:10

Matrix: Water

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Count	Total
Uncert.	Uncert.

Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.640	0.284	0.288	5.00	0.350 pCi/L		07/16/18 10:51	1

226 + 228

Date Received: 06/09/18 08:26

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-16

Date Collected: 06/07/18 14:00 Date Received: 06/09/18 08:26

Lab Sample ID: 400-154761-24

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.7		1.0	0.89	mg/L			06/26/18 06:46	1
Fluoride	<0.082		0.20	0.082	mg/L			06/26/18 06:46	1
Sulfate	25		1.0	0.70	mg/L			06/26/18 06:46	1
Method: 6020 - Metals (ICI	P/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:27	06/20/18 18:08	5
Barium	0.022		0.0025	0.00049	mg/L		06/20/18 08:27	06/20/18 18:08	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		06/20/18 08:27	06/20/18 18:08	5
Boron	0.59		0.050	0.021	mg/L		06/20/18 08:27	06/20/18 18:08	5
Calcium	0.84		0.25	0.13	mg/L		06/20/18 08:27	06/20/18 18:08	5
Chromium	0.010		0.0025	0.0011	mg/L		06/20/18 08:27	06/20/18 18:08	5
Cobalt	0.0037		0.0025	0.00040	mg/L		06/20/18 08:27	06/20/18 18:08	
Lead	<0.00035		0.0013	0.00035	mg/L		06/20/18 08:27	06/20/18 18:08	5
Lithium	<0.0011		0.0050	0.0011	mg/L		06/20/18 08:27	06/20/18 18:08	5
Selenium	0.0013	В	0.0013	0.00024	mg/L		06/20/18 08:27	06/20/18 18:08	
Thallium	<0.000085		0.00050	0.000085	mg/L		06/20/18 08:27	06/20/18 18:08	5
Method: 7470A - Mercury	(CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 13:19	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	74		5.0	3.4	mg/L			06/13/18 16:43	1

Method: 9315 - Rad	dium-226 ((GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0533	U	0.120	0.120	1.00	0.224	pCi/L	06/19/18 10:05	07/12/18 14:55	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					06/19/18 10:05	07/12/18 14:55	1

Method: 9320 - R	adium-228 (GFPC)								
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.229	U	0.233	0.234	1.00	0.380	pCi/L	06/19/18 10:53	07/12/18 09:40	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					06/19/18 10:53	07/12/18 09:40	1
Y Carrier	87.5		40 - 110					06/19/18 10:53	07/12/18 09:40	1

Method: Ra226_Ra2	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.283	Ū	0.262	0.263	5.00	0.380	pCi/L		07/16/18 10:51	1

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-17 Date Collected: 06/07/18 15:00 Lab Sample ID: 400-154761-25 Matrix: Water

Date Received: 06/09/18 08:26

Method: 300.0 - Anio Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.0		1.0	0.89	mg/L			06/26/18 07:08	1
Fluoride	<0.082		0.20	0.082	mg/L			06/26/18 07:08	1
- Method: 300.0 - Anio	ons, Ion Chromatogra	phy - DL							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	170		5.0	3.5	mg/L			06/26/18 20:58	5
- Method: 6020 - Metal	ls (ICP/MS) - Total Re	ecoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:27	06/20/18 18:35	5
Barium	0.020		0.0025	0.00049	mg/L		06/20/18 08:27	06/20/18 18:35	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		06/20/18 08:27	06/20/18 18:35	5
Boron	0.35		0.050	0.021	mg/L		06/20/18 08:27	06/20/18 18:35	5
Calcium	49		0.25	0.13	mg/L		06/20/18 08:27	06/20/18 18:35	5
Chromium	0.0083		0.0025	0.0011	mg/L		06/20/18 08:27	06/20/18 18:35	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		06/20/18 08:27	06/20/18 18:35	5
Lead	<0.00035		0.0013	0.00035	mg/L		06/20/18 08:27	06/20/18 18:35	5
Lithium	<0.0011		0.0050	0.0011	mg/L		06/20/18 08:27	06/20/18 18:35	5
Selenium	0.00064	JB	0.0013	0.00024	mg/L		06/20/18 08:27	06/20/18 18:35	5
Thallium	<0.000085		0.00050	0.000085	mg/L		06/20/18 08:27	06/20/18 18:35	5
- Method: 7470A - Mer	cury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00011	J	0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 13:21	1

Mercury	0.00011	J	0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 13:21	1	
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total Dissolved Solids	360		5.0	3.4	mg/L			06/13/18 16:43	1	

Method: 9315 -	Radium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.00558	U	0.103	0.103	1.00	0.222	pCi/L	06/19/18 10:05	07/12/18 14:55	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					06/19/18 10:05	07/12/18 14:55	1

Method: 9320 - F	Radium-228 ((GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.166	U	0.227	0.227	1.00	0.378	pCi/L	06/19/18 10:53	07/12/18 09:40	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					06/19/18 10:53	07/12/18 09:40	1
Y Carrier	84.1		40 - 110					06/19/18 10:53	07/12/18 09:40	1

3

6

7

9

11

12

11

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-17

Lab Sample ID: 400-154761-25

Matrix: Water

Date Collected: 06/07/18 15:00 Date Received: 06/09/18 08:26

Method: Ra226_	Ra228 - Combined Radium-226 and Radium-228
----------------	--

Count	Total
Uncert.	Uncert.

Analyte	Result Quali	fier (2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.172 U	0.249	0.249	5.00	0.378 pCi/L		07/16/18 10:51	1

+ 228

5

8

9

11

12

2

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-20 Date Collected: 06/07/18 15:25 Lab Sample ID: 400-154761-26 Matrix: Water

Date Received: 06/09/18 08:26

ared Analyzed	Dil Fac
06/26/18 07:31	1
06/26/18 07:31	1

Method: 300.0 - Anions, Ion Ch	romatography - DL							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	210	5.0	3.5	mg/L			06/26/18 22:06	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:27	06/20/18 18:39	5
Barium	0.029		0.0025	0.00049	mg/L		06/20/18 08:27	06/20/18 18:39	5
Beryllium	0.00086	J	0.0025	0.00034	mg/L		06/20/18 08:27	06/20/18 18:39	5
Calcium	11		0.25	0.13	mg/L		06/20/18 08:27	06/20/18 18:39	5
Chromium	<0.0011		0.0025	0.0011	mg/L		06/20/18 08:27	06/20/18 18:39	5
Cobalt	0.21		0.0025	0.00040	mg/L		06/20/18 08:27	06/20/18 18:39	5
Lead	<0.00035		0.0013	0.00035	mg/L		06/20/18 08:27	06/20/18 18:39	5
Lithium	0.0038	J	0.0050	0.0011	mg/L		06/20/18 08:27	06/20/18 18:39	5
Selenium	0.00066	JB	0.0013	0.00024	mg/L		06/20/18 08:27	06/20/18 18:39	5
Thallium	0.00014	J	0.00050	0.000085	mg/L		06/20/18 08:27	06/20/18 18:39	5

Method: 6020 - Metals (ICP/MS	i) - Total Recoverable -	DL						
Analyte	Result Qualifier	RL	MDL (Unit	D	Prepared	Analyzed	Dil Fac
Boron	2.1	0.25	0.11 r	mg/L		06/20/18 08:27	06/20/18 18:44	25

Method: 7470A - Mercury (CVAA) Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000082	J	0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 13:32	1
General Chemistry									

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	320	5.0	3.4 mg/L			06/13/18 16:43	1

Method: 9315 - Ra	adium-226 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.192	U	0.153	0.154	1.00	0.209	pCi/L	06/19/18 10:05	07/12/18 14:55	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					06/19/18 10:05	07/12/18 14:55	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0429	U	0.267	0.267	1.00	0.466	pCi/L	06/19/18 10:53	07/12/18 09:40	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					06/19/18 10:53	07/12/18 09:40	1
Y Carrier	82.6		40 - 110					06/19/18 10:53	07/12/18 09:40	1

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-20

Lab Sample ID: 400-154761-26

Matrix: Water

Date Collected: 06/07/18 15:25

Date Received: 06/09/18 08:26

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Count	Total
Uncert.	Uncert.

Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.235 U	0.308	0.308	5.00	0.466 pCi/L		07/16/18 10:51	1

+ 228

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-21 Date Collected: 06/07/18 14:10

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 400-154761-27

. Matrix: Water

Date	Received:	06/09/18	08:26

Analyte

Carrier

Ba Carrier

Y Carrier

Radium-228

Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride		8.6		1.0	0.89	mg/L			06/26/18 08:17	
Fluoride		<0.082		0.20	0.082	mg/L			06/26/18 08:17	
Method: 300.0 - Anio	ns, lon (Chromatogra	aphy - DL							
Analyte	•		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Sulfate		79		5.0	3.5	mg/L			06/26/18 22:29	
Method: 6020 - Metal	s (ICP/N	IS) - Total R	ecoverab	e						
Analyte		•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Arsenic		<0.00046		0.0013	0.00046	mg/L		06/20/18 08:27	06/20/18 18:48	
Barium		0.092		0.0025	0.00049	mg/L		06/20/18 08:27	06/20/18 18:48	
Beryllium		< 0.00034		0.0025	0.00034	mg/L		06/20/18 08:27	06/20/18 18:48	
Boron		1.4		0.050	0.021	mg/L		06/20/18 08:27	06/20/18 18:48	
Calcium		29		0.25	0.13	mg/L		06/20/18 08:27	06/20/18 18:48	
Chromium		<0.0011		0.0025	0.0011	mg/L		06/20/18 08:27	06/20/18 18:48	
Cobalt		<0.00040		0.0025	0.00040	mg/L		06/20/18 08:27	06/20/18 18:48	
Lead		<0.00035		0.0013	0.00035	mg/L		06/20/18 08:27	06/20/18 18:48	
Lithium		0.0013	J	0.0050	0.0011	mg/L		06/20/18 08:27	06/20/18 18:48	
Selenium		<0.00024		0.0013	0.00024	mg/L		06/20/18 08:27	06/20/18 18:48	
Thallium		<0.000085		0.00050	0.000085	mg/L		06/20/18 08:27	06/20/18 18:48	
Method: 7470A - Mer	curv (C\	/AA)								
Analyte	 (•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury		<0.000070		0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 13:34	
General Chemistry										
Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Total Dissolved Solids		260		5.0	3.4	mg/L			06/13/18 18:25	
Method: 9315 - Radiu	ım-226 (GEPC)								
mothodi oo io i kaait	220 (3. 1 3)	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC Unit		Prepared	Analyzed	Dil F
Radium-226	0.166	U	0.147	0.148	1.00 0).212 pCi/L		06/19/18 10:05	07/12/18 14:55	
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil F
	103		40 - 110					06/19/18 10:05		

Analyzed

Analyzed

Total

0.219

RL

1.00

MDC Unit

0.330 pCi/L

Prepared

Prepared

06/19/18 10:53 07/12/18 09:41

06/19/18 10:53 07/12/18 09:41

06/19/18 10:53 07/12/18 09:41

Uncert. (2σ+/-)

Count Uncert.

(2σ+/-)

0.217

Limits

40 - 110

40 - 110

Result Qualifier

%Yield Qualifier

0.348

103

86.7

Dil Fac

Dil Fac

Client: Southern Company
Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-21

Lab Sample ID: 400-154761-27

Matrix: Water

Date Collected: 06/07/18 14:10 Date Received: 06/09/18 08:26

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Count	Total
Uncert.	Uncert.

Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.514	0.262	0.264	5.00	0.330 pCi/L		07/16/18 10:51	1

226 + 228

5

_

_

9

10

12

13

2

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-22

Date Collected: 06/07/18 10:25 Date Received: 06/09/18 08:26

Method: 9320 - Radium-228 (GFPC)

Result Qualifier

%Yield Qualifier

0.169 U

103

93.1

Analyte

Carrier

Ba Carrier

Y Carrier

Radium-228

Lab Sample ID: 400-154761-28

Matrix: Water

Analyte		Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Chloride		10		1.0	0.89	mg/L			06/26/18 08:40	
Fluoride		<0.082		0.20	0.082	mg/L			06/26/18 08:40	
Method: 300.0 - Anio	ns. Ion (Chromatogra	aphy - DL							
Analyte	-, -		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Sulfate		94		5.0	3.5	mg/L			06/26/18 22:52	
Method: 6020 - Metal	s (ICP/N	IS) - Total Re	ecoverab	le						
Analyte	•	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic		<0.00046		0.0013	0.00046	mg/L		06/20/18 08:27	06/20/18 18:53	
Barium		0.084		0.0025	0.00049	mg/L		06/20/18 08:27	06/20/18 18:53	
Beryllium		< 0.00034		0.0025	0.00034	mg/L		06/20/18 08:27	06/20/18 18:53	
Boron		0.41		0.050	0.021	mg/L		06/20/18 08:27	06/20/18 18:53	
Calcium		26		0.25	0.13	mg/L		06/20/18 08:27	06/20/18 18:53	
Chromium		<0.0011		0.0025	0.0011	mg/L		06/20/18 08:27	06/20/18 18:53	
Cobalt		0.0022	J	0.0025	0.00040	mg/L		06/20/18 08:27	06/20/18 18:53	
Lead		<0.00035		0.0013	0.00035	mg/L		06/20/18 08:27	06/20/18 18:53	
Lithium		<0.0011		0.0050	0.0011	mg/L		06/20/18 08:27	06/20/18 18:53	
Selenium		<0.00024		0.0013	0.00024	mg/L		06/20/18 08:27	06/20/18 18:53	
Thallium		<0.000085		0.00050	0.000085	mg/L		06/20/18 08:27	06/20/18 18:53	
Method: 7470A - Mer	cury (C\	/AA)								
Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury		<0.000070		0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 13:36	
General Chemistry										
Analyte		Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Total Dissolved Solids		210		5.0	3.4	mg/L			06/13/18 16:43	
Method: 9315 - Radiu	ım-226 (GFPC)								
	·	•	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC Unit		Prepared	Analyzed	Dil Fa
Radium-226	0.0531	U —	0.0990	0.0991	1.00 0	.182 pCi/L		06/19/18 10:05	07/12/18 14:55	
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Ba Carrier	103		40 - 110					00/40/40 40 05	07/12/18 14:55	

Analyzed

Analyzed

Total

Uncert.

 $(2\sigma + / -)$

0.194

RL

1.00

MDC Unit

0.318 pCi/L

Prepared

Prepared

06/19/18 10:53 07/12/18 09:41

06/19/18 10:53 07/12/18 09:41

06/19/18 10:53 07/12/18 09:41

Count Uncert.

 $(2\sigma + / -)$

0.193

Limits

40 - 110

40 - 110

Dil Fac

Dil Fac

Client: Southern Company
Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-22

Date Collected: 06/07/18 10:25 Date Received: 06/09/18 08:26 Lab Sample ID: 400-154761-28

Matrix: Water

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Count	Total
Uncert.	Uncert.

Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0 222 U	0.217	0.218	5.00	0.318 pCi/l		07/16/18 10:51	

+ 228

5

7

8

3

11

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Lab Sample ID: 400-154761-29

Client Sample ID: SGWC-23
Date Collected: 06/07/18 09:15
Date Received: 06/09/18 08:26

Method: 300.0 - Anions, Ion Chromatography									
Analyte	Result Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac	
Chloride	10	1.0	0.89 m	ng/L			06/26/18 09:03	1	
Fluoride	<0.082	0.20	0.082 m	ng/L			06/26/18 09:03	1	

Method: 300.0 - Anions, Ion C	hromatography - DL							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	100	5.0	3.5	mg/L			06/26/18 23:15	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:27	06/20/18 18:57	5
Barium	0.082		0.0025	0.00049	mg/L		06/20/18 08:27	06/20/18 18:57	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		06/20/18 08:27	06/20/18 18:57	5
Boron	0.71		0.050	0.021	mg/L		06/20/18 08:27	06/20/18 18:57	5
Calcium	25		0.25	0.13	mg/L		06/20/18 08:27	06/20/18 18:57	5
Chromium	<0.0011		0.0025	0.0011	mg/L		06/20/18 08:27	06/20/18 18:57	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		06/20/18 08:27	06/20/18 18:57	5
Lead	<0.00035		0.0013	0.00035	mg/L		06/20/18 08:27	06/20/18 18:57	5
Lithium	0.0027	J	0.0050	0.0011	mg/L		06/20/18 08:27	06/20/18 18:57	5
Selenium	<0.00024		0.0013	0.00024	mg/L		06/20/18 08:27	06/20/18 18:57	5
Thallium	<0.00085		0.00050	0.000085	mg/L		06/20/18 08:27	06/20/18 18:57	5

Method: 7470A - Mercury (CVAA) Analyte Mercury		Qualifier	RL 0.00020	MDL 0.000070		<u>D</u>	Prepared 06/23/18 14:33	Analyzed 06/25/18 13:38	Dil Fac	
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	

Analyte	Result	Qualifier		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	220			5.0	3.4	mg/L			06/13/18 12:30	1
Method: 9315 - Radium-226 (GFPC)										
		Count	Total							
		Uncert.	Uncert.							

Analyte Radium-226	Result Qualifier 0.377	(2σ+/-) 0.195	(2σ+/-) 0.197	1.00 -	MDC Unit 0.212 pCi/L	Prepared 06/19/18 10:05	Analyzed 07/12/18 14:55	Dil Fac
Carrier	%Yield Qualifier	Limits				Prepared	Analyzed	Dil Fac
Ba Carrier	105	40 - 110				06/19/18 10:05	07/12/18 14:55	

Method: 9320 - R	Radium-228 (GFPC)								
	·		Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.263	U	0.198	0.200	1.00	0.310	pCi/L	06/19/18 10:53	07/12/18 09:41	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	105		40 - 110					06/19/18 10:53	07/12/18 09:41	1
Y Carrier	89.7		40 - 110					06/19/18 10:53	07/12/18 09:41	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-23 Lab Sample ID: 400-154761-29

Matrix: Water

Date Collected: 06/07/18 09:15 Date Received: 06/09/18 08:26

Method: Ra226_Ra	228 - Con	nbined Ra	dium-226 a	ınd Radiui	m-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.640		0.278	0.281	5.00	0.310	pCi/L		07/16/18 10:51	1

nd

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1 SDG: Ash Pond

SDG: Ash Pond

Client Sample ID: FB-3(AP)
Date Collected: 06/07/18 10:20

Method: 300.0 - Anions, Ion Chromatography

<0.00035

< 0.0011

< 0.00024

<0.000085

Date Received: 06/09/18 08:26

Lead

Lithium

Selenium

Thallium

Lab Sample ID: 400-154761-30

06/20/18 08:27 06/20/18 19:06

06/20/18 08:27 06/20/18 19:06

06/20/18 08:27 06/20/18 19:06

06/20/18 08:27 06/20/18 19:06

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89		1.0	0.89	mg/L			06/26/18 10:12	1
Fluoride	<0.082		0.20	0.082	mg/L			06/26/18 10:12	1
Sulfate	<0.70		1.0	0.70	mg/L			06/26/18 10:12	1
- Method: 6020 - Meta	ls (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:27	06/20/18 19:06	5
Barium	<0.00049		0.0025	0.00049	mg/L		06/20/18 08:27	06/20/18 19:06	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		06/20/18 08:27	06/20/18 19:06	5
Boron	<0.021		0.050	0.021	mg/L		06/20/18 08:27	06/20/18 19:06	5
Calcium	<0.13		0.25	0.13	mg/L		06/20/18 08:27	06/20/18 19:06	5
Chromium	<0.0011		0.0025	0.0011	mg/L		06/20/18 08:27	06/20/18 19:06	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		06/20/18 08:27	06/20/18 19:06	5

Method: 7470A - Mercury (CVA	AA)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070	0.00020	0.000070 mg/L		06/23/18 14:33	06/25/18 13:40	1

0.0013

0.0050

0.0013

0.00050

0.00035 mg/L

0.0011 mg/L

0.00024 mg/L

0.000085 mg/L

General Chemistry Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	·				<u> </u>		
Total Dissolved Solids	<3.4	5.0	3.4 mg/L			06/13/18 12:30	1

Method: 9315 - Ra	dium-226 (GFPC)								
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0743	U	0.127	0.127	1.00	0.225	pCi/L	06/19/18 10:05	07/12/18 14:55	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	106		40 - 110					06/19/18 10:05	07/12/18 14:55	1

Method: 9320 - Ra	dium-228 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.0229	U	0.187	0.187	1.00	0.340	pCi/L	06/19/18 10:53	07/12/18 09:41	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	106		40 - 110					06/19/18 10:53	07/12/18 09:41	1
Y Carrier	90.1		40 - 110					06/19/18 10:53	07/12/18 09:41	1

Method: Ra226_Ra2	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.0514	Ū	0.226	0.226	5.00	0.340	pCi/L		07/16/18 10:51	1

TestAmerica Pensacola

7/16/2018

3

5

7

9

10

12

5 5

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: FD-3(AP)
Date Collected: 06/07/18 00:00

Date Received: 06/09/18 08:26

Analyte

Carrier

Ba Carrier

Y Carrier

Radium-228

Lab Sample ID: 400-154761-31

Matrix: Water

Method: 300.0 - Anio Analyte	ns, ion (aphy Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Chloride		6.2	Qualifier	1.0		mg/L		Frepareu	06/26/18 10:35	- ОП Га
Fluoride		<0.082		0.20	0.082	-			06/26/18 10:35	
		<0.062		0.20	0.062	mg/L			06/26/16 10.35	
Method: 300.0 - Anio	ns, lon (••••		_			5
Analyte			Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fa
Sulfate		70		5.0	3.5	mg/L			06/26/18 23:38	
Method: 6020 - Metal	s (ICP/N									
Analyte			Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Arsenic		<0.00046		0.0013	0.00046	-		06/20/18 08:27	06/20/18 19:02	
Barium		0.032		0.0025	0.00049	mg/L		06/20/18 08:27	06/20/18 19:02	
Beryllium		< 0.00034		0.0025	0.00034	J		06/20/18 08:27	06/20/18 19:02	
Boron		0.45		0.050	0.021	mg/L		06/20/18 08:27	06/20/18 19:02	
Calcium		15		0.25	0.13	mg/L		06/20/18 08:27	06/20/18 19:02	
Chromium		<0.0011		0.0025	0.0011	mg/L		06/20/18 08:27	06/20/18 19:02	
Cobalt		0.0040		0.0025	0.00040	mg/L		06/20/18 08:27	06/20/18 19:02	
Lead		< 0.00035		0.0013	0.00035	mg/L		06/20/18 08:27	06/20/18 19:02	
Lithium		<0.0011		0.0050	0.0011	mg/L		06/20/18 08:27	06/20/18 19:02	
Selenium		<0.00024		0.0013	0.00024	mg/L		06/20/18 08:27	06/20/18 19:02	
Thallium		<0.000085		0.00050	0.000085	mg/L		06/20/18 08:27	06/20/18 19:02	
_ Method: 7470A - Mer	cury (C)	/AA)								
Analyte	ou., (o	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury		<0.000070		0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 13:42	
General Chemistry										
Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total Dissolved Solids		12		5.0	3.4	mg/L			06/12/18 13:36	
- Method: 9315 - Radiu	ım-226 ((GFPC)								
		(0110)	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC Unit		Prepared	Analyzed	Dil Fa
Radium-226	0.0296		0.115	0.115		0.229 pCi/L			07/12/18 14:56	
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Ba Carrier	107		40 - 110					•	07/12/18 14:56	
-										
Method: 9320 - Radiu	ım-228 ((GFPC)	Count	Total						
			Sount	iolai						

Analyzed

Analyzed

Uncert.

(2σ+/-)

Limits

40 - 110

40 - 110

0.180

Result Qualifier

%Yield Qualifier

0.0838 U

107

90.1

Uncert.

 $(2\sigma + / -)$

0.180

RL

1.00

MDC Unit

0.309 pCi/L

Prepared

Prepared

06/19/18 10:53 07/12/18 09:41

06/19/18 10:53 07/12/18 09:41

06/19/18 10:53 07/12/18 09:41

Dil Fac

Dil Fac

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: FD-3(AP)

Lab Sample ID: 400-154761-31 Date Collected: 06/07/18 00:00

Matrix: Water

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Count	Total
Uncert.	Uncert.

Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.113 U	0.214	0.214	5.00	0.309 pCi/L	_	07/16/18 10:51	1

+ 228

Date Received: 06/09/18 08:26

2

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: EB-3(AP)

Date Collected: 06/07/18 16:00 Date Received: 06/09/18 08:26 Lab Sample ID: 400-154761-32

. Matrix: Water

Method: 300.0 - Anions, Ion Ch						_	_		
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Chloride	<0.89		1.0	0.89	mg/L			06/26/18 10:58	1
Fluoride	<0.082		0.20	0.082	mg/L			06/26/18 10:58	1
Sulfate	<0.70		1.0	0.70	mg/L			06/26/18 10:58	1
Method: 6020 - Metals (ICP/MS)	- Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:27	06/20/18 19:11	- 5
Barium	<0.00049		0.0025	0.00049	mg/L		06/20/18 08:27	06/20/18 19:11	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		06/20/18 08:27	06/20/18 19:11	5
Boron	<0.021		0.050	0.021	mg/L		06/20/18 08:27	06/20/18 19:11	5
Calcium	<0.13		0.25	0.13	mg/L		06/20/18 08:27	06/20/18 19:11	5
Chromium	< 0.0011		0.0025	0.0011	mg/L		06/20/18 08:27	06/20/18 19:11	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		06/20/18 08:27	06/20/18 19:11	5
Lead	<0.00035		0.0013	0.00035	mg/L		06/20/18 08:27	06/20/18 19:11	5
Lithium	< 0.0011		0.0050	0.0011	mg/L		06/20/18 08:27	06/20/18 19:11	5
Selenium	<0.00024		0.0013	0.00024	mg/L		06/20/18 08:27	06/20/18 19:11	5
Thallium -	<0.000085		0.00050	0.000085	mg/L		06/20/18 08:27	06/20/18 19:11	5
- Method: 7470A - Mercury (CVA)	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		06/23/18 14:33	06/25/18 13:43	1
- General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	<3.4		5.0	3.4	mg/L			06/13/18 12:30	1

Method: 9315 - Rad	dium-226 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.00343	U	0.119	0.119	1.00	0.246	pCi/L	06/19/18 10:05	07/12/18 14:56	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	107		40 - 110					06/19/18 10:05	07/12/18 14:56	1

Method: 9320 - R	adium-228 (GFPC)								
	·	•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.223	U	0.188	0.189	1.00	0.299	pCi/L	06/19/18 10:53	07/12/18 09:41	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	107		40 - 110					06/19/18 10:53	07/12/18 09:41	1
Y Carrier	94.2		40 - 110					06/19/18 10:53	07/12/18 09:41	1

Method: Ra226_Ra2	28 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.226	Ū	0.222	0.223	5.00	0.299	pCi/L		07/16/18 10:51	1

TestAmerica Pensacola

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-18

Date Collected: 06/08/18 09:20 Date Received: 06/09/18 08:26

Lab Sample ID: 400-154761-33

Analyte	-,	Chromatogra Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fa
Chloride		9.0		1.0	0.89	mg/L		_		06/26/18 11:20	
Fluoride		<0.082		0.20	0.082	-				06/26/18 11:20	
Method: 300.0 - Anio	ons, Ion (Chromatogra	phy - DL								
Analyte	,	_	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fa
Sulfate		870		20	14	mg/L		_		06/28/18 04:54	2
Method: 6020 - Meta	als (ICP/N	IS) - Total Re	coverabl	e							
Analyte	•	•	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fa
Arsenic		0.0020		0.0013	0.00046	mg/L		_	06/20/18 08:27	06/20/18 19:15	
Barium		0.032		0.0025	0.00049	mg/L			06/20/18 08:27	06/20/18 19:15	
Beryllium		0.00035	J	0.0025	0.00034	mg/L			06/20/18 08:27	06/20/18 19:15	
Calcium		90		0.25	0.13	mg/L			06/20/18 08:27	06/20/18 19:15	
Chromium		0.0086		0.0025	0.0011	mg/L			06/20/18 08:27	06/20/18 19:15	
Cobalt		0.19		0.0025	0.00040	mg/L			06/20/18 08:27	06/20/18 19:15	
Lead		<0.00035		0.0013	0.00035	mg/L			06/20/18 08:27	06/20/18 19:15	
Lithium		0.0042	J	0.0050	0.0011	mg/L			06/20/18 08:27	06/20/18 19:15	
Selenium		0.014	В	0.0013	0.00024	mg/L			06/20/18 08:27	06/20/18 19:15	
Thallium		0.00019	J	0.00050	0.000085	mg/L			06/20/18 08:27	06/20/18 19:15	
Method: 6020 - Meta	als (ICP/N				MDI	11!4		_	Dunnanad	A	D:: F-
Analyte		Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fa
Boron Method: 7470A - Me	rcury (C\	•		0.25		mg/L		_	06/20/18 08:27	06/20/18 19:42	
Boron Method: 7470A - Me Analyte Mercury	rcury (C\	/AA)	Qualifier J	0.25 RL 0.00020		Unit		D	Prepared	06/20/18 19:42 Analyzed 06/25/18 13:45	Dil Fa
Method: 7470A - Me Analyte Mercury	rcury (C\	/AA) Result		RL	MDL	Unit		_ D _	Prepared	Analyzed	Dil Fa
Method: 7470A - Me Analyte Mercury General Chemistry	rcury (C\	/AA) Result 0.00014	J	RL 0.00020	MDL 0.000070	Unit mg/L		_	Prepared 06/23/18 14:33	Analyzed 06/25/18 13:45	Dil Fa
Method: 7470A - Me Analyte Mercury General Chemistry Analyte	rcury (C\	(AA) Result 0.00014		RL	MDL 0.000070	Unit mg/L			Prepared	Analyzed	Dil Fa
Method: 7470A - Me Analyte Mercury General Chemistry Analyte Total Dissolved Solids		Result 0.00014 Result 820	J	RL 0.00020	MDL 0.000070	Unit mg/L		_	Prepared 06/23/18 14:33	Analyzed 06/25/18 13:45 Analyzed	Dil Fa
Method: 7470A - Me Analyte Mercury General Chemistry Analyte Total Dissolved Solids		Result 0.00014 Result 820	J Qualifier	RL 10	MDL 0.000070	Unit mg/L		_	Prepared 06/23/18 14:33	Analyzed 06/25/18 13:45 Analyzed	Dil Fa
Method: 7470A - Me Analyte Mercury General Chemistry Analyte Total Dissolved Solids		Result 0.00014 Result 820	J Qualifier Count	RL 0.00020 RL 10	MDL 0.000070	Unit mg/L		_	Prepared 06/23/18 14:33	Analyzed 06/25/18 13:45 Analyzed	Dil Fa
Method: 7470A - Me Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radi	ium-226 (Result 0.00014 Result 820 GFPC)	Qualifier Count Uncert.	RL 0.00020 RL 10 Total Uncert.	MDL 0.000070 MDL 6.8	Unit mg/L Unit mg/L		_	Prepared 06/23/18 14:33 Prepared	Analyzed 06/25/18 13:45 Analyzed 06/13/18 18:25	Dil Fa
Method: 7470A - Me Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radi	ium-226 (Result	Result 0.00014 Result 820 GFPC)	Qualifier Count Uncert. (2σ+/-)	RL 0.00020 RL 10 Total Uncert. (2σ+/-)	MDL 0.000070 MDL 6.8	Unit mg/L Unit mg/L	Unit	_	Prepared O6/23/18 14:33 Prepared Prepared	Analyzed 06/25/18 13:45 Analyzed 06/13/18 18:25	Dil Fa
Method: 7470A - Me Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radi	ium-226 (Result 0.00014 Result 820 GFPC)	Qualifier Count Uncert.	RL 0.00020 RL 10 Total Uncert.	MDL 0.000070 MDL 6.8	Unit mg/L Unit mg/L	Unit	_	Prepared O6/23/18 14:33 Prepared Prepared	Analyzed 06/25/18 13:45 Analyzed 06/13/18 18:25	Dil Fa
Method: 7470A - Me Analyte Mercury General Chemistry Analyte	Result -0.0357	Result	Qualifier Count Uncert. (2σ+/-)	RL 0.00020 RL 10 Total Uncert. (2σ+/-)	MDL 0.000070 MDL 6.8	Unit mg/L Unit mg/L	Unit	_	Prepared O6/23/18 14:33 Prepared Prepared	Analyzed 06/25/18 13:45 Analyzed 06/13/18 18:25	Dil Fa
Method: 7470A - Me Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radi Analyte Radium-226 Carrier	Result -0.0357	Result 0.00014 Result 820 GFPC) Qualifier U Qualifier	Qualifier Count Uncert. (2σ+/-) 0.0898	RL 0.00020 RL 10 Total Uncert. (2σ+/-)	MDL 0.000070 MDL 6.8	Unit mg/L Unit mg/L	Unit	_	Prepared 06/23/18 14:33 Prepared Prepared 06/19/18 10:05 Prepared	Analyzed 06/25/18 13:45 Analyzed 06/13/18 18:25 Analyzed 07/12/18 14:56	Dil Fa
Method: 7470A - Me Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radi Analyte Radium-226 Carrier Ba Carrier	Result -0.0357 %Yield 104	Result 0.00014 Result 820 GFPC) Qualifier U Qualifier	Qualifier Count Uncert. (2σ+/-) 0.0898 Limits	RL 0.00020 RL 10 Total Uncert. (2σ+/-)	MDL 0.000070 MDL 6.8	Unit mg/L Unit mg/L	Unit	_	Prepared 06/23/18 14:33 Prepared Prepared 06/19/18 10:05 Prepared	Analyzed 06/25/18 13:45 Analyzed 06/13/18 18:25 Analyzed 07/12/18 14:56 Analyzed	Dil Fa
Method: 7470A - Me Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radi Analyte Radium-226 Carrier Ba Carrier	Result -0.0357 %Yield 104	Result 0.00014 Result 820 GFPC) Qualifier U Qualifier	Qualifier Count Uncert. (2σ+/-) 0.0898 Limits	RL 0.00020 RL 10 Total Uncert. (2σ+/-)	MDL 0.000070 MDL 6.8	Unit mg/L Unit mg/L	Unit	_	Prepared 06/23/18 14:33 Prepared Prepared 06/19/18 10:05 Prepared	Analyzed 06/25/18 13:45 Analyzed 06/13/18 18:25 Analyzed 07/12/18 14:56 Analyzed	Dil Fa
Method: 7470A - Me Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radi Analyte Radium-226 Carrier Ba Carrier	Result -0.0357 %Yield 104	Result 0.00014 Result 820 GFPC) Qualifier U Qualifier	Qualifier Count Uncert. (2σ+/-) 0.0898 Limits 40 - 110	RL 0.00020 RL 10 Total Uncert. (2σ+/-) 0.0898	MDL 0.000070 MDL 6.8	Unit mg/L Unit mg/L	Unit	_	Prepared 06/23/18 14:33 Prepared Prepared 06/19/18 10:05 Prepared	Analyzed 06/25/18 13:45 Analyzed 06/13/18 18:25 Analyzed 07/12/18 14:56 Analyzed	Dil Fa
Method: 7470A - Me Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radi Analyte Radium-226 Carrier Ba Carrier Method: 9320 - Radi	Result -0.0357	Result 0.00014 Result 820 GFPC) Qualifier U Qualifier	Qualifier Count Uncert. (2σ+/-) 0.0898 Limits 40 - 110 Count	RL 0.00020 RL 10 Total Uncert. (2σ+/-) 0.0898	MDL 0.000070 MDL 6.8	Unit mg/L Unit mg/L	Unit pCi/L	_	Prepared 06/23/18 14:33 Prepared Prepared 06/19/18 10:05 Prepared	Analyzed 06/25/18 13:45 Analyzed 06/13/18 18:25 Analyzed 07/12/18 14:56 Analyzed	Dil Fa
Method: 7470A - Me Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radi Analyte Radium-226 Carrier Ba Carrier Method: 9320 - Radi Analyte	Result -0.0357	Result 0.00014 Result 820 GFPC) Qualifier U Qualifier GFPC)	Qualifier Count Uncert. (2σ+/-) 0.0898 Limits 40 - 110 Count Uncert.	RL 0.00020 RL 10 Total Uncert. (2σ+/-) 0.0898 Total Uncert.	MDL	Unit mg/L Unit mg/L	Unit PCi/L	_	Prepared 06/23/18 14:33 Prepared Prepared 06/19/18 10:05 Prepared 06/19/18 10:05	Analyzed 06/25/18 13:45 Analyzed 06/13/18 18:25 Analyzed 07/12/18 14:56 Analyzed 07/12/18 14:56	Dil Fa
Method: 7470A - Me Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radi Analyte Radium-226	Result -0.0357 %Yield 104 ium-228 (Result 0.356	Result 0.00014 Result 820 GFPC) Qualifier U Qualifier GFPC)	Qualifier Count Uncert. (2σ+/-) 0.0898 Limits 40 - 110 Count Uncert. (2σ+/-)	RL 0.00020 RL 10 Total Uncert. (2σ+/-) 0.0898 Total Uncert. (2σ+/-)	MDL	Unit mg/L Unit mg/L MDC .227	Unit PCi/L	_	Prepared 06/23/18 14:33 Prepared Prepared 06/19/18 10:05 Prepared 06/19/18 10:05	Analyzed 06/25/18 13:45 Analyzed 06/13/18 18:25 Analyzed 07/12/18 14:56 Analyzed 07/12/18 14:56	Dil Fa
Method: 7470A - Me Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radi Analyte Radium-226 Carrier Ba Carrier Method: 9320 - Radi Analyte Radium-228	Result -0.0357 %Yield 104 ium-228 (Result 0.356	Result 0.00014 Result 820 GFPC) Qualifier U Qualifier U Qualifier U Qualifier U	Qualifier Count Uncert. (2σ+/-) 0.0898 Limits 40 - 110 Count Uncert. (2σ+/-) 0.238	RL 0.00020 RL 10 Total Uncert. (2σ+/-) 0.0898 Total Uncert. (2σ+/-)	MDL	Unit mg/L Unit mg/L MDC .227	Unit PCi/L	_	Prepared 06/23/18 14:33 Prepared Prepared 06/19/18 10:05 Prepared 06/19/18 10:05 Prepared 06/19/18 10:53 Prepared	Analyzed 06/25/18 13:45 Analyzed 06/13/18 18:25 Analyzed 07/12/18 14:56 Analyzed 07/12/18 14:56 Analyzed 07/12/18 19:41	Dil Fa Dil Fa Dil Fa

Client: Southern Company
Project/Site: CCR - Plant Scherer

TestAmerica Jo

TestAmerica Job ID: 400-154761-1 SDG: Ash Pond

Client Sample ID: SGWC-18 Lab Sample ID: 400-154761-33

Matrix: Water

Date Collected: 06/08/18 09:20 Date Received: 06/09/18 08:26

Method: Ra226_Ra	228 - Con	ibined Ra	idium-226 a	ınd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.320	U	0.254	0.256	5.00	0.370	pCi/L		07/16/18 10:51	1
+ 228										

0

9

11

13

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-19

Date Collected: 06/08/18 09:05 Date Received: 06/09/18 08:26

Lab Sample ID: 400-154761-34

Matrix: Water

Analyte	, -	Chromatogra Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Chloride		7.2		1.0	0.89	mg/L		-	06/26/18 11:43	
Fluoride		<0.082		0.20	0.082	mg/L			06/26/18 11:43	
Method: 300.0 - Anio	ons Ion (Chromatogra	nhy - DI							
Analyte	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Sulfate		220		5.0	3.5	mg/L			06/28/18 05:17	
Method: 6020 - Metal	ls (ICP/N	IS) - Total Re	ecoverabl	e						
Analyte	10 (101 /10		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Arsenic		<0.00046	-	0.0013	0.00046	mg/L		06/20/18 08:27	06/20/18 19:47	
Barium		0.035		0.0025	0.00049	-			06/20/18 19:47	
Beryllium		<0.00034		0.0025	0.00034	ū			06/20/18 19:47	
Calcium		37		0.25		mg/L			06/20/18 19:47	
Chromium		0.015		0.0025	0.0011	-			06/20/18 19:47	
Cobalt		<0.00040		0.0025	0.00040	· ·			06/20/18 19:47	
Lead		<0.00035		0.0013	0.00035	ū			06/20/18 19:47	
Lithium		0.0022	1	0.0050	0.0011	-			06/20/18 19:47	
Selenium		0.00063		0.0013	0.00024	J			06/20/18 19:47	
Thallium		<0.000085		0.00050	0.000024	J			06/20/18 19:47	
Trialiani		0.00000		0.00000	0.000000	mg/L		00/20/10 00:2/	00/20/10 10:1/	
Method: 6020 - Metal	Is (ICP/N	IS) - Total Re	ecoverabl	e - DL						
Analyte	(1011111		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Boron		1.8	-	0.25	0.11	mg/L			06/20/18 19:51	
						ŭ				
Method: 7470A - Mer	rcury (CV	/AA)								
	rcury (C\	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Analyte	rcury (C\	•	Qualifier	RL 0.00020	MDL 0.000070		_ D	Prepared 06/23/18 14:33	Analyzed 06/25/18 13:47	Dil F
Analyte	rcury (C\	Result	Qualifier				_ D			Dil F
Analyte Mercury	rcury (C\ 	Result	Qualifier				_ D			Dil F
Analyte Mercury General Chemistry	rcury (C\	<0.000070	Qualifier Qualifier	0.00020 RL	0.000070		_ <u>D</u>			
Analyte Mercury General Chemistry Analyte	rcury (C\	<0.000070		0.00020	0.000070 MDL	mg/L		06/23/18 14:33	06/25/18 13:47	
Analyte Mercury General Chemistry Analyte Total Dissolved Solids		Result		0.00020 RL	0.000070 MDL	mg/L Unit		06/23/18 14:33	06/25/18 13:47 Analyzed	
Analyte Mercury General Chemistry Analyte Total Dissolved Solids		Result	Qualifier	0.00020 RL 5.0	0.000070 MDL	mg/L Unit		06/23/18 14:33	06/25/18 13:47 Analyzed	
Analyte Mercury General Chemistry Analyte Total Dissolved Solids		Result	Qualifier	0.00020 RL 5.0	0.000070 MDL	mg/L Unit		06/23/18 14:33	06/25/18 13:47 Analyzed	
Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radiu	um-226 (Result <0.000070 Result 320 GFPC)	Qualifier	0.00020 RL 5.0	0.000070 MDL 3.4	mg/L Unit mg/L		06/23/18 14:33	06/25/18 13:47 Analyzed	Dil F
Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radiu	um-226 (Result <0.000070 Result 320 GFPC)	Qualifier Count Uncert. (2σ+/-)	0.00020 RL 5.0 Total Uncert. (2σ+/-)	0.000070 MDL 3.4	mg/L Unit mg/L		Prepared Prepared	06/25/18 13:47 Analyzed 06/13/18 18:25 Analyzed	Dil F
Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radiu	um-226 (Result <0.000070 Result 320 GFPC)	Qualifier Count Uncert.	0.00020 RL 5.0 Total Uncert.	0.000070 MDL 3.4	mg/L Unit mg/L		Prepared Prepared	06/25/18 13:47 Analyzed 06/13/18 18:25	Dil F
Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radiu Analyte Radium-226	um-226 (Result 0.00570	Result	Qualifier Count Uncert. (2σ+/-)	0.00020 RL 5.0 Total Uncert. (2σ+/-)	0.000070 MDL 3.4	mg/L Unit mg/L		Prepared Prepared	06/25/18 13:47 Analyzed 06/13/18 18:25 Analyzed	Dil F
Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radiu Analyte Radium-226 Carrier	um-226 (Result 0.00570	Result	Qualifier Count Uncert. (2σ+/-) 0.105	0.00020 RL 5.0 Total Uncert. (2σ+/-)	0.000070 MDL 3.4	mg/L Unit mg/L		Prepared Prepared 06/19/18 10:05 Prepared	06/25/18 13:47 Analyzed 06/13/18 18:25 Analyzed 07/12/18 14:56 Analyzed	Dil F
Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radiu Analyte Radium-226 Carrier	um-226 (Result 0.00570 %Yield	Result	Qualifier Count Uncert. (2σ+/-) 0.105 Limits	0.00020 RL 5.0 Total Uncert. (2σ+/-)	0.000070 MDL 3.4	mg/L Unit mg/L		Prepared Prepared 06/19/18 10:05 Prepared	06/25/18 13:47 Analyzed 06/13/18 18:25 Analyzed 07/12/18 14:56	Dil F
Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radiu Analyte Radium-226 Carrier Ba Carrier	wm-226 (Result 0.00570 %Yield 101	Result Result 320 GFPC) Qualifier U Qualifier — Qualifie	Qualifier Count Uncert. (2σ+/-) 0.105 Limits	0.00020 RL 5.0 Total Uncert. (2σ+/-)	0.000070 MDL 3.4	mg/L Unit mg/L		Prepared Prepared 06/19/18 10:05 Prepared	06/25/18 13:47 Analyzed 06/13/18 18:25 Analyzed 07/12/18 14:56 Analyzed	Dil F
Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radiu Analyte Radium-226 Carrier Ba Carrier	wm-226 (Result 0.00570 %Yield 101	Result Result 320 GFPC) Qualifier U Qualifier — Qualifie	Qualifier Count Uncert. (2σ+/-) 0.105 Limits	0.00020 RL 5.0 Total Uncert. (2σ+/-)	0.000070 MDL 3.4	mg/L Unit mg/L		Prepared Prepared 06/19/18 10:05 Prepared	06/25/18 13:47 Analyzed 06/13/18 18:25 Analyzed 07/12/18 14:56 Analyzed	Dil F
Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radiu Analyte Radium-226 Carrier Ba Carrier	wm-226 (Result 0.00570 %Yield 101	Result <0.000070 Result 320 GFPC) Qualifier U Qualifier GFPC)	Qualifier Count Uncert. (2σ+/-) 0.105 Limits 40 - 110	0.00020 RL 5.0 Total Uncert. (2σ+/-) 0.105	0.000070 MDL 3.4	mg/L Unit mg/L		Prepared Prepared 06/19/18 10:05 Prepared	06/25/18 13:47 Analyzed 06/13/18 18:25 Analyzed 07/12/18 14:56 Analyzed	Dil F Dil F
Method: 7470A - Mer Analyte Mercury General Chemistry Analyte Total Dissolved Solids Method: 9315 - Radiu Analyte Radium-226 Carrier Ba Carrier Method: 9320 - Radiu Analyte Analyte	wm-226 (** Result 0.00570 **Yield 101 um-228 (**	Result <0.000070 Result 320 GFPC) Qualifier U Qualifier GFPC)	Qualifier Count Uncert. (2σ+/-) 0.105 Limits 40 - 110 Count	0.00020 RL 5.0 Total Uncert. (2σ+/-) 0.105	0.000070 MDL 3.4 RL 1.00 0	mg/L Unit mg/L		Prepared Prepared 06/19/18 10:05 Prepared	06/25/18 13:47 Analyzed 06/13/18 18:25 Analyzed 07/12/18 14:56 Analyzed	Dil F

TestAmerica Pensacola

Analyzed

Prepared

06/19/18 10:53 07/12/18 09:41

06/19/18 10:53 07/12/18 09:41

%Yield Qualifier

101

92.3

Limits

40 - 110

40 - 110

Carrier

Ba Carrier

Y Carrier

Dil Fac

Client: Southern Company
Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-19

Date Collected: 06/08/18 09:05 Date Received: 06/09/18 08:26 Lab Sample ID: 400-154761-34

Matrix: Water

Method: Ra226	Ra228 - Combined	Radium-226 and	Radium-228

Count	Total
Uncert.	Uncert.

Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.0462 11	0.214	0 214	5.00	0.327 nCi/l	_	07/16/18 10:51	

+ 228

5

6

7

10

13

Definitions/Glossary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Qualifiers

HPLC/IC

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
E	Result exceeded calibration range.

Metals

Qualifier Description
Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Compound was found in the blank and sample.
MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
Qualifier Description
Result is less than the sample detection limit.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

3

Λ

1

a

10

13

| | 4

TestAmerica Job ID: 400-154761-1 SDG: Ash Pond

Client Sample ID: SGWA-1

Date Collected: 06/05/18 14:30 Date Received: 06/07/18 10:09

Lab Sample ID: 400-154761-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402384	06/25/18 14:42	JAW	TAL PEN
Total Recoverable	Prep	3005A			401724	06/20/18 08:24	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 14:06	DRE	TAL PEN
Total/NA	Prep	7470A			402163	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 11:43	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400731	06/11/18 17:02	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371113	06/19/18 08:49	JLC	TAL SL
Total/NA	Analysis	9315		1	374834	07/11/18 19:09	CDR	TAL SL
Total/NA	Prep	PrecSep_0			371128	06/19/18 09:16	JLC	TAL SL
Total/NA	Analysis	9320		1	374835	07/11/18 15:18	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Lab Sample ID: 400-154761-2 **Client Sample ID: SGWA-2**

Date Collected: 06/05/18 15:30 **Matrix: Water**

Date Received: 06/07/18 10:09

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402384	06/25/18 17:45	JAW	TAL PEN
Total Recoverable	Prep	3005A			401724	06/20/18 08:24	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 14:29	DRE	TAL PEN
Total/NA	Prep	7470A			402163	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 11:45	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400731	06/11/18 17:02	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371113	06/19/18 08:49	JLC	TAL SL
Total/NA	Analysis	9315		1	374834	07/11/18 19:10	CDR	TAL SL
Total/NA	Prep	PrecSep_0			371128	06/19/18 09:16	JLC	TAL SL
Total/NA	Analysis	9320		1	374835	07/11/18 15:18	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Lab Sample ID: 400-154761-3 Client Sample ID: SGWA-24

Date Collected: 06/05/18 14:50 Date Received: 06/07/18 10:09

Prep Type Total/NA	Batch Type Analysis	Batch Method 300.0	Run	Dilution Factor 1	Batch Number 402384	Prepared or Analyzed 06/25/18 18:08	Analyst JAW	Lab TAL PEN
Total Recoverable Total Recoverable	Prep Analysis	3005A 6020		5	401724 401891	06/20/18 08:24 06/20/18 14:33		TAL PEN TAL PEN
Total/NA Total/NA	Prep Analysis	7470A 7470A		1	402163 402434	06/23/18 14:33 06/25/18 12:04		TAL PEN TAL PEN
Total/NA	Analysis	SM 2540C		1	400731	06/11/18 17:02	RRC	TAL PEN
Total/NA Total/NA	Prep Analysis	PrecSep-21 9315		1	371113 374834	06/19/18 08:49 07/11/18 19:10		TAL SL TAL SL

TestAmerica Pensacola

Page 63 of 108

Lab Chronicle

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWA-24

Date Collected: 06/05/18 14:50 Date Received: 06/07/18 10:09

Lab Sample ID: 400-154761-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep_0			371128	06/19/18 09:16	JLC	TAL SL
Total/NA	Analysis	9320		1	374835	07/11/18 15:19	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Client Sample ID: SGWA-25 Lab Sample ID: 400-154761-4

Date Collected: 06/05/18 17:00 **Matrix: Water**

Date Received: 06/07/18 10:09

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402384	06/25/18 18:31	JAW	TAL PEN
Total Recoverable	Prep	3005A			401724	06/20/18 08:24	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 14:38	DRE	TAL PEN
Total/NA	Prep	7470A			402163	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 12:06	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400731	06/11/18 17:02	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371113	06/19/18 08:49	JLC	TAL SL
Total/NA	Analysis	9315		1	374834	07/11/18 19:10	CDR	TAL SL
Total/NA	Prep	PrecSep_0			371128	06/19/18 09:16	JLC	TAL SL
Total/NA	Analysis	9320		1	374835	07/11/18 15:19	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Client Sample ID: SGWA-5 Lab Sample ID: 400-154761-5 Date Collected: 06/05/18 16:30

Date Received: 06/07/18 10:09

	Batch	Batch	_	Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	402384	06/25/18 18:54	JAW	TAL PEN
Total Recoverable	Prep	3005A			401724	06/20/18 08:24	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 15:05	DRE	TAL PEN
Total/NA	Prep	7470A			402163	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 12:08	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400731	06/11/18 17:02	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371113	06/19/18 08:49	JLC	TAL SL
Total/NA	Analysis	9315		1	374834	07/11/18 19:10	CDR	TAL SL
Total/NA	Prep	PrecSep_0			371128	06/19/18 09:16	JLC	TAL SL
Total/NA	Analysis	9320		1	374835	07/11/18 15:19	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

TestAmerica Job ID: 400-154761-1 SDG: Ash Pond

Client Sample ID: FB-1(AP) Date Collected: 06/05/18 14:20

Date Received: 06/07/18 10:09

Lab Sample ID: 400-154761-6

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	402384	06/25/18 20:02	JAW	TAL PEN
Total Recoverable	Prep	3005A			401724	06/20/18 08:24	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 15:09	DRE	TAL PEN
Total/NA	Prep	7470A			402163	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 12:09	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400731	06/11/18 17:02	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371113	06/19/18 08:49	JLC	TAL SL
Total/NA	Analysis	9315		1	374834	07/11/18 19:10	CDR	TAL SL
Total/NA	Prep	PrecSep_0			371128	06/19/18 09:16	JLC	TAL SL
Total/NA	Analysis	9320		1	374835	07/11/18 15:19	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Lab Sample ID: 400-154761-7 **Client Sample ID: FD-1(AP)**

Matrix: Water

Date Collected: 06/05/18 00:00 Date Received: 06/07/18 10:09

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	402384	06/25/18 20:25	JAW	TAL PEN
Total Recoverable	Prep	3005A			401724	06/20/18 08:24	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 15:14	DRE	TAL PEN
Total/NA	Prep	7470A			402163	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 12:11	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400598	06/10/18 09:45	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371113	06/19/18 08:49	JLC	TAL SL
Total/NA	Analysis	9315		1	374834	07/11/18 19:11	CDR	TAL SL
Total/NA	Prep	PrecSep_0			371128	06/19/18 09:16	JLC	TAL SL
Total/NA	Analysis	9320		1	374835	07/11/18 15:19	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Client Sample ID: EB-1(AP) Lab Sample ID: 400-154761-8 Date Collected: 06/05/18 17:30

Date Received: 06/07/18 10:09

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402384	06/25/18 20:48	JAW	TAL PEN
Total Recoverable	Prep	3005A			401724	06/20/18 08:24	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 15:18	DRE	TAL PEN
Total/NA	Prep	7470A			402163	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 12:13	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400731	06/11/18 17:02	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371113	06/19/18 08:49	JLC	TAL SL
Total/NA	Analysis	9315		1	374834	07/11/18 19:11	CDR	TAL SL

Lab Chronicle

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: EB-1(AP)

Date Collected: 06/05/18 17:30 Date Received: 06/07/18 10:09

Lab Sample ID: 400-154761-8

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep_0			371128	06/19/18 09:16	JLC	TAL SL
Total/NA	Analysis	9320		1	374835	07/11/18 15:20	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Client Sample ID: SGWA-3 Lab Sample ID: 400-154761-9

Date Collected: 06/06/18 09:40 **Matrix: Water**

Date Received: 06/08/18 09:17

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	402384	06/25/18 19:17	JAW	TAL PEN
Total Recoverable	Prep	3005A			401724	06/20/18 08:24	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 15:42	DRE	TAL PEN
Total/NA	Prep	7470A			402163	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 12:15	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400819	06/12/18 13:36	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371113	06/19/18 08:49	JLC	TAL SL
Total/NA	Analysis	9315		1	374834	07/11/18 19:11	CDR	TAL SL
Total/NA	Prep	PrecSep_0			371128	06/19/18 09:16	JLC	TAL SL
Total/NA	Analysis	9320		1	374835	07/11/18 15:20	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Client Sample ID: SGWA-4 Lab Sample ID: 400-154761-10 Date Collected: 06/06/18 11:20 **Matrix: Water**

Date Received: 06/08/18 09:17

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402384	06/25/18 21:57	JAW	TAL PEN
Total Recoverable	Prep	3005A			401724	06/20/18 08:24	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 15:47	DRE	TAL PEN
Total/NA	Prep	7470A			402163	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 12:17	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400819	06/12/18 13:36	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371113	06/19/18 08:49	JLC	TAL SL
Total/NA	Analysis	9315		1	374836	07/11/18 19:06	RTM	TAL SL
Total/NA	Prep	PrecSep_0			371128	06/19/18 09:16	JLC	TAL SL
Total/NA	Analysis	9320		1	374835	07/11/18 15:20	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

TestAmerica Pensacola

TestAmerica Job ID: 400-154761-1 SDG: Ash Pond

Lab Sample ID: 400-154761-11

Matrix: Water

Client Sample ID: SGWC-6 Date Collected: 06/06/18 09:40

Date Received: 06/08/18 09:17

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 300.0 402384 06/25/18 22:20 JAW TAL PEN Total Recoverable 3005A 401724 06/20/18 08:24 DRE **TAL PEN** Prep Total Recoverable Analysis 6020 5 401891 06/20/18 16:14 DRE TAL PEN Total/NA Prep 7470A 402163 06/23/18 14:33 DN1 TAL PEN Total/NA 7470A 402434 06/25/18 12:19 JAP TAL PEN Analysis 1 Total/NA SM 2540C 400819 06/12/18 13:36 RRC TAL PEN Analysis 1 Total/NA Prep PrecSep-21 371113 06/19/18 08:49 JLC TAL SL Total/NA 9315 374836 07/11/18 19:06 RTM TAL SL Analysis 1 Total/NA Prep PrecSep 0 371128 06/19/18 09:16 JLC TAL SL 9320 374836 07/11/18 15:22 RTM TAL SL Total/NA Analysis 1 Total/NA Analysis Ra226_Ra228 1 375781 07/16/18 10:51 RTM TAL SL

Client Sample ID: SGWC-7 Lab Sample ID: 400-154761-12 Date Collected: 06/06/18 11:00

Matrix: Water

Date Received: 06/08/18 09:17

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	402384	06/25/18 22:43	JAW	TAL PEN
Total Recoverable	Prep	3005A			401724	06/20/18 08:24	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 16:19	DRE	TAL PEN
Total/NA	Prep	7470A			402163	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 12:21	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400819	06/12/18 13:36	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371113	06/19/18 08:49	JLC	TAL SL
Total/NA	Analysis	9315		1	374836	07/11/18 19:06	RTM	TAL SL
Total/NA	Prep	PrecSep_0			371128	06/19/18 09:16	JLC	TAL SL
Total/NA	Analysis	9320		1	374836	07/11/18 15:22	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Client Sample ID: SGWC-8 Lab Sample ID: 400-154761-13 Date Collected: 06/06/18 13:30 **Matrix: Water**

Date Received: 06/08/18 09:17

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402384	06/25/18 23:06	JAW	TAL PEN
Total/NA	Analysis	300.0	DL	5	402619	06/26/18 18:40	JAW	TAL PEN
Total Recoverable	Prep	3005A			401724	06/20/18 08:24	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 16:24	DRE	TAL PEN
Total/NA	Prep	7470A			402163	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 12:33	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400819	06/12/18 13:36	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371113	06/19/18 08:49	JLC	TAL SL

Page 67 of 108

7/16/2018

Lab Chronicle

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-8

Date Collected: 06/06/18 13:30 Date Received: 06/08/18 09:17

Lab Sample ID: 400-154761-13

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9315			374836	07/11/18 19:06	RTM	TAL SL
Total/NA	Prep	PrecSep_0			371128	06/19/18 09:16	JLC	TAL SL
Total/NA	Analysis	9320		1	374836	07/11/18 15:23	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Lab Sample ID: 400-154761-14 **Client Sample ID: FB-2(AP)**

Date Collected: 06/06/18 09:20 **Matrix: Water** Date Received: 06/08/18 09:17

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402384	06/25/18 23:29	JAW	TAL PEN
Total Recoverable	Prep	3005A			401724	06/20/18 08:24	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 16:28	DRE	TAL PEN
Total/NA	Prep	7470A			402163	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 12:35	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400819	06/12/18 13:36	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371113	06/19/18 08:49	JLC	TAL SL
Total/NA	Analysis	9315		1	374836	07/11/18 19:06	RTM	TAL SL
Total/NA	Prep	PrecSep_0			371128	06/19/18 09:16	JLC	TAL SL
Total/NA	Analysis	9320		1	374836	07/11/18 15:23	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Lab Sample ID: 400-154761-15 **Client Sample ID: FD-2(AP) Matrix: Water**

Date Collected: 06/06/18 00:00 Date Received: 06/08/18 09:17

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402384	06/25/18 23:51	JAW	TAL PEN
Total Recoverable	Prep	3005A			401724	06/20/18 08:24	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 16:33	DRE	TAL PEN
Total/NA	Prep	7470A			402163	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 12:36	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400731	06/11/18 17:02	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371113	06/19/18 08:49	JLC	TAL SL
Total/NA	Analysis	9315		1	374836	07/11/18 19:06	RTM	TAL SL
Total/NA	Prep	PrecSep_0			371128	06/19/18 09:16	JLC	TAL SL
Total/NA	Analysis	9320		1	374836	07/11/18 15:23	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

TestAmerica Job ID: 400-154761-1 SDG: Ash Pond

Client Sample ID: EB-2(AP) Date Collected: 06/06/18 17:25

Date Received: 06/08/18 09:17

Lab Sample ID: 400-154761-16

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402469	06/26/18 03:19	JAW	TAL PEN
Total Recoverable	Prep	3005A			401724	06/20/18 08:24	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 16:38	DRE	TAL PEN
Total/NA	Prep	7470A			402163	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 12:38	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400819	06/12/18 13:36	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371113	06/19/18 08:49	JLC	TAL SL
Total/NA	Analysis	9315		1	374836	07/11/18 19:06	RTM	TAL SL
Total/NA	Prep	PrecSep_0			371128	06/19/18 09:16	JLC	TAL SL
Total/NA	Analysis	9320		1	374836	07/11/18 15:23	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Client Sample ID: SGWC-9

Lab Sample ID: 400-154761-17

Matrix: Water

Date Collected: 06/06/18 14:45 Date Received: 06/08/18 09:17

Prep Type	Batch Type	Batch	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
		Method						
Total/NA	Analysis	300.0		1	402469	06/26/18 02:10	JAW	TAL PEN
Total/NA	Analysis	300.0	DL	10	402619	06/26/18 19:03	JAW	TAL PEN
Total Recoverable	Prep	3005A			401724	06/20/18 08:24	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 16:42	DRE	TAL PEN
Total/NA	Prep	7470A			402163	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 12:40	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400819	06/12/18 13:36	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371113	06/19/18 08:49	JLC	TAL SL
Total/NA	Analysis	9315		1	374836	07/11/18 19:08	RTM	TAL SL
Total/NA	Prep	PrecSep_0			371128	06/19/18 09:16	JLC	TAL SL
Total/NA	Analysis	9320		1	374836	07/11/18 22:31	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Client Sample ID: SGWC-10

Date Collected: 06/06/18 15:50 Date Received: 06/08/18 09:17

Lab Sample ID: 400-154761-18

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402469	06/26/18 03:42	JAW	TAL PEN
Total Recoverable	Prep	3005A			401724	06/20/18 08:24	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 16:47	DRE	TAL PEN
Total/NA	Prep	7470A			402163	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 12:42	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400822	06/12/18 14:04	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371113	06/19/18 08:49	JLC	TAL SL

Lab Chronicle

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-10

Date Collected: 06/06/18 15:50 Date Received: 06/08/18 09:17

Lab Sample ID: 400-154761-18

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	9315			374836	07/11/18 19:07	RTM	TAL SL
Total/NA	Prep	PrecSep_0			371128	06/19/18 09:16	JLC	TAL SL
Total/NA	Analysis	9320		1	374836	07/11/18 15:23	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Client Sample ID: SGWC-11 Lab Sample ID: 400-154761-19 **Matrix: Water**

Date Collected: 06/06/18 14:35 Date Received: 06/08/18 09:17

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	402469	06/26/18 04:05	JAW	TAL PEN
Total Recoverable	Prep	3005A			401724	06/20/18 08:24	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 16:51	DRE	TAL PEN
Total/NA	Prep	7470A			402163	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 12:44	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400822	06/12/18 14:04	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371113	06/19/18 08:49	JLC	TAL SL
Total/NA	Analysis	9315		1	374836	07/11/18 19:07	RTM	TAL SL
Total/NA	Prep	PrecSep_0			371128	06/19/18 09:16	JLC	TAL SL
Total/NA	Analysis	9320		1	374836	07/11/18 15:23	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Client Sample ID: SGWC-12 Lab Sample ID: 400-154761-20 **Matrix: Water**

Date Collected: 06/06/18 16:25 Date Received: 06/08/18 09:17

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402469	06/26/18 04:28	JAW	TAL PEN
Total Recoverable	Prep	3005A			401724	06/20/18 08:24	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 16:56	DRE	TAL PEN
Total/NA	Prep	7470A			402163	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 12:46	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400819	06/12/18 13:36	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371113	06/19/18 08:49	JLC	TAL SL
Total/NA	Analysis	9315		1	374836	07/11/18 19:07	RTM	TAL SL
Total/NA	Prep	PrecSep_0			371128	06/19/18 09:16	JLC	TAL SL
Total/NA	Analysis	9320		1	374836	07/11/18 15:23	RTM	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Page 70 of 108

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-13

Date Collected: 06/07/18 09:15 Date Received: 06/09/18 08:26

Lab Sample ID: 400-154761-21

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402469	06/26/18 05:37	JAW	TAL PEN
Total/NA	Analysis	300.0	DL	5	402619	06/26/18 19:26	JAW	TAL PEN
Total Recoverable	Prep	3005A			401725	06/20/18 08:27	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 17:36	DRE	TAL PEN
Total/NA	Prep	7470A			402166	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 13:14	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400962	06/13/18 16:43	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371136	06/19/18 10:05	JLC	TAL SL
Total/NA	Analysis	9315		1	375103	07/12/18 14:56	CDR	TAL SL
Total/NA	Prep	PrecSep_0			371223	06/19/18 10:53	JLC	TAL SL
Total/NA	Analysis	9320		1	375103	07/12/18 09:42	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Client Sample ID: SGWC-14

Date Collected: 06/07/18 10:30

Date Received: 06/09/18 08:26

Lab Sample ID: 400-154761-22

Matrix: Water

Batch **Batch** Dilution Batch **Prepared Prep Type** Type Method **Factor** Number or Analyzed Run Analyst Lab Analysis Total/NA 300.0 402469 06/26/18 06:00 JAW TAL PEN Total/NA Analysis 300.0 DL 5 402619 06/26/18 20:12 JAW TAL PEN 3005A TAL PEN Total Recoverable Prep 401725 06/20/18 08:27 DRE Total Recoverable 6020 5 401891 06/20/18 17:59 DRE TAL PEN Analysis Total/NA 7470A Prep 402166 06/23/18 14:33 DN1 TAL PEN Total/NA 7470A 1 402434 06/25/18 13:16 JAP TAL PEN Analysis Total/NA 400962 06/13/18 16:43 RRC TAL PEN Analysis SM 2540C 1 Total/NA TAL SL Prep PrecSep-21 371136 06/19/18 10:05 JLC TAL SL Total/NA Analysis 9315 1 375103 07/12/18 14:56 CDR Total/NA TAL SL Prep PrecSep_0 371223 06/19/18 10:53 JLC Total/NA Analysis 9320 1 375139 07/12/18 09:46 CDR TAL SL Total/NA 375781 07/16/18 10:51 RTM TAL SL Analysis Ra226_Ra228 1

Client Sample ID: SGWC-15

Date Collected: 06/07/18 12:10

Date Received: 06/09/18 08:26

Lab	Samp	le ID:	400-	15	47	61-	-23

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402469	06/26/18 06:23	JAW	TAL PEN
Total/NA	Analysis	300.0	DL	5	402619	06/26/18 20:35	JAW	TAL PEN
Total Recoverable	Prep	3005A			401725	06/20/18 08:27	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 18:03	DRE	TAL PEN
Total/NA	Prep	7470A			402166	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 13:17	JAP	TAL PEN

TestAmerica Pensacola

Page 71 of 108

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-15

Date Collected: 06/07/18 12:10 Date Received: 06/09/18 08:26

Lab Sample ID: 400-154761-23

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540C			400962	06/13/18 16:43	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371136	06/19/18 10:05	JLC	TAL SL
Total/NA	Analysis	9315		1	375103	07/12/18 14:56	CDR	TAL SL
Total/NA	Prep	PrecSep_0			371223	06/19/18 10:53	JLC	TAL SL
Total/NA	Analysis	9320		1	375139	07/12/18 09:46	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Client Sample ID: SGWC-16

Date Collected: 06/07/18 14:00

Date Received: 06/09/18 08:26

Lab Sample ID: 400-154761-24

Matrix: Water

Batch Batch Dilution Batch Prepared Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab 300.0 06/26/18 06:46 Total/NA Analysis 402469 JAW TAL PEN 3005A Total Recoverable Prep 401725 06/20/18 08:27 DRE TAL PEN Total Recoverable Analysis 6020 5 401891 06/20/18 18:08 DRE TAL PEN Total/NA 7470A TAL PEN Prep 402166 06/23/18 14:33 DN1 Total/NA Analysis 7470A 1 402434 06/25/18 13:19 JAP TAL PEN Total/NA Analysis SM 2540C 400962 06/13/18 16:43 RRC TAL PEN Total/NA TAL SL Prep PrecSep-21 371136 06/19/18 10:05 JLC Total/NA Analysis 9315 1 375103 07/12/18 14:55 CDR TAL SL TAL SL Total/NA PrecSep 0 371223 06/19/18 10:53 JLC Prep Total/NA Analysis 9320 375103 07/12/18 09:40 CDR TAL SL TAL SL Total/NA Analysis Ra226_Ra228 1 375781 07/16/18 10:51 RTM

Client Sample ID: SGWC-17

Date Collected: 06/07/18 15:00 Date Received: 06/09/18 08:26

Lab Sample ID: 400-154761-25 **Matrix: Water**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402469	06/26/18 07:08	JAW	TAL PEN
Total/NA	Analysis	300.0	DL	5	402619	06/26/18 20:58	JAW	TAL PEN
Total Recoverable	Prep	3005A			401725	06/20/18 08:27	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 18:35	DRE	TAL PEN
Total/NA	Prep	7470A			402166	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 13:21	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400962	06/13/18 16:43	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371136	06/19/18 10:05	JLC	TAL SL
Total/NA	Analysis	9315		1	375103	07/12/18 14:55	CDR	TAL SL
Total/NA	Prep	PrecSep_0			371223	06/19/18 10:53	JLC	TAL SL
Total/NA	Analysis	9320		1	375103	07/12/18 09:40	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

TestAmerica Pensacola

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-20

Date Collected: 06/07/18 15:25 Date Received: 06/09/18 08:26

Lab Sample ID: 400-154761-26

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402469	06/26/18 07:31	JAW	TAL PEN
Total/NA	Analysis	300.0	DL	5	402619	06/26/18 22:06	JAW	TAL PEN
Total Recoverable	Prep	3005A			401725	06/20/18 08:27	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 18:39	DRE	TAL PEN
Total Recoverable	Prep	3005A	DL		401725	06/20/18 08:27	DRE	TAL PEN
Total Recoverable	Analysis	6020	DL	25	401891	06/20/18 18:44	DRE	TAL PEN
Total/NA	Prep	7470A			402166	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 13:32	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400962	06/13/18 16:43	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371136	06/19/18 10:05	JLC	TAL SL
Total/NA	Analysis	9315		1	375103	07/12/18 14:55	CDR	TAL SL
Total/NA	Prep	PrecSep_0			371223	06/19/18 10:53	JLC	TAL SL
Total/NA	Analysis	9320		1	375103	07/12/18 09:40	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Client Sample ID: SGWC-21 Date Collected: 06/07/18 14:10

Date Received: 06/09/18 08:26

Lab Sample ID: 400-154761-27

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402469	06/26/18 08:17	JAW	TAL PEN
Total/NA	Analysis	300.0	DL	5	402619	06/26/18 22:29	JAW	TAL PEN
Total Recoverable	Prep	3005A			401725	06/20/18 08:27	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 18:48	DRE	TAL PEN
Total/NA	Prep	7470A			402166	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 13:34	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400948	06/13/18 18:25	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371136	06/19/18 10:05	JLC	TAL SL
Total/NA	Analysis	9315		1	375103	07/12/18 14:55	CDR	TAL SL
Total/NA	Prep	PrecSep_0			371223	06/19/18 10:53	JLC	TAL SL
Total/NA	Analysis	9320		1	375103	07/12/18 09:41	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Client Sample ID: SGWC-22

Date Collected: 06/07/18 10:25

Date Received: 06/09/18 08:26

Lab Sample ID: 400-154761-28

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402469	06/26/18 08:40	JAW	TAL PEN
Total/NA	Analysis	300.0	DL	5	402619	06/26/18 22:52	JAW	TAL PEN
Total Recoverable Total Recoverable	Prep Analysis	3005A 6020		5		06/20/18 08:27 06/20/18 18:53		TAL PEN TAL PEN

TestAmerica Pensacola

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: SGWC-22

Date Collected: 06/07/18 10:25 Date Received: 06/09/18 08:26

Project/Site: CCR - Plant Scherer

Client: Southern Company

Lab Sample ID: 400-154761-28

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7470A			402166	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 13:36	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400962	06/13/18 16:43	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371136	06/19/18 10:05	JLC	TAL SL
Total/NA	Analysis	9315		1	375103	07/12/18 14:55	CDR	TAL SL
Total/NA	Prep	PrecSep_0			371223	06/19/18 10:53	JLC	TAL SL
Total/NA	Analysis	9320		1	375103	07/12/18 09:41	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Client Sample ID: SGWC-23

Date Collected: 06/07/18 09:15 Date Received: 06/09/18 08:26

Lab Sample ID: 400-154761-29

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402469	06/26/18 09:03	JAW	TAL PEN
Total/NA	Analysis	300.0	DL	5	402619	06/26/18 23:15	JAW	TAL PEN
Total Recoverable	Prep	3005A			401725	06/20/18 08:27	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 18:57	DRE	TAL PEN
Total/NA	Prep	7470A			402166	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 13:38	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400955	06/13/18 12:30	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371136	06/19/18 10:05	JLC	TAL SL
Total/NA	Analysis	9315		1	375103	07/12/18 14:55	CDR	TAL SL
Total/NA	Prep	PrecSep_0			371223	06/19/18 10:53	JLC	TAL SL
Total/NA	Analysis	9320		1	375103	07/12/18 09:41	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Client Sample ID: FB-3(AP)

Date Collected: 06/07/18 10:20

Date Received: 06/09/18 08:26

₋ab	Samp	le ID): 4	-00	15	47	61- 3	30

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	402469	06/26/18 10:12	JAW	TAL PEN
Total Recoverable	Prep	3005A			401725	06/20/18 08:27	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 19:06	DRE	TAL PEN
Total/NA	Prep	7470A			402166	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 13:40	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400955	06/13/18 12:30	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371136	06/19/18 10:05	JLC	TAL SL
Total/NA	Analysis	9315		1	375103	07/12/18 14:55	CDR	TAL SL
Total/NA	Prep	PrecSep_0			371223	06/19/18 10:53	JLC	TAL SL
Total/NA	Analysis	9320		1	375103	07/12/18 09:41	CDR	TAL SL

TestAmerica Pensacola

Page 74 of 108

7/16/2018

Lab Chronicle

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Client Sample ID: FB-3(AP)

Date Collected: 06/07/18 10:20 Date Received: 06/09/18 08:26

Lab Sample ID: 400-154761-30

Matrix: Water

Batch Batch Dilution Batch Prepared Method Number or Analyzed Analyst **Prep Type** Type Run **Factor** Lab TAL SL Ra226_Ra228 375781 07/16/18 10:51 RTM Total/NA Analysis

Lab Sample ID: 400-154761-31

Matrix: Water

Date Received: 06/09/18 08:26

Date Collected: 06/07/18 00:00

Client Sample ID: FD-3(AP)

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402469	06/26/18 10:35	JAW	TAL PEN
Total/NA	Analysis	300.0	DL	5	402619	06/26/18 23:38	JAW	TAL PEN
Total Recoverable	Prep	3005A			401725	06/20/18 08:27	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 19:02	DRE	TAL PEN
Total/NA	Prep	7470A			402166	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 13:42	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400819	06/12/18 13:36	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371136	06/19/18 10:05	JLC	TAL SL
Total/NA	Analysis	9315		1	375103	07/12/18 14:56	CDR	TAL SL
Total/NA	Prep	PrecSep_0			371223	06/19/18 10:53	JLC	TAL SL
Total/NA	Analysis	9320		1	375103	07/12/18 09:41	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Client Sample ID: EB-3(AP) Lab Sample ID: 400-154761-32

Matrix: Water

Date Received: 06/09/18 08:26

Date Collected: 06/07/18 16:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402469	06/26/18 10:58	JAW	TAL PEN
Total Recoverable	Prep	3005A			401725	06/20/18 08:27	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 19:11	DRE	TAL PEN
Total/NA	Prep	7470A			402166	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 13:43	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400955	06/13/18 12:30	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371136	06/19/18 10:05	JLC	TAL SL
Total/NA	Analysis	9315		1	375103	07/12/18 14:56	CDR	TAL SL
Total/NA	Prep	PrecSep_0			371223	06/19/18 10:53	JLC	TAL SL
Total/NA	Analysis	9320		1	375103	07/12/18 09:41	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

TestAmerica Job ID: 400-154761-1 SDG: Ash Pond

Client: Southern Company Project/Site: CCR - Plant Scherer

Lab Sample ID: 400-154761-33

Matrix: Water

Client Sample ID: SGWC-18

Date Collected: 06/08/18 09:20 Date Received: 06/09/18 08:26

Date Received: 06/09/18 08:26

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402469	06/26/18 11:20	JAW	TAL PEN
Total/NA	Analysis	300.0	DL	20	402782	06/28/18 04:54	JAW	TAL PEN
Total Recoverable	Prep	3005A			401725	06/20/18 08:27	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 19:15	DRE	TAL PEN
Total Recoverable	Prep	3005A	DL		401725	06/20/18 08:27	DRE	TAL PEN
Total Recoverable	Analysis	6020	DL	25	401891	06/20/18 19:42	DRE	TAL PEN
Total/NA	Prep	7470A			402166	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 13:45	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400948	06/13/18 18:25	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371136	06/19/18 10:05	JLC	TAL SL
Total/NA	Analysis	9315		1	375103	07/12/18 14:56	CDR	TAL SL
Total/NA	Prep	PrecSep_0			371223	06/19/18 10:53	JLC	TAL SL
Total/NA	Analysis	9320		1	375103	07/12/18 09:41	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Client Sample ID: SGWC-19 Lab Sample ID: 400-154761-34 Date Collected: 06/08/18 09:05

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			402469	06/26/18 11:43	JAW	TAL PEN
Total/NA	Analysis	300.0	DL	5	402782	06/28/18 05:17	JAW	TAL PEN
Total Recoverable	Prep	3005A			401725	06/20/18 08:27	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	401891	06/20/18 19:47	DRE	TAL PEN
Total Recoverable	Prep	3005A	DL		401725	06/20/18 08:27	DRE	TAL PEN
Total Recoverable	Analysis	6020	DL	25	401891	06/20/18 19:51	DRE	TAL PEN
Total/NA	Prep	7470A			402166	06/23/18 14:33	DN1	TAL PEN
Total/NA	Analysis	7470A		1	402434	06/25/18 13:47	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	400948	06/13/18 18:25	RRC	TAL PEN
Total/NA	Prep	PrecSep-21			371136	06/19/18 10:05	JLC	TAL SL
Total/NA	Analysis	9315		1	375103	07/12/18 14:56	CDR	TAL SL
Total/NA	Prep	PrecSep_0			371223	06/19/18 10:53	JLC	TAL SL
Total/NA	Analysis	9320		1	375103	07/12/18 09:41	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	375781	07/16/18 10:51	RTM	TAL SL

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001 TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

HPLC/IC

Analysis Batch: 402384

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-1	SGWA-1	Total/NA	Water	300.0	_
400-154761-2	SGWA-2	Total/NA	Water	300.0	
400-154761-3	SGWA-24	Total/NA	Water	300.0	
400-154761-4	SGWA-25	Total/NA	Water	300.0	
400-154761-5	SGWA-5	Total/NA	Water	300.0	
400-154761-6	FB-1(AP)	Total/NA	Water	300.0	
400-154761-7	FD-1(AP)	Total/NA	Water	300.0	
400-154761-8	EB-1(AP)	Total/NA	Water	300.0	
400-154761-9	SGWA-3	Total/NA	Water	300.0	
400-154761-10	SGWA-4	Total/NA	Water	300.0	
400-154761-11	SGWC-6	Total/NA	Water	300.0	
400-154761-12	SGWC-7	Total/NA	Water	300.0	
400-154761-13	SGWC-8	Total/NA	Water	300.0	
400-154761-14	FB-2(AP)	Total/NA	Water	300.0	
400-154761-15	FD-2(AP)	Total/NA	Water	300.0	
MB 400-402384/4	Method Blank	Total/NA	Water	300.0	
LCS 400-402384/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-402384/6	Lab Control Sample Dup	Total/NA	Water	300.0	
400-154761-1 MS	SGWA-1	Total/NA	Water	300.0	
400-154761-1 MSD	SGWA-1	Total/NA	Water	300.0	

Analysis Batch: 402469

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
400-154761-16	EB-2(AP)	Total/NA	Water	300.0	_
400-154761-17	SGWC-9	Total/NA	Water	300.0	
400-154761-18	SGWC-10	Total/NA	Water	300.0	
400-154761-19	SGWC-11	Total/NA	Water	300.0	
400-154761-20	SGWC-12	Total/NA	Water	300.0	
400-154761-21	SGWC-13	Total/NA	Water	300.0	
400-154761-22	SGWC-14	Total/NA	Water	300.0	
400-154761-23	SGWC-15	Total/NA	Water	300.0	
400-154761-24	SGWC-16	Total/NA	Water	300.0	
400-154761-25	SGWC-17	Total/NA	Water	300.0	
400-154761-26	SGWC-20	Total/NA	Water	300.0	
400-154761-27	SGWC-21	Total/NA	Water	300.0	
400-154761-28	SGWC-22	Total/NA	Water	300.0	
400-154761-29	SGWC-23	Total/NA	Water	300.0	
400-154761-30	FB-3(AP)	Total/NA	Water	300.0	
400-154761-31	FD-3(AP)	Total/NA	Water	300.0	
400-154761-32	EB-3(AP)	Total/NA	Water	300.0	
400-154761-33	SGWC-18	Total/NA	Water	300.0	
400-154761-34	SGWC-19	Total/NA	Water	300.0	
MB 400-402469/36	Method Blank	Total/NA	Water	300.0	
LCS 400-402469/37	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-402469/38	Lab Control Sample Dup	Total/NA	Water	300.0	
400-154761-17 MS	SGWC-9	Total/NA	Water	300.0	
400-154761-17 MSD	SGWC-9	Total/NA	Water	300.0	

Analysis Batch: 402619

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-13 - DL	SGWC-8	Total/NA	Water	300.0	

TestAmerica Pensacola

Page 77 of 108

TestAmerica Job ID: 400-154761-1 SDG: Ash Pond

Project/Site: CCR - Plant Scherer

HPLC/IC (Continued)

Client: Southern Company

Analysis Batch: 402619 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-17 - DL	SGWC-9	Total/NA	Water	300.0	
400-154761-21 - DL	SGWC-13	Total/NA	Water	300.0	
400-154761-22 - DL	SGWC-14	Total/NA	Water	300.0	
400-154761-23 - DL	SGWC-15	Total/NA	Water	300.0	
400-154761-25 - DL	SGWC-17	Total/NA	Water	300.0	
400-154761-26 - DL	SGWC-20	Total/NA	Water	300.0	
400-154761-27 - DL	SGWC-21	Total/NA	Water	300.0	
400-154761-28 - DL	SGWC-22	Total/NA	Water	300.0	
400-154761-29 - DL	SGWC-23	Total/NA	Water	300.0	
400-154761-31 - DL	FD-3(AP)	Total/NA	Water	300.0	
MB 400-402619/4	Method Blank	Total/NA	Water	300.0	
LCS 400-402619/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-402619/6	Lab Control Sample Dup	Total/NA	Water	300.0	
400-155336-B-1 MS	Matrix Spike	Total/NA	Water	300.0	
400-155336-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Analysis Batch: 402782

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-33 - DL	SGWC-18	Total/NA	Water	300.0	
400-154761-34 - DL	SGWC-19	Total/NA	Water	300.0	
MB 400-402782/20	Method Blank	Total/NA	Water	300.0	
LCS 400-402782/21	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-402782/22	Lab Control Sample Dup	Total/NA	Water	300.0	
400-155635-B-2 MS	Matrix Spike	Total/NA	Water	300.0	
400-155635-B-2 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Metals

Prep Batch: 401724

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-1	SGWA-1	Total Recoverable	Water	3005A	
400-154761-2	SGWA-2	Total Recoverable	Water	3005A	
400-154761-3	SGWA-24	Total Recoverable	Water	3005A	
400-154761-4	SGWA-25	Total Recoverable	Water	3005A	
400-154761-5	SGWA-5	Total Recoverable	Water	3005A	
400-154761-6	FB-1(AP)	Total Recoverable	Water	3005A	
400-154761-7	FD-1(AP)	Total Recoverable	Water	3005A	
400-154761-8	EB-1(AP)	Total Recoverable	Water	3005A	
400-154761-9	SGWA-3	Total Recoverable	Water	3005A	
400-154761-10	SGWA-4	Total Recoverable	Water	3005A	
400-154761-11	SGWC-6	Total Recoverable	Water	3005A	
400-154761-12	SGWC-7	Total Recoverable	Water	3005A	
400-154761-13	SGWC-8	Total Recoverable	Water	3005A	
400-154761-14	FB-2(AP)	Total Recoverable	Water	3005A	
400-154761-15	FD-2(AP)	Total Recoverable	Water	3005A	
400-154761-16	EB-2(AP)	Total Recoverable	Water	3005A	
400-154761-17	SGWC-9	Total Recoverable	Water	3005A	
400-154761-18	SGWC-10	Total Recoverable	Water	3005A	
400-154761-19	SGWC-11	Total Recoverable	Water	3005A	
400-154761-20	SGWC-12	Total Recoverable	Water	3005A	

TestAmerica Pensacola

Page 78 of 108

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Metals (Continued)

Prep Batch: 401724 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 400-401724/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-401724/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
400-154761-1 MS	SGWA-1	Total Recoverable	Water	3005A	
400-154761-1 MSD	SGWA-1	Total Recoverable	Water	3005A	

Prep Batch: 401725

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-21	SGWC-13	Total Recoverable	Water	3005A	<u> </u>
400-154761-22	SGWC-14	Total Recoverable	Water	3005A	
400-154761-23	SGWC-15	Total Recoverable	Water	3005A	
400-154761-24	SGWC-16	Total Recoverable	Water	3005A	
400-154761-25	SGWC-17	Total Recoverable	Water	3005A	
400-154761-26	SGWC-20	Total Recoverable	Water	3005A	
400-154761-26 - DL	SGWC-20	Total Recoverable	Water	3005A	
400-154761-27	SGWC-21	Total Recoverable	Water	3005A	
400-154761-28	SGWC-22	Total Recoverable	Water	3005A	
400-154761-29	SGWC-23	Total Recoverable	Water	3005A	
400-154761-30	FB-3(AP)	Total Recoverable	Water	3005A	
400-154761-31	FD-3(AP)	Total Recoverable	Water	3005A	
400-154761-32	EB-3(AP)	Total Recoverable	Water	3005A	
400-154761-33 - DL	SGWC-18	Total Recoverable	Water	3005A	
400-154761-33	SGWC-18	Total Recoverable	Water	3005A	
400-154761-34	SGWC-19	Total Recoverable	Water	3005A	
400-154761-34 - DL	SGWC-19	Total Recoverable	Water	3005A	
MB 400-401725/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-401725/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
400-154761-21 MS	SGWC-13	Total Recoverable	Water	3005A	
400-154761-21 MSD	SGWC-13	Total Recoverable	Water	3005A	

Analysis Batch: 401891

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-1	SGWA-1	Total Recoverable	Water	6020	401724
400-154761-2	SGWA-2	Total Recoverable	Water	6020	401724
400-154761-3	SGWA-24	Total Recoverable	Water	6020	401724
400-154761-4	SGWA-25	Total Recoverable	Water	6020	401724
400-154761-5	SGWA-5	Total Recoverable	Water	6020	401724
400-154761-6	FB-1(AP)	Total Recoverable	Water	6020	401724
400-154761-7	FD-1(AP)	Total Recoverable	Water	6020	401724
400-154761-8	EB-1(AP)	Total Recoverable	Water	6020	401724
400-154761-9	SGWA-3	Total Recoverable	Water	6020	401724
400-154761-10	SGWA-4	Total Recoverable	Water	6020	401724
400-154761-11	SGWC-6	Total Recoverable	Water	6020	401724
400-154761-12	SGWC-7	Total Recoverable	Water	6020	401724
400-154761-13	SGWC-8	Total Recoverable	Water	6020	401724
400-154761-14	FB-2(AP)	Total Recoverable	Water	6020	401724
400-154761-15	FD-2(AP)	Total Recoverable	Water	6020	401724
400-154761-16	EB-2(AP)	Total Recoverable	Water	6020	401724
400-154761-17	SGWC-9	Total Recoverable	Water	6020	401724
400-154761-18	SGWC-10	Total Recoverable	Water	6020	401724
400-154761-19	SGWC-11	Total Recoverable	Water	6020	401724
400-154761-20	SGWC-12	Total Recoverable	Water	6020	401724

TestAmerica Pensacola

Page 79 of 108

7/16/2018

TestAmerica Job ID: 400-154761-1

Metals (Continued)

Analysis Batch: 401891 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-21	SGWC-13	Total Recoverable	Water	6020	401725
400-154761-22	SGWC-14	Total Recoverable	Water	6020	401725
400-154761-23	SGWC-15	Total Recoverable	Water	6020	401725
400-154761-24	SGWC-16	Total Recoverable	Water	6020	401725
400-154761-25	SGWC-17	Total Recoverable	Water	6020	401725
400-154761-26	SGWC-20	Total Recoverable	Water	6020	401725
400-154761-26 - DL	SGWC-20	Total Recoverable	Water	6020	401725
400-154761-27	SGWC-21	Total Recoverable	Water	6020	401725
400-154761-28	SGWC-22	Total Recoverable	Water	6020	401725
400-154761-29	SGWC-23	Total Recoverable	Water	6020	401725
400-154761-30	FB-3(AP)	Total Recoverable	Water	6020	401725
400-154761-31	FD-3(AP)	Total Recoverable	Water	6020	401725
400-154761-32	EB-3(AP)	Total Recoverable	Water	6020	401725
400-154761-33	SGWC-18	Total Recoverable	Water	6020	401725
400-154761-33 - DL	SGWC-18	Total Recoverable	Water	6020	401725
400-154761-34	SGWC-19	Total Recoverable	Water	6020	401725
400-154761-34 - DL	SGWC-19	Total Recoverable	Water	6020	401725
MB 400-401724/1-A ^5	Method Blank	Total Recoverable	Water	6020	401724
MB 400-401725/1-A ^5	Method Blank	Total Recoverable	Water	6020	401725
LCS 400-401724/2-A	Lab Control Sample	Total Recoverable	Water	6020	401724
LCS 400-401725/2-A	Lab Control Sample	Total Recoverable	Water	6020	401725
400-154761-1 MS	SGWA-1	Total Recoverable	Water	6020	401724
400-154761-1 MSD	SGWA-1	Total Recoverable	Water	6020	401724
400-154761-21 MS	SGWC-13	Total Recoverable	Water	6020	401725
400-154761-21 MSD	SGWC-13	Total Recoverable	Water	6020	401725

Prep Batch: 402163

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-1	SGWA-1	Total/NA	Water	7470A	_
400-154761-2	SGWA-2	Total/NA	Water	7470A	
400-154761-3	SGWA-24	Total/NA	Water	7470A	
400-154761-4	SGWA-25	Total/NA	Water	7470A	
400-154761-5	SGWA-5	Total/NA	Water	7470A	
400-154761-6	FB-1(AP)	Total/NA	Water	7470A	
400-154761-7	FD-1(AP)	Total/NA	Water	7470A	
400-154761-8	EB-1(AP)	Total/NA	Water	7470A	
400-154761-9	SGWA-3	Total/NA	Water	7470A	
400-154761-10	SGWA-4	Total/NA	Water	7470A	
400-154761-11	SGWC-6	Total/NA	Water	7470A	
400-154761-12	SGWC-7	Total/NA	Water	7470A	
400-154761-13	SGWC-8	Total/NA	Water	7470A	
400-154761-14	FB-2(AP)	Total/NA	Water	7470A	
400-154761-15	FD-2(AP)	Total/NA	Water	7470A	
400-154761-16	EB-2(AP)	Total/NA	Water	7470A	
400-154761-17	SGWC-9	Total/NA	Water	7470A	
400-154761-18	SGWC-10	Total/NA	Water	7470A	
400-154761-19	SGWC-11	Total/NA	Water	7470A	
400-154761-20	SGWC-12	Total/NA	Water	7470A	
MB 400-402163/14-A	Method Blank	Total/NA	Water	7470A	
LCS 400-402163/15-A	Lab Control Sample	Total/NA	Water	7470A	
400-154761-2 MS	SGWA-2	Total/NA	Water	7470A	

TestAmerica Pensacola

SDG: Ash Pond

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Metals (Continued)

Prep Batch: 402163 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-2 MSD	SGWA-2	Total/NA	Water	7470A	

Prep Batch: 402166

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-21	SGWC-13	Total/NA	Water	7470A	
400-154761-22	SGWC-14	Total/NA	Water	7470A	
400-154761-23	SGWC-15	Total/NA	Water	7470A	
400-154761-24	SGWC-16	Total/NA	Water	7470A	
400-154761-25	SGWC-17	Total/NA	Water	7470A	
400-154761-26	SGWC-20	Total/NA	Water	7470A	
400-154761-27	SGWC-21	Total/NA	Water	7470A	
400-154761-28	SGWC-22	Total/NA	Water	7470A	
400-154761-29	SGWC-23	Total/NA	Water	7470A	
400-154761-30	FB-3(AP)	Total/NA	Water	7470A	
400-154761-31	FD-3(AP)	Total/NA	Water	7470A	
400-154761-32	EB-3(AP)	Total/NA	Water	7470A	
400-154761-33	SGWC-18	Total/NA	Water	7470A	
400-154761-34	SGWC-19	Total/NA	Water	7470A	
MB 400-402166/14-A	Method Blank	Total/NA	Water	7470A	
LCS 400-402166/15-A	Lab Control Sample	Total/NA	Water	7470A	
400-155379-B-1-C MS	Matrix Spike	Total/NA	Water	7470A	
400-155379-B-1-D MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Analysis Batch: 402434

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-1	SGWA-1	Total/NA	Water	7470A	402163
400-154761-2	SGWA-2	Total/NA	Water	7470A	402163
400-154761-3	SGWA-24	Total/NA	Water	7470A	402163
400-154761-4	SGWA-25	Total/NA	Water	7470A	402163
400-154761-5	SGWA-5	Total/NA	Water	7470A	402163
400-154761-6	FB-1(AP)	Total/NA	Water	7470A	402163
400-154761-7	FD-1(AP)	Total/NA	Water	7470A	402163
400-154761-8	EB-1(AP)	Total/NA	Water	7470A	402163
400-154761-9	SGWA-3	Total/NA	Water	7470A	402163
400-154761-10	SGWA-4	Total/NA	Water	7470A	402163
400-154761-11	SGWC-6	Total/NA	Water	7470A	402163
400-154761-12	SGWC-7	Total/NA	Water	7470A	402163
400-154761-13	SGWC-8	Total/NA	Water	7470A	402163
400-154761-14	FB-2(AP)	Total/NA	Water	7470A	402163
400-154761-15	FD-2(AP)	Total/NA	Water	7470A	402163
400-154761-16	EB-2(AP)	Total/NA	Water	7470A	402163
400-154761-17	SGWC-9	Total/NA	Water	7470A	402163
400-154761-18	SGWC-10	Total/NA	Water	7470A	402163
400-154761-19	SGWC-11	Total/NA	Water	7470A	402163
400-154761-20	SGWC-12	Total/NA	Water	7470A	402163
400-154761-21	SGWC-13	Total/NA	Water	7470A	402166
400-154761-22	SGWC-14	Total/NA	Water	7470A	402166
400-154761-23	SGWC-15	Total/NA	Water	7470A	402166
400-154761-24	SGWC-16	Total/NA	Water	7470A	402166
400-154761-25	SGWC-17	Total/NA	Water	7470A	402166
400-154761-26	SGWC-20	Total/NA	Water	7470A	402166

TestAmerica Pensacola

Page 81 of 108

TestAmerica Job ID: 400-154761-1 SDG: Ash Pond

Metals (Continued)

Project/Site: CCR - Plant Scherer

Client: Southern Company

Analysis Batch: 402434 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-27	SGWC-21	Total/NA	Water	7470A	402166
400-154761-28	SGWC-22	Total/NA	Water	7470A	402166
400-154761-29	SGWC-23	Total/NA	Water	7470A	402166
400-154761-30	FB-3(AP)	Total/NA	Water	7470A	402166
400-154761-31	FD-3(AP)	Total/NA	Water	7470A	402166
400-154761-32	EB-3(AP)	Total/NA	Water	7470A	402166
400-154761-33	SGWC-18	Total/NA	Water	7470A	402166
400-154761-34	SGWC-19	Total/NA	Water	7470A	402166
MB 400-402163/14-A	Method Blank	Total/NA	Water	7470A	402163
MB 400-402166/14-A	Method Blank	Total/NA	Water	7470A	402166
LCS 400-402163/15-A	Lab Control Sample	Total/NA	Water	7470A	402163
LCS 400-402166/15-A	Lab Control Sample	Total/NA	Water	7470A	402166
400-154761-2 MS	SGWA-2	Total/NA	Water	7470A	402163
400-154761-2 MSD	SGWA-2	Total/NA	Water	7470A	402163
400-155379-B-1-C MS	Matrix Spike	Total/NA	Water	7470A	402166
400-155379-B-1-D MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	402166

General Chemistry

Analysis Batch: 400598

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
400-154761-7	FD-1(AP)	Total/NA	Water	SM 2540C
MB 400-400598/1	Method Blank	Total/NA	Water	SM 2540C
LCS 400-400598/2	Lab Control Sample	Total/NA	Water	SM 2540C
400-154695-A-3 DU	Duplicate	Total/NA	Water	SM 2540C

Analysis Batch: 400731

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-1	SGWA-1	Total/NA	Water	SM 2540C	
400-154761-2	SGWA-2	Total/NA	Water	SM 2540C	
400-154761-3	SGWA-24	Total/NA	Water	SM 2540C	
400-154761-4	SGWA-25	Total/NA	Water	SM 2540C	
400-154761-5	SGWA-5	Total/NA	Water	SM 2540C	
400-154761-6	FB-1(AP)	Total/NA	Water	SM 2540C	
400-154761-8	EB-1(AP)	Total/NA	Water	SM 2540C	
400-154761-15	FD-2(AP)	Total/NA	Water	SM 2540C	
MB 400-400731/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 400-400731/2	Lab Control Sample	Total/NA	Water	SM 2540C	
400-154761-3 DU	SGWA-24	Total/NA	Water	SM 2540C	

Analysis Batch: 400819

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-9	SGWA-3	Total/NA	Water	SM 2540C	
400-154761-10	SGWA-4	Total/NA	Water	SM 2540C	
400-154761-11	SGWC-6	Total/NA	Water	SM 2540C	
400-154761-12	SGWC-7	Total/NA	Water	SM 2540C	
400-154761-13	SGWC-8	Total/NA	Water	SM 2540C	
400-154761-14	FB-2(AP)	Total/NA	Water	SM 2540C	
400-154761-16	EB-2(AP)	Total/NA	Water	SM 2540C	
400-154761-17	SGWC-9	Total/NA	Water	SM 2540C	

TestAmerica Pensacola

7/16/2018

Page 82 of 108

2

3

4

6

8

10

13

. .

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

General Chemistry (Continued)

Analysis Batch: 400819 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-20	SGWC-12	Total/NA	Water	SM 2540C	
400-154761-31	FD-3(AP)	Total/NA	Water	SM 2540C	
MB 400-400819/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 400-400819/2	Lab Control Sample	Total/NA	Water	SM 2540C	
400-154761-9 DU	SGWA-3	Total/NA	Water	SM 2540C	
400-154761-13 DU	SGWC-8	Total/NA	Water	SM 2540C	

Analysis Batch: 400822

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-18	SGWC-10	Total/NA	Water	SM 2540C	
400-154761-19	SGWC-11	Total/NA	Water	SM 2540C	
MB 400-400822/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 400-400822/2	Lab Control Sample	Total/NA	Water	SM 2540C	
400-154761-19 DU	SGWC-11	Total/NA	Water	SM 2540C	

Analysis Batch: 400948

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-27	SGWC-21	Total/NA	Water	SM 2540C	
400-154761-33	SGWC-18	Total/NA	Water	SM 2540C	
400-154761-34	SGWC-19	Total/NA	Water	SM 2540C	
MB 400-400948/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 400-400948/2	Lab Control Sample	Total/NA	Water	SM 2540C	
400-154761-34 DU	SGWC-19	Total/NA	Water	SM 2540C	

Analysis Batch: 400955

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-29	SGWC-23	Total/NA	Water	SM 2540C	_
400-154761-30	FB-3(AP)	Total/NA	Water	SM 2540C	
400-154761-32	EB-3(AP)	Total/NA	Water	SM 2540C	
MB 400-400955/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 400-400955/2	Lab Control Sample	Total/NA	Water	SM 2540C	
400-154761-29 DU	SGWC-23	Total/NA	Water	SM 2540C	

Analysis Batch: 400962

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-21	SGWC-13	Total/NA	Water	SM 2540C	
400-154761-22	SGWC-14	Total/NA	Water	SM 2540C	
400-154761-23	SGWC-15	Total/NA	Water	SM 2540C	
400-154761-24	SGWC-16	Total/NA	Water	SM 2540C	
400-154761-25	SGWC-17	Total/NA	Water	SM 2540C	
400-154761-26	SGWC-20	Total/NA	Water	SM 2540C	
400-154761-28	SGWC-22	Total/NA	Water	SM 2540C	
MB 400-400962/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 400-400962/2	Lab Control Sample	Total/NA	Water	SM 2540C	
400-154761-23 DU	SGWC-15	Total/NA	Water	SM 2540C	
400-154761-24 DU	SGWC-16	Total/NA	Water	SM 2540C	

Page 83 of 108

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1 SDG: Ash Pond

Rad

Prep Batch: 371113

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-1	SGWA-1	Total/NA	Water	PrecSep-21	
400-154761-2	SGWA-2	Total/NA	Water	PrecSep-21	
400-154761-3	SGWA-24	Total/NA	Water	PrecSep-21	
400-154761-4	SGWA-25	Total/NA	Water	PrecSep-21	
400-154761-5	SGWA-5	Total/NA	Water	PrecSep-21	
400-154761-6	FB-1(AP)	Total/NA	Water	PrecSep-21	
400-154761-7	FD-1(AP)	Total/NA	Water	PrecSep-21	
400-154761-8	EB-1(AP)	Total/NA	Water	PrecSep-21	
400-154761-9	SGWA-3	Total/NA	Water	PrecSep-21	
400-154761-10	SGWA-4	Total/NA	Water	PrecSep-21	
400-154761-11	SGWC-6	Total/NA	Water	PrecSep-21	
400-154761-12	SGWC-7	Total/NA	Water	PrecSep-21	
400-154761-13	SGWC-8	Total/NA	Water	PrecSep-21	
400-154761-14	FB-2(AP)	Total/NA	Water	PrecSep-21	
400-154761-15	FD-2(AP)	Total/NA	Water	PrecSep-21	
400-154761-16	EB-2(AP)	Total/NA	Water	PrecSep-21	
400-154761-17	SGWC-9	Total/NA	Water	PrecSep-21	
400-154761-18	SGWC-10	Total/NA	Water	PrecSep-21	
400-154761-19	SGWC-11	Total/NA	Water	PrecSep-21	
400-154761-20	SGWC-12	Total/NA	Water	PrecSep-21	
MB 160-371113/24-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-371113/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
400-154761-3 DU	SGWA-24	Total/NA	Water	PrecSep-21	
400-154761-13 DU	SGWC-8	Total/NA	Water	PrecSep-21	

Prep Batch: 371128

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-1	SGWA-1	Total/NA	Water	PrecSep_0	
400-154761-2	SGWA-2	Total/NA	Water	PrecSep_0	
400-154761-3	SGWA-24	Total/NA	Water	PrecSep_0	
400-154761-4	SGWA-25	Total/NA	Water	PrecSep_0	
400-154761-5	SGWA-5	Total/NA	Water	PrecSep_0	
400-154761-6	FB-1(AP)	Total/NA	Water	PrecSep_0	
400-154761-7	FD-1(AP)	Total/NA	Water	PrecSep_0	
400-154761-8	EB-1(AP)	Total/NA	Water	PrecSep_0	
400-154761-9	SGWA-3	Total/NA	Water	PrecSep_0	
400-154761-10	SGWA-4	Total/NA	Water	PrecSep_0	
400-154761-11	SGWC-6	Total/NA	Water	PrecSep_0	
400-154761-12	SGWC-7	Total/NA	Water	PrecSep_0	
400-154761-13	SGWC-8	Total/NA	Water	PrecSep_0	
400-154761-14	FB-2(AP)	Total/NA	Water	PrecSep_0	
400-154761-15	FD-2(AP)	Total/NA	Water	PrecSep_0	
400-154761-16	EB-2(AP)	Total/NA	Water	PrecSep_0	
400-154761-17	SGWC-9	Total/NA	Water	PrecSep_0	
400-154761-18	SGWC-10	Total/NA	Water	PrecSep_0	
400-154761-19	SGWC-11	Total/NA	Water	PrecSep_0	
400-154761-20	SGWC-12	Total/NA	Water	PrecSep_0	
MB 160-371128/24-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-371128/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
400-154761-3 DU	SGWA-24	Total/NA	Water	PrecSep_0	
400-154761-13 DU	SGWC-8	Total/NA	Water	PrecSep 0	

TestAmerica Pensacola

SDG: Ash Pond

7

4

၁ —

9

10

12

13

1 4

Client: Southern Company
Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-154761-1
SDG: Ash Pond

Prep Batch: 371136

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-21	SGWC-13	Total/NA	Water	PrecSep-21	
400-154761-22	SGWC-14	Total/NA	Water	PrecSep-21	
400-154761-23	SGWC-15	Total/NA	Water	PrecSep-21	
400-154761-24	SGWC-16	Total/NA	Water	PrecSep-21	
400-154761-25	SGWC-17	Total/NA	Water	PrecSep-21	
400-154761-26	SGWC-20	Total/NA	Water	PrecSep-21	
400-154761-27	SGWC-21	Total/NA	Water	PrecSep-21	
400-154761-28	SGWC-22	Total/NA	Water	PrecSep-21	
400-154761-29	SGWC-23	Total/NA	Water	PrecSep-21	
400-154761-30	FB-3(AP)	Total/NA	Water	PrecSep-21	
400-154761-31	FD-3(AP)	Total/NA	Water	PrecSep-21	
400-154761-32	EB-3(AP)	Total/NA	Water	PrecSep-21	
400-154761-33	SGWC-18	Total/NA	Water	PrecSep-21	
400-154761-34	SGWC-19	Total/NA	Water	PrecSep-21	
MB 160-371136/23-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-371136/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
400-154761-29 DU	SGWC-23	Total/NA	Water	PrecSep-21	

Prep Batch: 371223

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-154761-21	SGWC-13	Total/NA	Water	PrecSep_0	_
400-154761-22	SGWC-14	Total/NA	Water	PrecSep_0	
400-154761-23	SGWC-15	Total/NA	Water	PrecSep_0	
400-154761-24	SGWC-16	Total/NA	Water	PrecSep_0	
400-154761-25	SGWC-17	Total/NA	Water	PrecSep_0	
400-154761-26	SGWC-20	Total/NA	Water	PrecSep_0	
400-154761-27	SGWC-21	Total/NA	Water	PrecSep_0	
400-154761-28	SGWC-22	Total/NA	Water	PrecSep_0	
400-154761-29	SGWC-23	Total/NA	Water	PrecSep_0	
400-154761-30	FB-3(AP)	Total/NA	Water	PrecSep_0	
400-154761-31	FD-3(AP)	Total/NA	Water	PrecSep_0	
400-154761-32	EB-3(AP)	Total/NA	Water	PrecSep_0	
400-154761-33	SGWC-18	Total/NA	Water	PrecSep_0	
400-154761-34	SGWC-19	Total/NA	Water	PrecSep_0	
MB 160-371223/23-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-371223/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
400-154761-29 DU	SGWC-23	Total/NA	Water	PrecSep_0	

6

8

4.0

11

12

TestAmerica Job ID: 400-154761-1 SDG: Ash Pond

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 400-402384/4

Matrix: Water

Analysis Batch: 402384

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: SGWA-1

Client Sample ID: SGWA-1

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 1.0 0.89 mg/L <0.89 06/25/18 12:47 Fluoride <0.082 0.20 0.082 mg/L 06/25/18 12:47 0.70 mg/L Sulfate < 0.70 06/25/18 12:47 1.0

Lab Sample ID: LCS 400-402384/5 **Matrix: Water**

Analysis Batch: 402384

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	9.49		mg/L		95	90 - 110	
Fluoride	10.0	9.78		mg/L		98	90 - 110	
Sulfate	10.0	9.94		mg/L		99	90 - 110	

Lab Sample ID: LCSD 400-402384/6

Matrix: Water

Analysis Batch: 402384

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	10.0	9.45		mg/L		94	90 - 110	0	15
Fluoride	10.0	9.95		mg/L		99	90 - 110	2	15
Sulfate	10.0	9.93		mg/L		99	90 - 110	0	15

Lab Sample ID: 400-154761-1 MS

Matrix: Water

Analysis Batch: 402384

7 maryoto Zutom 10200 i	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	1.7		10.0	11.2		mg/L		95	80 - 120	
Fluoride	<0.082		10.0	10.3		mg/L		103	80 - 120	
Sulfate	<0.70		10.0	10.5		mg/L		105	80 - 120	

Lab Sample ID: 400-154761-1 MSD

Matrix: Water

Analysis Batch: 402384

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	1.7		10.0	11.2		mg/L		96	80 - 120	1	20
Fluoride	<0.082		10.0	10.2		mg/L		102	80 - 120	0	20
Sulfate	<0.70		10.0	10.7		mg/L		107	80 - 120	1	20

Lab Sample ID: MB 400-402469/36

Matrix: Water

Analysis Batch: 402469

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89		1.0	0.89	mg/L			06/26/18 01:01	1
Fluoride	<0.082		0.20	0.082	mg/L			06/26/18 01:01	1
Sulfate	<0.70		1.0	0.70	mg/L			06/26/18 01:01	1

TestAmerica Pensacola

7/16/2018

Page 86 of 108

Prep Type: Total/NA

Client Sample ID: Method Blank

TestAmerica Job ID: 400-154761-1 SDG: Ash Pond

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 400-402469/37

Matrix: Water

Analysis Batch: 402469

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chloride 10.0 9.47 mg/L 95 90 - 110 Fluoride 10.0 10.0 mg/L 100 90 - 110 Sulfate 10.0 9.84 90 - 110 mg/L 98

Lab Sample ID: LCSD 400-402469/38

Matrix: Water

Analysis Batch: 402469

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Client Sample ID: SGWC-9

Client Sample ID: SGWC-9

Prep Type: Total/NA

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	10.0	9.45		mg/L		94	90 - 110	0	15
Fluoride	10.0	9.99		mg/L		100	90 - 110	0	15
Sulfate	10.0	9.86		mg/L		99	90 - 110	0	15

Lab Sample ID: 400-154761-17 MS

Matrix: Water

Analysis Batch: 402469

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	12		10.0	21.5		mg/L		95	80 - 120	
Fluoride	<0.082		10.0	10.5		mg/L		105	80 - 120	
Sulfate	310	E	10.0	318	E 4	mg/L		111	80 - 120	

Lab Sample ID: 400-154761-17 MSD

Matrix: Water

Analysis Batch: 402469

7 many one Datem 102 100											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	12		10.0	21.4		mg/L		95	80 - 120	0	20
Fluoride	<0.082		10.0	10.4		mg/L		104	80 - 120	1	20
Sulfate	310	E	10.0	320	E 4	mg/L		129	80 - 120	1	20

Lab Sample ID: MB 400-402619/4

Matrix: Water

Analysis Batch: 402619

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

	IVID	VID							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89		1.0	0.89	mg/L			06/26/18 12:52	1
Fluoride	<0.082		0.20	0.082	mg/L			06/26/18 12:52	1
Sulfate	<0.70		1.0	0.70	mg/L			06/26/18 12:52	1

MD MD

Lab Sample ID: LCS 400-402619/5

Matrix: Water

Analysis Batch: 402619

Analysis Batch: 402015	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	9.38		mg/L		94	90 - 110	
Fluoride	10.0	9.95		mg/L		100	90 - 110	
Sulfate	10.0	9.78		mg/L		98	90 - 110	

TestAmerica Pensacola

Prep Type: Total/NA

Page 87 of 108

Spike

Added

10.0

10.0

10.0

9.37

9.95

9.87

mg/L

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

1

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCSD 400-402619/6

Matrix: Water

Analyte

Chloride

Fluoride

Sulfate

Analysis Batch: 402619

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

LCSD LCSD %Rec. RPD Result Qualifier Unit D %Rec Limits RPD Limit 94 mg/L 90 - 110 0 15 mg/L 100 90 - 110 15 0

99

Lab Sample ID: 400-155336-B-1 MS

Matrix: Water

Analysis Batch: 402619

Client Sample ID: Matrix Spike Prep Type: Total/NA

90 - 110

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	25		10.0	35.0		mg/L		98	80 - 120	
Fluoride	0.34		10.0	10.4		mg/L		101	80 - 120	
Sulfate	15		10.0	25.3		mg/L		106	80 - 120	

Lab Sample ID: 400-155336-B-1 MSD

Matrix: Water

Analysis Batch: 402619

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	25		10.0	35.0		mg/L		99	80 - 120	0	20
Fluoride	0.34		10.0	10.4		mg/L		101	80 - 120	0	20
Sulfate	15		10.0	25.4		mg/L		107	80 - 120	0	20

Lab Sample ID: MB 400-402782/20

Matrix: Water

Analysis Batch: 402782

Client Sample ID:	Method Blank
Prep ⁻	Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

	INID	IAID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89		1.0	0.89	mg/L			06/27/18 21:17	1
Fluoride	<0.082		0.20	0.082	mg/L			06/27/18 21:17	1
Sulfate	<0.70		1.0	0.70	mg/L			06/27/18 21:17	1

MR MR

Lab Sample ID: LCS 400-402782/21

Matrix: Water

Analysis Batch: 402782

/ miary old Datolli 1021 02								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	9.33		mg/L		93	90 - 110	
Fluoride	10.0	9.74		mg/L		97	90 - 110	
Sulfate	10.0	9 68		ma/l		97	90 - 110	

Lab Sample ID: LCSD 400-402782/22

Matrix: Water

Analysis Batch: 402782

Analysis Baton: 402702									
_	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	10.0	9.30		mg/L		93	90 - 110	0	15
Fluoride	10.0	9.79		mg/L		98	90 - 110	1	15
Sulfate	10.0	9.63		mg/L		96	90 - 110	0	15

TestAmerica Pensacola

Page 88 of 108

15

Prep Type: Total/NA

Prep Type: Total/NA

Spike

Added

10.0

10.0

10.0

MS MS

77.1 E 4

10.4

38.4

Result Qualifier

Unit

mg/L

mg/L

mg/L

TestAmerica Job ID: 400-154761-1 SDG: Ash Pond

Method: 300.0 - Anions, Ion Chromatography (Continued)

Sample Sample

68 E

0.31

29

Result Qualifier

Lab Sample ID: 400-155635-B-2 MS

Matrix: Water

Analyte

Chloride

Fluoride

Sulfate

Analysis Batch: 402782

Client: Southern Company

Project/Site: CCR - Plant Scherer

Client Sample ID: Matrix Spike Prep Type: Total/NA

%Rec.

D %Rec Limits
86 80 - 120

80 - 120

80 - 120

Lab Sample ID: 400-155635-B-2 MSD

Matrix: Water

Analysis Batch: 402782

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

101

97

-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	68	E	10.0	77.1	E 4	mg/L		86	80 - 120	0	20
Fluoride	0.31		10.0	10.5		mg/L		102	80 - 120	0	20
Sulfate	29		10.0	38.5		mg/L		97	80 - 120	0	20

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 400-401724/1-A ^5

Matrix: Water

Analysis Batch: 401891

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 401724

indigoto Datotti io ioo i								op =atom	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		06/20/18 08:24	06/20/18 13:53	5
Barium	<0.00049		0.0025	0.00049	mg/L		06/20/18 08:24	06/20/18 13:53	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		06/20/18 08:24	06/20/18 13:53	5
Boron	<0.021		0.050	0.021	mg/L		06/20/18 08:24	06/20/18 13:53	5
Calcium	<0.13		0.25	0.13	mg/L		06/20/18 08:24	06/20/18 13:53	5
Chromium	<0.0011		0.0025	0.0011	mg/L		06/20/18 08:24	06/20/18 13:53	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		06/20/18 08:24	06/20/18 13:53	5
Lead	<0.00035		0.0013	0.00035	mg/L		06/20/18 08:24	06/20/18 13:53	5
Lithium	<0.0011		0.0050	0.0011	mg/L		06/20/18 08:24	06/20/18 13:53	5
Selenium	0.000295	J	0.0013	0.00024	mg/L		06/20/18 08:24	06/20/18 13:53	5
Thallium	<0.000085		0.00050	0.000085	mg/L		06/20/18 08:24	06/20/18 13:53	5

Lab Sample ID: LCS 400-401724/2-A

Matrix: Water

Analysis Batch: 401891

Client Sample ID: Lab Control Sample
Prep Type: Total Recoverable
Prep Batch: 401724

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.0500	0.0520		mg/L		104	80 - 120	
Barium	0.0500	0.0522		mg/L		104	80 - 120	
Beryllium	0.0500	0.0501		mg/L		100	80 - 120	
Boron	0.100	0.100		mg/L		100	80 - 120	
Calcium	5.00	4.99		mg/L		100	80 - 120	
Chromium	0.0500	0.0506		mg/L		101	80 - 120	
Cobalt	0.0500	0.0565		mg/L		113	80 - 120	
Lead	0.0500	0.0506		mg/L		101	80 - 120	
Lithium	0.0500	0.0545		mg/L		109	80 - 120	
Selenium	0.0500	0.0522		mg/L		104	80 - 120	
Thallium	0.0100	0.0102		mg/L		102	80 - 120	

TestAmerica Pensacola

Page 89 of 108

3

4

6

7

9

10

12

13

14

menda i endadoid

TestAmerica Job ID: 400-154761-1

Client Sample ID: SGWA-1

Client: Southern Company Project/Site: CCR - Plant Scherer

Lab Sample ID: 400-154761-1 MS

SDG: Ash Pond

Method: 6020 - Metals (ICP/MS) (Continued)

Matrix: Water					Prep Type: Total Recoverab				
Analysis Batch: 401891									Prep Batch: 401724
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	<0.00046		0.0500	0.0557		mg/L		111	75 - 125
Barium	0.058		0.0500	0.113		mg/L		110	75 ₋ 125
Beryllium	< 0.00034		0.0500	0.0556		mg/L		111	75 ₋ 125
Boron	<0.021		0.100	0.110		mg/L		110	75 ₋ 125
Calcium	2.6		5.00	7.83		mg/L		105	75 - 125
Chromium	0.0014	J	0.0500	0.0552		mg/L		108	75 ₋ 125
Cobalt	0.0028		0.0500	0.0590		mg/L		112	75 - 125
Lead	<0.00035		0.0500	0.0510		mg/L		102	75 ₋ 125
Lithium	0.0018	J	0.0500	0.0524		mg/L		101	75 ₋ 125
Selenium	0.00065	JB	0.0500	0.0596		mg/L		118	75 - 125
Thallium	<0.000085		0.0100	0.0106		mg/L		106	75 ₋ 125

Lab Sample ID: 400-154761-1 MSD **Client Sample ID: SGWA-1 Matrix: Water Prep Type: Total Recoverable** Prep Batch: 401724 Analysis Batch: 401891

•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	<0.00046		0.0500	0.0531		mg/L		106	75 - 125	5	20
Barium	0.058		0.0500	0.111		mg/L		107	75 - 125	2	20
Beryllium	< 0.00034		0.0500	0.0545		mg/L		109	75 - 125	2	20
Boron	<0.021		0.100	0.101		mg/L		101	75 - 125	8	20
Calcium	2.6		5.00	7.68		mg/L		102	75 - 125	2	20
Chromium	0.0014	J	0.0500	0.0539		mg/L		105	75 - 125	2	20
Cobalt	0.0028		0.0500	0.0571		mg/L		109	75 - 125	3	20
Lead	< 0.00035		0.0500	0.0491		mg/L		98	75 - 125	4	20
Lithium	0.0018	J	0.0500	0.0512		mg/L		99	75 - 125	2	20
Selenium	0.00065	JB	0.0500	0.0582		mg/L		115	75 - 125	2	20
Thallium	<0.000085		0.0100	0.0104		ma/l		104	75 - 125	2	20

Lab Sample ID: MB 400-401725/1-A ^5

<0.00035

<0.0011

<0.000085

0.000250 J

Matrix: Water

Lead

Lithium

Selenium

Thallium

nalveis Ratch: 401891

							Prep Batch: 4	401/25
MB	MB						-	
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00046		0.0013	0.00046	mg/L		06/20/18 08:27	06/20/18 17:23	5
<0.00049		0.0025	0.00049	mg/L		06/20/18 08:27	06/20/18 17:23	5
<0.00034		0.0025	0.00034	mg/L		06/20/18 08:27	06/20/18 17:23	5
<0.021		0.050	0.021	mg/L		06/20/18 08:27	06/20/18 17:23	5
<0.13		0.25	0.13	mg/L		06/20/18 08:27	06/20/18 17:23	5
<0.0011		0.0025	0.0011	mg/L		06/20/18 08:27	06/20/18 17:23	5
<0.00040		0.0025	0.00040	mg/L		06/20/18 08:27	06/20/18 17:23	5
	Result <0.00046 <0.00049 <0.00034 <0.021 <0.13 <0.0011	MB Result Qualifier <0.00046 <0.00034 <0.021 <0.13 <0.0011 <0.00040	Result Qualifier RL <0.00046	Result Qualifier RL 0.00046 MDL 0.0013 0.00046 <0.00049	Result Qualifier RL MDL Unit <0.00046	Result Qualifier RL MDL Unit D <0.00046	MB Result Qualifier RL MDL Unit D Prepared <0.00046	MB Result Qualifier RL MDL Unit D Prepared Analyzed <0.00046

0.0013

0.0050

0.0013

0.00050

0.00035 mg/L

0.0011 mg/L

0.00024 mg/L

0.000085 mg/L

TestAmerica Pensacola

Prep Type: Total Recoverable

Client Sample ID: Method Blank

06/20/18 08:27 06/20/18 17:23

06/20/18 08:27 06/20/18 17:23

06/20/18 08:27 06/20/18 17:23

06/20/18 08:27 06/20/18 17:23

5

5

TestAmerica Job ID: 400-154761-1

Client: Southern Company Project/Site: CCR - Plant Scherer

SDG: Ash Pond

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 400-401725/2-A Matrix: Water				Client Sample ID: Lab Control S Prep Type: Total Recov						
Analysis Batch: 401891	Cmileo	1.00	1.00				Prep Batch: 401725			
Analyte	Spike Added	_	LCS Qualifier	Unit	D	%Rec	%Rec. Limits			
Arsenic	0.0500	0.0517		mg/L		103	80 - 120			
Barium	0.0500	0.0511		mg/L		102	80 - 120			
Beryllium	0.0500	0.0499		mg/L		100	80 - 120			
Boron	0.100	0.0972		mg/L		97	80 - 120			
Calcium	5.00	4.96		mg/L		99	80 - 120			
Chromium	0.0500	0.0501		mg/L		100	80 - 120			
Cobalt	0.0500	0.0549		mg/L		110	80 - 120			
Lead	0.0500	0.0500		mg/L		100	80 - 120			
Lithium	0.0500	0.0537		mg/L		107	80 - 120			
Selenium	0.0500	0.0526		mg/L		105	80 - 120			
Thallium	0.0100	0.0101		mg/L		101	80 - 120			

Lab Sample ID: 400-154761-21 MS **Client Sample ID: SGWC-13 Matrix: Water Prep Type: Total Recoverable Analysis Batch: 401891 Prep Batch: 401725**

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	<0.00046		0.0500	0.0542		mg/L		108	75 - 125	
Barium	0.032		0.0500	0.0844		mg/L		105	75 - 125	
Beryllium	< 0.00034		0.0500	0.0531		mg/L		106	75 - 125	
Boron	0.45		0.100	0.560	4	mg/L		112	75 - 125	
Calcium	15		5.00	19.9		mg/L		98	75 - 125	
Chromium	<0.0011		0.0500	0.0510		mg/L		102	75 - 125	
Cobalt	0.0039		0.0500	0.0575		mg/L		107	75 - 125	
Lead	< 0.00035		0.0500	0.0481		mg/L		96	75 - 125	
Lithium	<0.0011		0.0500	0.0499		mg/L		100	75 - 125	
Selenium	0.00064	JB	0.0500	0.0585		mg/L		116	75 - 125	
Thallium	<0.000085		0.0100	0 00998		ma/l		100	75 - 125	

Lab Sample ID: 400-154761-21 MSD **Client Sample ID: SGWC-13** Matrix: Water **Prep Type: Total Recoverable**

Analysis Batch: 401891									Prep Ba	atch: 40	01725
•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	<0.00046		0.0500	0.0532	-	mg/L		106	75 - 125	2	20
Barium	0.032		0.0500	0.0844		mg/L		105	75 - 125	0	20
Beryllium	<0.00034		0.0500	0.0520		mg/L		104	75 - 125	2	20
Boron	0.45		0.100	0.581	4	mg/L		133	75 - 125	4	20
Calcium	15		5.00	20.0		mg/L		101	75 - 125	1	20
Chromium	<0.0011		0.0500	0.0514		mg/L		103	75 - 125	1	20
Cobalt	0.0039		0.0500	0.0577		mg/L		108	75 - 125	0	20
Lead	<0.00035		0.0500	0.0479		mg/L		96	75 - 125	1	20
Lithium	<0.0011		0.0500	0.0505		mg/L		101	75 - 125	1	20
Selenium	0.00064	JB	0.0500	0.0563		mg/L		111	75 - 125	4	20
Thallium	< 0.000085		0.0100	0.0101		mg/L		101	75 ₋ 125	1	20

TestAmerica Pensacola

7/16/2018

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 400-402163/14-A	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 402434	Prep Batch: 402163
MD MD	

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac <0.000070 0.00020 0.000070 mg/L 06/23/18 14:33 06/25/18 11:40 Mercury

Lab Sample ID: LCS 400-402163/15-A				Clier	nt Sai	mple ID	: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 402434							Prep Batch: 402163
-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Mercury	0.00101	0.000988		mg/L		98	80 - 120

Lab Sample ID: 400-154761-2 MS **Client Sample ID: SGWA-2 Matrix: Water Prep Type: Total/NA** Analysis Batch: 402434 **Prep Batch: 402163** Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits Analyte D %Rec Unit 0.00201 Mercury <0.000070 0.00197 mg/L 98 80 - 120

Lab Sample ID: 400-15476	1-2 MSD							Clien	t Sample	ID: SG	WA-2
Matrix: Water									Prep Ty	pe: Tot	al/NA
Analysis Batch: 402434									Prep Ba	atch: 40	02163
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	<0.000070		0.00201	0.00200		ma/L		99	80 - 120		20

Lab Sample ID: MB 400-402166/14-A	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 402434	Prep Batch: 402166
MB MB	

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Mercury <0.000070 0.00020 0.000070 mg/L 06/23/18 14:33 06/25/18 12:48

Lab Sample ID: LCS 400-402166/15-A				Clier	ıt Saı	mple ID	: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 402434							Prep Batch: 402166
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Mercury	0.00101	0.000981		mg/L		97	80 - 120

Lab Sample ID: 400-155379	9-B-1-C MS						CI	ient Sa	mple ID: Matrix Spike
Matrix: Water									Prep Type: Total/NA
Analysis Batch: 402434									Prep Batch: 402166
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Mercury	<0.000070		0.00201	0.00187		mg/L		93	80 - 120

Lab Sample ID: 400-155379	9-B-1-D MS	D				Client	Samp	le ID: N	latrix Spil	ke Dup	licate
Matrix: Water									Prep Typ	pe: Tot	al/NA
Analysis Batch: 402434									Prep Ba	itch: 40	2166
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	<0.000070		0.00201	0.00190		mg/L		94	80 - 120	2	20

TestAmerica Pensacola

7/16/2018

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 400-400598/1 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 400598

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared **Total Dissolved Solids** 5.0 3.4 mg/L 06/10/18 09:45 <3.4

Lab Sample ID: LCS 400-400598/2 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 400598

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec **Total Dissolved Solids** 293 85 248 mg/L 78 - 122

Lab Sample ID: 400-154695-A-3 DU **Client Sample ID: Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 400598

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier RPD Analyte Unit Limit Total Dissolved Solids 80 80.0 mg/L

Lab Sample ID: MB 400-400731/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 400731

MR MR Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Total Dissolved Solids <3.4 5.0 3.4 mg/L 06/11/18 17:02

Lab Sample ID: LCS 400-400731/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 400731

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Total Dissolved Solids 293 274 78 - 122 mg/L 94

Client Sample ID: SGWA-24 Lab Sample ID: 400-154761-3 DU Prep Type: Total/NA

Matrix: Water

Analysis Batch: 400731

DU DU Sample Sample **RPD** Analyte Result Qualifier Result Qualifier Unit D Limit **Total Dissolved Solids** 76.0 76 mg/L

Lab Sample ID: MB 400-400819/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 400819

MB MB Result Qualifier RL **MDL** Unit Dil Fac Analyte Prepared Analyzed **Total Dissolved Solids** <3.4 5.0 3.4 mg/L 06/12/18 13:36

TestAmerica Job ID: 400-154761-1

Client Sample ID: Lab Control Sample

SDG: Ash Pond

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 400- Matrix: Water Analysis Batch: 400819	400819/2					Clie	nt Sa	mple ID	: Lab Control Sa Prep Type: Tot	
Analysis Batell. 400015			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids			293	304		mg/L		104	78 - 122	
 Lab Sample ID: 400-1547	61-9 DU							Clien	t Sample ID: SG	WA-3
Matrix: Water									Prep Type: Tot	
Analysis Batch: 400819										
	Sample	Sample		DU	DU					RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		RPD	Limit
Total Dissolved Solids	46			46.0		mg/L				5
 Lab Sample ID: 400-1547	61-13 DU							Clien	t Sample ID: SG	WC-8
Matrix: Water									Prep Type: Tot	
Analysis Batch: 400819										
_	Sample	Sample		DU	DU					RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D		RPD	Limit
Total Dissolved Solids	410	-		406	,	mg/L			0.5	5

Lab Sample ID: MB 400-400822/1	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 400822	
MD MD	

	IVID IVID						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	<3.4	5.0	3.4 mg/L			06/12/18 14:04	1

Matrix: Water							Prep Type	e: Total/NA
Analysis Batch: 400822								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids	293	242		mg/L		83	78 - 122	

Lab Sample ID: 400-154761-19 DU	Client Sample ID: SGWC-11
Matrix: Water	Prep Type: Total/NA

Analysis Batch: 400822

Lab Sample ID: LCS 400-400822/2

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Total Dissolved Solids	40		40.0		mg/L		 0	5

Lab	o Sample ID: MB 400-400948/1	Client Sample ID: Method Blank
Mat	trix: Water	Prep Type: Total/NA

Analysis Batch: 400948

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	<3.4		5.0	3.4	mg/L			06/13/18 18:25	1

Lab Sample ID: LCS 400-400948/2			Clie	nt Sample ID	: Lab Control Sample
Matrix: Water				•	Prep Type: Total/NA
Analysis Batch: 400948					
	Spike	LCS LCS			%Rec.
Analyte	Added	Result Quali	fier Unit	D %Rec	Limits
Total Dissolved Solids	293	266	ma/L		78 - 122

TestAmerica Pensacola

Client: Southern Company

Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-154761-1

Client Sample ID: SGWC-19

SDG: Ash Pond

Prep Type: Total/NA

Lab Sample ID: 400-154761-34 DU

Lab Sample ID: MB 400-400955/1

Matrix: Water

Matrix: Water

Analysis Batch: 400948

DU DU Sample Sample **RPD** Analyte Result Qualifier Result Qualifier Unit RPD Limit Total Dissolved Solids 320 322 mg/L

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

Analysis Batch: 400955

Analyte	Result Qualifier	RL	MDL I	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	<3.4	5.0	3.4 r	mg/L			06/13/18 12:30	1

Lab Sample ID: LCS 400-400955/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 400955

LCS LCS Spike %Rec. Added Result Qualifier Unit Limits Analyte D %Rec **Total Dissolved Solids** 293 260 mg/L 78 - 122

MR MR

MB MB

Lab Sample ID: 400-154761-29 DU Client Sample ID: SGWC-23 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 400955

-	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Total Dissolved Solids	220		222		mg/L		 0	5

Lab Sample ID: MB 400-400962/1 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 400962

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Total Dissolved Solids <3.4 5.0 3.4 mg/L 06/13/18 16:43

Lab Sample ID: LCS 400-400962/2

Matrix: Water

Analysis Batch: 400962

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids		254		mg/L		87	78 - 122	

Lab Sample ID: 400-154761-23 DU **Client Sample ID: SGWC-15** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 400962

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Total Dissolved Solids	310		 310		ma/L		 	5

Lab Sample ID: 400-154761-24 DU **Client Sample ID: SGWC-16** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 400962

Analysis Daton. 400302									
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Total Dissolved Solids	74		 74.0		mg/L		 	0	5

TestAmerica Pensacola

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Method: 9315 - Radium-226 (GFPC)

Lab Sample ID: MB 160-371113/24-A

Matrix: Water

Matrix: Water

Analysis Batch: 374836

Client Sample ID: Method Blank Prep Type: Total/NA

0.201 pCi/L

Prep Batch: 371113

MB MB Uncert. Uncert. Result Qualifier Analyte $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-226 0.005810 U 0.107 0.107 1.00 0.231 pCi/L 06/19/18 08:49 07/11/18 19:07

Total

Count

MB MB

Carrier %Yield Qualifier Limits Ba Carrier 104 40 - 110

06/19/18 08:49 07/11/18 19:07

Prepared

Client Sample ID: Lab Control Sample Prep Type: Total/NA

79

Prep Batch: 371113

Analyzed

Analysis Batch: 374834 Total Spike LCS LCS Uncert. %Rec. Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-226

1.22

1.00

LCS LCS Carrier %Yield Qualifier Limits

Lab Sample ID: LCS 160-371113/1-A

Lab Sample ID: 400-154761-3 DU

108

Matrix: Water

Ba Carrier

Client Sample ID: SGWA-24

68 - 137

Prep Batch: 371113

Prep Type: Total/NA **Analysis Batch: 374834**

Total

11.8

40 - 110

9.309

DU DU Uncert.

Sample Sample **RER** Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-226 0.0847 U -0.05358 U 0.112 1.00 0.273 pCi/L 0.58

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 109 40 - 110

Lab Sample ID: 400-154761-13 DU

Matrix: Water

Analysis Batch: 374836

Client Sample ID: SGWC-8 Prep Type: Total/NA

Prep Batch: 371113

Total Sample Sample DU DU Uncert. **RER** Analyte Result Qual $(2\sigma + / -)$ RL Limit Result Qual **MDC** Unit RER 0.254 Radium-226 0.498 0.6226 1.00 0.222 pCi/L 0.26

DU DU

Carrier %Yield Qualifier Limits 102 40 - 110 Ba Carrier

Lab Sample ID: MB 160-371136/23-A **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 375138

Prep Type: Total/NA **Prep Batch: 371136** Count Total

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RLMDC Unit Prepared Analyzed Dil Fac Radium-226 0.08998 U 0.127 0.127 1.00 0.216 pCi/L 06/19/18 10:05 07/12/18 15:00

TestAmerica Pensacola

Dil Fac

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Method: 9315 - Radium-226 (GFPC) (Continued)

Lab Sample ID: MB 160-371136/23-A

Lab Sample ID: LCS 160-371136/1-A

Matrix: Water

Matrix: Water

Analysis Batch: 375138

MB MB

Carrier **%Yield Qualifier** Limits Ba Carrier 108 40 - 110 **Client Sample ID: Method Blank Prep Type: Total/NA**

Analyzed

Prep Batch: 371136

Dil Fac

06/19/18 10:05 07/12/18 15:00

Prepared

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 375103 Prep Batch: 371136 Total Spike LCS LCS Uncert. %Rec.

Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-226 11.8 11.11 1.35 1.00 0.273 pCi/L 94 68 - 137

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 105 40 - 110

Lab Sample ID: 400-154761-29 DU Client Sample ID: SGWC-23

Matrix: Water

Analysis Batch: 375103

Prep Type: Total/NA **Prep Batch: 371136**

Total

DU DU **RER** Sample Sample Uncert. Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-226 0.202 0.04 0.377 0.3946 1.00 0.211 pCi/L

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 104 40 - 110

Method: 9320 - Radium-228 (GFPC)

Lab Sample ID: MB 160-371128/24-A Client Sample ID: Method Blank

Matrix: Water

Prep Type: Total/NA Analysis Batch: 374836 Prep Batch: 371128 Count Total

MB MB Uncert. Uncert. Result Qualifier Dil Fac **Analyte** $(2\sigma + / -)$ $(2\sigma + / -)$ RL**MDC** Unit Prepared Analyzed Radium-228 -0.07597 Ū 0.154 0.154 1.00 0.295 pCi/L 06/19/18 09:16 07/11/18 15:23

Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 104 40 - 110 06/19/18 09:16 07/11/18 15:23 Y Carrier 97.2 40 - 110 06/19/18 09:16 07/11/18 15:23

Lab Sample ID: LCS 160-371128/1-A

MB MB

Matrix: Water

Analysis Batch: 374835

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 371128 Total

Spike LCS LCS Uncert. %Rec. Analyte Added Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits Radium-228 8 15 7.844 0.915 1.00 0.301 pCi/L 96 56 - 140

TestAmerica Pensacola

TestAmerica Job ID: 400-154761-1

Client Sample ID: Lab Control Sample

SDG: Ash Pond

Prep Type: Total/NA Prep Batch: 371128

Prep Batch: 371128

RER

0.62

Prep Type: Total/NA

Prep Batch: 371128

Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCS 160-371128/1-A

Matrix: Water

Analysis Batch: 374835

LCS LCS

Carrier	%Yield	Qualifier	Limits
Ba Carrier	108		40 - 110
Y Carrier	90.1		40 - 110

Lab Sample ID: 400-154761-3 DU Client Sample ID: SGWA-24 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 374835

Total Sample Sample DU DU Uncert. Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit Radium-228 0.0788 U 0.184 1.00 0.271 pCi/L 0.3110

DU DU

Carrier	%Yield	Qualifier	Limits
Ba Carrier	109		40 - 110
Y Carrier	95.0		40 - 110

Lab Sample ID: 400-154761-13 DU **Client Sample ID: SGWC-8**

Matrix: Water

Analysis Batch: 374836

Total

MB MB

8.15

8.392

DU DU **RER** Sample Sample Uncert. Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-228 1.09 1.252 0.304 1.00 0.329 pCi/L 0.27

DU DU Carrier %Yield Qualifier Limits Ba Carrier 102 40 - 110 40 - 110 Y Carrier 98.3

Lab Sample ID: MB 160-371223/23-A

Matrix: Water

Radium-228

Analysis Batch: 375139

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 371223

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-228 Ū 06/19/18 10:53 07/12/18 09:47 0.05581 0.216 0.216 1.00 0.378 pCi/L

Carrier **%Yield Qualifier** Limits Prepared Dil Fac Analyzed 108 Ba Carrier 40 - 110 06/19/18 10:53 07/12/18 09:47 Y Carrier 81.1 40 - 110 06/19/18 10:53 07/12/18 09:47

Lab Sample ID: LCS 160-371223/1-A

Matrix: Water Prep Type: Total/NA **Analysis Batch: 375103 Prep Batch: 371223** Total Spike LCS LCS Uncert. %Rec. Analyte Added Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits

0.981

1.00

0.350 pCi/L

103

TestAmerica Pensacola

56 - 140

RER

Limit

Client Sample ID: Lab Control Sample

7/16/2018

TestAmerica Job ID: 400-154761-1

Client Sample ID: Lab Control Sample

SDG: Ash Pond

Prep Type: Total/NA

Prep Batch: 371223

Prep Type: Total/NA

Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCS 160-371223/1-A

Matrix: Water

Analysis Batch: 375103

LCS LCS

Carrier	%Yield	Qualifier	Limits
Ba Carrier	105		40 - 110
Y Carrier	86.0		40 - 110

Lab Sample ID: 400-154761-29 DU Client Sample ID: SGWC-23 **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 375103 Prep Batch: 371223 Total

Sample Sample DU DU Uncert. **RER** Result Qual Analyte Result Qual $(2\sigma + / -)$ RL **MDC** Unit Limit RER 0.263 U Radium-228 0.06156 U 0.167 1.00 0.292 pCi/L 0.55

DU DU Carrier %Yield Qualifier Limits Ba Carrier 104 40 - 110 Y Carrier 90.1 40 - 110

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Lab Sample ID: 400-154761-3 DU Client Sample ID: SGWA-24

Matrix: Water

Analysis Batch: 375781

Total Sample Sample DU DU Uncert. **RER** Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit 0.163 U 0.2574 U 0.215 0.273 pCi/L Combined 5.00 0.21

Radium 226 +

228

Lab Sample ID: 400-154761-13 DU **Client Sample ID: SGWC-8** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 375781

					Total						
	Sample	Sample	DU	DU	Uncert.						RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit		RER	Limit
Combined	1.59		1.875		0.396	5.00	0.329	pCi/L	 	0.37	

Radium 226 +

228

Lab Sample ID: 400-154761-29 DU Client Sample ID: SGWC-23 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 375781

Allalysis Date	511. 3 <i>1</i> 3 <i>1</i> 0	, i									
_					Total						
	Sample	Sample	DU	DU	Uncert.						RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit		RER	Limit
Combined	0.640		0.4562		0.262	5.00	0.292	pCi/L		0.34	
D = 41: 000 1											

Radium 226 +

228

TestAmerica Pensacola

O	TIME
O	TES
-	1TAL
W	NME
5	/IRG
X	EN
7	ER
S	EAD
W	里

I estAmerica Pensacola

nsacola	681-Atlanta	hair	بول الو	hain of Custody Bocord	200	7					TestA	TestAmerica
Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671			200	tody in							THE LEADER IN	THE LEADER IN ENVIRONMENTAL TESTING
Client Information	Sampler: Ben Hodges			Lab PN Whitn	Lab PM: Whitmire, Cheyenne R	yenne	2	Carrier Tracking No(s)	g No(s):		COC No: 400-57303-24790	790
Client Contact: Joju Abraham	Phone: 912-258-7457			E-Mail: cheye	nne.whit	mire@	E-Mail: cheyenne.whitmire@testamericainc.com				Page: 1 of 1	
Company: Southern Company							Analysis Requested	equested			Job #:	1 of Cho
Address: 241 Ralph McGill Blvd SE B10185	Due Date Requested:	ij									Preservation Codes	
City: Atlanta	TAT Requested (days):	ys):			ote311.2				_		B - NaOH C - Zn Acetate	
State, Zip: GA, 30308					- apinor		- Sd:		_		D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
Phone:	PO#:						558_GF				G - Amchlor H - Ascorbic Acid	
Email: JAbraham@southernco.com	, MO#:				(oN		226Ra2			SJ		
Project Name: CCR - Scherer	Project #: 40007041				10 se			400-154781 000		enistr	K-EDTA L-EDA	W - ph 4-5 Z - other (specify)
Site: Ash Pond	SSOW#:				A) ds			202 1611	_	100 10	Other:	
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=grab)	Matrix (W=water, 8=solid, O=waste/oli, BT=TIssue, A=AIr)	Field Filtered S MSM moha9	2540C-TDS, 300 6020-As,Ba,Cr,C	9315 <u>_R</u> a226, 93	-		TedmuM lstoT		Special Instructions/Note:
	X	X	Preserva	1	Ž		0			X		
SGWA-1	6/5/18	1430	9	A	z	-	-					
SGWA-2	6/5/18	1530	9	W	z	-	-					
SGWA-24	6/5/18	1450	9	W	Z	1	2				Extra Radium	
SGWA-25	6/5/18	1700	9	W	z	1	1					
SGWA-5	6/5/18	1630	9	W	Z	1 1	1					
FB-1(AP)	6/5/18	1420	G	W	z	1 1	1					
FD-1(AP)	6/5/18	-	9	W	z	1 1	1					
EB-1(AP)	6/5/18	1730	O	M	Z	1	1					
						+			1			
					1	+			+			
					H	Н						
Possible Hazard Identification Non-Hazard	itant	nown	Radiological	al	Sam	ple Di.	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Mon	be assessed if san Disposal By Lab	f samples Lab	are reta	stained longer the Archive For	nn 1 month) Months
Deliverable Requested: I, II, III, IV, Other (specify)					Spec	ial Ins	Special Instructions/QC Requirements:	ements:				
Empty Kit Relinquished by:		Date:			Time:			Metho	Method of Shipment:			
Relinquished by: The Relinquished by Co. 1.1.1	Date/Time:	10 8	75	Company Golder Company		Received by	500	Col	Date/Time	9	1/8	Company How
SAY	Date/Time:	1	16	Company	1	Received/by:	W. C.	Who was	Date/Time:	_		Company
Custody Seals Intact: Custody Seal No.:						Sooler T	Cooler Temperature(s) °C and Other Remarks:	ner Remarks:	. y.C.	TR-r		

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

3355 McLemore Drive Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671

	Sampler				II ah PM	1		١		Carrier T	Carrier Tracking No/e)		COC No.	the state of the s
Client Information	Ben Hodges	sabpo			Whitn	Whitmire, Cheyenne R	eyenn	le R			0		400-57303-24790	0
Client Contact: Joju Abraham	Phone: 912-258-7457	8-7457			E-Mail: cheye	nne.wh	itmire	@tes	E-Mail: cheyenne.whitmire@testamericainc.com	E.			Page: 1 of 1	
Company: Southern Company									Analys	Analysis Requested			Job #:	
Address: 241 Ralph McGill Blvd SE B10185	Due Date	Due Date Requested:						-					Preservation Codes	es:
City: Atlanta	TAT Req	TAT Requested (days)						-		-			A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
State, Zip: GA, 30308											Ž		D - Nitric Acid E - NaHSO4	P - Na204S Q - Na2SO3
Phone:	# #										N		G - Amchlor	8 - H2SO4 T - TSP Dodershydrate
Email: JAbraham@southernco.com	WO #:					-				400-15	400-154761 COC			U - Acetone V - MCAA
Project Name: CCR - Scherer	Project #: 40007041	£.				-				_	_		K - EDTA L - EDA	W - ph 4-5 Z - other (specify)
Site: Ash Pond	:#MOSS					-						of con	Other:	
Sample identification	Ses	Sample Date	Sample	Sample Type (C=comp,	Matrix (w=water, S=solid, O=waste/oil,	ield Filtered S M/SM mrone	240C-1D2, 300	020-As,Ba,Cr,C				otal Number		W
			1		tion Code:	_						1 X		special instructions/Note:
SGWC-13	/9	6/7/18	0915	O	8	z	-	-	1					
SGWC-14	/9	6/7/18	1030-	O	×	z	-	-	1					
SGWC-15	9	6/7/18	1210	O	8	z	-	-	-					
SGWC-16	9	6/7/18	1400~	O	×	z	-	-	-					
SGWC-17	Ø	6/7/18	1500 -	O	M	z	-	-	1					
SGWC-20	9	6/7/18	1525 .	O	W	z	-	-	-					
SGWC-21	Ø	6/7/18	1410	O	W	z	-	-	-					
SGWC-22	9	6/7/18	1025	တ	M	z	-	-	-					
SGWC-23	9	6/7/18	0915	O	W	z	-	-	2				Extra Radium	
FB-3(AP)	9	6/7/18	1020	O	×	Z	-	-	-					
FD-3(AP)	9	6/7/18	1	9	W	Z	-	-	1					
EB-3(AP)		6/7/18	1600	O	×	Z	-	-	-					
ant	☐ Poison B	Unknown	П	Radiological		Saı	nple I	Dispo	le Disposal (A fee n Return To Client	ay be assessed if san	ed if sam	oles are retair	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	1 month) Months
Deliverable Requested: I, II, III, IV, Other (specify)						Spi	ecial I	nstruc	Special Instructions/QC Requirements:	uirements:				
Empty Kit Relinquished by:			Date:			Time:				2	Method of Shipment:	pment		
Relinguishedfoy.	Date/Time:	Date/Time:	13	3.08	Company Golder		Recei/	Received by:	J.		٥	Date/Time:	1305	Company
Relinduished by	Date/Time:	1 8-1 8	2	01	Company	/	Recei	Received by:	In	æ		Date/Time: 18	2836	
	Date/T	ime:			Company		Recei	Received by:)	Δ	Date/Time:		Company
Custody Seals Intact: Custody Seal No.: 4							000 000 000 000 000 000 000 000 000 00	F. CO	erature(s) °C an	Cooler Temperature(s) °C and Other Remarks: 3.7°C	7°C	TRB		
ı														

TestAmerica

3355 McLemore Drive Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671 i estAmerica Pensacola

Chain of Custody Record

Client Information	Sampler: Ben Hodges			Lab PM: Whitmir	Lab PM: Whitmire, Cheyenne R	enne R			Carrier Tracking No(s):	cking No(s)		COC No: 400-57303-24790	06.	_
Dient Contact:	Phone:			E-Mail:								Page: 1 of 1		Т
Joju Abraham	912-258-7457			cheyen	ne.whitn	ire@tes	cheyenne.whitmire@testamericainc.com	inc.com						
Company: Southern Company							Ana	lysis Re	Analysis Requested			Job #:		
kddress: 241 Ralph McGill Blvd SE B10185	Due Date Requested:											Preservation Codes:		
Dity: Atlanta	TAT Requested (days):				elfate							B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2	
State, Zip: GA, 30308					S,abino	0747)6	20					D - Nitric Acid E - NaHSO4		
Phone:	PO#:					н ,1Т ,а	110_8					G - Amchlor H - Ascorbic Acid		
_{Етвай} : JAbraham@southernco.com	,#OM			ON 10	(0)	l4 ,88 ,1	778497		_					
Project Name: CCR - Scherer	Project #: 40007041			SƏX) Ə	10 se	, Ca, B	ZeX,8Z					L-EDA	W - pn 4-5 Z - other (specify)	
Site: Ash Pond	SSOW#;			Idms	sp (Y	98'!7'0	ZeA_02					Other:		
Sample Identification	Sample Date Time	0	Sample Na Type Serica (C=comp, C=w	Matrix (W=water, Secolid, C=maste/oil, G=Tissue, A=Air)	Perform MS/M 2640C-TDS, 300	O,10,88,eA-0209	9315_Ra226, 93					Total Number or	Special Instructions/Note:	
		V	Preservation Code:				-							
SGWC-18	6/8/18 09	0350	O	Z	-	-	-							
SGWC-19	6/8/18 09	9060	9	×	-	-	-							
		+		T		1								
Possihle Hazard Identification		1	1	1	Camer	Jo Dien	A / Icao	- A view oo	7000000	d if come	los ara rafa	Samula Diences / A fee may he seeseed if camples are referred lower than 4 month	4 month)	1
ant	☐ Poison B ☐ Unknown	Radiological	ological			Return	Return To Client		Disposal By Lab	By Lab	A D	Archive For	Months	
sted: I, II, III, IV, Ot					Speci	al Instru	ctions/QC	Special Instructions/QC Requirements:	ents:					
Empty Kit Relinquished by:	Date:				Time:				Me	Method of Shipment:	oment:			1
Rejinfuls) ed by:	Date/Time: 6-8-1 S	- 13	US Golder	any r	<u>«</u> /	Received by	9	V		De	Date/Time:	130	Po	
Relinquished by:	Date/Time, N-18	131	Company	any	1	Received by	34	1		٥	Date/Time: 18	1680	Company TA Pen	
			Company	any	2	Received by	2			Ď	Date/Time:			
Custody Seals Intact: Custody Seal No.: △ Yes △ No					0.4	John Tem	perature(s)	Cooler Temperature(s) °C and Other Remarks:	Remarks:		3	7°C T	R8	
The second secon														ı

TestAmerica Pensacola

Chain of Custody Record

TestAmerica

lestamenta rensacola 681-Atlanta								ALL THE			ToctAl	TactAmarica
3355 McLemore Drive Pensacola FI 32514		Chain of Custody Record	f Custo	ody Re	corc	-						
											THE LEADER IN EN	THE LEADER IN ENVIRONMENTAL TEETING
Client Information	Sampler: Ben Hodges			Lab PM: Whitm	Lab PM: Whitmire, Cheyenne R	yenne F	~	400-154761 COC	king No(s):		COC No: 400-57303-24790	0
Client Contact. Joju Abraham	Phone: 912-258-7457			E-Mail: cheyer	ne.whit	mire@t	estameric	E-Mail: cheyenne.whitmire@testamericainc.com			Page: 1 of 1	
Company: Southern Company							An	Analysis Requested	þ		Job #:	
Address: 241 Ralph McGill Blvd SE B10185	Due Date Requested:										Preservation Codes	
City: Atlanta	TAT Requested (days):	rs):			Sulfate						B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
State, Zip. GA, 30308					loride		Od:		_		D - Nitric Acid E - NaHSO4	P - Na2048 Q - Na2803
Phone:	PO#;						28_GF				G - Amchlor	R - Na2S203 S - H2S04 T - TSP Dodershydrate
Етаіі: JAbraham@southernco.com	WO #:			Jor Marie	(oN		226Ra2					U - Acetone V - MCAA
Project Name: CCR - Scherer	Project #: 40007041			, o	10 sa		sЯ,822					w - pn 4-5 Z - other (specify)
Site: Ash Pond	SSOW#:			Junes	A) as		20_Rai				Other:	
Sample identification	Sample Date	Sample	Sample Type (C=comp,	Matrix (W=water, S=soolid, O=wasteroll, G	Perform MS/M	000, ted 1-50#cs	9315_Ra226, 93				Notal Number	Special Instructions/Note:
	X	1			X		0					V
SGWA-3	6/6/18	0840	9	8	z	1	-					
SGWA-4	6/6/18	1120	O	×	Z	-	-					
SGWC-6	6/6/18	0940	9	W	Z	1 1	1					
SGWC-7	6/6/18	1100	ŋ	W	z	1	1					
SGWC-8	6/6/18	1330	O	×	Z	-	2				Extra Radium	
FB-2(AP)	6/6/18	0350	Ø	M	z	-	-					
FD-2(AP)	6/6/18	1	O	8	z	-	-					
EB-2(AP)	6/6/18	1725	O	8	z	-	-					
SGWC-9	6/6/18	1445	Ð	W	z	1 1	1					
SGWC-10 -	6/6/18	1550	O	8	z	-	-					
SGWC-11	6/6/18	1435	g	M	z	1	-					
SGWC-12	6/6/18	1625	9	W	z	1	-					
Possible Hazard Identification Non-Hazard	Poison B Un	known	Radiological		Sam	Die Dis	ple Disposal (A1	ee may be	assessed if sample Disposal By Lab	s are ret	stained longer than Archive For	1 month) Months
sted: I, II, III, IV, O					Spec	ial Inst	ructions/C	Special Instructions/QC Requirements:				
Empty Kit Relinquished by:		Date:			Time:				Method of Shipment	ent:		
Relinquished by: The Characteristics of the C	3	118 08	0800	Company Golder	<u> </u>	Received by:	Line	CUSK	Date	rime: 71	18	Company Conver No
Relinquest of area COOK	Date/Time:	118		Company		Received by:	J.	CCKSOL	Deterfime	Mime:	8 952	Company
	Date/Time:/	91 K	0	Company		Received by	by:		Date/Ti	Time	8 MAP 8	Company On
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No					Ů.	Cooler Te	amperature)	Cooler Temperature (2) Sand Other Remarks.	0,20	6	2670	611

Client: Southern Company

Job Number: 400-154761-1 SDG Number: Ash Pond

Login Number: 154761 List Source: TestAmerica Pensacola

List Number: 1

Creator: Whitmire, Cheyenne R

Creator: Wnitmire, Cheyenne R		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	0.4°C, IR-7
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Pensacola

Client: Southern Company

Job Number: 400-154761-1 SDG Number: Ash Pond

Login Number: 154761 List Source: TestAmerica St. Louis
List Number: 2 List Creation: 06/18/18 08:36 AM

Creator: Taylor, Kristene N

Creator. Taylor, Kristerie N		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	17.0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Southern Company

Job Number: 400-154761-1 SDG Number: Ash Pond

Login Number: 154761 List Source: TestAmerica St. Louis
List Number: 5 List Creation: 06/18/18 08:42 AM

Creator: Taylor, Kristene N

Creator: Taylor, Kristene N		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	18.0,18.0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	False	

Client: Southern Company

TestAmerica Job ID: 400-154761-1

SDG: Ash Pond

Laboratory: TestAmerica Pensacola

Project/Site: CCR - Plant Scherer

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-19
ANAB	ISO/IEC 17025		L2471	02-22-20
Arizona	State Program	9	AZ0710	01-12-19
Arkansas DEQ	State Program	6	88-0689	09-01-18
California	State Program	9	2510	06-30-19
Florida	NELAP	4	E81010	06-30-19
Georgia	State Program	4	E81010 (FL)	06-30-19
Illinois	NELAP	5	200041	10-09-18
Iowa	State Program	7	367	08-01-18
Kansas	NELAP	7	E-10253	10-31-18
Kentucky (UST)	State Program	4	53	06-30-19
Kentucky (WW)	State Program	4	98030	12-31-18
Louisiana	NELAP	6	30976	06-30-19
Louisiana (DW)	NELAP	6	LA170005	12-31-18
Maryland	State Program	3	233	09-30-18
Massachusetts	State Program	1	M-FL094	06-30-19
Michigan	State Program	5	9912	06-30-19
New Jersey	NELAP	2	FL006	06-30-19
North Carolina (WW/SW)	State Program	4	314	12-31-18
Oklahoma	State Program	6	9810	08-31-18
Pennsylvania	NELAP	3	68-00467	01-31-19
Rhode Island	State Program	1	LAO00307	12-30-18
South Carolina	State Program	4	96026	06-30-18 *
Tennessee	State Program	4	TN02907	06-30-19
Texas	NELAP	6	T104704286-18-14	09-30-18
US Fish & Wildlife	Federal		LE058448-0	07-31-18
USDA	Federal		P330-16-00172	05-24-19
Virginia	NELAP	3	460166	06-14-19
Washington	State Program	10	C915	05-15-19
West Virginia DEP	State Program	3	136	06-30-19

Laboratory: TestAmerica St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska	State Program	10	MO00054	06-30-19
ANAB	DoD ELAP		L2305	04-06-19
Arizona	State Program	9	AZ0813	12-08-18
California	State Program	9	2886	06-30-19
Connecticut	State Program	1	PH-0241	03-31-19
Florida	NELAP	4	E87689	06-30-19
Illinois	NELAP	5	200023	11-30-18
lowa	State Program	7	373	12-01-18
Kansas	NELAP	7	E-10236	10-31-18
Kentucky (DW)	State Program	4	90125	12-31-18
Louisiana	NELAP	6	04080	06-30-19
Louisiana (DW)	NELAP	6	LA180017	12-31-18
Maryland	State Program	3	310	09-30-18
Michigan	State Program	5	9005	06-30-18 *
Missouri	State Program	7	780	06-30-18 *

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Pensacola

Accreditation/Certification Summary

Client: Southern Company TestAmerica Job ID: 400-154761-1 Project/Site: CCR - Plant Scherer SDG: Ash Pond

Laboratory: TestAmerica St. Louis (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Nevada	State Program	9	MO000542018-1	07-31-18 *
New Jersey	NELAP	2	MO002	06-30-19
New York	NELAP	2	11616	03-31-19
North Dakota	State Program	8	R207	06-30-18 *
NRC	NRC		24-24817-01	12-31-22
Oklahoma	State Program	6	9997	08-31-18 *
Pennsylvania	NELAP	3	68-00540	02-28-19
South Carolina	State Program	4	85002001	06-30-18 *
Texas	NELAP	6	T104704193-17-11	07-31-18 *
US Fish & Wildlife	Federal		058448	07-31-18
USDA	Federal		P330-17-0028	02-02-20
Utah	NELAP	8	MO000542016-8	07-31-18 *
Virginia	NELAP	3	460230	06-14-19
Washington	State Program	10	C592	08-30-18
West Virginia DEP	State Program	3	381	08-31-18 *

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Pensacola

ANALYTICAL DATA REPORTS OCTOBER/DECEMBER 2018

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-163833-1

TestAmerica Sample Delivery Group: Ash Pond

Client Project/Site: CCR - Plant Scherer

For:

Southern Company 241 Ralph McGill Blvd SE B10185 Atlanta, Georgia 30308

Attn: Joju Abraham

Authorized for release by: 12/28/2018 1:52:03 PM

Cheyenne Whitmire, Project Manager II (850)471-6222

cheyenne.whitmire@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	6
Sample Summary	7
Client Sample Results	8
Definitions	12
Chronicle	13
QC Association	16
QC Sample Results	18
Chain of Custody	21
Receipt Checklists	22
Certification Summary	23

5

4

6

Q

9

11

15

1

Case Narrative

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-163833-1

SDG: Ash Pond

Job ID: 400-163833-1

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-163833-1

HPLC/IC

Method(s) 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: SGWC-9 (400-163833-1), SGWC-21 (400-163833-5), SGWC-23 (400-163833-7) and FD-3 (AP) (400-163833-10). Elevated reporting limits (RLs) are provided.

Metals

Method(s) 6020: The following samples were diluted to bring the concentration of target analytes within the calibration range: SGWC-9 (400-163833-1), SGWC-19 (400-163833-4) and FD-3 (AP) (400-163833-10). Elevated reporting limits (RLs) are provided.

3

Λ

4

5

6

7

8

9

10

13

12

TestAmerica Job ID: 400-163833-1

SDG: Ash Pond

Client Sample ID: SGWC-9 Lab Sample ID: 400-163833-1

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	13	1.0	0.89	mg/L		_	300.0	Total/NA
Sulfate - DL	330	10	7.0	mg/L	10		300.0	Total/NA
Calcium	55	0.25	0.13	mg/L	5		6020	Total Recoverable
Boron - DL	1.6	0.25	0.11	mg/L	25		6020	Total Recoverable
Total Dissolved Solids	510	5.0	3.4	mg/L	1		SM 2540C	Total/NA

Lab Sample ID: 400-163833-2 **Client Sample ID: SGWC-10**

Analyte	Result Qua	alifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	8.6	1.0	0.89	mg/L		_	300.0	Total/NA
Sulfate	16	1.0	0.70	mg/L	1		300.0	Total/NA
Boron	0.098	0.050	0.021	mg/L	5		6020	Total Recoverable
Calcium	4.0	0.25	0.13	mg/L	5		6020	Total Recoverable
Total Dissolved Solids	38	5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SGWC-16 Lab Sample ID: 400-163833-3

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	8.1	1.0	0.89	mg/L	1	_	300.0	Total/NA
Sulfate	28	1.0	0.70	mg/L	1		300.0	Total/NA
Boron	0.55	0.050	0.021	mg/L	5		6020	Total
								Recoverable
Calcium	0.94	0.25	0.13	mg/L	5		6020	Total
Total Dissolved Solids	42	5.0	3.4	mg/L	1		SM 2540C	Recoverable Total/NA

Client Sample ID: SGWC-19 Lab Sample ID: 400-163833-4

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	7.3	1.0	0.89	mg/L		_	300.0	Total/NA
Sulfate - DL	270	10	7.0	mg/L	10		300.0	Total/NA
Calcium	42	0.25	0.13	mg/L	5		6020	Total Recoverable
Boron - DL	1.8	0.25	0.11	mg/L	25		6020	Total Recoverable
Total Dissolved Solids	250	5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SGWC-21 Lab Sample ID: 400-163833-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	9.3		1.0	0.89	mg/L		_	300.0	Total/NA
Sulfate - DL	88		2.0	1.4	mg/L	2		300.0	Total/NA
Boron	1.2		0.050	0.021	mg/L	5		6020	Total Recoverable
Calcium	29		0.25	0.13	mg/L	5		6020	Total Recoverable
Total Dissolved Solids	310		5.0	3.4	mg/L	1		SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

TestAmerica Job ID: 400-163833-1

SDG: Ash Pond

Client Sample ID: SGWC-22

Lab Sample ID: 400-163833-6

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D M	ethod	Prep Type
Chloride	10	1.0	0.89	mg/L		30	0.0	Total/NA
Sulfate - DL	99	5.0	3.5	mg/L	5	30	0.0	Total/NA
Boron	0.40	0.050	0.021	mg/L	5	60)20	Total Recoverable
Calcium	28	0.25	0.13	mg/L	5	60)20	Total Recoverable
Total Dissolved Solids	260	5.0	3.4	mg/L	1	SI	M 2540C	Total/NA

Client Sample ID: SGWC-23

Lab Sample	ID: 400-163833-7
------------	------------------

Analyte	Result Quali	ifier RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chloride	9.9	1.0	0.89	mg/L		300.0	Total/NA
Sulfate - DL	96	2.0	1.4	mg/L	2	300.0	Total/NA
Boron	0.60	0.050	0.021	mg/L	5	6020	Total Recoverable
Calcium	24	0.25	0.13	mg/L	5	6020	Total Recoverable
Total Dissolved Solids	30	5.0	3.4	mg/L	1	SM 2540C	Total/NA

Client Sample ID: FB-3 (AP)

Lab Sample ID: 400-163833-8

No Detections.

Client Sample ID: EB-3 (AP)

Lab Sample ID: 400-163833-9

No Detections.

Client Sample ID: FD-3 (AP)

Lab Sample ID: 400-163833-10

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chloride	13	1.0	0.89	mg/L		300.0	Total/NA
Sulfate - DL	350	10	7.0	mg/L	10	300.0	Total/NA
Calcium	55	0.25	0.13	mg/L	5	6020	Total Recoverable
Boron - DL	1.7	0.25	0.11	mg/L	25	6020	Total Recoverable
Total Dissolved Solids	530	5.0	3.4	mg/L	1	SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

2

5

7

10

12

13

14

Method Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-163833-1

SDG: Ash Pond

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	TAL PEN
6020	Metals (ICP/MS)	SW846	TAL PEN
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL PEN
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PEN

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Sample Summary

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-163833-1

SDG: Ash Pond

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-163833-1	SGWC-9	Water	12/17/18 11:40	12/19/18 09:47
400-163833-2	SGWC-10	Water	12/17/18 13:55	12/19/18 09:47
400-163833-3	SGWC-16	Water	12/17/18 14:25	12/19/18 09:47
400-163833-4	SGWC-19	Water	12/17/18 12:05	12/19/18 09:47
400-163833-5	SGWC-21	Water	12/17/18 11:00	12/19/18 09:47
400-163833-6	SGWC-22	Water	12/17/18 12:05	12/19/18 09:47
400-163833-7	SGWC-23	Water	12/17/18 11:10	12/19/18 09:47
400-163833-8	FB-3 (AP)	Water	12/17/18 11:05	12/19/18 09:47
400-163833-9	EB-3 (AP)	Water	12/17/18 12:45	12/19/18 09:47
400-163833-10	FD-3 (AP)	Water	12/17/18 00:00	12/19/18 09:47

2

TestAmerica Job ID: 400-163833-1

SDG: Ash Pond

Client Sample ID: SGWC-9

Project/Site: CCR - Plant Scherer

Lab Sample ID: 400-163833-1

Matrix: Water

Date Collected: 12/17/18 11:40 Date Received: 12/19/18 09:47

Client: Southern Company

Method: 300.0 - Anions, Ior	Chromatogra	phy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	13		1.0	0.89	mg/L			12/24/18 14:43	1
Method: 300.0 - Anions, Ior	Chromatogra	phy - DL							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	330		10	7.0	mg/L			12/24/18 15:06	10
Method: 6020 - Metals (ICP)	MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Calcium	55		0.25	0.13	mg/L		12/21/18 10:21	12/21/18 17:40	5
- Method: 6020 - Metals (ICP)	MS) - Total Re	coverable -	DL						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	1.6		0.25	0.11	mg/L		12/21/18 10:21	12/21/18 18:16	25
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	510		5.0	2.4	mg/L			12/21/18 10:25	

Client Sample ID: SGWC-10 Lab Sample ID: 400-163833-2

Date Collected: 12/17/18 13:55 Matrix: Water

Date Received: 12/19/18 09:47

Method: 300.0 - Anions, lo	n Chromatogra	iphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.6		1.0	0.89	mg/L			12/24/18 15:28	1
Sulfate	16		1.0	0.70	mg/L			12/24/18 15:28	1
_ Method: 6020 - Metals (ICF	P/MS) - Total Re	coverable							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.098		0.050	0.021	mg/L		12/21/18 10:21	12/21/18 18:20	5
Calcium	4.0		0.25	0.13	mg/L		12/21/18 10:21	12/21/18 18:20	5
_									
General Chemistry									

Client Sample ID: SGWC-16

Lab Sample ID: 400-163833-3

Date Collected: 12/17/18 14:25

Matrix: Water

38

5.0

3.4 mg/L

Date Collected: 12/17/18 14:25 Date Received: 12/19/18 09:47

Total Dissolved Solids

Method: 300.0 - Anions, Ion Chromatography										
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac			
Chloride	8.1	1.0	0.89 mg/L			12/24/18 15:51	1			
Sulfate	28	1.0	0.70 mg/L			12/24/18 15:51	1			

Method: 6020 - Metals (ICP/MS)) - Total Recovera	able						
Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.55	0.050	0.021	mg/L		12/21/18 10:21	12/21/18 18:24	5
Calcium	0.94	0.25	0.13	mg/L		12/21/18 10:21	12/21/18 18:24	5

12/21/18 10:25

Client Sample Results

Client: Southern Company TestAmerica Job ID: 400-163833-1 Project/Site: CCR - Plant Scherer SDG: Ash Pond Client Sample ID: SGWC-16 Lab Sample ID: 400-163833-3 Date Collected: 12/17/18 14:25 **Matrix: Water** Date Received: 12/19/18 09:47 **General Chemistry** Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac **Total Dissolved Solids** 5.0 3.4 mg/L 12/21/18 10:25 42 Client Sample ID: SGWC-19 Lab Sample ID: 400-163833-4 Date Collected: 12/17/18 12:05 **Matrix: Water** Date Received: 12/19/18 09:47 Method: 300.0 - Anions, Ion Chromatography Result Qualifier Analyte RL **MDL** Unit D Prepared Analyzed Dil Fac 1.0 12/24/18 16:14 Chloride 0.89 mg/L 7.3 Method: 300.0 - Anions, Ion Chromatography - DL Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 10 Sulfate 7.0 mg/L 12/27/18 14:48 10 270 Method: 6020 - Metals (ICP/MS) - Total Recoverable Analyte Result Qualifier **MDL** Unit RL D Prepared Analyzed Dil Fac Calcium 0.25 0.13 mg/L 12/21/18 10:21 12/21/18 18:27 42 Method: 6020 - Metals (ICP/MS) - Total Recoverable - DL Analyte Result Qualifier **MDL** Unit RL D Prepared Analyzed Dil Fac 0.11 mg/L Boron 1.8 0.25 12/21/18 10:21 12/21/18 18:31 25 **General Chemistry** Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 5.0 **Total Dissolved Solids** 3.4 mg/L 12/21/18 10:25 250 Client Sample ID: SGWC-21 Lab Sample ID: 400-163833-5 Date Collected: 12/17/18 11:00 **Matrix: Water** Date Received: 12/19/18 09:47 Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride 9.3 1.0 0.89 mg/L 12/24/18 16:37 Method: 300.0 - Anions, Ion Chromatography - DL Result Qualifier RL **MDL** Unit D Analyte Prepared Analyzed Dil Fac Sulfate 88 2.0 1.4 mg/L 12/26/18 17:39 Method: 6020 - Metals (ICP/MS) - Total Recoverable Result Qualifier Analyte RL MDL Unit Prepared Analyzed Dil Fac

12/28/2018

12/21/18 10:21 12/21/18 18:34

12/21/18 18:34

Analyzed

12/21/18 10:25

12/21/18 10:21

Prepared

ח

0.050

0.25

RL

5.0

1.2

29

310

Result Qualifier

Boron

Calcium

Analyte

General Chemistry

Total Dissolved Solids

0.021 mg/L

0.13 mg/L

MDL Unit

3.4

mg/L

5

5

Dil Fac

2

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-163833-1

SDG: Ash Pond

Client Sample ID: SGWC-22 Date Collected: 12/17/18 12:05 Lab Sample ID: 400-163833-6 Matrix: Water

Date Received: 12/19/18 09:47

ı	Method: 300.0 - Anions, Ion Ci	nromatography							
	Analyte	Result Qualifie	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	10	1.0	0.89	mg/L			12/24/18 17:45	1

Method: 300.0 - Anions	, Ion Chromatography - DL							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	99	5.0	3.5	mg/L			12/27/18 15:10	5
Method: 6020 - Metals (ICP/MS) - Total Recoverable Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

	Method. 0020 - Metals (101 /MS	<i>)</i> - Total ite	Coverable							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Boron	0.40		0.050	0.021	mg/L		12/21/18 10:21	12/21/18 18:38	5
	Calcium	28		0.25	0.13	mg/L		12/21/18 10:21	12/21/18 18:38	5
-	_									

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	260		5.0	3.4	mg/L			12/21/18 10:25	1

Client Sample ID: SGWC-23

Date Collected: 12/17/18 11:10

Lab Sample ID: 400-163833-7

Matrix: Water

Date Received: 12/19/18 09:47

Method: 300.0 - Anions, Ion Ch	romatography						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9.9	1.0	0.89 mg/L			12/24/18 18:08	1

Method: 300.0 - Anions, Ion C	hromatography - DL						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	96	2.0	1.4 mg/L			12/26/18 18:24	2

Method: 6020 - Metals	(ICP/MS) - Total Recoverable							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.60	0.050	0.021	mg/L		12/21/18 10:21	12/21/18 18:42	5
Calcium	24	0.25	0.13	mg/L		12/21/18 10:21	12/21/18 18:42	5

General Chemistry Analyte	Popult	Qualifier	RL	MDL	Unit	D	Droporod	Analyzed	Dil Fac
Analyte	Result	Qualifier	KL	MIDL	Ullit	U	Prepared	Allalyzeu	DII Fac
Total Dissolved Solids	30		5.0	3.4	mg/L			12/21/18 10:25	1

Client Sample ID: FB-3 (AP)

Date Collected: 12/17/18 11:05

Lab Sample ID: 400-163833-8

Matrix: Water

Date Received: 12/19/18 09:47

Method: 300.0 - Anions, Ion C	hromatography						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89	1.0	0.89 mg/L			12/24/18 19:17	1
Sulfate	<0.70	1.0	0.70 mg/L			12/24/18 19:17	1

Method: 6020 - Metals (ICP/MS) - Total Rec	overable							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.021		0.050	0.021	mg/L		12/21/18 10:21	12/21/18 18:45	5
Calcium	<0.13		0.25	0.13	mg/L		12/21/18 10:21	12/21/18 18:45	5

TestAmerica Job ID: 400-163833-1

SDG: Ash Pond

Client Sample ID: FB-3 (AP)

Date Collected: 12/17/18 11:05 Date Received: 12/19/18 09:47

Lab Sample ID: 400-163833-8

Matrix: Water

ı	General	Chemi	istry
ı	Analyte		_

RL **MDL** Unit Result Qualifier D Prepared Analyzed Dil Fac **Total Dissolved Solids** <3.4 5.0 3.4 mg/L 12/21/18 10:25

Lab Sample ID: 400-163833-9

Client Sample ID: EB-3 (AP) Date Collected: 12/17/18 12:45

Matrix: Water

Date Received: 12/19/18 09:47

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride <0.89 1.0 0.89 mg/L 12/24/18 19:40 Sulfate <0.70 1.0 0.70 mg/L 12/24/18 19:40

Method: 6020 - Metals (ICP/MS) - Total Recoverable

MDL Unit Analyte Result Qualifier RI D Prepared Dil Fac Analyzed Boron <0.021 0.050 12/21/18 10:21 0.021 mg/L 12/21/18 18:49 5 0.13 mg/L Calcium < 0.13 0.25 12/21/18 10:21 12/21/18 18:49 5

General Chemistry

Result Qualifier RL **MDL** Unit Analyte D Prepared Dil Fac Analyzed **Total Dissolved Solids** <3.4 5.0 3.4 mg/L 12/21/18 10:25

Client Sample ID: FD-3 (AP)

Lab Sample ID: 400-163833-10 Date Collected: 12/17/18 00:00

Matrix: Water

Date Received: 12/19/18 09:47

Method: 300.0 - Anions, Ion Chromatography

Result Qualifier Analyte RL **MDL** Unit D Prepared Analyzed Dil Fac 1.0 12/24/18 20:02 Chloride 0.89 mg/L 13

Method: 300.0 - Anions, Ion Chromatography - DL

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 10 Sulfate 350 7.0 mg/L 12/26/18 18:47 10

Method: 6020 - Metals (ICP/MS) - Total Recoverable

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Calcium 55 0.25 0.13 mg/L 12/21/18 10:21 12/21/18 19:11

Method: 6020 - Metals (ICP/MS) - Total Recoverable - DL

Analyte Result Qualifier RL **MDL** Unit Dil Fac Prepared Analyzed Boron 0.25 0.11 mg/L 12/21/18 10:21 <u>1.7</u> 12/21/18 19:14 25

General Chemistry

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 5.0 3.4 mg/L 12/21/18 10:25 **Total Dissolved Solids 530**

Definitions/Glossary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-163833-1

SDG: Ash Pond

Qualifiers

Metals

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
E	applicable. Result exceeded calibration range.

Glossary

RL

RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Job ID: 400-163833-1 SDG: Ash Pond

Client Sample ID: SGWC-9

Date Collected: 12/17/18 11:40 Date Received: 12/19/18 09:47

Lab Sample ID: 400-163833-1 **Matrix: Water**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			424543	12/24/18 14:43	BAW	TAL PEN
Total/NA	Analysis	300.0	DL	10	424543	12/24/18 15:06	BAW	TAL PEN
Total Recoverable	Prep	3005A			424196	12/21/18 10:21	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	424370	12/21/18 17:40	DRE	TAL PEN
Total Recoverable	Prep	3005A	DL		424196	12/21/18 10:21	DRE	TAL PEN
Total Recoverable	Analysis	6020	DL	25	424370	12/21/18 18:16	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	424198	12/21/18 10:25	CLB	TAL PEN

Client Sample ID: SGWC-10 Lab Sample ID: 400-163833-2 Date Collected: 12/17/18 13:55 **Matrix: Water**

Date Received: 12/19/18 09:47

Batch Dilution Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 300.0 424543 12/24/18 15:28 BAW TAL PEN 3005A Total Recoverable Prep 424196 12/21/18 10:21 DRE TAL PEN Total Recoverable Analysis 6020 5 424370 12/21/18 18:20 DRE TAL PEN 424198 12/21/18 10:25 CLB TAL PEN Total/NA Analysis SM 2540C 1

Client Sample ID: SGWC-16 Lab Sample ID: 400-163833-3

Date Collected: 12/17/18 14:25 **Matrix: Water** Date Received: 12/19/18 09:47

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	424543	12/24/18 15:51	BAW	TAL PEN
Total Recoverable	Prep	3005A			424196	12/21/18 10:21	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	424370	12/21/18 18:24	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	424198	12/21/18 10:25	CLB	TAL PEN

Client Sample ID: SGWC-19 Lab Sample ID: 400-163833-4 Date Collected: 12/17/18 12:05

Date Received: 12/19/18 09:47

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			424543	12/24/18 16:14	BAW	TAL PEN
Total/NA	Analysis	300.0	DL	10	424854	12/27/18 14:48	BAW	TAL PEN
Total Recoverable	Prep	3005A			424196	12/21/18 10:21	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	424370	12/21/18 18:27	DRE	TAL PEN
Total Recoverable	Prep	3005A	DL		424196	12/21/18 10:21	DRE	TAL PEN
Total Recoverable	Analysis	6020	DL	25	424370	12/21/18 18:31	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	424198	12/21/18 10:25	CLB	TAL PEN

Matrix: Water

TestAmerica Job ID: 400-163833-1

SDG: Ash Pond

Client Sample ID: SGWC-21

Date Collected: 12/17/18 11:00 Date Received: 12/19/18 09:47

Lab Sample ID: 400-163833-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	424543	12/24/18 16:37	BAW	TAL PEN
Total/NA	Analysis	300.0	DL	2	424806	12/26/18 17:39	BAW	TAL PEN
Total Recoverable	Prep	3005A			424196	12/21/18 10:21	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	424370	12/21/18 18:34	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	424198	12/21/18 10:25	CLB	TAL PEN

Lab Sample ID: 400-163833-6 Client Sample ID: SGWC-22

Date Collected: 12/17/18 12:05 **Matrix: Water**

Date Received: 12/19/18 09:47

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			424543	12/24/18 17:45	BAW	TAL PEN
Total/NA	Analysis	300.0	DL	5	424854	12/27/18 15:10	BAW	TAL PEN
Total Recoverable	Prep	3005A			424196	12/21/18 10:21	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	424370	12/21/18 18:38	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	424198	12/21/18 10:25	CLB	TAL PEN

Client Sample ID: SGWC-23 Lab Sample ID: 400-163833-7

Date Collected: 12/17/18 11:10

Date Received: 12/19/18 09:47

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			424543	12/24/18 18:08	BAW	TAL PEN
Total/NA	Analysis	300.0	DL	2	424806	12/26/18 18:24	BAW	TAL PEN
Total Recoverable	Prep	3005A			424196	12/21/18 10:21	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	424370	12/21/18 18:42	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	424198	12/21/18 10:25	CLB	TAL PEN

Client Sample ID: FB-3 (AP) Lab Sample ID: 400-163833-8

Date Collected: 12/17/18 11:05 Date Received: 12/19/18 09:47

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			424543	12/24/18 19:17	BAW	TAL PEN
Total Recoverable	Prep	3005A			424196	12/21/18 10:21	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	424370	12/21/18 18:45	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	424198	12/21/18 10:25	CLB	TAL PEN

TestAmerica Pensacola

Page 14 of 23

Matrix: Water

Matrix: Water

Lab Chronicle

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-163833-1

SDG: Ash Pond

Client Sample ID: EB-3 (AP)

Date Collected: 12/17/18 12:45 Date Received: 12/19/18 09:47 Lab Sample ID: 400-163833-9

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	424543	12/24/18 19:40	BAW	TAL PEN
Total Recoverable	Prep	3005A			424196	12/21/18 10:21	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	424370	12/21/18 18:49	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	424198	12/21/18 10:25	CLB	TAL PEN

Client Sample ID: FD-3 (AP)

Lab Sample ID: 400-163833-10

Date Collected: 12/17/18 00:00 Date Received: 12/19/18 09:47

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			424543	12/24/18 20:02	BAW	TAL PEN
Total/NA	Analysis	300.0	DL	10	424806	12/26/18 18:47	BAW	TAL PEN
Total Recoverable	Prep	3005A			424196	12/21/18 10:21	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	424370	12/21/18 19:11	DRE	TAL PEN
Total Recoverable	Prep	3005A	DL		424196	12/21/18 10:21	DRE	TAL PEN
Total Recoverable	Analysis	6020	DL	25	424370	12/21/18 19:14	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	424198	12/21/18 10:25	CLB	TAL PEN

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

5

0

8

4.0

11

13

14

TestAmerica Job ID: 400-163833-1 SDG: Ash Pond

HPLC/IC

Analysis Batch: 424543

Client: Southern Company

Project/Site: CCR - Plant Scherer

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-163833-1	SGWC-9	Total/NA	Water	300.0	
400-163833-1 - DL	SGWC-9	Total/NA	Water	300.0	
400-163833-2	SGWC-10	Total/NA	Water	300.0	
400-163833-3	SGWC-16	Total/NA	Water	300.0	
400-163833-4	SGWC-19	Total/NA	Water	300.0	
400-163833-5	SGWC-21	Total/NA	Water	300.0	
400-163833-6	SGWC-22	Total/NA	Water	300.0	
400-163833-7	SGWC-23	Total/NA	Water	300.0	
400-163833-8	FB-3 (AP)	Total/NA	Water	300.0	
400-163833-9	EB-3 (AP)	Total/NA	Water	300.0	
400-163833-10	FD-3 (AP)	Total/NA	Water	300.0	
MB 400-424543/4	Method Blank	Total/NA	Water	300.0	
LCS 400-424543/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-424543/6	Lab Control Sample Dup	Total/NA	Water	300.0	
400-163362-F-1 MS	Matrix Spike	Total/NA	Water	300.0	
400-163362-F-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Analysis Batch: 424806

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-163833-5 - DL	SGWC-21	Total/NA	Water	300.0	
400-163833-7 - DL	SGWC-23	Total/NA	Water	300.0	
400-163833-10 - DL	FD-3 (AP)	Total/NA	Water	300.0	
MB 400-424806/4	Method Blank	Total/NA	Water	300.0	
LCS 400-424806/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-424806/6	Lab Control Sample Dup	Total/NA	Water	300.0	
400-163982-D-4 MS	Matrix Spike	Total/NA	Water	300.0	
400-163982-D-4 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Analysis Batch: 424854

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-163833-4 - DL	SGWC-19	Total/NA	Water	300.0	
400-163833-6 - DL	SGWC-22	Total/NA	Water	300.0	

Metals

Prep Batch: 424196

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-163833-1	SGWC-9	Total Recoverable	Water	3005A	
400-163833-1 - DL	SGWC-9	Total Recoverable	Water	3005A	
400-163833-2	SGWC-10	Total Recoverable	Water	3005A	
400-163833-3	SGWC-16	Total Recoverable	Water	3005A	
400-163833-4	SGWC-19	Total Recoverable	Water	3005A	
400-163833-4 - DL	SGWC-19	Total Recoverable	Water	3005A	
400-163833-5	SGWC-21	Total Recoverable	Water	3005A	
400-163833-6	SGWC-22	Total Recoverable	Water	3005A	
400-163833-7	SGWC-23	Total Recoverable	Water	3005A	
400-163833-8	FB-3 (AP)	Total Recoverable	Water	3005A	
400-163833-9	EB-3 (AP)	Total Recoverable	Water	3005A	
400-163833-10 - DL	FD-3 (AP)	Total Recoverable	Water	3005A	
400-163833-10	FD-3 (AP)	Total Recoverable	Water	3005A	

TestAmerica Pensacola

12/28/2018

Page 16 of 23

2

3

6

8

10

11

12

13

14

QC Association Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-163833-1

SDG: Ash Pond

Metals (Continued)

Prep Batch: 424196 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 400-424196/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-424196/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
400-163833-1 MS	SGWC-9	Total Recoverable	Water	3005A	
400-163833-1 MSD	SGWC-9	Total Recoverable	Water	3005A	

Analysis Batch: 424370

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-163833-1	SGWC-9	Total Recoverable	Water	6020	424196
400-163833-1 - DL	SGWC-9	Total Recoverable	Water	6020	424196
400-163833-2	SGWC-10	Total Recoverable	Water	6020	424196
400-163833-3	SGWC-16	Total Recoverable	Water	6020	424196
400-163833-4	SGWC-19	Total Recoverable	Water	6020	424196
400-163833-4 - DL	SGWC-19	Total Recoverable	Water	6020	424196
400-163833-5	SGWC-21	Total Recoverable	Water	6020	424196
400-163833-6	SGWC-22	Total Recoverable	Water	6020	424196
400-163833-7	SGWC-23	Total Recoverable	Water	6020	424196
400-163833-8	FB-3 (AP)	Total Recoverable	Water	6020	424196
400-163833-9	EB-3 (AP)	Total Recoverable	Water	6020	424196
400-163833-10	FD-3 (AP)	Total Recoverable	Water	6020	424196
400-163833-10 - DL	FD-3 (AP)	Total Recoverable	Water	6020	424196
MB 400-424196/1-A ^5	Method Blank	Total Recoverable	Water	6020	424196
LCS 400-424196/2-A	Lab Control Sample	Total Recoverable	Water	6020	424196
400-163833-1 MS	SGWC-9	Total Recoverable	Water	6020	424196
400-163833-1 MSD	SGWC-9	Total Recoverable	Water	6020	424196

General Chemistry

Analysis Batch: 424198

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-163833-1	SGWC-9	Total/NA	Water	SM 2540C	_
400-163833-2	SGWC-10	Total/NA	Water	SM 2540C	
400-163833-3	SGWC-16	Total/NA	Water	SM 2540C	
400-163833-4	SGWC-19	Total/NA	Water	SM 2540C	
400-163833-5	SGWC-21	Total/NA	Water	SM 2540C	
400-163833-6	SGWC-22	Total/NA	Water	SM 2540C	
400-163833-7	SGWC-23	Total/NA	Water	SM 2540C	
400-163833-8	FB-3 (AP)	Total/NA	Water	SM 2540C	
400-163833-9	EB-3 (AP)	Total/NA	Water	SM 2540C	
400-163833-10	FD-3 (AP)	Total/NA	Water	SM 2540C	
MB 400-424198/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 400-424198/2	Lab Control Sample	Total/NA	Water	SM 2540C	
400-163833-10 DU	FD-3 (AP)	Total/NA	Water	SM 2540C	

TestAmerica Pensacola

Page 17 of 23

TestAmerica Job ID: 400-163833-1

SDG: Ash Pond

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 400-424543/4 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

MD MD

Analysis Batch: 424543

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89		1.0	0.89	mg/L			12/24/18 11:08	1
Sulfate	<0.70		1.0	0.70	mg/L			12/24/18 11:08	1

Lab Sample ID: LCS 400-424543/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 424543

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 	10.0	9.90		mg/L		99	90 - 110	
Sulfate		10.0	10.3		mg/L		103	90 - 110	

Lab Sample ID: LCSD 400-424543/6 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 424543

LCSD LCSD %Rec. RPD Spike Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Chloride 10.0 9.85 mg/L 98 90 - 110 15 Sulfate 10.0 10.2 102 90 - 110 mg/L

Lab Sample ID: 400-163362-F-1 MS **Client Sample ID: Matrix Spike** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 424543

•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	7.0		10.0	16.5		mg/L		95	80 - 120	
Sulfate	5.2		10.0	14.8		mg/L		97	80 - 120	

Lab Sample ID: 400-163362-F-1 MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 424543

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	7.0		10.0	16.7		mg/L		97	80 - 120	1	20
Sulfate	5.2		10.0	15.5		mg/L		103	80 - 120	4	20

Lab Sample ID: MB 400-424806/4 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 424806

	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D		Prepared	Analyzed	Dil Fac
Chloride	<0.89		1.0	0.89	mg/L		_		12/26/18 16:08	1
Sulfate	< 0.70		1.0	0.70	mg/L				12/26/18 16:08	1

Lab Sample ID: LCS 400-424806/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 424806 Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits Chloride 10.0 90 - 110 9.63 mg/L 96

Page 18 of 23

12/28/2018

TestAmerica Job ID: 400-163833-1

SDG: Ash Pond

Prep Type: Total/NA

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 400-424806/5 **Client Sample ID: Lab Control Sample Matrix: Water**

Analysis Batch: 424806

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit D %Rec Limits Sulfate 10.0 10.2 mg/L 102 90 - 110

Lab Sample ID: LCSD 400-424806/6 Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Water

Analysis Batch: 424806

-	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	 10.0	9.62		mg/L		96	90 - 110	0	15
Sulfate	10.0	10.1		mg/L		101	90 - 110	1	15

Lab Sample ID: 400-163982-D-4 MS **Client Sample ID: Matrix Spike** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 424806

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	2.6		10.0	12.2		mg/L		96	80 - 120	
Sulfate	<0.70		10.0	10.7		mg/L		107	80 - 120	

Lab Sample ID: 400-163982-D-4 MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA

Analysis Ratch: 424806

Alialysis Dalcii. 424000												
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	2.6		10.0	12.2		mg/L		96	80 - 120	0	20	
Sulfate	<0.70		10.0	10.6		mg/L		106	80 - 120	1	20	
	Analyte Chloride	Analyte Result Chloride 2.6	Analyte Sample Sample Chloride 2.6 Qualifier	AnalyteResult ChlorideQualifier 2.6Added Added Chloride	AnalyteResult ChlorideSample Result 2.6Spike Qualifier Added 2.6MSD Added Result 10.0	AnalyteSample Result ChlorideSample Result 2.6Spike QualifierMSD Added 10.0MSD Result Qualifier	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Sample AnalyteSample Result ChlorideSample QualifierSpike Added Added Added Sesult 10.0MSD MSD MSD MSD MSD MSD MSD MSD MSD MSD	AnalyteResult ChlorideResult 2.6Spike QualifierMSD Result Added 10.0MSD Result Qualifier 12.2Unit mg/LD P MSD Qualifier MSD%Rec. Limits 80 - 120	AnalyteResult ChlorideResult 2.6Sample QualifierSpike Added 10.0MSD Result Result 10.0WSD Qualifier Qualifier 11.0Unit mg/LD P MSD%Rec. Limits MSDChloride2.610.012.2mg/LD%Rec Mg/LLimits 96RPD	AnalyteResult ChlorideResult 2.6Sample QualifierSpike Added 10.0MSD Result Result 10.0WRD Qualifier Qualifier 12.2Unit Qualifier mg/LD P MRec Unit mg/LRPD P 96RPD 80 - 120Limit RPD 20

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 400-424196/1-A ^5 **Client Sample ID: Method Blank Prep Type: Total Recoverable**

MB MB

Matrix: Water

Calcium

Analysis Batch: 424370

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.021		0.050	0.021	mg/L		12/21/18 10:21	12/21/18 17:33	5
Calcium	<0.13		0.25	0.13	mg/L		12/21/18 10:21	12/21/18 17:33	5

Lab Sample ID: LCS 400-424196/2-A **Client Sample ID: Lab Control Sample**

Matrix: Water Prep Type: Total Recoverable Analysis Batch: 424370 **Prep Batch: 424196** LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit %Rec Limits Boron 0.100 0.101 mg/L 101 80 - 120

5.18

mg/L

104

80 - 120

5.00

Prep Batch: 424196

TestAmerica Job ID: 400-163833-1

SDG: Ash Pond

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 400-163833-1 MS Client Sample ID: SGWC-9 **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 424370 **Prep Batch: 424196**

١		Sample	Sample	Spike	MS	MS				%Rec.	
	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Boron	1.7		0.100	1.84	E 4	mg/L		164	75 - 125	
	Calcium	55		5.00	60.2	4	mg/L		114	75 - 125	

Lab Sample ID: 400-163833-1 MSD Client Sample ID: SGWC-9 **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 424370 Prep Batch: 424196 MSD MSD Sample Sample Spike %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Boron 1.7 0.100 1.85 E 4 mg/L 176 75 - 125 20 Calcium 55 5.00 60.6 4 mg/L 75 - 125 20 122

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 400-424198/1 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA **Analysis Batch: 424198**

MB MB Analyte RL MDL Unit Result Qualifier Prepared Analyzed Dil Fac Total Dissolved Solids <3.4 5.0 3.4 mg/L 12/21/18 10:25

Lab Sample ID: LCS 400-424198/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 424198** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits

Total Dissolved Solids 293 260 mg/L 89 78 - 122 Lab Sample ID: 400-163833-10 DU Client Sample ID: FD-3 (AP)

Matrix: Water Prep Type: Total/NA

Analysis Batch: 424198 DU DU RPD Sample Sample Result Qualifier Result Qualifier Unit D RPD Limit 530 **Total Dissolved Solids** 534 mg/L

12/28/2018

681-Atlanta

TestAmerica Pensacola

3355 McLemore Drive

Chain of Custody Record

TestAmerica

400-163833 COC

Pensacola, FL 32514-7045	ď									4004	400-163833 COC	•		THE LEADER IN ENVINONMENTAL TESTING	L TESTING
priorite 020.474, 1001 fax 020.474,4708	Reguis	Regulatory Program:		Μď	NPDES	RCRA		Other:					Ē	TestAmerica Laboratories, Inc.	ies, Inc.
Client Contact	Project Manager: Dawn Preli	ger: Dawn	Preli		S	te Con	tact: [Site Contact: Devin Thomas	as	12/17/2018	2018		000	COC No:	
Southern Company	Tel/Fax: 248-536-5445	36-5445			٦	th Con	tact: 0	Lab Contact: Cheyenne Whitmire	Whitmire	Carrier			2	of 2 cocs	I
241 Ralph McGill Blvd SE B10185	An	alysis Tur	Analysis Turnaround Time	911	H	E	H		F	F			Sam	ofer:	I
Atlanta, GA, 30308	CALENDAR DAYS	DAYS	DM .	WORKING DAYS			-	18					Ē	For Lab Use Only:	I
(404) 506-7239 Phone	TAT if	TAT if different from Below	n Below					ap					Wal	Walk-in Client:	
FAX		2 w	2 weeks		(N	7.	_	_	_				Lab	Lab Sampling:	
Project Name: GPC Plant Scherer	6		1 week		/ /	1 0	-	_						,	
Site: Ash Pond		2.6	2 days		,, .	181	_						2	N OUS 44	
PO#	10	1 day	lay		раші	V/S	_			_			3	SUC NO.:	
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp. G=Grab)	Matrix	S # Filtered S	M mroha9 2540C · Tot	108 - 0209	300_ORGF Sulfate						Samole Specific Notes:	į,
SGWC-9	12/17/2018	1140	Ø	SW.	2		×	×							
SGWC-10	12/17/2018	1355	Ø	GW	2	z	×	×					F		
SGWC-16	12/17/2018	1425	O	GW GW	2	z	×	×							
SGWC-19	12/17/2018	1205	စ	GW	2	Z	×	×							
SGWC-21	12/17/2018	1100	ø	GW	2	z	×	×					F		
SGWC-22	12/17/2018	1205	ဖ	GW	2	z	×	×							
SGWC-23	12/17/2018	1110	O	OW.	2	z	×	×							
FB-3 (AP)	12/17/2018	1105	O	GW	2	z	×	×							
EB-3 (AP)	12/17/2018	1245	O	S.	2	z	×	×							
FD-3 (AP)	12/17/2018	1	O	SW.	2	2	×	×							
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6=	5=NaOH; 6= Other	9r					+	-							
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the tab is to dispose of the sample.	List any EPA W	aste Code	s for the sa	mple in th	ō.	Sam	ple Di	sposal (A	ee may be	assessed	if samples	are retain	ed longer	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	
Non-Hayard Elemmahie Skin Infrant	ritant Poison 8		Unk	Unknown		Т	Return	Return to Client		Dienosal ho Lah	he Lab	Archive for	ĵo.	Months	
Special Instructions/QC Requirements & Comments:														cinion	
Custody Seals Intact: Yes No	Custody Sea	No.						Cooler T	Cooler Temp, (°C); Obs'd	.p.sqc	Corr'd	j	Therr	Therm ID No	
Relinquished by: Jolan	Company Code	sider ,	ASSECTION DATE TIME:	Date/Ti	18/ 10/		Received by		1	1	Сотрапу		۵	11	210
											*				

Date/Time:

Corrid Company: Company: Company:

Date/Time:

12-18-1

Company: Company:

Relinquished by: Relinquished by: 4 8

0.00

12/28/2018

Client: Southern Company

Job Number: 400-163833-1 SDG Number: Ash Pond

Login Number: 163833 List Source: TestAmerica Pensacola

List Number: 1

Creator: Whitmire, Cheyenne R

oroator: Wintimo, onoyonno it		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.0°C IR-7
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Accreditation/Certification Summary

Client: Southern Company

TestAmerica Job ID: 400-163833-1

Project/Site: CCR - Plant Scherer

SDG: Ash Pond

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-19
ANAB	ISO/IEC 17025		L2471	02-22-20
Arizona	State Program	9	AZ0710	01-12-20
Arkansas DEQ	State Program	6	88-0689	09-01-19
California	State Program	9	2510	06-30-19
Florida	NELAP	4	E81010	06-30-19
Georgia	State Program	4	E81010 (FL)	06-30-19
Illinois	NELAP	5	200041	10-09-19
owa	State Program	7	367	08-01-20
Kansas	NELAP	7	E-10253	12-31-18 *
Kentucky (UST)	State Program	4	53	06-30-19
Kentucky (WW)	State Program	4	98030	12-31-19
Louisiana	NELAP	6	30976	06-30-19
₋ouisiana (DW)	NELAP	6	LA017	12-31-19
Maryland	State Program	3	233	09-30-19
Massachusetts	State Program	1	M-FL094	06-30-19
Michigan	State Program	5	9912	06-30-19
New Jersey	NELAP	2	FL006	06-30-19
North Carolina (WW/SW)	State Program	4	314	12-31-19
Oklahoma	State Program	6	9810	08-31-19
Pennsylvania	NELAP	3	68-00467	01-31-19
Rhode Island	State Program	1	LAO00307	12-30-18 *
South Carolina	State Program	4	96026	06-30-19
Tennessee	State Program	4	TN02907	06-30-19
Texas	NELAP	6	T104704286-18-15	09-30-19
US Fish & Wildlife	Federal		LE058448-0	07-31-19
JSDA	Federal		P330-18-00148	05-17-21
Virginia	NELAP	3	460166	06-14-19
Washington	State Program	10	C915	05-15-19
West Virginia DEP	State Program	3	136	06-30-19

6

8

4.0

11

13

1/

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

THE LEADER IN ENVIRONMENTAL TESTING

TestAmerica

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-163613-1

TestAmerica Sample Delivery Group: Ash Pond

Client Project/Site: CCR - Plant Scherer

For:

Southern Company 241 Ralph McGill Blvd SE B10185 Atlanta, Georgia 30308

Attn: Joju Abraham

Authorized for release by: 12/21/2018 6:05:01 PM

Cheyenne Whitmire, Project Manager II (850)471-6222

chevenne.whitmire@testamericainc.com

----- LINKS -----

Review your project results through **Total Access**

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	8
Sample Summary	
Client Sample Results	10
Definitions	17
Chronicle	18
QC Association	23
QC Sample Results	26
Chain of Custody	31
Receipt Checklists	33
Certification Summary	34

5

4

C

8

9

1 U

12

13

14

Case Narrative

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-163613-1

SDG: Ash Pond

Job ID: 400-163613-1

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-163613-1

HPLC/IC

Method(s) 300.0: Due to the high concentration of Sulfate, the matrix spike / matrix spike duplicate (MS/MSD) for analytical batch 424251 could not be evaluated for accuracy and precision. The associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) met acceptance criteria.

Method(s) 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: SGWC-8 (400-163613-12), SGWC-13 (400-163613-14), SGWC-14 (400-163613-15) and SGWC-17 (400-163613-16). Elevated reporting limits (RLs) are provided.

Metals

Method(s) 6020: The method blank for preparation batch 423642 and analytical batch 423830 contained Calcium above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

TestAmerica Job ID: 400-163613-1

SDG: Ash Pond

Client Sample ID: SGWA-1						Lab	San	nple	ID	: 400	-163	613	-1
Γ	_				 		_		_		_	_	

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	1.7		1.0	0.89	mg/L	1	_	300.0	Total/NA
Calcium	1.7		0.25	0.13	mg/L	5		6020	Total
Total Dissolved Solids	16		5.0	3.4	mg/L	1		SM 2540C	Recoverable Total/NA

Client Sample ID: SGWA-2 Lab Sample ID: 400-163613-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	1.3		1.0	0.89	mg/L	1	_	300.0	Total/NA
Calcium	10		0.25	0.13	mg/L	5		6020	Total
Total Dissolved Solids	110		5.0	3.4	mg/L	1		SM 2540C	Recoverable Total/NA

Client Sample ID: SGWA-3 Lab Sample ID: 400-163613-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	2.0		1.0	0.89	mg/L	1	_	300.0	Total/NA
Sulfate	1.4		1.0	0.70	mg/L	1		300.0	Total/NA
Calcium	4.3		0.25	0.13	mg/L	5		6020	Total
									Recoverable
Total Dissolved Solids	4.0	J	5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SGWA-4 Lab Sample ID: 400-163613-4

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	1.2	1.0	0.89	mg/L		_	300.0	Total/NA
Sulfate	0.76 J	1.0	0.70	mg/L	1		300.0	Total/NA
Calcium	18	0.25	0.13	mg/L	5		6020	Total Recoverable
Total Dissolved Solids	94	5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SGWA-5 Lab Sample ID: 400-163613-5

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chloride	1.7	1.0	0.89	mg/L	1	300.0	Total/NA
Calcium	1.4	0.25	0.13	mg/L	5	6020	Total
Total Dissolved Solids	58	5.0	3.4	mg/L	1	SM 2540	Recoverable C Total/NA

Client Sample ID: SGWA-24 Lab Sample ID: 400-163613-6

Analyte	Result Qualifier	RL	MDL U	Jnit	Dil Fac	D	Method	Prep Type
Chloride	2.0	1.0	0.89 m	ng/L	1	_	300.0	Total/NA
Calcium	12	0.25	0.13 m	ng/L	5		6020	Total
Total Dissolved Solids	100	5.0	3.4 m	ng/L	1		SM 2540C	Recoverable Total/NA

Client Sample ID: SGWA-25 Lab Sample ID: 400-163613-7

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Chloride	1.9	1.0	0.89 mg/L	1 300.0	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

12/21/2018

TestAmerica Job ID: 400-163613-1

Lab Sample ID: 400-163613-7

SDG: Ash Pond

Client Sam	ple ID: SGWA-25	(Continued)
------------	-----------------	-------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	9.4		0.25	0.13	mg/L	5	_	6020	Total
									Recoverable
Total Dissolved Solids	4.0	J	5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: EB-1 (AP) Lab Sample ID: 400-163613-8

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Calcium	0.13 J	0.25	0.13 mg/L	5 6020	Total
					Recoverable

Client Sample ID: FB-1 (AP) Lab Sample ID: 400-163613-9

No Detections.

Client Sample ID: SGWC-6 Lab Sample ID: 400-163613-10

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	1.8	1.0	0.89	mg/L	1	_	300.0	Total/NA
Calcium	6.5	0.25	0.13	mg/L	5		6020	Total Recoverable
Total Dissolved Solids	44	5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SGWC-7 Lab Sample ID: 400-163613-11

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	4.2	1.0	0.89	mg/L	1	_	300.0	Total/NA
Sulfate	10	1.0	0.70	mg/L	1		300.0	Total/NA
Calcium	16	0.25	0.13	mg/L	5		6020	Total
Total Dissolved Solids	170	5.0	3.4	mg/L			SM 2540C	Recoverable Total/NA

Client Sample ID: SGWC-8 Lab Sample ID: 400-163613-12

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride		1.0	0.89	mg/L		_	300.0	Total/NA
Sulfate - DL	72	2.0	1.4	mg/L	2		300.0	Total/NA
Boron	0.064	0.050	0.021	mg/L	5		6020	Total Recoverable
Calcium	46	0.25	0.13	mg/L	5		6020	Total
Total Dissolved Solids	390	5.0	3.4	mg/L	1		SM 2540C	Recoverable Total/NA

Client Sample ID: SGWC-12 Lab Sample ID: 400-163613-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	9.1		1.0	0.89	mg/L	1	_	300.0	 Total/NA
Sulfate	43		1.0	0.70	mg/L	1		300.0	Total/NA
Calcium	21		0.25	0.13	mg/L	5		6020	Total
									Recoverable
Total Dissolved Solids	190		5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SGWC-13 Lab Sample ID: 400-163613-14

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

12/21/2018

Page 5 of 34

TestAmerica Job ID: 400-163613-1 SDG: Ash Pond

Lab Sample ID: 400-163613-14

6020

SM 2540C

Client: Southern Company Project/Site: CCR - Plant Scherer

Client Sample ID: SGWC-13 (Continued)

16

140

Analyte	Result Qualifier	RL	MDL U	Unit	Dil Fac	D Metho	od Prep Type
Chloride	7.5	1.0	0.89 n	mg/L		300.0	Total/NA
Sulfate - DL	74	2.0	1.4 m	mg/L	2	300.0	Total/NA
Boron	0.47	0.050	0.021 n	mg/L	5	6020	Total Recoverable

0.25

5.0

0.13 mg/L

3.4 mg/L

Calcium

Total Dissolved Solids

Client Sample ID: SGWC-14	Lab Sample ID: 400-163613-15
•	<u> </u>

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	10	1.0	0.89	mg/L		_	300.0	Total/NA
Sulfate - DL	190	5.0	3.5	mg/L	5		300.0	Total/NA
Boron	1.4	0.050	0.021	mg/L	5		6020	Total Recoverable
Calcium	37	0.25	0.13	mg/L	5		6020	Total Recoverable
Total Dissolved Solids	280	5.0	3.4	mg/L	1		SM 2540C	Total/NA

Analyte	Result Qualif	ier RL	MDL	Unit	Dil Fac	D N	Method	Prep Type
Chloride	8.1	1.0	0.89	mg/L	1	_ 3	300.0	Total/NA
Sulfate - DL	180	5.0	3.5	mg/L	5	3	300.0	Total/NA
Boron	0.44	0.050	0.021	mg/L	5	6	6020	Total Recoverable
Calcium	46	0.25	0.13	mg/L	5	6	6020	Total Recoverable
Total Dissolved Solids	390	5.0	3.4	mg/L	1	5	SM 2540C	Total/NA

Client Sample ID: FB-2 (AP) Lab Sample ID: 400-163613-17

No Detections.

Client Sample ID: EB-2 (AP)

Lab Sample ID: 400-163613-18

No Detections.

Client Sample ID: FD-1 (AP)

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chloride	9.0	1.0	0.89	mg/L		300.0	Total/NA
Sulfate	43	1.0	0.70	mg/L	1	300.0	Total/NA
Calcium	20	0.25	0.13	mg/L	5	6020	Total Recoverable
Total Dissolved Solids	200	5.0	3.4	mg/L	1	SM 2540C	Total/NA

Client Sample ID: FD-2 (AP)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	1.8		1.0	0.89	mg/L	1	_	300.0	Total/NA
Calcium	6.5		0.25	0.13	mg/L	5		6020	Total Recoverable

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

Lab Sample ID: 400-163613-19

Total Recoverable

Total/NA

Lab Sample ID: 400-163613-20

12/21/2018

Detection Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-163613-1

SDG: Ash Pond

Client Sample ID: FD-2 (AP) (Continued)

Lab Sample ID: 400-163613-20

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Total Dissolved Solids	86	5.0	3.4 mg/L	1 SM 2540C	Total/NA

Method Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-163613-1

SDG: Ash Pond

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	TAL PEN
6020	Metals (ICP/MS)	SW846	TAL PEN
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL PEN
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PEN

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Sample Summary

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-163613-1 SDG: Ash Pond

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-163613-1	SGWA-1	Water	12/13/18 12:30	12/15/18 08:33
400-163613-2	SGWA-2	Water	12/13/18 13:38	12/15/18 08:33
400-163613-3	SGWA-3	Water	12/13/18 13:50	12/15/18 08:33
400-163613-4	SGWA-4	Water	12/13/18 16:25	12/15/18 08:33
400-163613-5	SGWA-5	Water	12/13/18 14:50	12/15/18 08:33
400-163613-6	SGWA-24	Water	12/13/18 16:10	12/15/18 08:33
400-163613-7	SGWA-25	Water	12/13/18 15:10	12/15/18 08:33
400-163613-8	EB-1 (AP)	Water	12/13/18 16:55	12/15/18 08:33
400-163613-9	FB-1 (AP)	Water	12/13/18 16:25	12/15/18 08:33
400-163613-10	SGWC-6	Water	12/14/18 10:00	12/15/18 08:33
400-163613-11	SGWC-7	Water	12/14/18 11:15	12/15/18 08:33
400-163613-12	SGWC-8	Water	12/14/18 12:10	12/15/18 08:33
400-163613-13	SGWC-12	Water	12/14/18 09:52	12/15/18 08:33
400-163613-14	SGWC-13	Water	12/14/18 10:48	12/15/18 08:33
400-163613-15	SGWC-14	Water	12/14/18 12:30	12/15/18 08:33
400-163613-16	SGWC-17	Water	12/14/18 12:10	12/15/18 08:33
400-163613-17	FB-2 (AP)	Water	12/14/18 10:45	12/15/18 08:33
400-163613-18	EB-2 (AP)	Water	12/14/18 13:15	12/15/18 08:33
400-163613-19	FD-1 (AP)	Water	12/14/18 00:00	12/15/18 08:33
400-163613-20	FD-2 (AP)	Water	12/14/18 00:00	12/15/18 08:33

-

4

6

Ω

9

10

13

14

SDG: Ash Pond

Client Sample ID: SGWA-1

Date Collected: 12/13/18 12:30 Date Received: 12/15/18 08:33

Lab Sample ID: 400-163613-1

Matrix: Water

on Chromatography							
Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1.7	1.0	0.89	mg/L			12/18/18 18:35	1
<0.70	1.0	0.70	mg/L			12/18/18 18:35	1
	Result Qualifier 1.7	Result Qualifier RL 1.0	Result Qualifier RL MDL 1.7 1.0 0.89	1.7 1.0 0.89 mg/L	Result Qualifier RL MDL Unit D	Result Qualifier RL MDL Unit D Prepared 1.7 1.0 0.89 mg/L	Result 1.7 Qualifier 2.0 RL 2.0 MDL 2.0 Unit 2.0 D 2.0 Prepared 2.0 Analyzed 2.18/18 18:35

Method: 6020 - Metals (ICP/MS) - Total Recoverable Analyte Result Qualifier **MDL** Unit Dil Fac RL Prepared Analyzed Boron <0.021 0.050 0.021 mg/L 12/18/18 09:43 12/18/18 14:31 0.25 0.13 mg/L 12/18/18 09:43 12/18/18 14:31 **Calcium** 1.7

<u> </u>									
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	16		5.0	3.4	mg/L			12/19/18 10:29	1

Client Sample ID: SGWA-2 Lab Sample ID: 400-163613-2 **Matrix: Water**

Date Collected: 12/13/18 13:38 Date Received: 12/15/18 08:33

Method: 300.0 - Anions, Ion C	hromatography						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.3	1.0	0.89 mg/L			12/18/18 18:58	1
Sulfate	<0.70	1.0	0.70 mg/L			12/18/18 18:58	1

Method: 6020 - Metals (ICP/MS	i) - Total Re	ecoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.021		0.050	0.021	mg/L		12/18/18 09:43	12/18/18 14:49	5
Calcium	10		0.25	0.13	mg/L		12/18/18 09:43	12/18/18 14:49	5

General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	110	5.0	3.4	mg/L			12/19/18 10:29	1

Client Sample ID: SGWA-3 Lab Sample ID: 400-163613-3 **Matrix: Water**

Date Collected: 12/13/18 13:50 Date Received: 12/15/18 08:33

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2.0	1.0	0.89	mg/L			12/18/18 19:21	1
Sulfate	1.4	1.0	0.70	mg/L			12/18/18 19:21	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.021	0.050	0.021	mg/L		12/18/18 09:43	12/18/18 14:53	5
Calcium	4.3	0.25	0.13	mg/L		12/18/18 09:43	12/18/18 14:53	5

General Chemistry					_			
Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	4.0 J	5.0	3.4	mg/L			12/19/18 09:54	1

SDG: Ash Pond

Client Sample ID: SGWA-4

Date Collected: 12/13/18 16:25 Date Received: 12/15/18 08:33

Lab Sample ID: 400-163613-4

Matrix: Water

Method: 300.0 - Anions, Ion Ch	romatography							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.2	1.0	0.89	mg/L			12/18/18 20:06	1
Sulfate	0.76 J	1.0	0.70	mg/L			12/18/18 20:06	1

) - Total Red	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.021		0.050	0.021	mg/L		12/18/18 09:43	12/18/18 14:56	5
Calcium	18		0.25	0.13	mg/L		12/18/18 09:43	12/18/18 14:56	5

_					_				
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	94		5.0	3.4	mg/L			12/19/18 10:29	1

Client Sample ID: SGWA-5 Lab Sample ID: 400-163613-5 Date Collected: 12/13/18 14:50 **Matrix: Water**

Date Received: 12/15/18 08:33

Method: 300.0 - Anions	s, Ion Chromatography							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.7	1.0	0.89	mg/L			12/18/18 20:29	1
Sulfate	<0.70	1.0	0.70	mg/L			12/18/18 20:29	1

Analyte	P/MS) - Total Recoverable Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.021	0.050	0.021	mg/L		12/18/18 09:43	12/18/18 15:18	5
Calcium	1.4	0.25	0.13	mg/L		12/18/18 09:43	12/18/18 15:18	5

General Chemistry Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	58	5.0	3.4 mg/L			12/19/18 09:54	1

Lab Sample ID: 400-163613-6 Client Sample ID: SGWA-24 **Matrix: Water**

Date Collected: 12/13/18 16:10 Date Received: 12/15/18 08:33

Calcium

_ Method: 300.0 - Anior	ns, Ion Chromatography							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2.0	1.0	0.89	mg/L			12/18/18 21:38	1
Sulfate	<0.70	1.0	0.70	mg/L			12/18/18 21:38	1
- Method: 6020 - Metals	s (ICP/MS) - Total Recoverable							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.021	0.050	0.021	mg/L		12/18/18 09:43	12/18/18 15:22	5

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	100		5.0	3.4	mg/L			12/19/18 09:54	1

0.25

12

0.13 mg/L

12/18/18 09:43 12/18/18 15:22

SDG: Ash Pond

Client Sample ID: SGWA-25

Date Collected: 12/13/18 15:10 Date Received: 12/15/18 08:33 Lab Sample ID: 400-163613-7

Matrix: Water

Method: 300.0 - Anions, Ion Ch	romatography							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.9	1.0	0.89	mg/L			12/18/18 22:00	1
Sulfate	<0.70	1.0	0.70	mg/L			12/18/18 22:00	1

Method: 6020 - Metals (ICP/MS) - Total Recoverable Result Qualifier **Analyte** RL **MDL** Unit D Prepared Analyzed Dil Fac Boron <0.021 0.050 ma/L 12/18/18 09:43 12/18/18 15:25 0.021 5 **Calcium** 9.4 0.25 0.13 mg/L 12/18/18 09:43 12/18/18 15:25

General Chemistry
Analyte Result Qualifier RL MDL Unit Dissolved Solids 4.0 J 5.0 3.4 mg/L Dissolved Solids Dissolved Dissolve

Client Sample ID: EB-1 (AP)

Lab Sample ID: 400-163613-8

Matrix: Water

Date Received: 12/15/18 08:33

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL **MDL** Unit Dil Fac D Prepared Analyzed Chloride <0.89 1.0 0.89 mg/L 12/18/18 22:23 Sulfate < 0.70 1.0 0.70 mg/L 12/18/18 22:23

Method: 6020 - Metals (ICP/MS) - Total Recoverable Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Boron <0.021 0.050 0.021 ma/L 12/18/18 09:43 12/18/18 15:29 5 12/18/18 09:43 12/18/18 15:29 5 **Calcium** 0.13 J 0.25 0.13 mg/L

General ChemistryAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacTotal Dissolved Solids<3.4</td>5.03.4mg/L12/19/18 09:541

Client Sample ID: FB-1 (AP)

Lab Sample ID: 400-163613-9

Date Collected: 12/13/18 16:25 Date Received: 12/15/18 08:33

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride <0.89 0.89 mg/L 12/18/18 22:46 1.0 Sulfate < 0.70 1.0 0.70 mg/L 12/18/18 22:46

Method: 6020 - Metals (ICP/MS) - Total Recoverable **MDL** Unit Analyte Result Qualifier RL D Prepared Analyzed Dil Fac Boron <0.021 0.050 0.021 mg/L 12/18/18 09:43 12/18/18 15:32 5 Calcium < 0.13 0.25 0.13 mg/L 12/18/18 09:43 12/18/18 15:32 5

General ChemistryAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacTotal Dissolved Solids<3.4</td>5.03.4mg/L12/19/18 09:541

Matrix: Water

TestAmerica Job ID: 400-163613-1

SDG: Ash Pond

Matrix: Water

Client Sample ID: SGWC-6

Date Collected: 12/14/18 10:00 Date Received: 12/15/18 08:33

Lab Sample ID: 400-163613-10

Matrix: Water

Method: 300.0 - Anions, Ion	Chromatogra	phy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.8		1.0	0.89	mg/L			12/18/18 23:09	1
Sulfate	<0.70		1.0	0.70	mg/L			12/18/18 23:09	1
Method: 6020 - Metals (ICP/	MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.021		0.050	0.021	mg/L		12/18/18 09:43	12/18/18 15:36	5
Calcium	6.5		0.25	0.13	mg/L		12/18/18 09:43	12/18/18 15:36	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	44		5.0	3.4	mg/L			12/19/18 10:29	1

Client Sample ID: SGWC-7 Lab Sample ID: 400-163613-11

Date Collected: 12/14/18 11:15

Date Received: 12/15/18 08:33

Method: 300.0 - Anio	ons, Ion Chromatography							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4.2	1.0	0.89	mg/L			12/18/18 23:32	1
Sulfate	10	1.0	0.70	mg/L			12/18/18 23:32	1
Method: 6020 - Meta	Is (ICP/MS) - Total Recoverable							
Analyto	Pocult Qualifier	DI	MDI	Unit	n	Dropared	Analyzod	Dil Eac

Analyte	Result Qualifier	RL	MDL U	Unit	D	Prepared	Analyzed	Dil Fac	
Boron	<0.021	0.050	0.021 n	mg/L		12/18/18 09:43	12/18/18 15:40	5	
Calcium	16	0.25	0.13 n	mg/L		12/18/18 09:43	12/18/18 15:40	5	
_									

General Chemistry Analyte	Result Qualifier	RL	MDL Uni	t D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	170	5.0	3.4 mg	<u>/L</u>		12/19/18 10:29	1

Lab Sample ID: 400-163613-12 Client Sample ID: SGWC-8 Matrix: Water

Date Collected: 12/14/18 12:10 Date Received: 12/15/18 08:33

Calcium

Method: 300.0 - Anio Analyte	ns, Ion Chromatography Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	11	1.0	0.89	mg/L			12/20/18 10:11	1
Method: 300 0 - Anio	ns, Ion Chromatography - DL							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	72	2.0	1.4	mg/L			12/21/18 05:14	2
Method: 6020 - Meta	Is (ICP/MS) - Total Recoverable							
Method. 0020 - Meta		RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result Qualifier	KL	IVIDE	Oilit		riepaieu	Allalyzea	Diriac

					ŭ				
General Chemistry						_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	390	· -	5.0	3.4	mg/L			12/19/18 10:29	1

0.25

0.13 mg/L

TestAmerica Pensacola

12/18/18 09:43 12/18/18 15:43

TestAmerica Job ID: 400-163613-1

SDG: Ash Pond

Client Sample ID: SGWC-12 Date Collected: 12/14/18 09:52

Lab Sample ID: 400-163613-13 **Matrix: Water**

Date Received: 12/15/18 08:33

Method: 300.0 - Anions, Ion C	hromatograpi	hy							
Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9.1		1.0	0.89	mg/L			12/20/18 10:57	1
Sulfate	43		1.0	0.70	mg/L			12/20/18 10:57	1

Method: 6020 - Metals (ICP/MS)	- Total Recoverable							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.021	0.050	0.021	mg/L		12/18/18 09:43	12/18/18 15:47	5
Calcium	21	0.25	0.13	mg/L		12/18/18 09:43	12/18/18 15:47	5

					Ū				
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	190		5.0	3.4	mg/L			12/19/18 09:54	1

Client Sample ID: SGWC-13 Lab Sample ID: 400-163613-14 **Matrix: Water**

Date Collected: 12/14/18 10:48 Date Received: 12/15/18 08:33

Method: 300.0 - Anions, Ion Chromatography								
	Analyte	Result Qualifier	RL	MDL (Unit D	Prepared	Analyzed	Dil Fac
	Chloride	7.5	1.0	0.89 r	mg/L		12/20/18 11:20	1

Method: 300.0 - Anions, Ion Cl	hromatography - DL						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	74	2.0	1.4 mg/L			12/21/18 05:37	2

Method: 6020 - Metals	(ICP/MS) - Total Recoverable)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.47	0.050	0.021	mg/L		12/18/18 09:43	12/18/18 15:51	5
Calcium	16	0.25	0.13	mg/L		12/18/18 09:43	12/18/18 15:51	5

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	140		5.0	3.4	mg/L			12/19/18 10:29	1

Client Sample ID: SGWC-14 Lab Sample ID: 400-163613-15 Date Collected: 12/14/18 12:30 **Matrix: Water**

Date Received: 12/15/18 08:33

Boron

Calcium

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	10	1.0	0.89	mg/L			12/20/18 12:29	1
Method: 300 0 - Anio	ns Ion Chromatography - DI							
Method: 300.0 - Anio Analyte	ns, Ion Chromatography - DL Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.050

0.25

0.021 mg/L

0.13 mg/L

1.4

37

TestAmerica Pensacola

<u>12/18/18 09:43</u> <u>12/18/18 16:12</u>

12/18/18 09:43 12/18/18 16:12

5

SDG: Ash Pond

Matrix: Water

Client Sample ID: SGWC-14

Date Collected: 12/14/18 12:30 Date Received: 12/15/18 08:33

Lab Sample ID: 400-163613-15

Matrix: Water

ı	General	Cnemistry
l	Analyte	

Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac **Total Dissolved Solids** 280 5.0 3.4 mg/L 12/19/18 10:29

Client Sample ID: SGWC-17 Date Collected: 12/14/18 12:10

Date Received: 12/15/18 08:33

Lab Sample ID: 400-163613-16

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride 1.0 12/20/18 12:51 0.89 mg/L 8.1

Method: 300.0 - Anions, Ion Chromatography - DL

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 5.0 12/21/18 15:08 Sulfate 3.5 mg/L 180

Method: 6020 - Metals (ICP/MS) - Total Recoverable

•	y - rotal reco							
nalyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
oron	0.44	0.050	0.021	mg/L		12/18/18 09:43	12/18/18 16:16	5
alcium	46	0.25	0.13	mg/L		12/18/18 09:43	12/18/18 16:16	5
•	oron	oron 0.44	oron 0.44 0.050	oron 0.44 0.050 0.021	oron 0.44 0.050 0.021 mg/L	oron 0.44 0.050 0.021 mg/L	oron 0.44 0.050 0.021 mg/L 12/18/18 09:43	oron 0.44 0.050 0.021 mg/L 12/18/18 09:43 12/18/18 16:16

General Chemistry

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac **Total Dissolved Solids** 390 5.0 3.4 mg/L 12/19/18 10:29

Client Sample ID: FB-2 (AP)

Date Collected: 12/14/18 10:45 Date Received: 12/15/18 08:33

Lab Sample ID: 400-163613-17

Matrix: Water

Method: 300.0 - Anions, Ion Chromatography

Method. 300.0 - Allions, Ion On	i omatograpny					
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Chloride	<0.89	1.0	0.89 mg/L		12/20/18 13:14	1
Sulfate	<0.70	1.0	0.70 mg/L		12/20/18 13:14	1

Method: 6020 - Metals (ICP/MS) - Total Recoverable

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.021		0.050	0.021	mg/L		12/18/18 09:43	12/18/18 16:20	5
Calcium	<0.13		0.25	0.13	mg/L		12/18/18 09:43	12/18/18 16:20	5

General Chemistry

Analyte RL **MDL** Unit Result Qualifier Prepared Analyzed Dil Fac Total Dissolved Solids <3.4 5.0 3.4 mg/L 12/19/18 09:54

Client Sample ID: EB-2 (AP)

Date Collected: 12/14/18 13:15 Date Received: 12/15/18 08:33

Lab Sample ID: 400-163613-18

Matrix: Water

Method: 200 0 Anione Ion Chromatography

Method: 300.0 - Anions, for Chromatography									
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
	Chloride	<0.89	1.0	0.89 mg/L			12/20/18 13:37	1	
	Sulfate	<0.70	1.0	0.70 mg/L			12/20/18 13:37	1	

Client Sample Results

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-163613-1

SDG: Ash Pond

Matrix: Water

Client Sample ID: EB-2 (AP)

Date Collected: 12/14/18 13:15 Date Received: 12/15/18 08:33

Lab Sample ID: 400-163613-18

Matrix: Water

Method: 6020 - Metals (ICP	P/MS) - Total Re	ecoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.021		0.050	0.021	mg/L		12/18/18 09:43	12/18/18 16:23	5
Calcium	<0.13		0.25	0.13	mg/L		12/18/18 09:43	12/18/18 16:23	5
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	<3.4		5.0	3.4	mg/L			12/19/18 09:54	1

Client Sample ID: FD-1 (AP) Lab Sample ID: 400-163613-19 Date Collected: 12/14/18 00:00

Result Qualifier

Date Received: 12/15/18 08:33

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9.0	1.0	0.89	mg/L			12/20/18 14:00	1
	42	1.0	0.70	mg/L			12/20/18 14:00	4
	43 s (ICP/MS) - Total Recoverab	le		Ü	n	Dronarod		Dil Fa
Method: 6020 - Metals			MDL	Ü	D	Prepared	Analyzed	Dil Fac
-	s (ICP/MS) - Total Recoverab	le	MDL	Ü	<u>D</u>	Prepared 12/18/18 09:43	Analyzed	Dil Fac

Total Dissolved Solids 200 5.0 3.4 mg/L 12/19/18 10:29 Client Sample ID: FD-2 (AP) Lab Sample ID: 400-163613-20

RL

MDL Unit

Prepared

Analyzed

Date Collected: 12/14/18 00:00 Date Received: 12/15/18 08:33

Analyte

Method: 300.0 - Anion Analyte	· · · · · · · · · · · · · · · · · · ·	phy Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1.8		1.0	0.89	mg/L			12/21/18 00:40	1
Sulfate	<0.70		1.0	0.70	mg/L			12/21/18 00:40	1
_ Method: 6020 - Metals	s (ICP/MS) - Total Re	coverable							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.021		0.050	0.021	mg/L		12/18/18 09:43	12/18/18 16:30	- 5
Calcium	6.5		0.25	0.13	mg/L		12/18/18 09:43	12/18/18 16:30	5

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	86		5.0	3.4	mg/L			12/19/18 10:29	1

Dil Fac

Matrix: Water

TestAmerica Pensacola

Definitions/Glossary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-163613-1

SDG: Ash Pond

Qualifiers

HPLC/IC

Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
E	Result exceeded calibration range.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Matala	

Metals

Qualitier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit

MDC	Minimum Detectable Con
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated

ND	Not Detected at the reporting limit (or MDL or EDL if shown)
----	--

uantitation Limit
uantitation Limi

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Pensacola

Page 17 of 34

5

4

4

O

8

9

12

Te

| | 4

TestAmerica Job ID: 400-163613-1

SDG: Ash Pond

Client Sample ID: SGWA-1

Date Collected: 12/13/18 12:30 Date Received: 12/15/18 08:33

Lab Sample ID: 400-163613-1

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	423845	12/18/18 18:35	BAW	TAL PEN
Total Recoverable	Prep	3005A			423642	12/18/18 09:43	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	423830	12/18/18 14:31	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	423847	12/19/18 10:29	CLB	TAL PEN

Client Sample ID: SGWA-2 Lab Sample ID: 400-163613-2

Date Collected: 12/13/18 13:38

Date Received: 12/15/18 08:33

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	423845	12/18/18 18:58	BAW	TAL PEN
Total Recoverable	Prep	3005A			423642	12/18/18 09:43	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	423830	12/18/18 14:49	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	423847	12/19/18 10:29	CLB	TAL PEN

Lab Sample ID: 400-163613-3 **Client Sample ID: SGWA-3**

Date Collected: 12/13/18 13:50

Date Received: 12/15/18 08:33

Prep Type Total/NA	Batch Type Analysis	Batch Method 300.0	Run	Dilution Factor 1	Batch Number 423845	Prepared or Analyzed 12/18/18 19:21	Analyst BAW	Lab TAL PEN
Total Recoverable Total Recoverable	Prep Analysis	3005A 6020		5		12/18/18 09:43 12/18/18 14:53		TAL PEN TAL PEN
Total/NA	Analysis	SM 2540C		1	423835	12/19/18 09:54	CLB	TAL PEN

Lab Sample ID: 400-163613-4 Client Sample ID: SGWA-4

Date Collected: 12/13/18 16:25

Date Received: 12/15/18 08:33

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			423845	12/18/18 20:06	BAW	TAL PEN
Total Recoverable	Prep	3005A			423642	12/18/18 09:43	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	423830	12/18/18 14:56	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	423847	12/19/18 10:29	CLB	TAL PEN

Client Sample ID: SGWA-5 Lab Sample ID: 400-163613-5

Date Collected: 12/13/18 14:50 Date Received: 12/15/18 08:33

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	423845	12/18/18 20:29	BAW	TAL PEN
Total Recoverable	Prep	3005A			423642	12/18/18 09:43	DRE	TAL PEN

TestAmerica Pensacola

Page 18 of 34

12/21/2018

TestAmerica Job ID: 400-163613-1

SDG: Ash Pond

Client Sample ID: SGWA-5

Date Collected: 12/13/18 14:50 Date Received: 12/15/18 08:33

Lab Sample ID: 400-163613-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Analysis	6020		5	423830	12/18/18 15:18	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	423835	12/19/18 09:54	CLB	TAL PEN

Client Sample ID: SGWA-24 Lab Sample ID: 400-163613-6

Matrix: Water

Date Collected: 12/13/18 16:10 Date Received: 12/15/18 08:33

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			423845	12/18/18 21:38	BAW	TAL PEN
Total Recoverable	Prep	3005A			423642	12/18/18 09:43	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	423830	12/18/18 15:22	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	423835	12/19/18 09:54	CLB	TAL PEN

Client Sample ID: SGWA-25 Lab Sample ID: 400-163613-7 Date Collected: 12/13/18 15:10

Matrix: Water

Date Received: 12/15/18 08:33

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0	_	1	423845	12/18/18 22:00	BAW	TAL PEN
Total Recoverable	Prep	3005A			423642	12/18/18 09:43	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	423830	12/18/18 15:25	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	423835	12/19/18 09:54	CLB	TAL PEN

Lab Sample ID: 400-163613-8 Client Sample ID: EB-1 (AP)

Date Collected: 12/13/18 16:55

Date Received: 12/15/18 08:33

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			423845	12/18/18 22:23	BAW	TAL PEN
Total Recoverable	Prep	3005A			423642	12/18/18 09:43	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	423830	12/18/18 15:29	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	423835	12/19/18 09:54	CLB	TAL PEN

Client Sample ID: FB-1 (AP) Lab Sample ID: 400-163613-9 Date Collected: 12/13/18 16:25 **Matrix: Water**

Date Received: 12/15/18 08:33

Prep Type Total/NA	Batch Type Analysis	Batch Method 300.0	Run	Dilution Factor 1	Batch Number 423845	Prepared or Analyzed 12/18/18 22:46	Analyst BAW	Lab TAL PEN
Total Recoverable Total Recoverable	Prep Analysis	3005A 6020		5	423642	12/18/18 09:43 12/18/18 15:32	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1		12/19/18 09:54		TAL PEN

Page 19 of 34

Matrix: Water

TestAmerica Pensacola

TestAmerica Job ID: 400-163613-1

SDG: Ash Pond

Client Sample ID: SGWC-6

Date Collected: 12/14/18 10:00 Date Received: 12/15/18 08:33

Lab Sample ID: 400-163613-10

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			423845	12/18/18 23:09	BAW	TAL PEN
Total Recoverable	Prep	3005A			423642	12/18/18 09:43	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	423830	12/18/18 15:36	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	423847	12/19/18 10:29	CLB	TAL PEN

Lab Sample ID: 400-163613-11

Client Sample ID: SGWC-7 Date Collected: 12/14/18 11:15 **Matrix: Water**

Date Received: 12/15/18 08:33

Batch Batch Dilution Batch **Prepared** Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 300.0 423845 12/18/18 23:32 BAW TAL PEN 3005A Total Recoverable Prep 423642 12/18/18 09:43 DRE TAL PEN 6020 5 TAL PEN Total Recoverable Analysis 423830 12/18/18 15:40 DRE Total/NA SM 2540C 423847 12/19/18 10:29 CLB TAL PEN Analysis 1

Client Sample ID: SGWC-8 Lab Sample ID: 400-163613-12

Date Collected: 12/14/18 12:10

Date Received: 12/15/18 08:33

Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			424007	12/20/18 10:11	BAW	TAL PEN
Total/NA	Analysis	300.0	DL	2	424202	12/21/18 05:14	BAW	TAL PEN
Total Recoverable	Prep	3005A			423642	12/18/18 09:43	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	423830	12/18/18 15:43	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	423847	12/19/18 10:29	CLB	TAL PEN

Client Sample ID: SGWC-12 Lab Sample ID: 400-163613-13

Date Collected: 12/14/18 09:52

Date Received: 12/15/18 08:33

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA Total Recoverable	Analysis Prep	300.0 3005A		1		12/20/18 10:57 12/18/18 09:43		TAL PEN
Total Recoverable	Analysis	6020		5		12/18/18 15:47		TAL PEN
Total/NA	Analysis	SM 2540C		1	423835	12/19/18 09:54	CLB	TAL PEN

Client Sample ID: SGWC-13 Lab Sample ID: 400-163613-14

Date Collected: 12/14/18 10:48

Date Received: 12/15/18 08:33

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	424007	12/20/18 11:20	BAW	TAL PEN

TestAmerica Pensacola

Page 20 of 34

12/21/2018

TestAmerica Job ID: 400-163613-1

SDG: Ash Pond

Client Sample ID: SGWC-13

Date Collected: 12/14/18 10:48 Date Received: 12/15/18 08:33

Lab Sample ID: 400-163613-14

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0	DL		424202	12/21/18 05:37	BAW	TAL PEN
Total Recoverable	Prep	3005A			423642	12/18/18 09:43	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	423830	12/18/18 15:51	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	423847	12/19/18 10:29	CLB	TAL PEN

Client Sample ID: SGWC-14

Date Collected: 12/14/18 12:30 Date Received: 12/15/18 08:33

Lab Sample ID: 400-163613-15

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	424007	12/20/18 12:29	BAW	TAL PEN
Total/NA	Analysis	300.0	DL	5	424251	12/21/18 14:45	BAW	TAL PEN
Total Recoverable	Prep	3005A			423642	12/18/18 09:43	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	423830	12/18/18 16:12	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	423847	12/19/18 10:29	CLB	TAL PEN

Client Sample ID: SGWC-17 Lab Sample ID: 400-163613-16

Date Collected: 12/14/18 12:10

Date Received: 12/15/18 08:33

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			424007	12/20/18 12:51	BAW	TAL PEN
Total/NA	Analysis	300.0	DL	5	424251	12/21/18 15:08	BAW	TAL PEN
Total Recoverable	Prep	3005A			423642	12/18/18 09:43	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	423830	12/18/18 16:16	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	423847	12/19/18 10:29	CLB	TAL PEN

Client Sample ID: FB-2 (AP) Lab Sample ID: 400-163613-17 Matrix: Water

Date Collected: 12/14/18 10:45

Date Received: 12/15/18 08:33

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			424007	12/20/18 13:14	BAW	TAL PEN
Total Recoverable	Prep	3005A			423642	12/18/18 09:43	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	423830	12/18/18 16:20	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	423835	12/19/18 09:54	CLB	TAL PEN

TestAmerica Pensacola

Lab Chronicle

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-163613-1

SDG: Ash Pond

Client Sample ID: EB-2 (AP)

Date Collected: 12/14/18 13:15 Date Received: 12/15/18 08:33

Lab Sample ID: 400-163613-18

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	424007	12/20/18 13:37	BAW	TAL PEN
Total Recoverable	Prep	3005A			423642	12/18/18 09:43	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	423830	12/18/18 16:23	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	423835	12/19/18 09:54	CLB	TAL PEN

Client Sample ID: FD-1 (AP) Lab Sample ID: 400-163613-19

Date Collected: 12/14/18 00:00 Date Received: 12/15/18 08:33

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	424007	12/20/18 14:00	BAW	TAL PEN
Total Recoverable	Prep	3005A			423642	12/18/18 09:43	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	423830	12/18/18 16:27	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	423847	12/19/18 10:29	CLB	TAL PEN

Lab Sample ID: 400-163613-20 Client Sample ID: FD-2 (AP)

Date Collected: 12/14/18 00:00 **Matrix: Water**

Date Received: 12/15/18 08:33

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			424202	12/21/18 00:40	BAW	TAL PEN
Total Recoverable	Prep	3005A			423642	12/18/18 09:43	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	423830	12/18/18 16:30	DRE	TAL PEN
Total/NA	Analysis	SM 2540C		1	423847	12/19/18 10:29	CLB	TAL PEN

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

HPLC/IC

Analysis Batch: 423845

Client: Southern Company Project/Site: CCR - Plant Scherer

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-163613-1	SGWA-1	Total/NA	Water	300.0	
400-163613-2	SGWA-2	Total/NA	Water	300.0	
400-163613-3	SGWA-3	Total/NA	Water	300.0	
400-163613-4	SGWA-4	Total/NA	Water	300.0	
400-163613-5	SGWA-5	Total/NA	Water	300.0	
400-163613-6	SGWA-24	Total/NA	Water	300.0	
400-163613-7	SGWA-25	Total/NA	Water	300.0	
400-163613-8	EB-1 (AP)	Total/NA	Water	300.0	
400-163613-9	FB-1 (AP)	Total/NA	Water	300.0	
400-163613-10	SGWC-6	Total/NA	Water	300.0	
400-163613-11	SGWC-7	Total/NA	Water	300.0	
MB 400-423845/4	Method Blank	Total/NA	Water	300.0	
LCS 400-423845/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-423845/6	Lab Control Sample Dup	Total/NA	Water	300.0	
400-163412-J-8 MS	Matrix Spike	Total/NA	Water	300.0	
400-163412-J-8 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Analysis Batch: 424007

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-163613-12	SGWC-8	Total/NA	Water	300.0	_
400-163613-13	SGWC-12	Total/NA	Water	300.0	
400-163613-14	SGWC-13	Total/NA	Water	300.0	
400-163613-15	SGWC-14	Total/NA	Water	300.0	
400-163613-16	SGWC-17	Total/NA	Water	300.0	
400-163613-17	FB-2 (AP)	Total/NA	Water	300.0	
400-163613-18	EB-2 (AP)	Total/NA	Water	300.0	
400-163613-19	FD-1 (AP)	Total/NA	Water	300.0	
MB 400-424007/4	Method Blank	Total/NA	Water	300.0	
LCS 400-424007/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-424007/6	Lab Control Sample Dup	Total/NA	Water	300.0	
400-163339-B-1 MS	Matrix Spike	Total/NA	Water	300.0	
400-163339-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Analysis Batch: 424202

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-163613-12 - DL	SGWC-8	Total/NA	Water	300.0	
400-163613-14 - DL	SGWC-13	Total/NA	Water	300.0	
400-163613-20	FD-2 (AP)	Total/NA	Water	300.0	
MB 400-424202/4	Method Blank	Total/NA	Water	300.0	
LCS 400-424202/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-424202/6	Lab Control Sample Dup	Total/NA	Water	300.0	
400-163573-K-12 MS	Matrix Spike	Total/NA	Water	300.0	
400-163573-K-12 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Analysis Batch: 424251

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-163613-15 - DL	SGWC-14	Total/NA	Water	300.0	<u> </u>
400-163613-16 - DL	SGWC-17	Total/NA	Water	300.0	
MB 400-424251/4	Method Blank	Total/NA	Water	300.0	
LCS 400-424251/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-424251/6	Lab Control Sample Dup	Total/NA	Water	300.0	

TestAmerica Pensacola

SDG: Ash Pond

QC Association Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-163613-1

SDG: Ash Pond

HPLC/IC (Continued)

Analysis Batch: 424251 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-163573-K-16 MS	Matrix Spike	Total/NA	Water	300.0	
400-163573-K-16 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Metals

Prep Batch: 423642

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-163613-1	SGWA-1	Total Recoverable	Water	3005A	-
400-163613-2	SGWA-2	Total Recoverable	Water	3005A	
400-163613-3	SGWA-3	Total Recoverable	Water	3005A	
400-163613-4	SGWA-4	Total Recoverable	Water	3005A	
400-163613-5	SGWA-5	Total Recoverable	Water	3005A	
400-163613-6	SGWA-24	Total Recoverable	Water	3005A	
400-163613-7	SGWA-25	Total Recoverable	Water	3005A	
400-163613-8	EB-1 (AP)	Total Recoverable	Water	3005A	
400-163613-9	FB-1 (AP)	Total Recoverable	Water	3005A	
400-163613-10	SGWC-6	Total Recoverable	Water	3005A	
400-163613-11	SGWC-7	Total Recoverable	Water	3005A	
400-163613-12	SGWC-8	Total Recoverable	Water	3005A	
400-163613-13	SGWC-12	Total Recoverable	Water	3005A	
400-163613-14	SGWC-13	Total Recoverable	Water	3005A	
400-163613-15	SGWC-14	Total Recoverable	Water	3005A	
400-163613-16	SGWC-17	Total Recoverable	Water	3005A	
400-163613-17	FB-2 (AP)	Total Recoverable	Water	3005A	
400-163613-18	EB-2 (AP)	Total Recoverable	Water	3005A	
400-163613-19	FD-1 (AP)	Total Recoverable	Water	3005A	
400-163613-20	FD-2 (AP)	Total Recoverable	Water	3005A	
MB 400-423642/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-423642/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
400-163613-1 MS	SGWA-1	Total Recoverable	Water	3005A	
400-163613-1 MSD	SGWA-1	Total Recoverable	Water	3005A	

Analysis Batch: 423830

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-163613-1	SGWA-1	Total Recoverable	Water	6020	423642
400-163613-2	SGWA-2	Total Recoverable	Water	6020	423642
400-163613-3	SGWA-3	Total Recoverable	Water	6020	423642
400-163613-4	SGWA-4	Total Recoverable	Water	6020	423642
400-163613-5	SGWA-5	Total Recoverable	Water	6020	423642
400-163613-6	SGWA-24	Total Recoverable	Water	6020	423642
400-163613-7	SGWA-25	Total Recoverable	Water	6020	423642
400-163613-8	EB-1 (AP)	Total Recoverable	Water	6020	423642
400-163613-9	FB-1 (AP)	Total Recoverable	Water	6020	423642
400-163613-10	SGWC-6	Total Recoverable	Water	6020	423642
400-163613-11	SGWC-7	Total Recoverable	Water	6020	423642
400-163613-12	SGWC-8	Total Recoverable	Water	6020	423642
400-163613-13	SGWC-12	Total Recoverable	Water	6020	423642
400-163613-14	SGWC-13	Total Recoverable	Water	6020	423642
400-163613-15	SGWC-14	Total Recoverable	Water	6020	423642
400-163613-16	SGWC-17	Total Recoverable	Water	6020	423642

TestAmerica Pensacola

12/21/2018

Page 24 of 34

QC Association Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-163613-1

SDG: Ash Pond

Metals (Continued)

Analysis Batch: 423830 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-163613-17	FB-2 (AP)	Total Recoverable	Water	6020	423642
400-163613-18	EB-2 (AP)	Total Recoverable	Water	6020	423642
400-163613-19	FD-1 (AP)	Total Recoverable	Water	6020	423642
400-163613-20	FD-2 (AP)	Total Recoverable	Water	6020	423642
MB 400-423642/1-A ^5	Method Blank	Total Recoverable	Water	6020	423642
LCS 400-423642/2-A	Lab Control Sample	Total Recoverable	Water	6020	423642
400-163613-1 MS	SGWA-1	Total Recoverable	Water	6020	423642
400-163613-1 MSD	SGWA-1	Total Recoverable	Water	6020	423642

Analysis Batch: 424031

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 400-423642/1-A ^5	Method Blank	Total Recoverable	Water	6020	423642

General Chemistry

Analysis Batch: 423835

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-163613-3	SGWA-3	Total/NA	Water	SM 2540C	_
400-163613-5	SGWA-5	Total/NA	Water	SM 2540C	
400-163613-6	SGWA-24	Total/NA	Water	SM 2540C	
400-163613-7	SGWA-25	Total/NA	Water	SM 2540C	
400-163613-8	EB-1 (AP)	Total/NA	Water	SM 2540C	
400-163613-9	FB-1 (AP)	Total/NA	Water	SM 2540C	
400-163613-13	SGWC-12	Total/NA	Water	SM 2540C	
400-163613-17	FB-2 (AP)	Total/NA	Water	SM 2540C	
400-163613-18	EB-2 (AP)	Total/NA	Water	SM 2540C	
MB 400-423835/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 400-423835/2	Lab Control Sample	Total/NA	Water	SM 2540C	
400-163523-A-1 DU	Duplicate	Total/NA	Water	SM 2540C	

Analysis Batch: 423847

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
400-163613-1	SGWA-1	Total/NA	Water	SM 2540C	
400-163613-2	SGWA-2	Total/NA	Water	SM 2540C	
400-163613-4	SGWA-4	Total/NA	Water	SM 2540C	
400-163613-10	SGWC-6	Total/NA	Water	SM 2540C	
400-163613-11	SGWC-7	Total/NA	Water	SM 2540C	
400-163613-12	SGWC-8	Total/NA	Water	SM 2540C	
400-163613-14	SGWC-13	Total/NA	Water	SM 2540C	
400-163613-15	SGWC-14	Total/NA	Water	SM 2540C	
400-163613-16	SGWC-17	Total/NA	Water	SM 2540C	
400-163613-19	FD-1 (AP)	Total/NA	Water	SM 2540C	
400-163613-20	FD-2 (AP)	Total/NA	Water	SM 2540C	
MB 400-423847/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 400-423847/2	Lab Control Sample	Total/NA	Water	SM 2540C	
400-163613-2 DU	SGWA-2	Total/NA	Water	SM 2540C	

TestAmerica Pensacola

Page 25 of 34

TestAmerica Job ID: 400-163613-1

SDG: Ash Pond

Method: 300.0 - Anions, Ion Chromatography

Client Sample ID: Method Blank Lab Sample ID: MB 400-423845/4 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 423845

	IVID	VID							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89		1.0	0.89	mg/L			12/18/18 12:30	1
Sulfate	<0.70		1.0	0.70	mg/L			12/18/18 12:30	1

Lab Sample ID: LCS 400-423845/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 423845

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 10.0	9.86		mg/L		99	90 - 110	
Sulfate	10.0	10.7		mg/L		107	90 - 110	

Lab Sample ID: LCSD 400-423845/6 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 423845

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	 10.0	9.87		mg/L		99	90 - 110	0	15
Sulfate	10.0	10.2		mg/L		102	90 - 110	4	15

Lab Sample ID: 400-163412-J-8 MS **Client Sample ID: Matrix Spike Matrix: Water** Prep Type: Total/NA

Analysis Batch: 423845

•	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	5.7		10.0	15.3		mg/L		96	80 - 120	
Sulfate	6.9		10.0	17.2		mg/L		103	80 - 120	

Lab Sample ID: 400-163412-J-8 MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 423845

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	5.7		10.0	15.3		mg/L		96	80 - 120	0	20
Sulfate	6.9		10.0	17.4		mg/L		104	80 - 120	1	20

Lab Sample ID: MB 400-424007/4 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 424007

	MR	MR							
Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89		1.0	0.89	mg/L			12/19/18 13:22	1
Sulfate	< 0.70		1.0	0.70	mg/L			12/19/18 13:22	1

Lab Sample ID: LCS 400-424007/5 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA Analysis Batch: 424007** Spike LCS LCS %Rec.

Analyte Added Result Qualifier Unit D %Rec Limits Chloride 10.0 9.65 90 - 110 mg/L 96

TestAmerica Pensacola

Page 26 of 34

Client: Southern Company

Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-163613-1 SDG: Ash Pond

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 400-424007/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 424007

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Sulfate 10.0 10.0 mg/L 100 90 - 110

Lab Sample ID: LCSD 400-424007/6 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 424007

•	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	 10.0	9.60		mg/L		96	90 - 110	1	15	
Sulfate	10.0	10.1		mg/L		101	90 - 110	1	15	

Lab Sample ID: 400-163339-B-1 MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 424007

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	23		10.0	32.5		mg/L		91	80 - 120	
Sulfate	12		10.0	22.1		mg/L		105	80 - 120	

Lab Sample ID: 400-163339-B-1 MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 424007

•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	23		10.0	32.7		mg/L		94	80 - 120	1	20
Sulfate	12		10.0	22.4		mg/L		108	80 - 120	1	20

Lab Sample ID: MB 400-424202/4 **Client Sample ID: Method Blank Matrix: Water Prep Type: Total/NA**

Analysis Batch: 424202

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Chloride 1.0 0.89 mg/L <0.89 12/20/18 23:31 Sulfate <0.70 1.0 0.70 mg/L 12/20/18 23:31

Lab Sample ID: LCS 400-424202/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 424202

Analysis Butch. 424202	Spike	LCS	LCS				%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	 10.0	9.64		mg/L		96	90 - 110		_
Sulfate	10.0	10.1		mg/L		101	90 - 110		

Lab Sample ID: LCSD 400-424202/6 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 424202

	Spike	LCSD	LCSD			%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit D	%Rec	Limits	RPD	Limit
Chloride	10.0	9.63		mg/L	96	90 - 110	0	15
Sulfate	10.0	10.1		mg/L	101	90 - 110	1	15

TestAmerica Pensacola

12/21/2018

Page 27 of 34

TestAmerica Job ID: 400-163613-1 SDG: Ash Pond

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 400-163573-K-12 MS

Matrix: Water

Analysis Batch: 424202

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	7.0		10.0	16.5		mg/L		94	80 - 120	
Sulfate	13		10.0	22.8		mg/L		101	80 - 120	

Lab Sample ID: 400-163573-K-12 MSD

Matrix: Water

Analysis Batch: 424202

MSD MSD %Rec. **RPD** Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Chloride 7.0 10.0 16.6 mg/L 96 80 - 120 20 Sulfate 13 10.0 23.0 mg/L 103 80 - 120 20

Lab Sample ID: MB 400-424251/4

Matrix: Water

Analysis Batch: 424251

	MR MR						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89	1.0	0.89 mg/L			12/21/18 12:28	1
Sulfate	<0.70	1.0	0.70 mg/L			12/21/18 12:28	1

Lab Sample ID: LCS 400-424251/5

Matrix: Water

Analysis Batch: 424251

, ,		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride		10.0	9.79		mg/L		98	90 - 110	
Sulfate		10.0	10.3		mg/L		103	90 - 110	

Lab Sample ID: LCSD 400-424251/6

Matrix: Water

Analysis Batch: 424251

	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	 10.0	9.62		mg/L		96	90 - 110	2	15	
Sulfate	10.0	10.0		mg/L		100	90 - 110	3	15	

Lab Sample ID: 400-163573-K-16 MS

Matrix: Water

Analysis Batch: 424251

Analysis Batch. 424231	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	28		10.0	36.7		mg/L		86	80 - 120	
Sulfate	270	E	10.0	268	E 4	mg/L		1	80 - 120	

Lab Sample ID: 400-163573-K-16 MSD

Matrix: Water

Analysis Batch: 424251											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	28		10.0	36.8		ma/L		88	80 - 120		20

TestAmerica Pensacola

12/21/2018

Page 28 of 34

it

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

2

Client: Southern Company Project/Site: CCR - Plant Scherer

Sulfate

TestAmerica Job ID: 400-163613-1 SDG: Ash Pond

80 - 120

_ [

Method: 300.0 - Anions, Ion Chromatography (Continued)

270 E

Lab Sample ID: 400-163573-	K-16 MSD)				Client	Samp	le ID: N	latrix Spi	ke Dup	licate	
Matrix: Water									Prep Ty	pe: Tot	al/NA	
Analysis Batch: 424251												
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	

273 E 4

mg/L

10.0

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: 400-163613-1 MS

Lab Sample ID: MB 400-4236 Matrix: Water Analysis Batch: 423830	42/1-A ^5					Prep Type	le ID: Method : Total Recov Prep Batch:	/erable
	MB MB						•	
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.021	0.050	0.021	mg/L		12/18/18 09:43	12/18/18 14:24	5
Calcium	0.207 J	0.25	0.13	mg/L		12/18/18 09:43	12/18/18 14:24	5

Lab Sample ID: MB 400-423642/1-A ^5

Matrix: Water

Analysis Batch: 424031

MB MB

Analyte

Result Qualifier

RL MDL Unit

D Prepared Analyzed Dil Fac

Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.021	0.050	0.021	mg/L		12/18/18 09:43	12/19/18 12:25	5
Calcium	<0.13	0.25	0.13	mg/L		12/18/18 09:43	12/19/18 12:25	5

Lab Sample ID: LCS 400-423642/2-A Matrix: Water				Clie		•		ntrol Sample Recoverable
Analysis Batch: 423830								atch: 423642
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Boron	0.100	0.0995		mg/L		99	80 - 120	
Calcium	5.00	4 77		ma/l		95	80 120	

Matrix: Water							Р	rep Ty	pe: Total I	Recoverable
Analysis Batch: 423830									Prep Ba	atch: 423642
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Boron	<0.021		0.100	0.102		mg/L		102	75 - 125	
Calcium	17		5 00	6.51		ma/l		96	75 - 125	

Lab Sample ID: 400-163613	-1 MSD							Clien	t Sample	ID: SG	WA-1
Matrix: Water							P	rep Typ	oe: Total F	Recove	rable
Analysis Batch: 423830									Prep Ba	tch: 4	23642
_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Boron	<0.021		0.100	0.0974		mg/L		97	75 - 125	5	20
Calcium	1.7		5.00	6.64		mg/L		99	75 - 125	2	20

TestAmerica Pensacola

Client Sample ID: SGWA-1

Client: Southern Company

Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-163613-1

SDG: Ash Pond

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 400-423835/1 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 423835

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Total Dissolved Solids 5.0 12/19/18 09:54 <3.4 3.4 mg/L

Lab Sample ID: LCS 400-423835/2 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 423835

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec Total Dissolved Solids 293 78 - 122 284 mg/L 97

Lab Sample ID: 400-163523-A-1 DU **Client Sample ID: Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 423835

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier RPD Limit Analyte Unit Total Dissolved Solids 48 48.0 mg/L

Lab Sample ID: MB 400-423847/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 423847

MR MR Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Total Dissolved Solids <3.4 5.0 3.4 mg/L 12/19/18 10:29

Lab Sample ID: LCS 400-423847/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 423847

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits Total Dissolved Solids 293 252 mg/L 78 - 122 86

Lab Sample ID: 400-163613-2 DU Client Sample ID: SGWA-2 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 423847

DU DU **RPD** Sample Sample Analyte Result Qualifier Result Qualifier **RPD** Limit Unit D **Total Dissolved Solids** 110 108 mg/L

TestAmerica Pensacola

Chain of Custody Record

TestAmerica Pensacola 3355 McLemore Drive				ວັ	ain	of	nst	ody	Chain of Custody Record	ord					TestAmerico	STING
Pensacola, FL 32514-7045 phone 850.474.1001 fax 850.474.4789	Regula	Regulatory Program:		□ Md □	NPDES	RCRA	\$	□ Other:	Ľ						TestAmerica Laboratories, Inc.	i, Inc.
Client Contact	Project Manager: Dawn Prell	ger: Dawn	Prell		Ť	Site Co	ntact:	Site Contact: Karim Minkara	linkara		٩	Date: 12/14/2018	14/2018		COC No:	
Southern Company	Tel/Fax: 248-536-5445	36-5445				ab Co	ntact:	Cheyen	Lab Contact: Cheyenne Whitmire	nire	0	Carrier:			_1 of2COCs	
241 Raiph McGill Blvd SE B10185	Analy CALENDAR DAYS	Sis	Turnaround Time	ime											Sampler:	
Atlanta, GA, 30300	E TAT	TAT HE WASHINGTON				(s	'e					_	_	Walk-in Client	
		2 weeks	n below S			N /	-				_	_	_		Lab Sampling:	T
Project Name: GPC Plant Scherer	D	1 week				X) (-	nl4			8	2				
Site: Ash Pond		2 days				MSD e (78D				7			Job / SDG No.:	
PO#		1 day				l / Si		-W=			ň	Ÿ				
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	# of Cont.	Filtered Sa Perform M	2540C - Tot	300_ORG		4	0-163	400-163613 COC	0		Sample Specific Notes:	
SGWA-1	12/13/2018	1230	b	GW	2	z	×	×								
SGWA-2	12/13/2018	1338	g	GW	2	z	×	×								
SGWA-3	12/13/2018	1350	O	GW	2	z	×	×								
SGWA-4	12/13/2018	1625	O	GW	2	z	×	×								
SGWA-5	12/13/2018	1450	O	GW	2	z	×	×								
SGWA-24	12/13/2018	1610	o	GW	2	z	×	×								
SGWA-25	12/13/2018	1510	o	GW	2	z	×	×								
EB-1 (AP)	12/13/2018	1655	O	GW	2	z	×	×								
FB-1 (AP)	12/13/2018	1625	o	GW	2	z	×	×								
								-								
								_								1
Preservation Used: 1= 10e, 2= nc); 3= ncs0.4; 4=nnco; 5=naOn; 0= Other Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste C	lease List any EPA W		odes for the sample in the	mple in th	e e	Sa	mple D	isposal	(A fee	nay be	asse	ssed if	amples	re retained	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	
Comments Section if the lab is to dispose of the sample.						7										
□Non-Hazard □Flammable □Skin Irritant	□ Poison B		Unknown	wn		+	Return	Return to Client			Disp	Disposal by Lab		☐ Archive for	r Months	
Special instructions/LC Requirements & Confidents:									12	1.200 (0)	100	(. Bc	(K)			
Custody Seals Intact:	Custody Seal No.:	I No.:					1	Coo	Cooler Temp. (°C): Obs'd:	(°C):	ops,q		Corr'd:		Therm ID No.:	
Relinquished by I'd we () (Company:	Joh		Date/T	Date/Time: /	1	Received by	by:	76		1	1/18	Sombany:	S	Date/Time: 45	
1	Company:	141	X	Date(Time	me.		Received by:	SE V	1	1	3	1	Company	3	Date/Time: //8 OR	3
Relinquished by:	Company:	1		Date/Time:	ime:	Ϋ́	ceived	The Labo	Received in Laboratory by:	7	1		Company	2	Date/Time: 083)
										7				Form N	Form No. CA-C-WI-002, Rev. 4.18, dated 9/5/2018	3/5/2018

TestAmerica Pensacola

Chain of Custody Record

3355 McLemore Drive

Client Contact	Project Manager: Dawn Prell	ler: Dawn	Prell		Sit	e Cont	act: K	Site Contact: Karim Minkara		Date: 12	Date: 12/14/2018		0	COC No:
Southern Company	Tel/Fax: 248-536-5445	36-5445			La	b Cont	act: C	Lab Contact: Cheyenne Whitmire		Carrier:				2 of 2 COCs
241 Ralph McGill Blvd SE B10185	An	alysis Tur	Analysis Turnaround Time	me		L				F			-	Sampler:
Atlanta, GA, 30308	☐ CALENDAR DAYS	YS	☐ WORKING DAYS	4G DAYS		-								For Lab Use Only:
(404) 506-7239 Phone	TAT if differ	different fron	rent from Below	1	(U	, ebir		_	_		_	Walk-in Client:
Project Name: GPC Plant Scherer		2 weeks	vo.		N/		unio							Lab Samping.
Site: Ash Pond		2 days			() ə		, Cal							Job / SDG No.:
PO#		1 day			Idmi		8 no		_			_	_	
Sample Identification	Sample Date	Sample Time	Sample Type (C=Comp, G=Grab)	Matrix	C # filtered Sa	Perform M 2540C - Tot	9020 - Bor	300_ORGF Chloride, 8						Sample Specific Notes:
SGWC-6	12/14/2018	1000	9	GW	2	×	×	×						
SGWC-7	12/14/2018	1115	9	GW	2	×	×	×						
SGWC-8	12/14/2018	1210	o	GW	2	×	×	×						
SGWC-12	12/14/2018	0952	o	GW	2	×	×	×						
SGWC-13	12/14/2018	1048	O	GW	2 N	×	×	×						
SGWC-14	12/14/2018	1230	O	GW	2	×	×	×						
SGWC-17	12/14/2018	1210	Ø	RD	2	×	×	×						
FB-2 (AP)	12/14/2018	1045	Ø	0W	2	×	×	×						
EB-2 (AP)	12/14/2018	1315	ŋ	GW	2 N		×	×						
FD-1 (AP)	12/14/2018	1	9	GW	2 N		×	×						
FD-2 (AP)	12/14/2018	1	o	GW	Z		×	×						
December de la gentier de	-N-OH-6- Oth													
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please Comments Sertion if the lah is to discose of the sample	Please List any EPA Waste	1 0	Codes for the sample in the	nple in th	0	Sam	ole Dis	posal (A fee ma	y be ass	ssed if	samples	are retain	ed long	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
Non-Hazard	□ Polson B		IlInknown	5		Ö	Return to Client	Clent		Holenocal by Lab	4	Archive for	e for	Months
uctions/QC Requirements & C								200	2	S	ā			
Custody Seals Intact:	Custody Seal No	No.:					(Cooler Temp. (°C): Obs'd	°C): Obs	ë	Corr'd:	.p.	ĮĘ.	Therm ID No.:
Relinquished by: 15 well (()		des		Date/Ti	Date/Time:		Received by:	X	3	11411	Company	A A		Date/Time/ _ W
Relinquierfed by:		72		Date/Time:	ine:		Received by:	N. A.	0	-	Company	25		Date/Time; @ 0833
Relinquished-by:	Company:			Date/Time	ne:	Rece	ived ir	Received in Laboratory by:			Company:	y:		Date/Time:
												Form	n No. C/	Form No. CA-C-WI-002, Rev. 4.18, dated 9/5/2018

Client: Southern Company

Job Number: 400-163613-1 SDG Number: Ash Pond

Login Number: 163613 List Source: TestAmerica Pensacola

List Number: 1

Creator: Johnson, Jeremy N

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	Not present
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.2°C IR8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	Per the client Fluoride is not required.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Accreditation/Certification Summary

Client: Southern Company

TestAmerica Job ID: 400-163613-1

Project/Site: CCR - Plant Scherer

SDG: Ash Pond

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-19
ANAB	ISO/IEC 17025		L2471	02-22-20
Arizona	State Program	9	AZ0710	01-12-20
Arkansas DEQ	State Program	6	88-0689	09-01-19
California	State Program	9	2510	06-30-19
Florida	NELAP	4	E81010	06-30-19
Georgia	State Program	4	E81010 (FL)	06-30-19
Illinois	NELAP	5	200041	10-09-19
lowa	State Program	7	367	08-01-20
Kansas	NELAP	7	E-10253	12-31-18
Kentucky (UST)	State Program	4	53	06-30-19
Kentucky (WW)	State Program	4	98030	12-31-18
Louisiana	NELAP	6	30976	06-30-19
Louisiana (DW)	NELAP	6	LA017	12-31-19
Maryland	State Program	3	233	09-30-19
Massachusetts	State Program	1	M-FL094	06-30-19
Michigan	State Program	5	9912	06-30-19
New Jersey	NELAP	2	FL006	06-30-19
North Carolina (WW/SW)	State Program	4	314	12-31-19
Oklahoma	State Program	6	9810	08-31-19
Pennsylvania	NELAP	3	68-00467	01-31-19
Rhode Island	State Program	1	LAO00307	12-30-18
South Carolina	State Program	4	96026	06-30-19
Tennessee	State Program	4	TN02907	06-30-19
Texas	NELAP	6	T104704286-18-15	09-30-19
US Fish & Wildlife	Federal		LE058448-0	07-31-19
USDA	Federal		P330-18-00148	05-17-21
Virginia	NELAP	3	460166	06-14-19
Washington	State Program	10	C915	05-15-19
West Virginia DEP	State Program	3	136	06-30-19

3

4

6

Ω

9

4 4

12

13

14

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-160240-1

TestAmerica Sample Delivery Group: Ash Pond

Client Project/Site: CCR - Plant Scherer

For:

Southern Company 241 Ralph McGill Blvd SE B10185 Atlanta, Georgia 30308

Attn: Joju Abraham

Authorized for release by: 11/30/2018 1:07:30 PM

Cheyenne Whitmire, Project Manager II (850)471-6222

cheyenne.whitmire@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents	
Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	5
Method Summary	13
Sample Summary	14
Client Sample Results	15
Definitions	53
Chronicle	54
QC Association	66
QC Sample Results	76
Chain of Custody	101
Receipt Checklists	106
Certification Summary	109

Case Narrative

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Job ID: 400-160240-1

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-160240-1

HPLC/IC

Method(s) 300.0: The laboratory control sample (LCS) for analytical batch 415543 recovered outside control limits for the following analytes: Fluoride. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 300.0: The native sample, matrix spike, and matrix spike duplicate (MS/MSD) associated with analytical batch 415684 were performed at the same dilution. Due to the additional level of analyte present in the spiked samples, the concentration of Sulfate in the MS/MSD was above the instrument calibration range. The data have been reported and qualified.

Method(s) 300.0: The method blank for analytical batch 418094 contained Fluoride above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 300.0: The method blank for analytical batch 418296 contained Fluoride above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 300.0: The following sample was diluted to bring the concentration of target analytes within the calibration range: SGWC-20 (400-160240-46). Elevated reporting limits (RLs) are provided.

Method(s) 300.0: The following sample was diluted due to conductivity: SGWC-18 (400-160240-45). Elevated reporting limits (RL) are provided.

Method(s) 300.0: The continuing calibration blank for analytical batch 418094 contained Fluoride above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

RAD

Method(s) PrecSep 0: Radium 228 Prep Batch 160-398030: Insufficient sample volume was available to perform a sample duplicate (DUP) for the following samples: SGWC-18 (400-160240-45), A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

Method(s) PrecSep 0: Radium 228 Prep Batch 160-397318: Sample SGWC-15 (400-160240-32) and the method blank associated with prep batch 160-397318 were partially spilled during the plating process contributing to the lower-than-normal yttrium carrier recovery. The carrier weights are within passing limits.

Method(s) PrecSep-21: Radium 226 Prep Batch 160-398027: Insufficient sample volume was available to perform a sample duplicate (DUP) for the following samples: SGWC-18 (400-160240-45). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

Metals

Method(s) 6020: The method blank for preparation batch 415486 and analytical batch 415796 contained Arsenic above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 6020: The following samples were diluted to bring the concentration of target analytes within the calibration range: SGWC-9 (400-160240-13), SGWC-19 (400-160240-15), FD-3(AP) (400-160240-16), SGWC-18 (400-160240-45) and SGWC-20 (400-160240-46). Elevated reporting limits (RLs) are provided.

Method(s) 6020: The method blank for preparation batch 415485 and analytical batch 415796 contained Selenium above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 6020: The method blank for preparation batch 418964 and analytical batch 419210 contained Lithium above the method

3

Case Narrative

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Job ID: 400-160240-1 (Continued)

Laboratory: TestAmerica Pensacola (Continued)

detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 7470A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 415495 and analytical batch 415840 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) 7470A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 418701 and analytical batch 419038 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) 7470A: The method blank for preparation batch 418701 and analytical batch 419038 contained Mercury above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-analysis of samples was not performed.

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.00064	J	0.0013	0.00046	mg/L	5	_	6020	Total
									Recoverable
Barium	0.058		0.0025	0.00049	mg/L	5		6020	Total
					_	_			Recoverable
Chromium	0.0014	J	0.0025	0.0011	mg/L	5		6020	Total
									Recoverable
Cobalt	0.00075	J	0.0025	0.00040	mg/L	5		6020	Total
									Recoverable
Lithium	0.0018	J	0.0050	0.0011	mg/L	5		6020	Total
									Recoverable
Selenium	0.00031	JB	0.0013	0.00024	mg/L	5		6020	Total
									Recoverable

Client Sample ID: FB-1(AP) Lab Sample ID: 400-160240-2

No Detections.

Client Sample ID: SGWA-2 Lab Sample ID: 400-160240-3

Anal	yte Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Bariu	m 0.036		0.0025	0.00049	mg/L	5	_	6020	Total
									Recoverable
Chro	mium 0.016	i	0.0025	0.0011	mg/L	5		6020	Total
									Recoverable
Selei	ium 0.00028	JB	0.0013	0.00024	mg/L	5		6020	Total
L									Recoverable

Client Sample ID: EB-1(AP) Lab Sample ID: 400-160240-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.00064	J	0.0013	0.00046	mg/L	5	_	6020	Total
									Recoverable

Client Sample ID: SGWA-3 Lab Sample ID: 400-160240-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.00096	J	0.0013	0.00046	mg/L	5	_	6020	Total
									Recoverable
Barium	0.035		0.0025	0.00049	mg/L	5		6020	Total
									Recoverable
Chromium	0.015		0.0025	0.0011	mg/L	5		6020	Total
									Recoverable
Selenium	0.00024	JB	0.0013	0.00024	mg/L	5		6020	Total
									Recoverable

Client Sample ID: SGWA-24 Lab Sample ID: 400-160240-6

Analyte	Result Q	Qualifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium	0.024	0.0025	0.00049	mg/L	5	_	6020	Total
Chromium	0.0058	0.0025	0.0011	mg/L	5		6020	Recoverable Total
Cobalt	0.00058 J	0.0025	0.00040	mg/L	5		6020	Recoverable Total Recoverable

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

11/30/2018

Page 5 of 110

Detection Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWA-24 (Continued)	Lab Sample ID: 400-160240-6
---------------------------------------	-----------------------------

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Lithium	0.0012 J	0.0050	0.0011 mg/L	5	6020	Total
						Recoverable

Client Sample ID: SGWC-22 Lab Sample ID: 400-160240-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0015		0.0013	0.00046	mg/L		_	6020	Total
									Recoverable
Barium	0.084		0.0025	0.00049	mg/L	5		6020	Total
									Recoverable
Chromium	0.0012	J	0.0025	0.0011	mg/L	5		6020	Total
									Recoverable
Cobalt	0.0021	J	0.0025	0.00040	mg/L	5		6020	Total
									Recoverable
Lithium	0.0011	J	0.0050	0.0011	mg/L	5		6020	Total
									Recoverable

Client Sample ID: SGWC-23 Lab Sample ID: 400-160240-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0019		0.0013	0.00046	mg/L	5	_	6020	Total
									Recoverable
Barium	0.077		0.0025	0.00049	mg/L	5		6020	Total
									Recoverable
Chromium	0.0017	J	0.0025	0.0011	mg/L	5		6020	Total
									Recoverable
Lithium	0.0035	J	0.0050	0.0011	mg/L	5		6020	Total
									Recoverable
Selenium	0.00026	JB	0.0013	0.00024	mg/L	5		6020	Total
									Recoverable

Lab Sample ID: 400-160240-9 Client Sample ID: EB-2(AP)

Analyte	Result Qu	ualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0016		0.0013	0.00046	mg/L	5	_	6020	Total
									Recoverable

Client Sample ID: SGWC-21 Lab Sample ID: 400-160240-10

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0019	0.0013	0.00046	mg/L	5	_	6020	Total
								Recoverable
Barium	0.092	0.0025	0.00049	mg/L	5		6020	Total
								Recoverable
Lithium	0.0019 J	0.0050	0.0011	mg/L	5		6020	Total
								Recoverable

Client Sample ID: SGWC-7 Lab Sample ID: 400-160240-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Meth	od	Prep Type
Fluoride	0.20		0.20	0.082	mg/L	1	300.0)	Total/NA
Arsenic	0.00049	J	0.0013	0.00046	mg/L	5	6020		Total Recoverable
Barium	0.28		0.0025	0.00049	mg/L	5	6020		Total Recoverable

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

11/30/2018

Page 6 of 110

TestAmerica Job ID: 400-160240-1

Lab Sample ID: 400-160240-11

Lab Sample ID: 400-160240-12

Lab Sample ID: 400-160240-13

Lab Sample ID: 400-160240-14

Lab Sample ID: 400-160240-15

SDG: Ash Pond

Client Sample ID: SGWC-7 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Cobalt	0.013		0.0025	0.00040	mg/L	5	6020	Total
								Recoverable
Lithium	0.0053		0.0050	0.0011	mg/L	5	6020	Total
								Recoverable
Selenium	0.00034	JB	0.0013	0.00024	mg/L	5	6020	Total
								Recoverable

Client Sample ID: SGWC-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Me	ethod	Prep Type
Fluoride	0.47	<u> </u>	0.20	0.082	mg/L	1	_ 30	0.0	Total/NA
Arsenic	0.0015		0.0013	0.00046	mg/L	5	60	20	Total Recoverable
Barium	0.17		0.0025	0.00049	mg/L	5	60	20	Total Recoverable
Chromium	0.0016	J	0.0025	0.0011	mg/L	5	60	20	Total Recoverable
Lithium	0.0020	J	0.0050	0.0011	mg/L	5	60	20	Total Recoverable

Client Sample ID: SGWC-9

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Arsenic	0.0013	0.0013	0.00046	mg/L	5	6020	Total
Barium Cobalt	0.077 0.0049	0.0025 0.0025	0.00049 0.00040	Ü	5 5	6020 6020	Recoverable Total Recoverable Total Recoverable

Client Sample ID: SGWC-10

Analyte Arsenic	Result 0.0015	Qualifier F		Unit mg/L	<u>Dil Fac</u> 5	Method 6020	Total
Barium	0.032	0.002	0.00049	mg/L	5	6020	Recoverable Total
Cobalt	0.030	0.002	0.00040	mg/L	5	6020	Recoverable Total Recoverable

Client Sample ID: SGWC-19

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0014		0.0013	0.00046	mg/L		_	6020	Total
Barium	0.037		0.0025	0.00049	mg/L	5		6020	Recoverable Total
Oh wa wa is swa	0.047		0.0005	0.0044		-		0000	Recoverable
Chromium	0.017		0.0025	0.0011	mg/L	5		6020	Total Recoverable
Selenium	0.00050	JB	0.0013	0.00024	mg/L	5		6020	Total Recoverable

Client Sample ID: FD-3(AP)

Lab Sample ID: 400-160240-16

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

Page 7 of 110

TestAmerica Job ID: 400-160240-1

Lab Sample ID: 400-160240-16

Lab Sample ID: 400-160240-18

Lab Sample ID: 400-160240-19

Lab Sample ID: 400-160240-20

Lab Sample ID: 400-160240-21

SDG: Ash Pond

Client Sample	ID: FD-3(AP)	(Continued)
----------------------	---------------------	-------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D I	Method	Prep Type
Arsenic	0.0013		0.0013	0.00046	mg/L	5	- 6	6020	Total
									Recoverable
Barium	0.036		0.0025	0.00049	mg/L	5	6	6020	Total
									Recoverable
Chromium	0.016		0.0025	0.0011	mg/L	5	6	6020	Total
									Recoverable
Lithium	0.0014	J	0.0050	0.0011	mg/L	5	6	6020	Total
									Recoverable
Selenium	0.00055	JB	0.0013	0.00024	mg/L	5	6	6020	Total
									Recoverable

Client Sample ID: FB-3(AP)

Client Sample ID: FB-3(AP)				Lab Sam	ple ID: 40	0-160240-17
Analyte Arsenic	Result Qualifier 0.0013	RL 0.0013	MDL 0.00046	 <u>Dil Fac</u> <u>D</u>	Method 6020	Total Recoverable

Client Sample ID: EB-3(AP)

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Arsenic	0.0013	0.0013	0.00046 mg/L	5 6020	Total Recoverable

Client Sample ID: SGWA-25

Analyte		Qualifier	RL	MDL		Dil Fac	_	Method	Prep Type
Arsenic	0.0018		0.0013	0.00046	mg/L	5		6020	Total Recoverable
Barium	0.024		0.0025	0.00049	mg/L	5		6020	Total Recoverable
Cobalt	0.0047		0.0025	0.00040	mg/L	5		6020	Total Recoverable

Client Sample ID: SGWA-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.00056	J	0.0013	0.00046	mg/L		_	6020	Total
									Recoverable
Barium	0.064		0.0025	0.00049	mg/L	5		6020	Total
									Recoverable
Chromium	0.0098		0.0025	0.0011	mg/L	5		6020	Total
									Recoverable
Selenium	0.00041	JB	0.0013	0.00024	mg/L	5		6020	Total
									Recoverable

Client Sample ID: SGWA-5

Chone Campio ID: CCTITE							· · · · r	3.0 ID: 10	0 1002 10 2 1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.00052	JB	0.0013	0.00046	mg/L	5	_	6020	Total Recoverable
Barium	0.011		0.0025	0.00049	mg/L	5		6020	Total Recoverable
Chromium	0.0011	J	0.0025	0.0011	mg/L	5		6020	Total Recoverable

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0011	JB	0.0013	0.00046	mg/L	5	_	6020	Total
Barium	0.069		0.0025	0.00049	mg/L	5		6020	Recoverable Total Recoverable

Client Sample ID: SGWC-12 Lab Sample ID: 400-160240-23

Barium 0.049	0.0013 0.0004 0.0025 0.0004	DL Unit Dil F mg/L 19 mg/L 10 mg/L	5 5	Method 6020 6020 6020	Prep Type Total Recoverable Total Recoverable Total Recoverable
--------------	---	---	-----	--------------------------------	---

Client Sample ID: FB-2(AP) Lab Sample ID: 400-160240-24

Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Selenium	0.00029	J	0.0013	0.00024 mg/L		6020	Total
							Recoverable

Client Sample ID: SGWC-13 Lab Sample ID: 400-160240-25

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.00047	JB	0.0013	0.00046	mg/L	5	_	6020	Total
									Recoverable
Barium	0.033		0.0025	0.00049	mg/L	5		6020	Total
									Recoverable
Cobalt	0.0036		0.0025	0.00040	mg/L	5		6020	Total
									Recoverable
Lithium	0.0014	J	0.0050	0.0011	mg/L	5		6020	Total
									Recoverable

Client Sample ID: SGWC-14 Lab Sample ID: 400-160240-26

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D I	Method	Prep Type
Arsenic	0.00097	JB	0.0013	0.00046	mg/L	5	_ (6020	Total
									Recoverable
Barium	0.053		0.0025	0.00049	mg/L	5	6	6020	Total
									Recoverable
Cobalt	0.0071		0.0025	0.00040	mg/L	5	6	6020	Total
									Recoverable
Lithium	0.0011	J	0.0050	0.0011	mg/L	5	6	6020	Total
									Recoverable

Client Sample ID: SGWC-16 Lab Sample ID: 400-160240-27

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Arsenic	0.0012 JB	0.0013	0.00046	mg/L	5	6020	Total
Barium	0.025	0.0025	0.00049	mg/L	5	6020	Recoverable Total
Chromium	0.013	0.0025	0.0011	mg/L	5	6020	Recoverable Total Recoverable

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

11/30/2018

Page 9 of 110

TestAmerica Job ID: 400-160240-1

Lab Sample ID: 400-160240-27

Lab Sample ID: 400-160240-28

Lab Sample ID: 400-160240-29

Lab Sample ID: 400-160240-30

Lab Sample ID: 400-160240-31

SDG: Ash Pond

Client Sample ID: SGWC-16 (Continued)

Analyte Cobalt	Result Qualifier 0.0044	RL 0.0025	MDL Unit mg/L	<u>Dil Fac</u> <u>D</u>	Method 6020	Prep Type Total
Lithium	0.0015 J	0.0050	0.0011 mg/L	5	6020	Recoverable Total Recoverable
Selenium	0.0014	0.0013	0.00024 mg/L	5	6020	Total Recoverable

Client Sample ID: SGWC-17

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Arsenic	0.0013	В	0.0013	0.00046	mg/L	5	6020	Total
								Recoverable
Barium	0.021		0.0025	0.00049	mg/L	5	6020	Total
								Recoverable
Chromium	0.0055		0.0025	0.0011	mg/L	5	6020	Total
								Recoverable
Cobalt	0.00046	J	0.0025	0.00040	mg/L	5	6020	Total
								Recoverable
Selenium	0.00028	J	0.0013	0.00024	mg/L	5	6020	Total
								Recoverable

Client Sample ID: FD-1(AP)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0013	В	0.0013	0.00046	mg/L	5	_	6020	Total
									Recoverable
Barium	0.022		0.0025	0.00049	mg/L	5		6020	Total
									Recoverable
Chromium	0.0055		0.0025	0.0011	mg/L	5		6020	Total
									Recoverable
Cobalt	0.00049	J	0.0025	0.00040	mg/L	5		6020	Total
									Recoverable
Selenium	0.00030	J	0.0013	0.00024	mg/L	5		6020	Total
									Recoverable

Client Sample ID: FD-2(AP)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluoride	0.091	J	0.20	0.082	mg/L		_	300.0	Total/NA
Arsenic	0.0017	В	0.0013	0.00046	mg/L	5		6020	Total
Barium	0.092		0.0025	0.00049	mg/L	5		6020	Recoverable Total
Lithium	0.0017	J	0.0050	0.0011	mg/L	5		6020	Recoverable Total Recoverable

Client Sample ID: SGWC-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	7.8		1.0	0.89	mg/L		_	300.0	Total/NA
Sulfate	1.3		1.0	0.70	mg/L	1		300.0	Total/NA
Barium	0.037		0.0025	0.00049	mg/L	5		6020	Total Recoverable
Boron	0.35		0.050	0.021	mg/L	5		6020	Total Recoverable

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

Detection Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-11 (Continued)

Lab Sample	ID:	400-1	6024	0-31

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Calcium	1.8		0.25	0.13	mg/L	5	_	6020	Total
									Recoverable
Cobalt	0.023		0.0025	0.00040	mg/L	5		6020	Total
									Recoverable
Lithium	0.0031	J	0.0050	0.0011	mg/L	5		6020	Total
									Recoverable
Selenium	0.00046	J	0.0013	0.00024	mg/L	5		6020	Total
									Recoverable
Mercury	0.000072	JB	0.00020	0.000070	mg/L	1		7470A	Total/NA
Total Dissolved Solids	100		5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SGWC-15

Lab Sample ID: 400-160240-32

onone Gampio IBI GGI						Zas Gampio izi ico			.002.00	
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Met	thod	Prep Type	
Chloride	10		1.0	0.89	mg/L	1	300	0.0	Total/NA	
Fluoride	0.14	JB	0.20	0.082	mg/L	1	300	0.0	Total/NA	
Sulfate - DL	200		5.0	3.5	mg/L	5	300	0.0	Total/NA	
Barium	0.031		0.0025	0.00049	mg/L	5	602	20	Total	
									Recoverable	
Beryllium	0.00040	J	0.0025	0.00034	mg/L	5	602	20	Total	
									Recoverable	
Boron	1.5		0.050	0.021	mg/L	5	602	20	Total	
									Recoverable	
Calcium	16		0.25	0.13	mg/L	5	602	20	Total	
									Recoverable	
Chromium	0.032		0.0025	0.0011	mg/L	5	602	20	Total	
									Recoverable	
Cobalt	0.27		0.0025	0.00040	mg/L	5	602	20	Total	
<u> </u>						<u>.</u> .			Recoverable	
Lithium	0.0034	J	0.0050	0.0011	mg/L	5	602	20	Total	
						_			Recoverable	
Selenium	0.0021		0.0013	0.00024	mg/L	5	602	20	Total	
u:	0.00040		0.00050			_			Recoverable	
Thallium	0.00010	J	0.00050	0.000085	mg/L	5	602	20	Total	
Management	0.00040		0.00000	0.000070				70.4	Recoverable	
Mercury	0.00013	JB	0.00020	0.000070	•	1	747		Total/NA	
Total Dissolved Solids	350		5.0	3.4	mg/L	1	SM	2540C	Total/NA	

Client Sample ID: SGWC-18

Lab Sample ID: 400-160240-45

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	16		5.0	4.5	mg/L	5	_	300.0	Total/NA
Arsenic	0.0023	0	.0013	0.00046	mg/L	5		6020	Total
									Recoverable
Barium	0.033	0	.0025	0.00049	mg/L	5		6020	Total
									Recoverable
Calcium	100		0.25	0.13	mg/L	5		6020	Total
									Recoverable
Chromium	0.0090	0	.0025	0.0011	mg/L	5		6020	Total
									Recoverable
Cobalt	0.21	0	.0025	0.00040	mg/L	5		6020	Total
									Recoverable
Lithium	0.0054	0	.0050	0.0011	mg/L	5		6020	Total
									Recoverable

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

11/30/2018

RL

MDL Unit

6.8 mg/L

Result Qualifier

1200

Client: Southern Company Project/Site: CCR - Plant Scherer

Analyte

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Total/NA

Client Sample ID: SGWC-18 (Continued)

Lab San	nple ID: 40	0-160240-45
Dil Fac	D Method	Prep Type
5	6020	Total
		Recoverable
5	6020	Total
		Recoverable
25	6020	Total
		Recoverable

Selenium	0.017	0.0013	0.00024	mg/L	5	6020	Total
							Recoverable
Thallium	0.00019 J	0.00050	0.000085	mg/L	5	6020	Total
							Recoverable
Boron - DL	4.9	0.25	0.11	mg/L	25	6020	Total
							Recoverable
Arsenic, Dissolved	0.0024	0.0013	0.00046	mg/L	5	6020	Dissolved
Barium, Dissolved	0.034	0.0025	0.00049	mg/L	5	6020	Dissolved
Beryllium, Dissolved	0.00034 J	0.0025	0.00034	mg/L	5	6020	Dissolved
Chromium, Dissolved	0.0089	0.0025	0.0011	mg/L	5	6020	Dissolved
Cobalt, Dissolved	0.21	0.0025	0.00040	mg/L	5	6020	Dissolved
Lithium, Dissolved	0.0061	0.0050	0.0011	mg/L	5	6020	Dissolved
Selenium, Dissolved	0.017	0.0013	0.00024	mg/L	5	6020	Dissolved
Thallium, Dissolved	0.00021 J	0.00050	0.000085	mg/L	5	6020	Dissolved
Mercury	0.00024	0.00020	0.000070	mg/L	1	7470A	Total/NA

10

Client Sample ID: SGWC-20

Total Dissolved Solids

Lab Sample ID: 400-160240-46

SM 2540C

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Met	hod	Prep Type
Chloride			1.0	0.89	mg/L	1	300	.0	Total/NA
Fluoride	0.23	В	0.20	0.082	mg/L	1	300	.0	Total/NA
Barium	0.027		0.0025	0.00049	mg/L	5	602	0	Total
									Recoverable
Beryllium	0.00079	J	0.0025	0.00034	mg/L	5	602	0	Total
									Recoverable
Calcium	12		0.25	0.13	mg/L	5	602	0	Total
									Recoverable
Cobalt	0.16		0.0025	0.00040	mg/L	5	602	0	Total
									Recoverable
Lithium	0.0062	В	0.0050	0.0011	mg/L	5	602	0	Total
		_			_	_		_	Recoverable
Selenium	0.00049	J	0.0013	0.00024	mg/L	5	602	0	Total
W	0.00040		0.00050	0.00000	,	_	000	•	Recoverable
Thallium	0.00018	J	0.00050	0.000085	mg/L	5	602	0	Total
B									Recoverable
Boron - DL	2.3		0.25	0.11	mg/L	25	602	U	Total
Total Dissalved Calida	270		5.0	2.4	/I	4	CNA	05400	Recoverable
Total Dissolved Solids	370		5.0	3.4	mg/L	1	SM	2540C	Total/NA

This Detection Summary does not include radiochemical test results.

11/30/2018

Method Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	TAL PEN
6020	Metals (ICP/MS)	SW846	TAL PEN
7470A	Mercury (CVAA)	SW846	TAL PEN
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL PEN
9315	Radium-226 (GFPC)	SW846	TAL SL
9320	Radium-228 (GFPC)	SW846	TAL SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	TAL SL
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PEN
7470A	Preparation, Mercury	SW846	TAL PEN
PrecSep_0	Preparation, Precipitate Separation	None	TAL SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	TAL SL

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

Sample Summary

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-160240-1

doc	ID: 400-160240-1
	SDG: Ash Pond

400-160240-1 SGWA-1 Wat 400-160240-2 FB-1(AP) Wat 400-160240-3 SGWA-2 Wat 400-160240-4 EB-1(AP) Wat 400-160240-5 SGWA-3 Wat 400-160240-6 SGWA-24 Wat 400-160240-7 SGWC-22 Wat 400-160240-8 SGWC-23 Wat 400-160240-9 EB-2(AP) Wat 400-160240-10 SGWC-21 Wat 400-160240-11 SGWC-7 Wat 400-160240-12 SGWC-8 Wat 400-160240-13 SGWC-9 Wat	rix Collected	Received
400-160240-3 SGWA-2 Wat 400-160240-4 EB-1(AP) Wat 400-160240-5 SGWA-3 Wat 400-160240-6 SGWA-24 Wat 400-160240-7 SGWC-22 Wat 400-160240-8 SGWC-23 Wat 400-160240-9 EB-2(AP) Wat 400-160240-10 SGWC-21 Wat 400-160240-11 SGWC-7 Wat 400-160240-12 SGWC-8 Wat	er 10/05/18 09:00	10/06/18 08:31
400-160240-4 EB-1(AP) Wat 400-160240-5 SGWA-3 Wat 400-160240-6 SGWA-24 Wat 400-160240-7 SGWC-22 Wat 400-160240-8 SGWC-23 Wat 400-160240-9 EB-2(AP) Wat 400-160240-10 SGWC-21 Wat 400-160240-11 SGWC-7 Wat 400-160240-12 SGWC-8 Wat	er 10/05/18 08:40	10/06/18 08:31
400-160240-5 SGWA-3 Wat 400-160240-6 SGWA-24 Wat 400-160240-7 SGWC-22 Wat 400-160240-8 SGWC-23 Wat 400-160240-9 EB-2(AP) Wat 400-160240-10 SGWC-21 Wat 400-160240-11 SGWC-7 Wat 400-160240-12 SGWC-8 Wat	er 10/05/18 10:15	10/06/18 08:31
400-160240-6 SGWA-24 Wat 400-160240-7 SGWC-22 Wat 400-160240-8 SGWC-23 Wat 400-160240-9 EB-2(AP) Wat 400-160240-10 SGWC-21 Wat 400-160240-11 SGWC-7 Wat 400-160240-12 SGWC-8 Wat	er 10/05/18 11:15	10/06/18 08:31
400-160240-7 SGWC-22 Wat 400-160240-8 SGWC-23 Wat 400-160240-9 EB-2(AP) Wat 400-160240-10 SGWC-21 Wat 400-160240-11 SGWC-7 Wat 400-160240-12 SGWC-8 Wat	er 10/05/18 09:45	10/06/18 08:31
400-160240-8 SGWC-23 Wat 400-160240-9 EB-2(AP) Wat 400-160240-10 SGWC-21 Wat 400-160240-11 SGWC-7 Wat 400-160240-12 SGWC-8 Wat	er 10/05/18 11:15	10/06/18 08:31
400-160240-9 EB-2(AP) Wat 400-160240-10 SGWC-21 Wat 400-160240-11 SGWC-7 Wat 400-160240-12 SGWC-8 Wat	er 10/08/18 14:20	10/10/18 08:58
400-160240-10 SGWC-21 Wat 400-160240-11 SGWC-7 Wat 400-160240-12 SGWC-8 Wat	er 10/08/18 15:50	10/10/18 08:58
400-160240-11 SGWC-7 Wat 400-160240-12 SGWC-8 Wat	er 10/08/18 16:30	10/10/18 08:58
400-160240-12 SGWC-8 Wat	er 10/08/18 12:05	10/10/18 08:58
	er 10/09/18 09:25	10/10/18 08:58
400-160240-13 SGWC-9 Wat	er 10/09/18 10:35	10/10/18 08:58
	er 10/09/18 10:20	10/10/18 08:58
400-160240-14 SGWC-10 Wat	er 10/09/18 09:10	10/10/18 08:58
400-160240-15 SGWC-19 Wat	er 10/09/18 08:50	10/10/18 08:58
400-160240-16 FD-3(AP) Wat	er 10/09/18 00:00	10/10/18 08:58
400-160240-17 FB-3(AP) Wat	er 10/09/18 08:45	10/10/18 08:58
400-160240-18 EB-3(AP) Wat	er 10/09/18 11:30	10/10/18 08:58
400-160240-19 SGWA-25 Wat	er 10/08/18 14:20	10/10/18 08:58
400-160240-20 SGWA-4 Wat	er 10/08/18 13:15	10/10/18 08:58
400-160240-21 SGWA-5 Wat	er 10/08/18 10:45	10/10/18 08:58
400-160240-22 SGWC-6 Wat	er 10/08/18 15:25	10/10/18 08:58
400-160240-23 SGWC-12 Wat	er 10/08/18 10:40	10/10/18 08:58
400-160240-24 FB-2(AP) Wat	er 10/08/18 10:15	10/10/18 08:58
400-160240-25 SGWC-13 Wat	er 10/08/18 12:25	10/10/18 08:58
400-160240-26 SGWC-14 Wat	er 10/08/18 13:30	10/10/18 08:58
400-160240-27 SGWC-16 Wat	er 10/08/18 14:40	10/10/18 08:58
400-160240-28 SGWC-17 Wat	er 10/08/18 10:30	10/10/18 08:58
400-160240-29 FD-1(AP) Wat		10/10/18 08:58
400-160240-30 FD-2(AP) Wat		
400-160240-31 SGWC-11 Wat	er 10/16/18 10:50	10/19/18 09:04
400-160240-32 SGWC-15 Wat	er 10/16/18 15:15	10/19/18 09:04
400-160240-45 SGWC-18 Wat	er 10/18/18 09:05	10/20/18 08:28
400-160240-46 SGWC-20 Wat		10/20/18 08:28

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWA-1

Method: 300.0 - Anions, Ion Chromatography

%Yield Qualifier

99.1

77.4

Limits

40 - 110

40 - 110

Lab Sample ID: 400-160240-1

Date Collected: 10/05/18 09:00 Date Received: 10/06/18 08:31

Carrier

Ba Carrier

Y Carrier

Matrix: Water

Analyte		Resul	t Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
Fluoride		<0.08	2 *	0.20	0.082	mg/L	-	_		10/15/18 23:39	1
Method: 6020 - N	/letals (ICP/N	IS) - Total R	ecoverabl	e							
Analyte	•		t Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
Antimony		<0.001	<u> </u>	0.0025	0.0010	mg/L			10/15/18 14:59	10/16/18 12:08	5
Arsenic		0.00064	4 J	0.0013	0.00046	mg/L	_		10/15/18 14:59	10/16/18 12:08	5
Barium		0.05	3	0.0025	0.00049	mg/L	_		10/15/18 14:59	10/16/18 12:08	5
Beryllium		< 0.0003	4	0.0025	0.00034	mg/L			10/15/18 14:59	10/16/18 12:08	5
Cadmium		< 0.0003	4	0.0025	0.00034	mg/L	_		10/15/18 14:59	10/16/18 12:08	5
Chromium		0.0014	4 J	0.0025	0.0011	mg/L	_		10/15/18 14:59	10/16/18 12:08	5
Cobalt		0.0007	5 J	0.0025	0.00040	mg/L	-		10/15/18 14:59	10/16/18 12:08	5
Lead		<0.0003	5	0.0013	0.00035	mg/L	_		10/15/18 14:59	10/16/18 12:08	5
Lithium		0.001	3 J	0.0050	0.0011	mg/L	_		10/15/18 14:59	10/16/18 12:08	5
Molybdenum		<0.0008	5	0.015	0.00085	mg/L			10/15/18 14:59	10/16/18 12:08	5
Selenium		0.0003	1 JB	0.0013	0.00024	mg/L	_		10/15/18 14:59	10/16/18 12:08	5
			-	0.00050	0.000085	ma/l	_		10/15/18 14:59	10/16/18 12:08	5
	Mercury (C)	<0.00008: /AA)	0	0.00050	0.000000	9/2			10/10/10 14:00	10, 10, 10 12,00	·
Thallium Method: 7470A - Analyte	Mercury (C)	/AA) Resul	t Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
Method: 7470A -	Mercury (C\	/AA)	t Qualifier			Unit		_ D			
Method: 7470A - Analyte		/AA) Resul	t Qualifier	RL 0.00020	MDL	Unit		_ D	Prepared	Analyzed	
Method: 7470A - Analyte Mercury		/AA) Resul	t Qualifier	RL	MDL	Unit		_ <u>D</u>	Prepared	Analyzed	
Method: 7470A - Analyte Mercury	Radium-226 (/AA) - Result	t Qualifier	RL 0.00020	MDL 0.000070	Unit mg/L	-	D	Prepared	Analyzed	Dil Fac
Method: 7470A - Analyte Mercury Method: 9315 - R Analyte	Radium-226 (/AA) Resul	Count Uncert. (2σ+/-)	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/L	- Unit	<u>D</u>	Prepared 10/16/18 09:44 Prepared	Analyzed 10/18/18 12:57	
Method: 7470A - Analyte Mercury Method: 9315 - R	Radium-226 (/AA) - Result	Count Uncert.	RL 0.00020 Total Uncert.	MDL 0.000070	Unit mg/L	-	_ <u>D</u>	Prepared 10/16/18 09:44	Analyzed 10/18/18 12:57	Dil Fac
Method: 7470A - Analyte Mercury Method: 9315 - R Analyte	Radium-226 (Result 0.203	/AA) - Result	Count Uncert. (2σ+/-)	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/L	- Unit	_ D	Prepared 10/16/18 09:44 Prepared	Analyzed 10/18/18 12:57	Dil Fac
Method: 7470A - Analyte Mercury Method: 9315 - R Analyte Radium-226	Radium-226 (Result 0.203	Resul <0.000076 GFPC) Qualifier	Count Uncert. (2σ+/-)	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/L	- Unit	D	Prepared 10/16/18 09:44 Prepared 10/10/18 11:51	Analyzed 10/18/18 12:57 Analyzed 11/01/18 05:56	Dil Fac Dil Fac Dil Fac
Method: 7470A - Analyte Mercury Method: 9315 - R Analyte Radium-226 Carrier Ba Carrier	Radium-226 (Result 0.203 %Yield 99.1	Resultive (Control of the Control of	Count Uncert. (2σ+/-) 0.0852	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/L	- Unit	_ <u>D</u>	Prepared 10/16/18 09:44 Prepared 10/10/18 11:51 Prepared	Analyzed 10/18/18 12:57 Analyzed 11/01/18 05:56 Analyzed	Dil Fac Dil Fac Dil Fac
Method: 7470A - Analyte Mercury Method: 9315 - R Analyte Radium-226 Carrier	Radium-226 (Result 0.203 %Yield 99.1	Resultive (Control of the Control of	Count Uncert. (2σ+/-) 0.0852	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/L	- Unit	D —	Prepared 10/16/18 09:44 Prepared 10/10/18 11:51 Prepared	Analyzed 10/18/18 12:57 Analyzed 11/01/18 05:56 Analyzed	Dil Fac Dil Fac Dil Fac
Method: 7470A - Analyte Mercury Method: 9315 - R Analyte Radium-226 Carrier Ba Carrier	Radium-226 (Result 0.203 %Yield 99.1	Resultive (Control of the Control of	Count Uncert. (2σ+/-) 0.0852 Limits 40 - 110	RL 0.00020 Total Uncert. (2σ+/-) 0.0871	MDL 0.000070	Unit mg/L	- Unit		Prepared 10/16/18 09:44 Prepared 10/10/18 11:51 Prepared	Analyzed 10/18/18 12:57 Analyzed 11/01/18 05:56 Analyzed	Dil Fac Dil Fac
Method: 7470A - Analyte Mercury Method: 9315 - R Analyte Radium-226 Carrier Ba Carrier	Radium-226 (Result 0.203 %Yield 99.1 Radium-228 (Resultive (Control of the Control of	Count Uncert. (2σ+/-) 0.0852 Limits 40 - 110 Count	RL 0.00020 Total Uncert. (2σ+/-) 0.0871	MDL 0.000070 RL 1.00 0.00	Unit mg/L	Unit pCi/L	<u>D</u>	Prepared 10/16/18 09:44 Prepared 10/10/18 11:51 Prepared	Analyzed 10/18/18 12:57 Analyzed 11/01/18 05:56 Analyzed	Dil Fac Dil Fac Dil Fac

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.522		0.239	0.241	5.00	0.344	pCi/L		11/26/18 15:23	1

TestAmerica Pensacola

Analyzed

<u>10/10/18 13:30</u> <u>10/25/18 09:44</u>

10/10/18 13:30 10/25/18 09:44

Dil Fac

Prepared

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: FB-1(AP)
Date Collected: 10/05/18 08:40

Method: 300.0 - Anions, Ion Chromatography

%Yield Qualifier

99.7

84.5

Limits

40 - 110

40 - 110

Lab Sample ID: 400-160240-2

Matrix: Water

Date Received: 10/06/18 08:31

Carrier

Ba Carrier

Y Carrier

Analyte		Resul	t Qualifier	RL	MDL	Unit	:	D	Prepared	Analyzed	Dil Fac
Fluoride		<0.082	*	0.20	0.082	mg/l	-			10/16/18 00:02	1
Method: 6020 - M	letals (ICP/N	IS) - Total R	ecoverabl	e							
Analyte	•		t Qualifier	RL	MDL	Unit	:	D	Prepared	Analyzed	Dil Fac
Antimony		<0.0010)	0.0025	0.0010	mg/l	_		10/15/18 14:59	10/16/18 12:58	5
Arsenic		<0.00046	6	0.0013	0.00046	mg/l	_		10/15/18 14:59	10/16/18 12:58	5
Barium		< 0.00049)	0.0025	0.00049	mg/l	_		10/15/18 14:59	10/16/18 12:58	5
Beryllium		< 0.00034	1	0.0025	0.00034	mg/l	_		10/15/18 14:59	10/16/18 12:58	5
Cadmium		< 0.00034	1	0.0025	0.00034	mg/l	_		10/15/18 14:59	10/16/18 12:58	5
Chromium		<0.001		0.0025	0.0011	mg/l	_		10/15/18 14:59	10/16/18 12:58	5
Cobalt		<0.00040)	0.0025	0.00040	mg/l			10/15/18 14:59	10/16/18 12:58	5
Lead		<0.00035	5	0.0013	0.00035	mg/l	_		10/15/18 14:59	10/16/18 12:58	5
Lithium		<0.001	[0.0050	0.0011	mg/l	_		10/15/18 14:59	10/16/18 12:58	5
Molybdenum		<0.00085	5	0.015	0.00085	mg/l	_		10/15/18 14:59	10/16/18 12:58	5
Selenium		< 0.00024	ļ	0.0013	0.00024	mg/l	_		10/15/18 14:59	10/16/18 12:58	5
				0.00050	0.000085	ma/l			10/15/19 14:50	10/16/18 12:58	5
Thallium Method: 7470A -	Mercury (C)	<0.000085 /AA)	5	0.00050	0.000065	mg/i	-		10/13/10 14.39	10/10/10 12:30	Ü
Method: 7470A - Analyte	Mercury (C\	/AA) Resul	t Qualifier	RL	MDL	Unit	:	_ D	Prepared	Analyzed	Dil Fac
Method: 7470A -	Mercury (C)	/AA)	t Qualifier			Unit	:	_ D			
Method: 7470A - Analyte Mercury		/AA) Resul	t Qualifier	RL	MDL	Unit	:	_ D	Prepared	Analyzed	
Method: 7470A - Analyte		/AA) Resul	t Qualifier	RL	MDL	Unit	:	_ <u>D</u>	Prepared	Analyzed	
Method: 7470A - Analyte Mercury		/AA) Resul	t Qualifier	RL 0.00020	MDL	Unit	:	_ <u>D</u>	Prepared	Analyzed	
Method: 7470A - Analyte Mercury	Radium-226 (/AA) Resul	Qualifier Count	RL 0.00020	MDL 0.000070	Unit mg/l	:	_ <u>D</u>	Prepared	Analyzed	
Method: 7470A - Analyte Mercury Method: 9315 - R	Radium-226 (/AA) Resul <0.000070 GFPC)	Qualifier Count Uncert.	RL 0.00020 Total Uncert.	MDL 0.000070	Unit mg/l	: -	_ <u>D</u>	Prepared 10/16/18 09:44	Analyzed 10/18/18 13:08	Dil Fac
Method: 7470A - Analyte Mercury Method: 9315 - R	Radium-226 (Result 0.157	/AA) Resul <0.000070 GFPC)	Count Uncert. (2σ+/-)	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/l	- Unit	_ <u>D</u>	Prepared 10/16/18 09:44 Prepared	Analyzed 10/18/18 13:08 Analyzed	Dil Fac
Method: 7470A - Analyte Mercury Method: 9315 - R Analyte Radium-226	Radium-226 (Result 0.157	/AA) Resul <pre></pre> <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Count Uncert. (2σ+/-)	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/l	- Unit	_ <u>D</u>	Prepared 10/16/18 09:44 Prepared 10/10/18 11:51 Prepared	Analyzed 10/18/18 13:08 Analyzed 11/01/18 05:57	Dil Fac
Method: 7470A - Analyte Mercury Method: 9315 - R Analyte Radium-226 Carrier Ba Carrier	Result 0.157	/AA) Resul <0.000070 GFPC) Qualifier Qualifier	Count Uncert. (2σ+/-) 0.0794 Limits	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/l	- Unit	_ D_	Prepared 10/16/18 09:44 Prepared 10/10/18 11:51 Prepared	Analyzed 10/18/18 13:08 Analyzed 11/01/18 05:57 Analyzed	Dil Fac Dil Fac Dil Fac
Method: 7470A - Analyte Mercury Method: 9315 - R Analyte Radium-226 Carrier	Result 0.157	/AA) Resul <0.000070 GFPC) Qualifier Qualifier	Count Uncert. (2σ+/-) 0.0794 Limits 40 - 110	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/l	- Unit	_ D	Prepared 10/16/18 09:44 Prepared 10/10/18 11:51 Prepared	Analyzed 10/18/18 13:08 Analyzed 11/01/18 05:57 Analyzed	Dil Fac Dil Fac Dil Fac
Method: 7470A - Analyte Mercury Method: 9315 - R Analyte Radium-226 Carrier Ba Carrier	Result 0.157	/AA) Resul <0.000070 GFPC) Qualifier Qualifier	Count Uncert. (2σ+/-) 0.0794 Limits 40 - 110 Count	RL 0.00020 Total Uncert. (2σ+/-) 0.0807	MDL 0.000070	Unit mg/l	- Unit	_ D_	Prepared 10/16/18 09:44 Prepared 10/10/18 11:51 Prepared	Analyzed 10/18/18 13:08 Analyzed 11/01/18 05:57 Analyzed	Dil Fac Dil Fac Dil Fac
Method: 7470A - Analyte Mercury Method: 9315 - R Analyte Radium-226 Carrier Ba Carrier	Result 0.157 **Yield 99.7 Radium-228 (/AA) Resul <0.000070 GFPC) Qualifier Qualifier	Count Uncert. (2σ+/-) 0.0794 Limits 40 - 110	RL 0.00020 Total Uncert. (2σ+/-) 0.0807	MDL 0.000070 RL 1.00 0.000070	Unit mg/l	Unit pCi/L	_ D	Prepared 10/16/18 09:44 Prepared 10/10/18 11:51 Prepared	Analyzed 10/18/18 13:08 Analyzed 11/01/18 05:57 Analyzed	Dil Fac Dil Fac Dil Fac

Method: Ra226_Ra	228 - Con	nbined Ra	dium-226 a	nd Radiun	1-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.822		0.271	0.278	5.00	0.362	pCi/L		11/26/18 15:23	1

TestAmerica Pensacola

Analyzed

Dil Fac

Prepared

<u>10/10/18 13:30</u> <u>10/25/18 09:44</u>

10/10/18 13:30 10/25/18 09:44

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWA-2

Method: 300.0 - Anions, Ion Chromatography

%Yield Qualifier

98.5

83.0

Limits

40 - 110

40 - 110

Carrier

Ba Carrier

Y Carrier

Lab Sample ID: 400-160240-3

Matrix: Water

Date Collected: 10/05/18 10:15 Date Received: 10/06/18 08:31

Analyte	, , , , , , ,	Result	Qualifier	RL	MDL	Unit	t	D	Prepared	Analyzed	Dil Fac
Fluoride		<0.082	*	0.20	0.082	mg/	L			10/16/18 00:25	1
- Mothodi 6020 - I	Motolo (ICD/N	IS) Total Ba	oovoroble	•							
Method: 6020 - N Analyte	vietais (ICP/IV		Qualifier	RL	MDL	Unit	t	D	Prepared	Analyzed	Dil Fac
Antimony		<0.0010		0.0025	0.0010				10/15/18 14:59	10/16/18 13:02	5
Arsenic		<0.00046		0.0013	0.00046	_			10/15/18 14:59	10/16/18 13:02	5
Barium		0.036		0.0025	0.00049	-			10/15/18 14:59	10/16/18 13:02	5
Beryllium		<0.00034		0.0025	0.00034	mg/	L		10/15/18 14:59	10/16/18 13:02	5
Cadmium		< 0.00034		0.0025	0.00034	_			10/15/18 14:59	10/16/18 13:02	5
Chromium		0.016		0.0025	0.0011	_			10/15/18 14:59	10/16/18 13:02	5
Cobalt		<0.00040		0.0025	0.00040	mg/	<u>L</u>		10/15/18 14:59	10/16/18 13:02	5
Lead		< 0.00035		0.0013	0.00035	mg/	L		10/15/18 14:59	10/16/18 13:02	5
Lithium		< 0.0011		0.0050	0.0011	mg/	L		10/15/18 14:59	10/16/18 13:02	5
Molybdenum		<0.00085		0.015	0.00085	mg/	<u>L</u>		10/15/18 14:59	10/16/18 13:02	5
Selenium		0.00028	JB	0.0013	0.00024	mg/	L		10/15/18 14:59	10/16/18 13:02	5
Thallium		<0.000085		0.00050	0.000085	mg/	L		10/15/18 14:59	10/16/18 13:02	5
Method: 7470A - Analyte	· Mercury (C	Result	Qualifier	RL	MDL			D	Prepared	Analyzed	Dil Fac
Mercury		<0.000070		0.00020	0.000070	mg/	L		10/16/18 09:44	10/18/18 13:10	1
_ Mothod: 021E E	Padium 226 ((CERC)									
Method: 9315 - F	\auiuiii-220 (GFFC)	Count	Total							
			Uncert.	Uncert.							
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC	Unit		Prepared	Analyzed	Dil Fac
Radium-226	0.190		0.0857	0.0873			pCi/L		10/10/18 11:51	11/01/18 05:57	1
Carrier		•	Limits						Prepared	Analyzed	Dil Fac
Ba Carrier	98.5		40 - 110						10/10/18 11:51	11/01/18 05:57	1
- Method: 9320 - F	Radium_228	(GEPC)									
		,	Count	Total							
			Uncert.	Uncert.							
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC	Unit		Prepared	Analyzed	Dil Fac
Radium-228	0.285	<u>U</u>	0.236	0.238	1.00	.376	pCi/L		10/10/18 13:30	10/25/18 09:44	1

Method: Ra226_Ra	1228 - Con	nbined Ra	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.474		0.251	0.254	5.00	0.376	pCi/L		11/26/18 15:23	1
226 + 228										

TestAmerica Pensacola

Analyzed

Dil Fac

Prepared

<u>10/10/18 13:30</u> <u>10/25/18 09:44</u> 10/10/18 13:30 10/25/18 09:44

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: EB-1(AP)
Date Collected: 10/05/18 11:15

Lab Sample ID: 400-160240-4 Matrix: Water

Date Received: 10/06/18 08:31

Method: 300.0 - Anions, Ion Cl	hromatography	/					
Analyte	Result Qua	alifier RL	MDL (Unit D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082 *	0.20	0.082 n	mg/L		10/16/18 00:48	1

Fluoride	<0.082 *	0.20	0.082	mg/L			10/16/18 00:48	1
- Method: 6020 - Metal	s (ICP/MS) - Total Recove	rable						
Analyte	Result Quali	fier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010	0.0025	0.0010	mg/L		10/15/18 14:59	10/16/18 13:07	5
Arsenic	0.00064 J	0.0013	0.00046	mg/L		10/15/18 14:59	10/16/18 13:07	5
Barium	<0.00049	0.0025	0.00049	mg/L		10/15/18 14:59	10/16/18 13:07	5
Beryllium	<0.00034	0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 13:07	5
Cadmium	<0.00034	0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 13:07	5
Chromium	<0.0011	0.0025	0.0011	mg/L		10/15/18 14:59	10/16/18 13:07	5
Cobalt	<0.00040	0.0025	0.00040	mg/L		10/15/18 14:59	10/16/18 13:07	5
Lead	<0.00035	0.0013	0.00035	mg/L		10/15/18 14:59	10/16/18 13:07	5
Lithium	<0.0011	0.0050	0.0011	mg/L		10/15/18 14:59	10/16/18 13:07	5
Molybdenum	<0.00085	0.015	0.00085	mg/L		10/15/18 14:59	10/16/18 13:07	5
Selenium	<0.00024	0.0013	0.00024	mg/L		10/15/18 14:59	10/16/18 13:07	5
Thallium	<0.00085	0.00050	0.000085	mg/L		10/15/18 14:59	10/16/18 13:07	5
_ Method: 7470A - Mer	cury (CVAA)							
∆nalyte	Result Qualit	fier RI	MDI	Unit	ח	Prepared	Analyzed	Dil Fac

Method: /4/UA - Mercury (CVA	NA)							
Analyte	Result	Qualifier	RL	MDL	Unit	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L	10/16/18 09:44	10/18/18 13:12	1

Method: 9315 - R	adium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.209		0.0891	0.0911	1.00	0.100	pCi/L	10/10/18 11:51	11/01/18 05:57	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					10/10/18 11:51	11/01/18 05:57	1

Method: 9320 - I	Radium-228 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.129	U	0.248	0.248	1.00	0.421	pCi/L	10/10/18 13:30	10/25/18 09:45	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					10/10/18 13:30	10/25/18 09:45	1
Y Carrier	77.4		40 - 110					10/10/18 13:30	10/25/18 09:45	1

Method: Ra226_Ra2	228 - Con	nbined Rad	dium-226 a	nd Radiun	n- 228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.339	Ū	0.264	0.264	5.00	0.421	pCi/L		11/26/18 15:23	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWA-3

Method: 300.0 - Anions, Ion Chromatography

%Yield Qualifier

Result Qualifier

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

96.5

78.9

0.500

Limits

40 - 110

40 - 110

Count Uncert.

 $(2\sigma + / -)$

0.280

Lab Sample ID: 400-160240-5

Date Collected: 10/05/18 09:45 Date Received: 10/06/18 08:31

Carrier

Ba Carrier

Y Carrier

Analyte

226 + 228

Combined Radium

Matrix: Water

			Qualifier	RL		Unit		D	Prepared	Analyzed	Dil Fac
Fluoride		<0.082	*	0.20	0.082	mg/L				10/16/18 01:10	
Method: 6020 - N	Metals (ICP/N	IS) - Total Re	ecoverabl	e							
Analyte	•	•	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fa
Antimony		<0.0010		0.0025	0.0010	mg/L		_	10/15/18 14:59	10/16/18 13:11	
Arsenic		0.00096	J	0.0013	0.00046	mg/L			10/15/18 14:59	10/16/18 13:11	
Barium		0.035		0.0025	0.00049	mg/L			10/15/18 14:59	10/16/18 13:11	
Beryllium		<0.00034		0.0025	0.00034	mg/L			10/15/18 14:59	10/16/18 13:11	
Cadmium		< 0.00034		0.0025	0.00034	mg/L			10/15/18 14:59	10/16/18 13:11	
Chromium		0.015		0.0025	0.0011	mg/L			10/15/18 14:59	10/16/18 13:11	
Cobalt		<0.00040		0.0025	0.00040	mg/L			10/15/18 14:59	10/16/18 13:11	
Lead		< 0.00035		0.0013	0.00035	mg/L			10/15/18 14:59	10/16/18 13:11	
Lithium		< 0.0011		0.0050	0.0011	mg/L	<u>.</u>		10/15/18 14:59	10/16/18 13:11	
Molybdenum		<0.00085		0.015	0.00085	mg/L			10/15/18 14:59	10/16/18 13:11	
Selenium		0.00024	JB	0.0013	0.00024	mg/L			10/15/18 14:59	10/16/18 13:11	
Thallium		<0.000085		0.00050	0.000085	mg/L			10/15/18 14:59	10/16/18 13:11	
	Mercury (C)							_	_		
	Mercury (C)		Qualifier	RL	MDL			D	Prepared	Analyzed	Dil Fa
Analyte	Mercury (C)		Qualifier	RL 0.00020	MDL 0.000070			D	Prepared 10/16/18 09:44	Analyzed 10/18/18 13:13	Dil Fa
Analyte Mercury		Result < 0.000070	Qualifier					<u>D</u>		•	Dil Fa
Analyte Mercury		Result < 0.000070	Qualifier Count					D		•	Dil Fa
Analyte Mercury		Result < 0.000070		0.00020				<u>D</u>		•	Dil Fa
Analyte Mercury Method: 9315 - F	Radium-226 (Result < 0.000070	Count	0.00020	0.000070		-	<u>D</u>		•	
Analyte Mercury Method: 9315 - F Analyte	Radium-226 (Result <0.000070	Count Uncert.	0.00020 Total Uncert.	0.000070	mg/L	Unit	<u>D</u>	10/16/18 09:44	10/18/18 13:13	Dil Fa
Analyte Mercury Method: 9315 - F	Radium-226 (Result 0.211	Result <0.000070 GFPC) Qualifier	Count Uncert. (2σ+/-)	0.00020 Total Uncert. (2σ+/-)	0.000070	mg/L	Unit	<u>D</u>	10/16/18 09:44 Prepared	10/18/18 13:13 Analyzed	Dil Fa
Method: 7470A - Analyte	Mercury (C)		Qualifier	RL	MDL	Unit		D	Prepared		Analyzed
d: 9315 - F	Radium-226 (Result <0.000070	Count Uncert. (2σ+/-)	0.00020 Total Uncert. (2σ+/-)	0.000070	mg/L	Unit	D	10/16/18 09:44 Prepared	10/18/18 13:13 Analyzed	Dil Fa
Analyte Mercury Method: 9315 - F Analyte Radium-226	Radium-226 (Result 0.211	Result <0.000070 GFPC) Qualifier	Count Uncert. (2σ+/-) 0.0894	0.00020 Total Uncert. (2σ+/-)	0.000070	mg/L	Unit	<u>D</u>	Prepared 10/10/18 11:51	10/18/18 13:13 Analyzed 11/01/18 05:57	Dil Fa
Analyte Mercury Method: 9315 - F Analyte Radium-226	Radium-226 (Result 0.211	Result <0.000070	Count Uncert. (2σ+/-) 0.0894	0.00020 Total Uncert. (2σ+/-)	0.000070	mg/L	Unit	D	Prepared 10/10/18 11:51	10/18/18 13:13 Analyzed 11/01/18 05:57	Dil Fa
Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier Ba Carrier	Radium-226 (Result 0.211 %Yield 96.5	Result <0.000070 GFPC) Qualifier Qualifier	Count Uncert. (2σ+/-) 0.0894 Limits	0.00020 Total Uncert. (2σ+/-)	0.000070	mg/L	Unit	<u>D</u>	Prepared 10/10/18 11:51 Prepared	10/18/18 13:13 Analyzed 11/01/18 05:57 Analyzed	Dil Fa
Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier	Radium-226 (Result 0.211 %Yield 96.5	Result <0.000070 GFPC) Qualifier Qualifier	Count Uncert. (2σ+/-) 0.0894 Limits 40 - 110	0.00020 Total Uncert. (2σ+/-) 0.0914	0.000070	mg/L	Unit	<u>D</u>	Prepared 10/10/18 11:51 Prepared	10/18/18 13:13 Analyzed 11/01/18 05:57 Analyzed	Dil Fa
Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier Ba Carrier	Radium-226 (Result 0.211 %Yield 96.5	Result <0.000070 GFPC) Qualifier Qualifier	Count Uncert. (2σ+/-) 0.0894 Limits 40 - 110 Count	0.00020 Total Uncert. (2σ+/-) 0.0914 Total	0.000070	mg/L	Unit	<u>D</u>	Prepared 10/10/18 11:51 Prepared	10/18/18 13:13 Analyzed 11/01/18 05:57 Analyzed	Dil Fa
Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier Ba Carrier Method: 9320 - F	Radium-226 (Result 0.211 %Yield 96.5 Radium-228 (Result <0.000070 GFPC) Qualifier Qualifier GFPC)	Count Uncert. (20+/-) 0.0894 Limits 40 - 110 Count Uncert.	0.00020 Total Uncert. (2σ+/-) 0.0914 Total Uncert.	RL 1.00 0.00	mg/L MDC 0914	Unit pCi/L	<u>D</u>	Prepared 10/10/18 11:51 Prepared 10/10/18 11:51	Analyzed 11/01/18 05:57 Analyzed 11/01/18 05:57	Dil Fa
Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier Ba Carrier	Radium-226 (Result 0.211 %Yield 96.5 Radium-228 (Result <0.000070 GFPC) Qualifier Qualifier GFPC) Qualifier	Count Uncert. (2σ+/-) 0.0894 Limits 40 - 110 Count	0.00020 Total Uncert. (2σ+/-) 0.0914 Total	RL 1.00 0.0	mg/L	Unit PCi/L	<u>D</u>	Prepared 10/10/18 11:51 Prepared	10/18/18 13:13 Analyzed 11/01/18 05:57 Analyzed	Dil Fa

Analyzed

Analyzed

11/26/18 15:23

<u>10/10/18 13:30</u> <u>10/25/18 09:45</u>

10/10/18 13:30 10/25/18 09:45

Dil Fac

Dil Fac

Prepared

Prepared

Total

Uncert.

 $(2\sigma + / -)$

0.281

RL

5.00

MDC Unit

0.427 pCi/L

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWA-24

Lab Sample ID: 400-160240-6

Date Collected: 10/05/18 11:15 Date Received: 10/06/18 08:31

Matrix: Water

Analyte			Qualifier	RL	MDL	Unit	:	D	Prepared	Analyzed	Dil Fa
Fluoride		<0.082	*	0.20	0.082	mg/l	-	_		10/16/18 02:19	
Method: 6020 - N	Metals (ICP/N	IS) - Total Re	coverab	le							
Analyte	•	Result	Qualifier	RL	MDL	Unit	:	D	Prepared	Analyzed	Dil Fa
Antimony		<0.0010		0.0025	0.0010	mg/l	_	_	10/15/18 14:59	10/16/18 13:16	
Arsenic		<0.00046		0.0013	0.00046	mg/l	_		10/15/18 14:59	10/16/18 13:16	
Barium		0.024		0.0025	0.00049	mg/l	_		10/15/18 14:59	10/16/18 13:16	
Beryllium		<0.00034		0.0025	0.00034	mg/l	_		10/15/18 14:59	10/16/18 13:16	
Cadmium		< 0.00034		0.0025	0.00034	mg/l	_		10/15/18 14:59	10/16/18 13:16	
Chromium		0.0058		0.0025	0.0011	mg/l	_		10/15/18 14:59	10/16/18 13:16	
Cobalt		0.00058	J	0.0025	0.00040	mg/l			10/15/18 14:59	10/16/18 13:16	
Lead		< 0.00035		0.0013	0.00035	mg/l	_		10/15/18 14:59	10/16/18 13:16	
Lithium		0.0012	J	0.0050	0.0011	mg/l	_		10/15/18 14:59	10/16/18 13:16	
Molybdenum		<0.00085		0.015	0.00085	mg/l	_		10/15/18 14:59	10/16/18 13:16	
Selenium		< 0.00024		0.0013	0.00024	mg/l	_		10/15/18 14:59	10/16/18 13:16	
					0.00000				40/45/40 44:50	40/40/40 40:40	
	· Mercury (C)	<0.000085		0.00050	0.000085	mg/L	_		10/15/18 14:59	10/16/18 13:16	
Method: 7470A - Analyte	- Mercury (C\	/AA) Result	Qualifier	RL	MDL	Unit	:	D	Prepared	Analyzed	Dil F
Method: 7470A - Analyte	- Mercury (C\	/AA)	Qualifier			Unit	:	_ <u>D</u>			Dil F
Method: 7470A - Analyte Mercury		/AA) Result <0.000070	Qualifier	RL	MDL	Unit	:	_ D	Prepared	Analyzed	Dil F
Method: 7470A - Analyte Mercury		/AA) Result <0.000070	Qualifier Count	RL	MDL	Unit	:	_ D	Prepared	Analyzed	Dil F
Method: 7470A - Analyte Mercury		/AA) - Result - <0.000070		RL 0.00020	MDL	Unit	:	- <u>D</u>	Prepared	Analyzed	Dil F
Method: 7470A - Analyte Mercury Method: 9315 - F	Radium-226 (/AA) - Result - <0.000070	Count Uncert. (2σ+/-)	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/l	Unit	_ <u>D</u>	Prepared 10/16/18 09:44 Prepared	Analyzed 10/18/18 13:15 Analyzed	
Method: 7470A - Analyte Mercury Method: 9315 - F	Radium-226 (/AA) - Result - <0.000070 GFPC)	Count Uncert.	RL 0.00020 Total Uncert.	MDL 0.000070	Unit mg/l	: -	_ D	Prepared 10/16/18 09:44	Analyzed 10/18/18 13:15	
Method: 7470A - Analyte Mercury Method: 9315 - F Analyte Radium-226	Radium-226 (Result 0.133 %Yield	/AA) - Result - <0.000070 GFPC)	Count Uncert. (2σ+/-)	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/l	Unit	_ <u>D</u>	Prepared 10/16/18 09:44 Prepared 10/10/18 11:51 Prepared	Analyzed 10/18/18 13:15 Analyzed	Dil F
Method: 7470A - Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier	Radium-226 (Result 0.133	/AA) Result <	Count Uncert. (2σ+/-)	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/l	Unit	_ D	Prepared 10/16/18 09:44 Prepared 10/10/18 11:51	Analyzed 10/18/18 13:15 Analyzed 11/01/18 05:57	Dil F
Method: 7470A - Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier Ba Carrier	Radium-226 (Result 0.133 %Yield 97.6	/AA) Result <0.000070 GFPC) Qualifier Qualifier	Count Uncert. (2σ+/-) 0.0727	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/l	Unit	_ D	Prepared 10/16/18 09:44 Prepared 10/10/18 11:51 Prepared	Analyzed 10/18/18 13:15 Analyzed 11/01/18 05:57 Analyzed	Dil F
Method: 7470A - Analyte Method: 9315 - F Analyte Radium-226 Carrier Ba Carrier	Radium-226 (Result 0.133 %Yield 97.6	/AA) Result <0.000070 GFPC) Qualifier Qualifier	Count Uncert. (2σ+/-) 0.0727	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/l	Unit	D	Prepared 10/16/18 09:44 Prepared 10/10/18 11:51 Prepared	Analyzed 10/18/18 13:15 Analyzed 11/01/18 05:57 Analyzed	Dil F
Method: 7470A - Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier Ba Carrier	Radium-226 (Result 0.133 %Yield 97.6	/AA) Result <0.000070 GFPC) Qualifier Qualifier GFPC)	Count Uncert. (2σ+/-) 0.0727 Limits 40 - 110	RL 0.00020 Total Uncert. (2σ+/-) 0.0737	MDL 0.000070	Unit mg/l	- Unit	_ <u>D</u>	Prepared 10/16/18 09:44 Prepared 10/10/18 11:51 Prepared	Analyzed 10/18/18 13:15 Analyzed 11/01/18 05:57 Analyzed	Dil F
Method: 7470A - Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier Ba Carrier Method: 9320 - F	Radium-226 (Result 0.133 %Yield 97.6 Radium-228 (/AA) Result <0.000070 GFPC) Qualifier Qualifier GFPC)	Count Uncert. (20+/-) 0.0727 Limits 40 - 110 Count	RL 0.00020 Total Uncert. (2σ+/-) 0.0737	MDL 0.000070 RL 1.00 0.00	Unit mg/l MDC 0847	- Unit		Prepared 10/16/18 09:44 Prepared 10/10/18 11:51 Prepared	Analyzed 10/18/18 13:15 Analyzed 11/01/18 05:57 Analyzed	Dil F

Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
		Uncert.	Uncert.					
_		Count	Total					
Method: Ra226 R	Ra228 - Combined Rad	lium-226 a	nd Radium-	-228				
Y Carrier	82.2	40 - 110				10/10/18 13:30	10/25/18 09:45	1
Ba Carrier	97.6	40 - 110				10/10/18 13:30		1

5.00

0.363 pCi/L

0.257

Limits

0.254

226 + 228

Combined Radium

Carrier

0.568

%Yield Qualifier

Analyzed

11/26/18 15:23

Dil Fac

Prepared

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-22 Date Collected: 10/08/18 14:20

Method: 300.0 - Anions, Ion Chromatography

0.276 U

105

86.4

%Yield Qualifier

Lab Sample ID: 400-160240-7

Matrix: Water

Date Received: 10/10/18 08:58

Radium-228

Carrier

Ba Carrier

Y Carrier

226 + 228

Analyte			Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Fluoride		<0.082	*	0.20	0.082	mg/L			10/16/18 02:42	1
Method: 6020 -	Metals (ICP/N	IS) - Total Re	ecoverab	le						
Analyte	(1011)		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony		<0.0010		0.0025	0.0010	mg/L		10/15/18 14:59	10/16/18 13:20	
Arsenic		0.0015		0.0013	0.00046	mg/L		10/15/18 14:59	10/16/18 13:20	
Barium		0.084		0.0025	0.00049	mg/L		10/15/18 14:59	10/16/18 13:20	:
Beryllium		<0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 13:20	
Cadmium		<0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 13:20	
Chromium		0.0012	J	0.0025	0.0011	mg/L		10/15/18 14:59	10/16/18 13:20	
Cobalt		0.0021	J	0.0025	0.00040	mg/L		10/15/18 14:59	10/16/18 13:20	
Lead		<0.00035		0.0013	0.00035	mg/L		10/15/18 14:59	10/16/18 13:20	
Lithium		0.0011	J	0.0050	0.0011	mg/L		10/15/18 14:59	10/16/18 13:20	
Molybdenum		<0.00085		0.015	0.00085	mg/L		10/15/18 14:59	10/16/18 13:20	
Selenium		<0.00024		0.0013	0.00024	mg/L		10/15/18 14:59	10/16/18 13:20	
Thallium		<0.000085		0.00050	0.000085	mg/L		10/15/18 14:59	10/16/18 13:20	!
- - 										
Method: 7470A	- Mercury (C	•					_			
Analyte			Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury		<0.000070		0.00020	0.000070	mg/L		10/16/18 10:16	10/17/18 14:43	
Method: 9315 - I	Padium-226 /	(GEPC)								
Method: 5515 -	rtadiam-220 ((3113)	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC Uni	it	Prepared	Analyzed	Dil Fa
Radium-226	0.223		0.102	0.104	1.00	.117 pCi	/L	10/12/18 11:33	11/05/18 10:16	-
								Prepared	Analyzed	D:/ C-
Carrier		Qualifier	Limits					•	•	Dil Fac
		Qualifier	Limits 40 - 110					•	11/05/18 10:16	
Ba Carrier	105							•	•	
	105		40 - 110	Total				•	•	
Ba Carrier	105		40 - 110	Total				•	•	DII Fac
Ba Carrier	105 Radium-228 (40 - 110	Total Uncert. (2σ+/-)	RL I	MDC Uni		•	•	

Method: Ra226_Ra	228 - Con	nbined Ra	dium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.499		0.244	0.246	5.00	0.352	pCi/L		11/26/18 15:23	1

0.223

1.00

0.352 pCi/L

0.222

Limits

40 - 110

40 - 110

TestAmerica Pensacola

10/12/18 12:42 10/31/18 17:01

10/12/18 12:42 10/31/18 17:01

10/12/18 12:42 10/31/18 17:01

Analyzed

Dil Fac

Prepared

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-23

Method: 300.0 - Anions, Ion Chromatography

%Yield Qualifier

99.4

87.1

Limits

40 - 110

40 - 110

Lab Sample ID: 400-160240-8

Matrix: Water

Date Collected: 10/08/18 15:50 Date Received: 10/10/18 08:58

			Qualifier	RL		Unit		D	Prepared	Analyzed	Dil Fa
Fluoride		<0.082	*	0.20	0.082	mg/L				10/16/18 03:05	
Method: 6020 - N	Metals (ICP/N	/IS) - Total Re	coverabl	e							
Analyte	•		Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fa
Antimony		<0.0010		0.0025	0.0010	mg/L		_	10/15/18 14:59	10/16/18 13:24	
Arsenic		0.0019		0.0013	0.00046	mg/L			10/15/18 14:59	10/16/18 13:24	
Barium		0.077		0.0025	0.00049	mg/L			10/15/18 14:59	10/16/18 13:24	
Beryllium		<0.00034		0.0025	0.00034	mg/L			10/15/18 14:59	10/16/18 13:24	
Cadmium		< 0.00034		0.0025	0.00034	mg/L			10/15/18 14:59	10/16/18 13:24	
Chromium		0.0017	J	0.0025	0.0011	mg/L			10/15/18 14:59	10/16/18 13:24	
Cobalt		<0.00040		0.0025	0.00040	mg/L			10/15/18 14:59	10/16/18 13:24	
Lead		< 0.00035		0.0013	0.00035	mg/L			10/15/18 14:59	10/16/18 13:24	
Lithium		0.0035	J	0.0050	0.0011	mg/L			10/15/18 14:59	10/16/18 13:24	
Molybdenum		<0.00085		0.015	0.00085	mg/L			10/15/18 14:59	10/16/18 13:24	
Selenium		0.00026	JB	0.0013	0.00024	mg/L			10/15/18 14:59	10/16/18 13:24	
Thallium		<0.000085		0.00050	0.000085	ma/L			10/15/18 14:59	10/16/18 13:24	
: Method: 7470A -	- Mercury (C\	VAA)				Ü					
Method: 7470A - Analyte	- Mercury (C\	VAA) Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fa
: Method: 7470A -	- Mercury (C)	VAA)	Qualifier			Unit		D			Dil Fa
Method: 7470A - Analyte Mercury		VAA) Result <0.000070	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fa
Method: 7470A - Analyte		VAA) Result <0.000070	Qualifier Count	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fa
Method: 7470A - Analyte Mercury		VAA) Result <	·	RL 0.00020	MDL	Unit		<u>D</u>	Prepared	Analyzed	Dil Fa
Method: 7470A - Analyte Mercury	Radium-226 (VAA) Result <	Count	RL 0.00020	MDL 0.000070	Unit		D —	Prepared	Analyzed	Dil Fa
Method: 7470A - Analyte Mercury Method: 9315 - F	Radium-226 (VAA) Result <	Count Uncert.	RL 0.00020 Total Uncert.	MDL 0.000070	Unit mg/L		<u>D</u>	Prepared 10/16/18 10:16	Analyzed 10/17/18 15:00	
Method: 7470A - Analyte Mercury Method: 9315 - F	Radium-226 (Result 0.276	VAA) Result <	Count Uncert. (2σ+/-)	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/L		<u>D</u> _	Prepared 10/16/18 10:16	Analyzed 10/17/18 15:00 Analyzed	
Method: 7470A - Analyte Mercury Method: 9315 - F Analyte Radium-226	Radium-226 (Result 0.276	VAA) Result <	Count Uncert. (2σ+/-) 0.109	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/L		<u>D</u> _	Prepared 10/16/18 10:16 Prepared 10/12/18 11:33 Prepared	Analyzed Analyzed Analyzed 11/05/18 10:16	Dil Fa
Method: 7470A - Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier Ba Carrier	Radium-226 (Result 0.276 %Yield 99.4	Result <0.000070 (GFPC) Qualifier Qualifier	Count Uncert. (2σ+/-) 0.109	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/L		D	Prepared 10/16/18 10:16 Prepared 10/12/18 11:33 Prepared	Analyzed Analyzed 10/17/18 15:00 Analyzed 11/05/18 10:16 Analyzed	Dil F
Method: 7470A - Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier	Radium-226 (Result 0.276 %Yield 99.4	Result <0.000070 (GFPC) Qualifier Qualifier	Count Uncert. (2σ+/-) 0.109 Limits 40 - 110	RL 0.00020 Total Uncert. (2σ+/-) 0.112	MDL 0.000070	Unit mg/L		<u>D</u> _	Prepared 10/16/18 10:16 Prepared 10/12/18 11:33 Prepared	Analyzed Analyzed 10/17/18 15:00 Analyzed 11/05/18 10:16 Analyzed	Dil Fa
Method: 7470A - Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier Ba Carrier	Radium-226 (Result 0.276 %Yield 99.4	Result <0.000070 (GFPC) Qualifier Qualifier (GFPC)	Count Uncert. (2σ+/-) 0.109 Limits 40 - 110 Count	RL 0.00020 Total Uncert. (2σ+/-) 0.112 Total	MDL 0.000070	Unit mg/L		<u>D</u>	Prepared 10/16/18 10:16 Prepared 10/12/18 11:33 Prepared	Analyzed Analyzed 10/17/18 15:00 Analyzed 11/05/18 10:16 Analyzed	Dil Fa
Method: 7470A - Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier Ba Carrier Method: 9320 - F	Radium-226 (Result 0.276 %Yield 99.4 Radium-228 ((GFPC) Qualifier Qualifier Qualifier	Count Uncert. (2σ+/-) 0.109 Limits 40 - 110 Count Uncert.	RL 0.00020 Total Uncert. (2σ+/-) 0.112 Total Uncert.	MDL 0.000070 RL 1.00 0	Unit mg/L	Unit pCi/L	D —	Prepared 10/16/18 10:16 Prepared 10/12/18 11:33 Prepared 10/12/18 11:33	Analyzed 10/17/18 15:00 Analyzed 11/05/18 10:16 Analyzed 11/05/18 10:16	Dil Fa
Method: 7470A - Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier Ba Carrier	Radium-226 (Result 0.276 %Yield 99.4 Radium-228 (VAA) Result <0.000070 (GFPC) Qualifier Qualifier (GFPC) Qualifier	Count Uncert. (2σ+/-) 0.109 Limits 40 - 110 Count	RL 0.00020 Total Uncert. (2σ+/-) 0.112 Total	MDL 0.000070 RL I 1.00 0	Unit mg/L	Unit pCi/L	D	Prepared 10/16/18 10:16 Prepared 10/12/18 11:33 Prepared	Analyzed Analyzed 10/17/18 15:00 Analyzed 11/05/18 10:16 Analyzed	Dil Fa

Method: Ra226_Ra	Method: Ra226_Ra228 - Combined Radium-226 and Radium-228											
			Count	Total								
			Uncert.	Uncert.								
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	P	repared	Analyzed	Dil Fac	
Combined Radium	0.437		0.219	0.221	5.00	0.314	pCi/L			11/26/18 15:23	1	

226 + 228

Carrier

Ba Carrier

Y Carrier

Analyzed

Dil Fac

Prepared

10/12/18 12:42 10/31/18 17:01 10/12/18 12:42 10/31/18 17:01

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: EB-2(AP)

Date Collected: 10/08/18 16:30 Date Received: 10/10/18 08:58 Lab Sample ID: 400-160240-9

. Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082	*	0.20	0.082	mg/L			10/16/18 04:13	1
Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		10/15/18 14:59	10/16/18 13:29	5
Arsenic	0.0016		0.0013	0.00046	mg/L		10/15/18 14:59	10/16/18 13:29	5
Barium	<0.00049		0.0025	0.00049	mg/L		10/15/18 14:59	10/16/18 13:29	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 13:29	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 13:29	5
Chromium	<0.0011		0.0025	0.0011	mg/L		10/15/18 14:59	10/16/18 13:29	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		10/15/18 14:59	10/16/18 13:29	5
Lead	< 0.00035		0.0013	0.00035	mg/L		10/15/18 14:59	10/16/18 13:29	5
Lithium	<0.0011		0.0050	0.0011	mg/L		10/15/18 14:59	10/16/18 13:29	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		10/15/18 14:59	10/16/18 13:29	5
Selenium	<0.00024		0.0013	0.00024	mg/L		10/15/18 14:59	10/16/18 13:29	5
Thallium	<0.000085		0.00050	0.000085	mg/L		10/15/18 14:59	10/16/18 13:29	5
•									
Method: 7470A - Mer									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		10/16/18 10:16	10/17/18 15:02	1

Method: 9315 - R	Radium-226 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.160		0.0985	0.0996	1.00	0.125	pCi/L	10/12/18 11:33	11/05/18 10:16	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	105		40 - 110					10/12/18 11:33	11/05/18 10:16	1

Method: 9320 -	Radium-228 ((GFPC)	Count	Total						
Amalusta	Dooule	O	Uncert.	Uncert.	D.	MDO	11:4	Duamanad	A a b a d	Dil Faa
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0470	U	0.172	0.172	1.00	0.303	pCi/L	10/12/18 12:42	10/31/18 17:01	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	105		40 - 110					10/12/18 12:42	10/31/18 17:01	1
Y Carrier	87.5		40 - 110					10/12/18 12:42	10/31/18 17:01	1

Method: Ra226_Ra2	228 - Con	nbined Rad	dium-226 a	nd Radiun	1-228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.207	Ū	0.198	0.199	5.00	0.303	pCi/L		11/26/18 15:23	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-21 Date Collected: 10/08/18 12:05

Lab Sample ID: 400-160240-10 Matrix: Water

<u>10/16/18 10:16</u> <u>10/17/18 15:04</u>

Date Received: 10/10/18 08:58

Mercury

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082	*	0.20	0.082	mg/L			10/16/18 04:36	1
- Method: 6020 - Metal	ls (ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		10/15/18 14:59	10/16/18 13:33	5
Arsenic	0.0019		0.0013	0.00046	mg/L		10/15/18 14:59	10/16/18 13:33	5
Barium	0.092		0.0025	0.00049	mg/L		10/15/18 14:59	10/16/18 13:33	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 13:33	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 13:33	5
Chromium	<0.0011		0.0025	0.0011	mg/L		10/15/18 14:59	10/16/18 13:33	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		10/15/18 14:59	10/16/18 13:33	5
Lead	<0.00035		0.0013	0.00035	mg/L		10/15/18 14:59	10/16/18 13:33	5
Lithium	0.0019	J	0.0050	0.0011	mg/L		10/15/18 14:59	10/16/18 13:33	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		10/15/18 14:59	10/16/18 13:33	5
Selenium	<0.00024		0.0013	0.00024	mg/L		10/15/18 14:59	10/16/18 13:33	5
Thallium	<0.000085		0.00050	0.000085	mg/L		10/15/18 14:59	10/16/18 13:33	5
_ Method: 7470A - Mer	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: 9315 - F	Radium-226 ((GFPC)								
	·		Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.132		0.0836	0.0844	1.00	0.109	pCi/L	10/12/18 11:33	11/05/18 10:16	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					10/12/18 11:33	11/05/18 10:16	1

0.00020

0.000070 mg/L

<0.000070

Method: 9320 - I	Radium-228 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.242	U	0.208	0.209	1.00	0.330	pCi/L	10/12/18 12:42	10/31/18 17:01	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					10/12/18 12:42	10/31/18 17:01	1
Y Carrier	86.4		40 - 110					10/12/18 12:42	10/31/18 17:01	1

Method: Ra226_Ra	1228 - Con	nbined Ra	dium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.374		0.224	0.225	5.00	0.330	pCi/L		11/26/18 15:23	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-7

Lab Sample ID: 400-160240-11

Date Collected: 10/09/18 09:25 Date Received: 10/10/18 08:58

	N	latrix:	Water

Analyte	ons, Ion Chromatogra Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	0.20		0.20	0.082	mg/L			10/17/18 02:27	1
Method: 6020 - Meta	ls (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		10/15/18 14:59	10/16/18 14:00	5
Arsenic	0.00049	J	0.0013	0.00046	mg/L		10/15/18 14:59	10/16/18 14:00	5
Barium	0.28		0.0025	0.00049	mg/L		10/15/18 14:59	10/16/18 14:00	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 14:00	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 14:00	5
Chromium	<0.0011		0.0025	0.0011	mg/L		10/15/18 14:59	10/16/18 14:00	5
Cobalt	0.013		0.0025	0.00040	mg/L		10/15/18 14:59	10/16/18 14:00	5
Lead	<0.00035		0.0013	0.00035	mg/L		10/15/18 14:59	10/16/18 14:00	5
Lithium	0.0053		0.0050	0.0011	mg/L		10/15/18 14:59	10/16/18 14:00	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		10/15/18 14:59	10/16/18 14:00	5
Selenium	0.00034	J B	0.0013	0.00024	mg/L		10/15/18 14:59	10/16/18 14:00	5
Thallium	<0.000085		0.00050	0.000085	mg/L		10/15/18 14:59	10/16/18 14:00	5
Method: 7470A - Mei	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		10/16/18 10:16	10/17/18 15:06	1

Method: 9315 - Ra	ndium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.158		0.0882	0.0893	1.00	0.104	pCi/L	10/12/18 11:33	11/05/18 10:17	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	98.2		40 - 110					10/12/18 11:33	11/05/18 10:17	1

Method: 9320 - I	Radium-228 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.227	U	0.228	0.229	1.00	0.370	pCi/L	10/12/18 12:42	10/31/18 17:03	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	98.2		40 - 110					10/12/18 12:42	10/31/18 17:03	1
Y Carrier	85.2		40 - 110					10/12/18 12:42	10/31/18 17:03	1

Method: Ra226_Ra	228 - Con	bined Rad	dium-226 a	nd Radium	1-228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.385		0.244	0.246	5.00	0.370	pCi/L		11/26/18 15:23	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-8

Date Collected: 10/09/18 10:35 Date Received: 10/10/18 08:58 Lab Sample ID: 400-160240-12

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Fluoride	0.47		0.20	0.082	mg/L			10/17/18 02:50	
Method: 6020 - Meta	ls (ICP/MS) - Total Re	coverable	•						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony	<0.0010		0.0025	0.0010	mg/L		10/15/18 14:59	10/16/18 14:05	
Arsenic	0.0015		0.0013	0.00046	mg/L		10/15/18 14:59	10/16/18 14:05	
Barium	0.17		0.0025	0.00049	mg/L		10/15/18 14:59	10/16/18 14:05	
Beryllium	<0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 14:05	
Cadmium	< 0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 14:05	į
Chromium	0.0016	J	0.0025	0.0011	mg/L		10/15/18 14:59	10/16/18 14:05	į
Cobalt	<0.00040		0.0025	0.00040	mg/L		10/15/18 14:59	10/16/18 14:05	
Lead	< 0.00035		0.0013	0.00035	mg/L		10/15/18 14:59	10/16/18 14:05	
Lithium	0.0020	J	0.0050	0.0011	mg/L		10/15/18 14:59	10/16/18 14:05	į
Molybdenum	<0.00085		0.015	0.00085	mg/L		10/15/18 14:59	10/16/18 14:05	
Selenium	< 0.00024		0.0013	0.00024	mg/L		10/15/18 14:59	10/16/18 14:05	į
Thallium	<0.000085		0.00050	0.000085	mg/L		10/15/18 14:59	10/16/18 14:05	
Method: 7470A - Mei	rcury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.000070		0.00020	0.000070	mg/L		10/16/18 10:16	10/17/18 15:08	

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.674		0.157	0.168	1.00	0.104	pCi/L	10/12/18 11:33	11/05/18 10:17	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104	-	40 - 110					10/12/18 11:33	11/05/18 10:17	1

Method: 9320 - R	adium-228 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	2.34		0.367	0.425	1.00	0.351	pCi/L	10/12/18 12:42	10/31/18 17:03	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	104		40 - 110					10/12/18 12:42	10/31/18 17:03	1
Y Carrier	84.5		40 - 110					10/12/18 12:42	10/31/18 17:03	1

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	3.01		0.399	0.457	5.00	0.351	pCi/L	_	11/26/18 15:23	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-9
Date Collected: 10/09/18 10:20

Lab Sample ID: 400-160240-13 Matrix: Water

Date Received: 10/10/18 08:58

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082	*	0.20	0.082	mg/L			10/16/18 05:44	1
Method: 6020 - Metals	(ICP/MS) - Total Re	coverable							
Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		10/15/18 14:59	10/16/18 14:09	5
Arsenic	0.0013		0.0013	0.00046	mg/L		10/15/18 14:59	10/16/18 14:09	5
Barium	0.077		0.0025	0.00049	mg/L		10/15/18 14:59	10/16/18 14:09	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 14:09	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 14:09	5
Chromium	<0.0011		0.0025	0.0011	mg/L		10/15/18 14:59	10/16/18 14:09	5
Cobalt	0.0049		0.0025	0.00040	mg/L		10/15/18 14:59	10/16/18 14:09	5
Lead	<0.00035		0.0013	0.00035	mg/L		10/15/18 14:59	10/16/18 14:09	5
Lithium	<0.0011		0.0050	0.0011	mg/L		10/15/18 14:59	10/16/18 14:09	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		10/15/18 14:59	10/16/18 14:09	5
Selenium	<0.00024		0.0013	0.00024	mg/L		10/15/18 14:59	10/16/18 14:09	5
Thallium	<0.000085	(0.00050	0.000085	ma/l		10/15/18 14:59	10/16/18 14:09	5

Wethod. 1410A - Wercury (CV)	1/4)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		10/16/18 10:42	10/17/18 15:13	1

Method: 9315 - I	Radium-226 (GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.213		0.107	0.109	1.00	0.133	pCi/L	10/12/18 11:33	11/05/18 10:17	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					10/12/18 11:33	11/05/18 10:17	1

Method: 9320 - F	Radium-228 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.352		0.229	0.231	1.00	0.351	pCi/L	10/12/18 12:42	10/31/18 17:03	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					10/12/18 12:42	10/31/18 17:03	1
Y Carrier	85.2		40 - 110					10/12/18 12:42	10/31/18 17:03	1

Method: Ra226_Ra	228 - Con	nbined Ra	dium-226 a	nd Radiun	n-228					
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.565		0.253	0.255	5.00	0.351	pCi/L		11/26/18 15:23	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-10

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 400-160240-14

Date Collected: 10/09/18 09:10 Date Received: 10/10/18 08:58

Carrier

Ba Carrier

Y Carrier

		_		_	
м	at.	riv:	· \//	ate	
M	aι	IIA.		ate	я.

Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride		<0.082	*	0.20	0.082	mg/L			10/16/18 06:07	1
Method: 6020 - N	Metals (ICP/N	IS) - Total Re	ecoverabl	e						
Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony		<0.0010		0.0025	0.0010	mg/L		10/15/18 14:59	10/16/18 14:20	5
Arsenic		0.0015		0.0013	0.00046	mg/L		10/15/18 14:59	10/16/18 14:20	5
Barium		0.032		0.0025	0.00049	mg/L		10/15/18 14:59	10/16/18 14:20	5
Beryllium		<0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 14:20	5
Cadmium		< 0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 14:20	5
Chromium		< 0.0011		0.0025	0.0011	mg/L		10/15/18 14:59	10/16/18 14:20	5
Cobalt		0.030		0.0025	0.00040	mg/L		10/15/18 14:59	10/16/18 14:20	5
Lead		< 0.00035		0.0013	0.00035	mg/L		10/15/18 14:59	10/16/18 14:20	5
Lithium		< 0.0011		0.0050	0.0011	mg/L		10/15/18 14:59	10/16/18 14:20	5
Molybdenum		<0.00085		0.015	0.00085	mg/L		10/15/18 14:59	10/16/18 14:20	5
Selenium		<0.00024		0.0013	0.00024	-		10/15/18 14:59	10/16/18 14:20	5
Thallium		<0.000085		0.00050	0.000085	-		10/15/18 14:59	10/16/18 14:20	5
Method: 7470A - Analyte	- Mercury (C\	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	- Mercury (C\	•	Qualifier	RL 0.00020	MDL 0.000070			Prepared 10/16/18 10:42	Analyzed 10/17/18 15:30	Dil Fac
Analyte		Result < 0.000070	Qualifier				<u>D</u>	<u> </u>		Dil Fac
Analyte Mercury		Result < 0.000070	Qualifier Count					<u> </u>		Dil Fac
Analyte Mercury		Result < 0.000070	·	0.00020				<u> </u>		Dil Fac
Analyte Mercury	Radium-226 (Result < 0.000070	Count	0.00020	0.000070			<u> </u>		Dil Fac Dil Fac
Analyte Mercury Method: 9315 - F	Radium-226 (Result <0.000070	Count Uncert.	0.00020 Total Uncert.	0.000070	mg/L	Unit -	10/16/18 10:42	10/17/18 15:30	1
Analyte Mercury Method: 9315 - F	Radium-226 (Result 0.126	Result <0.000070	Count Uncert. (2σ+/-)	0.00020 Total Uncert. (2σ+/-)	0.000070	mg/L	Unit -	10/16/18 10:42	10/17/18 15:30 Analyzed	1 Dil Fac
Analyte Mercury Method: 9315 - F Analyte Radium-226	Radium-226 (Result 0.126	Result <0.000070 GFPC) Qualifier	Count Uncert. (2σ+/-)	0.00020 Total Uncert. (2σ+/-)	0.000070	mg/L	Unit -	Prepared 10/12/18 11:33	10/17/18 15:30 Analyzed 11/05/18 10:17 Analyzed	Dil Fac
Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier Ba Carrier	Radium-226 (Result 0.126 %Yield 104	Result <0.000070 GFPC) Qualifier Qualifier	Count Uncert. (2σ+/-) 0.0843 Limits	0.00020 Total Uncert. (2σ+/-)	0.000070	mg/L	Unit -	Prepared 10/12/18 11:33 Prepared	10/17/18 15:30 Analyzed 11/05/18 10:17 Analyzed	Dil Fac Dil Fac
Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier Ba Carrier	Radium-226 (Result 0.126 %Yield 104	Result <0.000070 GFPC) Qualifier Qualifier	Count Uncert. (2σ+/-) 0.0843 Limits	0.00020 Total Uncert. (2σ+/-)	0.000070	mg/L	Unit -	Prepared 10/12/18 11:33 Prepared	10/17/18 15:30 Analyzed 11/05/18 10:17 Analyzed	Dil Fac Dil Fac
Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier Ba Carrier	Radium-226 (Result 0.126 %Yield 104	Result <0.000070 GFPC) Qualifier Qualifier	Count Uncert. (2σ+/-) 0.0843 Limits 40 - 110	0.00020 Total Uncert. (2σ+/-) 0.0851	0.000070	mg/L	Unit -	Prepared 10/12/18 11:33 Prepared	10/17/18 15:30 Analyzed 11/05/18 10:17 Analyzed	Dil Fac Dil Fac
Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier	Radium-226 (Result 0.126 %Yield 104 Radium-228 (Result <0.000070 GFPC) Qualifier Qualifier	Count Uncert. (20+/-) 0.0843 Limits 40 - 110 Count	0.00020 Total Uncert. (2σ+/-) 0.0851	RL I	mg/L	Unit pCi/L	Prepared 10/12/18 11:33 Prepared	10/17/18 15:30 Analyzed 11/05/18 10:17 Analyzed	Dil Fac Dil Fac

Method: Ra226_	Ra228 - Comb	ined Radium-22	26 and	Radium-228
		_		

Limits

40 - 110

40 - 110

%Yield Qualifier

104

84.5

motriou: rtuzzo_rtu		ionioa ita	alaili LL O a	iid itaaiaii					
			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.387		0.222	0.223	5.00	0.321 pCi/L	_	11/26/18 15:23	1
226 + 228									

TestAmerica Pensacola

Analyzed

Dil Fac

Prepared

<u>10/12/18 12:42</u> <u>10/31/18 17:03</u>

10/12/18 12:42 10/31/18 17:03

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-19

Method: 300.0 - Anions, Ion Chromatography

Date Collected: 10/09/18 08:50 Date Received: 10/10/18 08:58

Analyte

Carrier

Ba Carrier

Y Carrier

Radium-228

Lab Sample ID: 400-160240-15

Matrix: Water

<0.0010 0.0014 0.037 <0.00034 <0.00034 0.017 <0.00040 <0.00035 <0.0011 <0.00085 0.00050	Qualifier	RL 0.0025 0.0013 0.0025 0.0025 0.0025 0.0025 0.0013 0.0050 0.015	0.082 MDL 0.0010 0.00046 0.00034 0.00034 0.00011 0.00040 0.00035 0.0011	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	_ <u>D</u>	10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59	Analyzed 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25	Dil Fa
Result <0.0010 0.0014 0.037 <0.00034 <0.00034 0.017 <0.00040 <0.00035 <0.0011 <0.00085 0.00050	Qualifier	RL 0.0025 0.0013 0.0025 0.0025 0.0025 0.0025 0.0013 0.0050 0.015	0.0010 0.00046 0.00049 0.00034 0.00034 0.00011 0.00040 0.00035 0.0011	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59	10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25	
Result <0.0010 0.0014 0.037 <0.00034 <0.00034 0.017 <0.00040 <0.00035 <0.0011 <0.00085 0.00050	Qualifier	RL 0.0025 0.0013 0.0025 0.0025 0.0025 0.0025 0.0013 0.0050 0.015	0.0010 0.00046 0.00049 0.00034 0.00034 0.00011 0.00040 0.00035 0.0011	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59	10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25	
0.0014 0.037 <0.00034 <0.00034 0.017 <0.00040 <0.00035 <0.0011 <0.00085 0.00050	JB	0.0013 0.0025 0.0025 0.0025 0.0025 0.0025 0.0013 0.0050	0.00046 0.00034 0.00034 0.0011 0.00040 0.00035 0.0011	mg/L mg/L mg/L mg/L mg/L mg/L mg/L		10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59	10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25	
0.037 <0.00034 <0.00034 0.017 <0.00040 <0.00035 <0.0011 <0.00085 0.00050		0.0025 0.0025 0.0025 0.0025 0.0025 0.0013 0.0050	0.00049 0.00034 0.00034 0.0011 0.00040 0.00035 0.0011	mg/L mg/L mg/L mg/L mg/L mg/L mg/L		10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59	10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25	
<0.00034 <0.00034 0.017 <0.00040 <0.00035 <0.0011 <0.00085 0.00050	JB	0.0025 0.0025 0.0025 0.0025 0.0013 0.0050	0.00034 0.00034 0.0011 0.00040 0.00035 0.0011	mg/L mg/L mg/L mg/L mg/L mg/L		10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59	10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25	
<0.00034	JB	0.0025 0.0025 0.0025 0.0013 0.0050 0.015	0.00034 0.0011 0.00040 0.00035 0.0011	mg/L mg/L mg/L mg/L mg/L		10/15/18 14:59 10/15/18 14:59 10/15/18 14:59 10/15/18 14:59	10/16/18 14:25 10/16/18 14:25 10/16/18 14:25 10/16/18 14:25	
0.017 <0.00040 <0.00035 <0.0011 <0.00085 0.00050	JB	0.0025 0.0025 0.0013 0.0050 0.015	0.0011 0.00040 0.00035 0.0011	mg/L mg/L mg/L mg/L		10/15/18 14:59 10/15/18 14:59 10/15/18 14:59	10/16/18 14:25 10/16/18 14:25 10/16/18 14:25	
<0.00040 <0.00035 <0.0011 <0.00085 0.00050	JB	0.0025 0.0013 0.0050 0.015	0.00040 0.00035 0.0011	mg/L mg/L mg/L		10/15/18 14:59 10/15/18 14:59	10/16/18 14:25 10/16/18 14:25	
<0.00035 <0.0011 <0.00085 0.00050	JB	0.0013 0.0050 0.015	0.00035 0.0011	mg/L mg/L		10/15/18 14:59	10/16/18 14:25	
<0.0011 <0.00085 0.00050	JB	0.0050 0.015	0.0011	mg/L				
<0.00085 0.00050		0.015				10/15/18 14:50	40/40/40 44 05	
0.00050	JB		0.00085	ma/l		10/10/10 17.00	10/16/18 14:25	
	JB	0.0040		9, =		10/15/18 14:59	10/16/18 14:25	
		0.0013	0.00024	mg/L		10/15/18 14:59	10/16/18 14:25	
<0.000085		0.00050	0.000085	mg/L		10/15/18 14:59	10/16/18 14:25	
•	Qualifier	DI	MDI	Unit	n	Propared	Analyzod	Dil Fa
	Qualifier							םוו רפ
<0.000070		0.00020	0.000070	IIIg/L		10/10/10 10.42	10/1//10 15.52	
(GFPC)								
•	Count	Total						
	Uncert.	Uncert.						
Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC Unit		Prepared	Analyzed	Dil Fa
	0.114	0.117	1.00 0	.109 pCi/L		10/12/18 11:33	11/05/18 10:17	
Qualifier	Limits					Prepared	Analyzed	Dil Fa
	40 - 110					10/12/18 11:33	11/05/18 10:17	
	<0.000070 (GFPC)	Result Qualifier	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Result Qualifier RL MDL 0.00020 0.000070	Result Qualifier RL MDL Unit (GFPC)	Result Qualifier RL MDL Unit D 0.000070 mg/L D (GFPC)	Result Qualifier RL MDL Unit D Prepared 10/16/18 10:42	Result Qualifier RL MDL Unit D Prepared 10/16/18 10:42 10/17/18 15:32

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.584		0.237	0.240	5.00	0.324	pCi/L		11/26/18 15:23	1

Uncert.

 $(2\sigma + / -)$

0.209

RL

1.00

MDC Unit

0.324 pCi/L

Prepared

Prepared

<u>10/12/18 12:42</u> <u>10/31/18 17:03</u>

10/12/18 12:42 10/31/18 17:03

10/12/18 12:42 10/31/18 17:03

Uncert.

 $(2\sigma + / -)$

Limits

40 - 110

40 - 110

0.208

Result Qualifier

%Yield Qualifier

0.276 U

104

86.0

TestAmerica Pensacola

Analyzed

Analyzed

Dil Fac

Dil Fac

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: FD-3(AP)
Date Collected: 10/09/18 00:00

Lab Sample ID: 400-160240-16 Matrix: Water

Date Received: 10/10/18 08:58

Method: 300.0 - Anio	ns, Ion Chromatogra	iphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			10/16/18 19:13	1
Method: 6020 - Metal	s (ICP/MS) - Total Re	ecoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		10/15/18 14:59	10/16/18 14:29	5
Arsenic	0.0013		0.0013	0.00046	mg/L		10/15/18 14:59	10/16/18 14:29	5
Barium	0.036		0.0025	0.00049	mg/L		10/15/18 14:59	10/16/18 14:29	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 14:29	5
Cadmium	<0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 14:29	5
Chromium	0.016		0.0025	0.0011	mg/L		10/15/18 14:59	10/16/18 14:29	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		10/15/18 14:59	10/16/18 14:29	5
Lead	<0.00035		0.0013	0.00035	mg/L		10/15/18 14:59	10/16/18 14:29	5
Lithium	0.0014	J	0.0050	0.0011	mg/L		10/15/18 14:59	10/16/18 14:29	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		10/15/18 14:59	10/16/18 14:29	5
Selenium	0.00055	JB	0.0013	0.00024	mg/L		10/15/18 14:59	10/16/18 14:29	5
Thallium	<0.000085		0.00050	0.000085	mg/L		10/15/18 14:59	10/16/18 14:29	5
Method: 7470A - Mer	cury (CVAA)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		10/16/18 10:42	10/17/18 15:34	1

Method: 9315 - F	Radium-226 ((GFPC)	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.210		0.100	0.102	1.00	0.113	pCi/L	10/12/18 11:33	11/05/18 10:17	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	101		40 - 110					10/12/18 11:33	11/05/18 10:17	1

Method: 9320 - I	Radium-228 (GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.182	U	0.210	0.210	1.00	0.345	pCi/L	10/12/18 12:42	10/31/18 17:03	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier			40 - 110					10/12/18 12:42	10/31/18 17:03	1
Y Carrier	86.0		40 - 110					10/12/18 12:42	10/31/18 17:03	1

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.391		0.233	0.233	5.00	0.345	pCi/L		11/26/18 15:23	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: FB-3(AP)

Lab Sample ID: 400-160240-17 Date Collected: 10/09/18 08:45 Date Received: 10/10/18 08:58

Matrix: Water

Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Fluoride		<0.082		0.20	0.082	mg/L			10/16/18 22:16	
Method: 6020 -	Metals (ICP/M	IS) - Total Re	ecoverabl	e						
Analyte			Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony		<0.0010		0.0025	0.0010	mg/L		10/15/18 14:59	10/16/18 14:34	
Arsenic		0.0013		0.0013	0.00046	mg/L		10/15/18 14:59	10/16/18 14:34	
Barium		< 0.00049		0.0025	0.00049	mg/L		10/15/18 14:59	10/16/18 14:34	
Beryllium		<0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 14:34	
Cadmium		< 0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 14:34	
Chromium		< 0.0011		0.0025	0.0011	mg/L		10/15/18 14:59	10/16/18 14:34	
Cobalt		<0.00040		0.0025	0.00040	mg/L		10/15/18 14:59	10/16/18 14:34	
Lead		< 0.00035		0.0013	0.00035	mg/L		10/15/18 14:59	10/16/18 14:34	
Lithium		<0.0011		0.0050	0.0011	mg/L		10/15/18 14:59	10/16/18 14:34	
Molybdenum		<0.00085		0.015	0.00085	mg/L		10/15/18 14:59	10/16/18 14:34	
Selenium		< 0.00024		0.0013	0.00024	mg/L		10/15/18 14:59	10/16/18 14:34	
Thallium		<0.000085		0.00050	0.000085	mg/L		10/15/18 14:59	10/16/18 14:34	;
Method: 7470A	- Mercury (CV	/AA)								
Analyte		•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury		<0.000070		0.00020	0.000070	mg/L		10/16/18 10:42	10/17/18 15:36	
Method: 9315 -	Radium-226 (GFPC)	0	T.4.1						
			Count	Total						
Analyte	Posult	Qualifier	Uncert. (2σ+/-)	Uncert. (2σ+/-)	RL I	MDC Unit		Prepared	Analyzed	Dil Fa
	0.0978		<u> </u>	` '				10/12/18 11:33	11/05/18 10:17	DII Fa
Radium-226	0.0978	U	0.0809	0.0814	1.00 ().119 pCi/L		10/12/18 11:33	11/05/18 10:17	
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Ba Carrier			40 - 110					10/12/18 11:33	11/05/18 10:17	-

Met	hod: 9320 - Ra	dium-228 ((GFPC)	Count Uncert.	Total Uncert.						
Anal	yte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radii	um-228	0.177	U	0.229	0.230	1.00	0.381	pCi/L	10/12/18 12:42	10/31/18 17:04	1
Carri	ier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ва С	arrier	101		40 - 110					10/12/18 12:42	10/31/18 17:04	1
Y Ca	rrier	85.2		40 - 110					10/12/18 12:42	10/31/18 17:04	1

Method: Ra226_Ra2	228 - Con	nbined Rad	dium-226 a	nd Radiun	n-228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.275	Ū	0.243	0.244	5.00	0.381	pCi/L		11/26/18 15:23	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: EB-3(AP)
Date Collected: 10/09/18 11:30

Lab Sample ID: 400-160240-18 Matrix: Water

Date Received: 10/10/18 08:58

Method: 300.0 - Anio	ns, Ion Chromatogra	phy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			10/17/18 07:24	1
- Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		10/15/18 14:59	10/16/18 14:38	5
Arsenic	0.0013		0.0013	0.00046	mg/L		10/15/18 14:59	10/16/18 14:38	5
Barium	<0.00049		0.0025	0.00049	mg/L		10/15/18 14:59	10/16/18 14:38	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 14:38	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 14:38	5
Chromium	<0.0011		0.0025	0.0011	mg/L		10/15/18 14:59	10/16/18 14:38	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		10/15/18 14:59	10/16/18 14:38	5
Lead	< 0.00035		0.0013	0.00035	mg/L		10/15/18 14:59	10/16/18 14:38	5
Lithium	<0.0011		0.0050	0.0011	mg/L		10/15/18 14:59	10/16/18 14:38	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		10/15/18 14:59	10/16/18 14:38	5
Selenium	<0.00024		0.0013	0.00024	mg/L		10/15/18 14:59	10/16/18 14:38	5
Thallium	<0.000085		0.00050	0.000085	mg/L		10/15/18 14:59	10/16/18 14:38	5
_ Method: 7470A - Mer	cury (CVAA)								
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		10/16/18 10:42	10/17/18 15:38	1

Method: 9315 - Ra	dium-226 ((GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.204		0.0950	0.0967	1.00	0.104	pCi/L	10/12/18 11:33	11/05/18 10:17	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	106		40 - 110					10/12/18 11:33	11/05/18 10:17	1

Method: 9320 - I	Radium-228 ((GFPC)	Count	Total						
Accelede	D 14	0 1161	Uncert.	Uncert.	ъ.	MDO	1114	D	A I I	D''
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0901	U	0.191	0.191	1.00	0.328	pCi/L	10/12/18 12:42	10/31/18 17:04	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	106		40 - 110					10/12/18 12:42	10/31/18 17:04	1
Y Carrier	86.4		40 - 110					10/12/18 12:42	10/31/18 17:04	1

Method: Ra226	_Ra228 - Coi	mbined Ra	dium-226 a	nd Radiun	n-228				
			Count Uncert.	Total Uncert.					
Analyte Combined Radium 2		Qualifier U	(2σ+/-) 0.213	(2σ+/-) 0.214	RL 5.00	MDC 0.328	 Prepared	Analyzed 11/26/18 15:23	Dil Fac
+ 228									

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWA-25

Date Collected: 10/08/18 14:20 Date Received: 10/10/18 08:58 Lab Sample ID: 400-160240-19

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			10/17/18 07:47	1
Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		10/15/18 14:59	10/16/18 14:43	- 5
Arsenic	0.0018		0.0013	0.00046	mg/L		10/15/18 14:59	10/16/18 14:43	5
Barium	0.024		0.0025	0.00049	mg/L		10/15/18 14:59	10/16/18 14:43	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 14:43	5
Cadmium	<0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 14:43	5
Chromium	<0.0011		0.0025	0.0011	mg/L		10/15/18 14:59	10/16/18 14:43	5
Cobalt	0.0047		0.0025	0.00040	mg/L		10/15/18 14:59	10/16/18 14:43	5
Lead	< 0.00035		0.0013	0.00035	mg/L		10/15/18 14:59	10/16/18 14:43	5
Lithium	<0.0011		0.0050	0.0011	mg/L		10/15/18 14:59	10/16/18 14:43	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		10/15/18 14:59	10/16/18 14:43	5
Selenium	<0.00024		0.0013	0.00024	mg/L		10/15/18 14:59	10/16/18 14:43	5
Thallium	<0.000085		0.00050	0.000085	mg/L		10/15/18 14:59	10/16/18 14:43	5
Method: 7470A - Mer	curv (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		10/16/18 10:42	10/17/18 15:39	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.186		0.0898	0.0913	1.00	0.100	pCi/L	10/12/18 11:33	11/05/18 10:18	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	109		40 - 110					10/12/18 11:33	11/05/18 10:18	1
Method: 9320 - F	Radium-228 (GFPC)								

Method: 9320 - 1	Radium-228 (GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.292	Ū	0.206	0.207	1.00	0.318	pCi/L	10/12/18 12:42	10/31/18 17:04	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	109		40 - 110					10/12/18 12:42	10/31/18 17:04	1
Y Carrier	83.4		40 - 110					10/12/18 12:42	10/31/18 17:04	1

Method: Ra226_Ra	228 - Con	bined Rad	dium-226 a	nd Radium	-228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.478		0.225	0.226	5.00	0.318	pCi/L		11/26/18 15:23	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWA-4

Date Collected: 10/08/18 13:15 Date Received: 10/10/18 08:58 Lab Sample ID: 400-160240-20

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			10/17/18 08:55	1
Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		10/15/18 14:59	10/16/18 15:05	5
Arsenic	0.00056	J	0.0013	0.00046	mg/L		10/15/18 14:59	10/16/18 15:05	5
Barium	0.064		0.0025	0.00049	mg/L		10/15/18 14:59	10/16/18 15:05	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 15:05	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 15:05	5
Chromium	0.0098		0.0025	0.0011	mg/L		10/15/18 14:59	10/16/18 15:05	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		10/15/18 14:59	10/16/18 15:05	5
Lead	< 0.00035		0.0013	0.00035	mg/L		10/15/18 14:59	10/16/18 15:05	5
Lithium	<0.0011		0.0050	0.0011	mg/L		10/15/18 14:59	10/16/18 15:05	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		10/15/18 14:59	10/16/18 15:05	5
Selenium	0.00041	J B	0.0013	0.00024	mg/L		10/15/18 14:59	10/16/18 15:05	5
Thallium	<0.000085		0.00050	0.000085	mg/L		10/15/18 14:59	10/16/18 15:05	5
Method: 7470A - Mer	curv (CVAA)								
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.00070		0.00020	0.000070	mg/L		10/16/18 10:42	10/17/18 15:41	

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.0976	U	0.0762	0.0767	1.00	0.107	pCi/L	10/12/18 11:33	11/05/18 10:18	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	105		40 - 110					10/12/18 11:33	11/05/18 10:18	1

Method: 9320 - I	Radium-228 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	-0.195	U	0.148	0.149	1.00	0.315	pCi/L	10/12/18 12:42	10/31/18 17:04	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	105		40 - 110					10/12/18 12:42	10/31/18 17:04	1
Y Carrier	82.6		40 - 110					10/12/18 12:42	10/31/18 17:04	1

Method: Ra226_Ra2	228 - Combined Ra	dium-226 a	nd Radium	n-228					
		Count Uncert.	Total Uncert.						
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	-0.0974 U	0.166	0.168	5.00	0.315	pCi/L		11/26/18 15:23	1

TestAmerica Pensacola

3

4

7

8

10

12

13

14

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWA-5 Date Collected: 10/08/18 10:45 Lab Sample ID: 400-160240-21 Matrix: Water

Date Received: 10/10/18 08:58

Method: 300.0 - Anions, Ion Chromatography											
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac				
Fluoride	<0.082	0.20	0.082 mg/L			10/17/18 09:18	1				

Fluoride	<0.082		0.20	0.082	mg/L			10/17/18 09:18	1
- Method: 6020 - Metal	ls (ICP/MS) - Total Re	ecoverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		10/15/18 15:02	10/16/18 15:23	5
Arsenic	0.00052	JB	0.0013	0.00046	mg/L		10/15/18 15:02	10/16/18 15:23	5
Barium	0.011		0.0025	0.00049	mg/L		10/15/18 15:02	10/16/18 15:23	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		10/15/18 15:02	10/16/18 15:23	5
Cadmium	<0.00034		0.0025	0.00034	mg/L		10/15/18 15:02	10/16/18 15:23	5
Chromium	0.0011	J	0.0025	0.0011	mg/L		10/15/18 15:02	10/16/18 15:23	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		10/15/18 15:02	10/16/18 15:23	5
Lead	<0.00035		0.0013	0.00035	mg/L		10/15/18 15:02	10/16/18 15:23	5
Lithium	<0.0011		0.0050	0.0011	mg/L		10/15/18 15:02	10/16/18 15:23	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		10/15/18 15:02	10/16/18 15:23	5
Selenium	<0.00024		0.0013	0.00024	mg/L		10/15/18 15:02	10/16/18 15:23	5
Thallium	<0.000085		0.00050	0.000085	mg/L		10/15/18 15:02	10/16/18 15:23	5
_ Method: 7470A - Mer	cury (CVAA)								
Analyto	• •	Qualifier	DI	MDI	Unit	n	Droparod	Analyzod	Dil Fac

Method: 7470A - Mercury (CV)	AA)							
Analyte	Result Qualifier	RL	MDL (Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070	0.00020	0.000070	mg/L		10/16/18 10:42	10/17/18 15:43	1

Method: 9315 - Ra	dium-226 (0	GFPC)								
	•	•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.210		0.0903	0.0922	1.00	0.0966	pCi/L	10/12/18 09:37	11/05/18 05:59	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	90.0		40 - 110					10/12/18 09:37	11/05/18 05:59	1

Method: 9320 - Ra	adium-228 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.554		0.279	0.284	1.00	0.411	pCi/L	10/12/18 10:51	10/23/18 09:44	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	90.0		40 - 110					10/12/18 10:51	10/23/18 09:44	1
Y Carrier	79.6		40 - 110					10/12/18 10:51	10/23/18 09:44	1

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.764		0.293	0.299	5.00	0.411	pCi/L	_	11/26/18 15:23	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-6

Date Collected: 10/08/18 15:25 Date Received: 10/10/18 08:58 Lab Sample ID: 400-160240-22

Matrix: Water

Method: 300.0 - Anio	ns, Ion Chromatogra	phy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			10/17/18 09:41	1
- Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		10/15/18 15:02	10/16/18 15:45	5
Arsenic	0.0011	JB	0.0013	0.00046	mg/L		10/15/18 15:02	10/16/18 15:45	5
Barium	0.069		0.0025	0.00049	mg/L		10/15/18 15:02	10/16/18 15:45	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		10/15/18 15:02	10/16/18 15:45	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		10/15/18 15:02	10/16/18 15:45	5
Chromium	<0.0011		0.0025	0.0011	mg/L		10/15/18 15:02	10/16/18 15:45	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		10/15/18 15:02	10/16/18 15:45	5
Lead	<0.00035		0.0013	0.00035	mg/L		10/15/18 15:02	10/16/18 15:45	5
Lithium	<0.0011		0.0050	0.0011	mg/L		10/15/18 15:02	10/16/18 15:45	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		10/15/18 15:02	10/16/18 15:45	5
Selenium	<0.00024		0.0013	0.00024	mg/L		10/15/18 15:02	10/16/18 15:45	5
Thallium	<0.000085		0.00050	0.000085	mg/L		10/15/18 15:02	10/16/18 15:45	5
_ Method: 7470A - Mer	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		10/16/18 10:42	10/17/18 15:45	1

Method: 9315 - F	Radium-226 (GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.214		0.0846	0.0868	1.00	0.0807	pCi/L	10/12/18 09:37	11/05/18 05:59	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	98.5		40 - 110					10/12/18 09:37	11/05/18 05:59	1
_										

Method: 9320 - F	Radium-228 ((GFPC)	Count Uncert.	Total Uncert.			11			
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.556		0.291	0.296	1.00	0.433	pCi/L	10/12/18 10:51	10/23/18 09:44	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	98.5		40 - 110					10/12/18 10:51	10/23/18 09:44	1
Y Carrier	69.5		40 - 110					10/12/18 10:51	10/23/18 09:44	1

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.770		0.303	0.308	5.00	0.433	pCi/L		11/26/18 15:23	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-12

Date Collected: 10/08/18 10:40 Date Received: 10/10/18 08:58

Radium-228

Carrier

Ba Carrier

Y Carrier

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 400-160240-23

Matrix: Water

Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Fluoride		<0.082		0.20	0.082	mg/L			10/17/18 10:04	
Method: 6020 - N	Metals (ICP/N	IS) - Total Re	ecoverab	l <u>e</u>						
Analyte	notalo (101 /II		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Antimony		<0.0010		0.0025	0.0010	mg/L		10/15/18 15:02	10/16/18 15:49	
Arsenic		0.0014	В	0.0013	0.00046	mg/L		10/15/18 15:02	10/16/18 15:49	
Barium		0.049		0.0025	0.00049	mg/L		10/15/18 15:02	10/16/18 15:49	
Beryllium		<0.00034		0.0025	0.00034	mg/L		10/15/18 15:02	10/16/18 15:49	
Cadmium		< 0.00034		0.0025	0.00034	mg/L		10/15/18 15:02	10/16/18 15:49	
Chromium		<0.0011		0.0025	0.0011	mg/L		10/15/18 15:02	10/16/18 15:49	
Cobalt		0.0037		0.0025	0.00040	mg/L		10/15/18 15:02	10/16/18 15:49	
Lead		< 0.00035		0.0013	0.00035	mg/L		10/15/18 15:02	10/16/18 15:49	
Lithium		<0.0011		0.0050	0.0011	mg/L		10/15/18 15:02	10/16/18 15:49	
Molybdenum		<0.00085		0.015	0.00085	mg/L		10/15/18 15:02	10/16/18 15:49	
Selenium		< 0.00024		0.0013	0.00024	mg/L		10/15/18 15:02	10/16/18 15:49	
Thallium		<0.000085		0.00050	0.000085	mg/L		10/15/18 15:02	10/16/18 15:49	
Method: 7470A - Analyte	Mercury (C)	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury		<0.000070		0.00020	0.000070	mg/L		10/16/18 10:42	10/17/18 15:56	
Mathadi 0245 F	2 adii 226 ((CEDC)								
Method: 9315 - F	Radium-226 (GFPC)	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC Unit		Prepared	Analyzed	Dil Fa
Radium-226	0.237		0.0851	0.0877		0695 pCi/L		10/12/18 09:37	11/05/18 05:59	
rtudiam 220	0.201		0.000	0.00		2000 po				
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fa
Ba Carrier	100		40 - 110					10/12/18 09:37	11/05/18 05:59	
Method: 9320 - F	Radium-228 (GFPC)								
			Count	Total						
			Uncert.	Uncert.	.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC Unit		Prepared	Analyzed	Dil Fa

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radiun	n- 228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.865		0.253	0.260	5.00	0.323	pCi/L		11/26/18 15:23	1

1.00

0.323 pCi/L

0.245

0.238

Limits

40 - 110

40 - 110

0.628

100

83.7

%Yield Qualifier

TestAmerica Pensacola

<u>10/12/18 10:51</u> <u>10/23/18 09:45</u>

<u>10/12/18 10:51</u> <u>10/23/18 09:45</u>

10/12/18 10:51 10/23/18 09:45

Analyzed

Dil Fac

Prepared

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: FB-2(AP)
Date Collected: 10/08/18 10:15

Lab Sample ID: 400-160240-24 Matrix: Water

Date Received: 10/10/18 08:58

Analyte	ons, Ion Chromatogra Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L		<u> </u>	10/17/18 10:27	1
Method: 6020 - Meta	ls (ICP/MS) - Total Re	coverable							
Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		10/15/18 15:02	10/16/18 16:12	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		10/15/18 15:02	10/16/18 16:12	5
Barium	< 0.00049		0.0025	0.00049	mg/L		10/15/18 15:02	10/16/18 16:12	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		10/15/18 15:02	10/16/18 16:12	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		10/15/18 15:02	10/16/18 16:12	5
Chromium	<0.0011		0.0025	0.0011	mg/L		10/15/18 15:02	10/16/18 16:12	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		10/15/18 15:02	10/16/18 16:12	5
Lead	< 0.00035		0.0013	0.00035	mg/L		10/15/18 15:02	10/16/18 16:12	5
Lithium	<0.0011		0.0050	0.0011	mg/L		10/15/18 15:02	10/16/18 16:12	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		10/15/18 15:02	10/16/18 16:12	5
Selenium	0.00029	J	0.0013	0.00024	mg/L		10/15/18 15:02	10/16/18 16:12	5
Thallium	<0.000085		0.00050	0.000085	mg/L		10/15/18 15:02	10/16/18 16:12	5
- Method: 7470A - Mei	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		10/16/18 10:42	10/17/18 15:58	1

Method: 9315 - R	Radium-226 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.211		0.0915	0.0935	1.00	0.104	pCi/L	10/12/18 09:37	11/05/18 05:59	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	96.2		40 - 110					10/12/18 09:37	11/05/18 05:59	1

Method: 9320 - F	Radium-228 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.552		0.268	0.273	1.00	0.391	pCi/L	10/12/18 10:51	10/23/18 09:45	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	96.2		40 - 110					10/12/18 10:51	10/23/18 09:45	1
Y Carrier	76.6		40 - 110					10/12/18 10:51	10/23/18 09:45	1

Method: Ra226_Ra	228 - Con	bined Ra	dium-226 a	nd Radiun	n- 228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.763		0.283	0.289	5.00	0.391	pCi/L		11/26/18 15:23	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-13

Date Collected: 10/08/18 12:25 Date Received: 10/10/18 08:58

Method: 300.0 - Anions, Ion Chromatography

%Yield Qualifier

101

78.5

Carrier

Ba Carrier

Y Carrier

Limits

40 - 110

40 - 110

Lab Sample ID: 400-160240-25

Matrix: Water

Analyte			Qualifier	RL_	MDL			D	Prepared	Analyzed	Dil Fac
Fluoride		<0.082		0.20	0.082	mg/L	-	_		10/17/18 11:35	1
Method: 6020 - N	letals (ICP/N	IS) - Total Re	ecoverabl	e							
Analyte	(Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	Dil Fac
Antimony		<0.0010		0.0025	0.0010	mg/L		_	10/15/18 15:02	10/16/18 16:16	5
Arsenic		0.00047	JB	0.0013	0.00046	mg/L	_		10/15/18 15:02	10/16/18 16:16	5
Barium		0.033		0.0025	0.00049	mg/L	-		10/15/18 15:02	10/16/18 16:16	5
Beryllium		<0.00034		0.0025	0.00034	mg/L			10/15/18 15:02	10/16/18 16:16	5
Cadmium		< 0.00034		0.0025	0.00034	mg/L	_		10/15/18 15:02	10/16/18 16:16	5
Chromium		<0.0011		0.0025	0.0011	mg/L	-		10/15/18 15:02	10/16/18 16:16	5
Cobalt		0.0036		0.0025	0.00040	mg/L			10/15/18 15:02	10/16/18 16:16	5
Lead		< 0.00035		0.0013	0.00035	mg/L	_		10/15/18 15:02	10/16/18 16:16	5
Lithium		0.0014	J	0.0050	0.0011	mg/L	_		10/15/18 15:02	10/16/18 16:16	5
Molybdenum		<0.00085		0.015	0.00085	mg/L			10/15/18 15:02	10/16/18 16:16	5
Selenium		< 0.00024		0.0013	0.00024	mg/L	_		10/15/18 15:02	10/16/18 16:16	5
		-0.00000		0.00050	0.000085	ma/l			10/15/18 15:02	10/16/18 16:16	5
Thallium : Method: 7470A -	Mercury (C)					J			10/13/10 13:02	10/10/10 10:10	
Method: 7470A - Analyte	Mercury (C)	/AA) Result	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	
: Method: 7470A -	Mercury (C)	/AA)	Qualifier			Unit		<u>D</u>			
Method: 7470A - Analyte Mercury		/AA) Result <	Qualifier	RL	MDL	Unit		D	Prepared	Analyzed	
Method: 7470A - Analyte		/AA) Result <	Qualifier Count	RL	MDL	Unit		D	Prepared	Analyzed	
Method: 7470A - Analyte Mercury		/AA) - Result - <0.000070		RL 0.00020	MDL	Unit		<u>D</u>	Prepared	Analyzed	Dil Fac
Method: 7470A - Analyte Mercury	Radium-226 (/AA) - Result - <0.000070	Count	RL 0.00020	MDL 0.000070	Unit	-	<u>D</u>	Prepared	Analyzed	
Method: 7470A - Analyte Mercury Method: 9315 - F	Radium-226 (/AA) - Result - <0.000070 GFPC)	Count Uncert.	RL 0.00020 Total Uncert.	MDL 0.000070	Unit mg/L	-	<u>D</u>	Prepared 10/16/18 10:42	Analyzed 10/17/18 16:00	Dil Fac
Method: 7470A - Analyte Mercury Method: 9315 - F	Radium-226 (Result 0.113	/AA) Result <	Count Uncert. (2σ+/-)	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/L	Unit	<u>D</u> _	Prepared 10/16/18 10:42	Analyzed 10/17/18 16:00 Analyzed	Dil Fac
Method: 7470A - Analyte Mercury Method: 9315 - F Analyte Radium-226	Radium-226 (Result 0.113	/AA) Result <	Count Uncert. (2σ+/-) 0.0655	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/L	Unit	<u>D</u> _	Prepared 10/16/18 10:42 Prepared 10/12/18 09:37	Analyzed Analyzed 10/17/18 16:00 Analyzed 11/05/18 08:08 Analyzed	Dil Fac Dil Fac 1 Dil Fac
Method: 7470A - Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier Ba Carrier	Radium-226 (Result 0.113 %Yield 101	Result <0.000070 GFPC) Qualifier Qualifier	Count Uncert. (2σ+/-) 0.0655 Limits	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/L	Unit	<u>D</u> _	Prepared 10/16/18 10:42 Prepared 10/12/18 09:37 Prepared	Analyzed Analyzed 10/17/18 16:00 Analyzed 11/05/18 08:08 Analyzed	Dil Fac
Method: 7470A - Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier	Radium-226 (Result 0.113 %Yield 101	Result <0.000070 GFPC) Qualifier Qualifier	Count Uncert. (2σ+/-) 0.0655 Limits	RL 0.00020 Total Uncert. (2σ+/-)	MDL 0.000070	Unit mg/L	Unit	<u>D</u>	Prepared 10/16/18 10:42 Prepared 10/12/18 09:37 Prepared	Analyzed Analyzed 10/17/18 16:00 Analyzed 11/05/18 08:08 Analyzed	Dil Fac Dil Fac 1 Dil Fac
Method: 7470A - Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier Ba Carrier	Radium-226 (Result 0.113 %Yield 101	/AA) Result <0.000070 GFPC) Qualifier Qualifier GFPC)	Count Uncert. (2σ+/-) 0.0655 Limits 40 - 110 Count	RL 0.00020 Total Uncert. (2σ+/-) 0.0663	MDL 0.000070	Unit mg/L	Unit	<u>D</u>	Prepared 10/16/18 10:42 Prepared 10/12/18 09:37 Prepared	Analyzed Analyzed 10/17/18 16:00 Analyzed 11/05/18 08:08 Analyzed	Dil Fac Dil Fac
Method: 7470A - Analyte Mercury Method: 9315 - F Analyte Radium-226 Carrier Ba Carrier	Radium-226 (Result 0.113 %Yield 101 Radium-228 (/AA) Result <0.000070 GFPC) Qualifier Qualifier GFPC)	Count Uncert. (2σ+/-) 0.0655 Limits 40 - 110	RL 0.00020 Total Uncert. (2σ+/-) 0.0663	MDL 0.000070 RL 1.00 0.00	Unit mg/L	Unit pCi/L	<u>D</u>	Prepared 10/16/18 10:42 Prepared 10/12/18 09:37 Prepared	Analyzed Analyzed 10/17/18 16:00 Analyzed 11/05/18 08:08 Analyzed	Dil Fac Dil Fac Dil Fac

Method: Ra226_Ra	1228 - Con	nbined Rad	dium-226 a	nd Radiun	n-228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.640		0.263	0.267	5.00	0.371	pCi/L		11/26/18 15:23	1

TestAmerica Pensacola

Analyzed

Dil Fac

Prepared

 10/12/18 10:51
 10/23/18 09:45

 10/12/18 10:51
 10/23/18 09:45

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-14

Date Received: 10/10/18 08:58

Date Collected: 10/08/18 13:30

Lab Sample ID: 400-160240-26

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			10/17/18 11:58	1
Method: 6020 - Metals	(ICP/MS) - Total Re	coverable	9						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		10/15/18 15:02	10/16/18 16:21	- 5
Arsenic	0.00097	JB	0.0013	0.00046	mg/L		10/15/18 15:02	10/16/18 16:21	5
Barium	0.053		0.0025	0.00049	mg/L		10/15/18 15:02	10/16/18 16:21	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		10/15/18 15:02	10/16/18 16:21	5
Cadmium	<0.00034		0.0025	0.00034	mg/L		10/15/18 15:02	10/16/18 16:21	5
Chromium	<0.0011		0.0025	0.0011	mg/L		10/15/18 15:02	10/16/18 16:21	5
Cobalt	0.0071		0.0025	0.00040	mg/L		10/15/18 15:02	10/16/18 16:21	5
Lead	< 0.00035		0.0013	0.00035	mg/L		10/15/18 15:02	10/16/18 16:21	5
Lithium	0.0011	J	0.0050	0.0011	mg/L		10/15/18 15:02	10/16/18 16:21	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		10/15/18 15:02	10/16/18 16:21	5
Selenium	<0.00024		0.0013	0.00024	mg/L		10/15/18 15:02	10/16/18 16:21	5
Thallium	<0.000085		0.00050	0.000085	mg/L		10/15/18 15:02	10/16/18 16:21	5
Method: 7470A - Merc	ury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		10/16/18 10:42	10/17/18 16:01	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.250		0.0910	0.0938	1.00	0.0878	pCi/L	10/12/18 09:37	11/05/18 08:08	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	102		40 - 110					10/12/18 09:37	11/05/18 08:08	1

Method: 9320 - Ra	idium-228 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.386	U	0.252	0.255	1.00	0.390	pCi/L	10/12/18 10:51	10/23/18 09:45	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	102		40 - 110					10/12/18 10:51	10/23/18 09:45	1
Y Carrier	76.6		40 - 110					10/12/18 10:51	10/23/18 09:45	1

Method: Ra226_Ra	228 - Coml	bined Rad	dium-226 a	nd Radiun	n- 228					
_			Count Uncert.	Total Uncert.						
Analyte	Result (Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.636		0.268	0.272	5.00	0.390	pCi/L		11/26/18 15:23	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-16

Lab Sample ID: 400-160240-27 Matrix: Water

Date Collected: 10/08/18 14:40 Date Received: 10/10/18 08:58

Method: 300.0 - Anio	ns, Ion Chromatogra	phy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			10/17/18 12:21	1
Method: 6020 - Metal	ls (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		10/15/18 15:02	10/16/18 16:25	5
Arsenic	0.0012	JB	0.0013	0.00046	mg/L		10/15/18 15:02	10/16/18 16:25	5
Barium	0.025		0.0025	0.00049	mg/L		10/15/18 15:02	10/16/18 16:25	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		10/15/18 15:02	10/16/18 16:25	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		10/15/18 15:02	10/16/18 16:25	5

0.0012 JB	0.0013	0.00046	mg/L	10/15/18 15:02	10/16/18 16:25	5
0.025	0.0025	0.00049	mg/L	10/15/18 15:02	10/16/18 16:25	5
<0.00034	0.0025	0.00034	mg/L	10/15/18 15:02	10/16/18 16:25	5
<0.00034	0.0025	0.00034	mg/L	10/15/18 15:02	10/16/18 16:25	5
0.013	0.0025	0.0011	mg/L	10/15/18 15:02	10/16/18 16:25	5
0.0044	0.0025	0.00040	mg/L	10/15/18 15:02	10/16/18 16:25	5
<0.00035	0.0013	0.00035	mg/L	10/15/18 15:02	10/16/18 16:25	5
0.0015 J	0.0050	0.0011	mg/L	10/15/18 15:02	10/16/18 16:25	5
<0.00085	0.015	0.00085	mg/L	10/15/18 15:02	10/16/18 16:25	5
0.0014	0.0013	0.00024	mg/L	10/15/18 15:02	10/16/18 16:25	5
<0.00085	0.00050	0.000085	mg/L	10/15/18 15:02	10/16/18 16:25	5
	0.025 <0.00034 <0.00034 0.013 0.0044 <0.00035 0.0015 J <0.00085 0.0014	0.025 0.0025 <0.00034	0.025 0.0025 0.00049 <0.00034	0.025 0.0025 0.00049 mg/L <0.00034	0.025 0.0025 0.00049 mg/L 10/15/18 15:02 <0.00034	0.025 0.0025 0.00049 mg/L 10/15/18 15:02 10/16/18 16:25 <0.00034

Method: 7470A - Mercury (CVAA)

Analyte	•	Qualifier	RL	MDL	Unit)	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		10/16/18 10:42	10/17/18 16:03	1

Method: 9315 - R	adium-226	(GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.160		0.0779	0.0792	1.00	0.0888	pCi/L	10/12/18 09:37	11/05/18 08:08	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.7		40 - 110					10/12/18 09:37	11/05/18 08:08	1

Method: 9320 - F	Radium-228 (GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.639		0.237	0.244	1.00	0.319	pCi/L	10/12/18 10:51	10/23/18 09:45	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	99.7		40 - 110					10/12/18 10:51	10/23/18 09:45	1
Y Carrier	84.1		40 - 110					10/12/18 10:51	10/23/18 09:45	1

Method: Ra226_Ra	228 - Con	nbined Ra	dium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.799		0.249	0.257	5.00	0.319	pCi/L		11/26/18 15:23	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-17 Date Collected: 10/08/18 10:30 Lab Sample ID: 400-160240-28

Date Received: 10/10/18 08:58

Matrix:	Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	mg/L			10/16/18 21:53	1
Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		10/15/18 15:02	10/16/18 16:30	5
Arsenic	0.0013	В	0.0013	0.00046	mg/L		10/15/18 15:02	10/16/18 16:30	5
Barium	0.021		0.0025	0.00049	mg/L		10/15/18 15:02	10/16/18 16:30	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		10/15/18 15:02	10/16/18 16:30	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		10/15/18 15:02	10/16/18 16:30	5
Chromium	0.0055		0.0025	0.0011	mg/L		10/15/18 15:02	10/16/18 16:30	5
Cobalt	0.00046	J	0.0025	0.00040	mg/L		10/15/18 15:02	10/16/18 16:30	5
Lead	< 0.00035		0.0013	0.00035	mg/L		10/15/18 15:02	10/16/18 16:30	5
Lithium	<0.0011		0.0050	0.0011	mg/L		10/15/18 15:02	10/16/18 16:30	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		10/15/18 15:02	10/16/18 16:30	5
Selenium	0.00028	J	0.0013	0.00024	mg/L		10/15/18 15:02	10/16/18 16:30	5
Thallium	<0.000085		0.00050	0.000085	mg/L		10/15/18 15:02	10/16/18 16:30	5
Method: 7470A - Mer	cury (CVAA)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		10/16/18 10:42	10/17/18 16:05	1

Method: 9315 - R	adium-226 (GFPC)								
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.182		0.0782	0.0799	1.00	0.0788	pCi/L	10/12/18 09:37	11/05/18 08:09	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	102	-	40 - 110					10/12/18 09:37	11/05/18 08:09	1

Method: 9320 - Ra	adium-228 (GFPC)	Count	Total						
Analyte	Popult	Qualifier	Uncert. (2σ+/-)	Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Allalyte	Resuit	Qualifier	(20+/-)	(20+/-)	KL	MDC	Ullit	Prepareu	Allalyzeu	DII Fac
Radium-228	0.500		0.227	0.231	1.00	0.322	pCi/L	10/12/18 10:51	10/23/18 09:45	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	102		40 - 110					10/12/18 10:51	10/23/18 09:45	1
Y Carrier	81.5		40 - 110					10/12/18 10:51	10/23/18 09:45	1

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.682		0.240	0.244	5.00	0.322	pCi/L	_	11/26/18 15:23	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: FD-1(AP)

Date Collected: 10/08/18 00:00 Date Received: 10/10/18 08:58

Ba Carrier

102

Lab Sample ID: 400-160240-29

<u>10/12/18 09:37</u> <u>11/05/18 08:09</u>

Matrix: Water

Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride		<0.082		0.20	0.082	mg/L			10/12/18 00:15	1
Method: 6020 - Me	etals (ICP/MS)	- Total Re	coverabl	е						
Analyte	,		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony		<0.0010		0.0025	0.0010	mg/L		10/15/18 15:02	10/16/18 16:34	- 5
Arsenic		0.0013	В	0.0013	0.00046	mg/L		10/15/18 15:02	10/16/18 16:34	5
Barium		0.022		0.0025	0.00049	mg/L		10/15/18 15:02	10/16/18 16:34	5
Beryllium		<0.00034		0.0025	0.00034	mg/L		10/15/18 15:02	10/16/18 16:34	5
Cadmium		<0.00034		0.0025	0.00034	mg/L		10/15/18 15:02	10/16/18 16:34	5
Chromium		0.0055		0.0025	0.0011	mg/L		10/15/18 15:02	10/16/18 16:34	5
Cobalt		0.00049	J	0.0025	0.00040	mg/L		10/15/18 15:02	10/16/18 16:34	5
Lead		<0.00035		0.0013	0.00035	mg/L		10/15/18 15:02	10/16/18 16:34	5
Lithium		<0.0011		0.0050	0.0011	mg/L		10/15/18 15:02	10/16/18 16:34	5
Molybdenum		<0.00085		0.015	0.00085	mg/L		10/15/18 15:02	10/16/18 16:34	5
Selenium		0.00030	J	0.0013	0.00024	mg/L		10/15/18 15:02	10/16/18 16:34	5
Thallium		<0.000085		0.00050	0.000085	mg/L		10/15/18 15:02	10/16/18 16:34	5
Method: 7470A - N	Mercury (CVAA	()								
Analyte	• •	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury		<0.000070		0.00020	0.000070	mg/L		10/16/18 10:42	10/17/18 16:07	1
Method: 9315 - Ra	ndium-226 (GFI	PC)								
	(,	Count	Total						
			Uncert.	Uncert.						
Analyte	Result Qua	alifier	(2σ+/-)	(2σ+/-)	RL N	MDC Unit		Prepared	Analyzed	Dil Fac
Radium-226	0.213		0.0805	0.0828	1.00 0.0	0684 pCi/L		10/12/18 09:37	11/05/18 08:09	1

Method: 9320 - F	Radium-228 ((GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.571		0.266	0.271	1.00	0.388	pCi/L	10/12/18 10:51	10/23/18 09:45	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	102		40 - 110					10/12/18 10:51	10/23/18 09:45	1
Y Carrier	78.5		40 - 110					10/12/18 10:51	10/23/18 09:45	1

40 - 110

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radiun	n- 228					
_			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.784		0.278	0.283	5.00	0.388	pCi/L		11/26/18 15:23	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: FD-2(AP)

Date Collected: 10/08/18 00:00

Lab Sample ID: 400-160240-30 Matrix: Water

Date Received: 10/10/18 08:58

Method: 300.0 - Anio	ons, Ion Chromatogra	iphy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	0.091	J	0.20	0.082	mg/L			10/12/18 00:38	1
- Method: 6020 - Meta	ls (ICP/MS) - Total Re	ecoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		10/15/18 15:02	10/16/18 16:39	5
Arsenic	0.0017	В	0.0013	0.00046	mg/L		10/15/18 15:02	10/16/18 16:39	5
Barium	0.092		0.0025	0.00049	mg/L		10/15/18 15:02	10/16/18 16:39	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		10/15/18 15:02	10/16/18 16:39	5
Cadmium	<0.00034		0.0025	0.00034	mg/L		10/15/18 15:02	10/16/18 16:39	5
Chromium	<0.0011		0.0025	0.0011	mg/L		10/15/18 15:02	10/16/18 16:39	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		10/15/18 15:02	10/16/18 16:39	5
Lead	<0.00035		0.0013	0.00035	mg/L		10/15/18 15:02	10/16/18 16:39	5
Lithium	0.0017	J	0.0050	0.0011	mg/L		10/15/18 15:02	10/16/18 16:39	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		10/15/18 15:02	10/16/18 16:39	5
Selenium	<0.00024		0.0013	0.00024	mg/L		10/15/18 15:02	10/16/18 16:39	5
Thallium	<0.000085		0.00050	0.000085	mg/L		10/15/18 15:02	10/16/18 16:39	5
_ Method: 7470A - Mei	cury (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		10/16/18 10:42	10/17/18 16:09	1

Method: 9315 - F	Radium-226 ((GFPC)	•							
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.214		0.0890	0.0910	1.00	0.0988	pCi/L	10/12/18 09:37	11/05/18 08:09	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					10/12/18 09:37	11/05/18 08:09	1

Method: 9320 - I	Radium-228 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.346	U	0.233	0.235	1.00	0.359	pCi/L	10/12/18 10:51	10/23/18 09:46	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	103		40 - 110					10/12/18 10:51	10/23/18 09:46	1
Y Carrier	78.5		40 - 110					10/12/18 10:51	10/23/18 09:46	1

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radiun	n-228					
			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.560		0.249	0.252	5.00	0.359	pCi/L		11/26/18 15:23	1

Client Sample Results

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-11

Date Collected: 10/16/18 10:50 Date Received: 10/19/18 09:04

Analyte

Carrier

Ba Carrier

Y Carrier

Radium-228

Lab Sample ID: 400-160240-31

Matrix: Water

Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride		7.8		1.0	0.89	mg/L			11/02/18 18:54	
Fluoride		<0.082		0.20	0.082	mg/L			11/02/18 18:54	
Sulfate		1.3		1.0	0.70	mg/L			11/02/18 18:54	
Method: 6020 - Metal	ls (ICP/N									
Analyte			Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Arsenic		<0.00046		0.0013	0.00046	-		11/09/18 11:00	11/09/18 15:29	
Barium		0.037		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 15:29	
Beryllium		<0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 15:29	
Boron		0.35		0.050	0.021	mg/L		11/09/18 11:00	11/09/18 15:29	
Cadmium		<0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 15:29	
Calcium		1.8		0.25	0.13	mg/L		11/09/18 11:00	11/09/18 15:29	
Chromium		<0.0011		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 15:29	
Cobalt		0.023		0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 15:29	
Lead		<0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 15:29	
Lithium		0.0031	J	0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 15:29	
Molybdenum		<0.00085		0.015	0.00085	mg/L		11/09/18 11:00	11/09/18 15:29	
Selenium		0.00046	J	0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 15:29	
Thallium		<0.000085		0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 15:29	
- Method: 7470A - Mer	cury (C\	/AA)								
Analyte		•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury		0.000072	JB	0.00020	0.000070	mg/L		11/08/18 10:02	11/09/18 15:42	
General Chemistry							_	Prepared	Analyzed	
		Result	Qualifier	RL	MDL	Unit	D			Dil Fa
General Chemistry Analyte Total Dissolved Solids		100 Result	Qualifier	- RL 5.0		mg/L	- –		10/22/18 14:36	Dil Fa
Analyte	.m-226 (100	Qualifier				- -		10/22/18 14:36	
Analyte Total Dissolved Solids	лт- 226 (100	Qualifier				- -		10/22/18 14:36	
Analyte Total Dissolved Solids	um-226 (100		5.0			- -		10/22/18 14:36	
Analyte Total Dissolved Solids Method: 9315 - Radiu	·	100	Count Uncert. (2σ+/-)	5.0 Total Uncert. (2σ+/-)	3.4 RL !	mg/L		Prepared	Analyzed	
Analyte Total Dissolved Solids Method: 9315 - Radiu	·	GFPC)	Count Uncert.	Total Uncert.	3.4 RL !	mg/L		Prepared		Dil Fa
Analyte Total Dissolved Solids	Result	GFPC)	Count Uncert. (2σ+/-)	5.0 Total Uncert. (2σ+/-)	3.4 RL !	mg/L		Prepared	Analyzed	

Analyzed

Analyzed

<u>10/25/18 11:56</u> <u>11/12/18 14:58</u>

<u>10/25/18 11:56</u> <u>11/12/18 14:58</u>

10/25/18 11:56 11/12/18 14:58

Count

Uncert.

 $(2\sigma + / -)$

0.308

Limits

40 - 110

40 - 110

Result Qualifier

%Yield Qualifier

0.858

93.2

82.2

Total

Uncert.

 $(2\sigma + / -)$

0.318

RL

1.00

MDC Unit

0.411 pCi/L

Prepared

Prepared

Dil Fac

Dil Fac

Client Sample Results

Client: Southern Company TestAmerica Job ID: 400-160240-1 Project/Site: CCR - Plant Scherer SDG: Ash Pond

Client Sample ID: SGWC-11 Lab Sample ID: 400-160240-31

Date Collected: 10/16/18 10:50 **Matrix: Water** Date Received: 10/19/18 09:04

Method: Ra226_Ra	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.06		0.320	0.330	5.00	0.411	pCi/L		11/26/18 15:23	1

5

5

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-15 Date Collected: 10/16/18 15:15 Lab Sample ID: 400-160240-32 Matrix: Water

Date Received: 10/19/18 09:04

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	10	1.0	0.89	mg/L			11/02/18 19:17	1
Fluoride	0.14 JB	0.20	0.082	mg/L			11/02/18 19:17	1

Method: 300.0 - Anions, Ion C	hromatography - DL						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	200	5.0	3.5 mg/L			11/05/18 15:32	5

Method: 6020 - Metals Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 15:47	
Barium	0.031		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 15:47	ţ
Beryllium	0.00040	J	0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 15:47	Ę
Boron	1.5		0.050	0.021	mg/L		11/09/18 11:00	11/09/18 15:47	
Cadmium	<0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 15:47	5
Calcium	16		0.25	0.13	mg/L		11/09/18 11:00	11/09/18 15:47	5
Chromium	0.032		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 15:47	5
Cobalt	0.27		0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 15:47	5
Lead	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 15:47	5
Lithium	0.0034	J	0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 15:47	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		11/09/18 11:00	11/09/18 15:47	5
Selenium	0.0021		0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 15:47	5
Thallium	0.00010	J	0.00050	0.000085	ma/L		11/09/18 11:00	11/09/18 15:47	5

Method: 7470A - Mercury (CVA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00013	JB	0.00020	0.000070	mg/L		11/08/18 10:02	11/09/18 15:44	1

General Chemistry								
Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	350	5.0	3.4	mg/L			10/22/18 14:36	1

Method: 9315 - F	Radium-226 ((GFPC)	Count	Total						
Analyte	Result	Qualifier	Uncert. (2σ+/-)	Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.214		0.0914	0.0934	1.00			10/25/18 10:07	11/20/18 05:47	1
Carrier Ba Carrier	% Yield 95.6	Qualifier	Limits 40 - 110					Prepared 10/25/18 10:07	Analyzed 11/20/18 05:47	Dil Fac

Method: 9320 -	Radium-228 (GFPC)								
		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.517	U	0.346	0.349	1.00	0.532	pCi/L	10/25/18 11:56	11/12/18 14:59	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	95.6		40 - 110					10/25/18 11:56	11/12/18 14:59	1
Y Carrier	61.7		40 - 110					10/25/18 11:56	11/12/18 14:59	1

Client Sample Results

Client: Southern Company TestAmerica Job ID: 400-160240-1 Project/Site: CCR - Plant Scherer

SDG: Ash Pond

Client Sample ID: SGWC-15 Lab Sample ID: 400-160240-32

Matrix: Water

Date Collected: 10/16/18 15:15 Date Received: 10/19/18 09:04

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Count	Total
Uncert.	Uncert.

Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.731	0.358	0.361	5.00	0.532 pCi/L		11/26/18 15:23	1

226 + 228

TestAmerica Job ID: 400-160240-1 SDG: Ash Pond

Client Sample ID: SGWC-18

Thallium

Method: 300.0 - Anions, Ion Chromatography

Date Collected: 10/18/18 09:05 Date Received: 10/20/18 08:28

0.00019 J

Lab Sample ID: 400-160240-45 **Matrix: Water**

11/09/18 11:00 11/09/18 16:36

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	16		5.0	4.5	mg/L			11/05/18 23:31	5
Fluoride	<0.41		1.0	0.41	mg/L			11/05/18 23:31	5
- Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0023		0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 16:36	5
Barium	0.033		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 16:36	5
Beryllium	< 0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 16:36	5
Cadmium	<0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 16:36	5
Calcium	100		0.25	0.13	mg/L		11/09/18 11:00	11/09/18 16:36	5
Chromium	0.0090		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 16:36	5
Cobalt	0.21		0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 16:36	5
Lead	< 0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 16:36	5
Lithium	0.0054		0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 16:36	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		11/09/18 11:00	11/09/18 16:36	5
Selenium	0.017		0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 16:36	5

Method: 6020 - Metals (ICP/MS	3) - Total Recoverable -	·DL					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Boron	4.9	0.25	0.11 mg/L		11/09/18 11:00	11/09/18 17:35	25

0.00050

0.000085 mg/L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic, Dissolved	0.0024		0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 17:28	5
Barium, Dissolved	0.034		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 17:28	5
Beryllium, Dissolved	0.00034	J	0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 17:28	5
Chromium, Dissolved	0.0089		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 17:28	5
Cobalt, Dissolved	0.21		0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 17:28	5
Iron, Dissolved	< 0.053		0.13	0.053	mg/L		11/09/18 11:00	11/09/18 17:28	5
Lead, Dissolved	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 17:28	5
Lithium, Dissolved	0.0061		0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 17:28	5
Selenium, Dissolved	0.017		0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 17:28	5
Thallium, Dissolved	0.00021	J	0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 17:28	5

Method: 7470A - Mercury (CVA	•								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00024		0.00020	0.000070	mg/L		11/08/18 12:53	11/13/18 10:07	1
_									

General Chemistry Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1200	10	6.8 mg/L			10/25/18 12:27	1

Method: 9315 - Ra	dium-226 (GFPC)							
		Count Uncert.	Total Uncert.					
Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.161	0.0806	0.0819	1.00	0.0917 pCi/L	10/29/18 11:40	11/20/18 11:17	1
Carrier	%Yield Qualifier	Limits				Prepared	Analyzed	Dil Fac
Ba Carrier	97.6	40 - 110				10/29/18 11:40	11/20/18 11:17	1

Client Sample Results

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Method:	9320 -	Radium-228	(GFPC)

Analyte Radium-228	Result 0.143	Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-) 0.250	RL 1.00	MDC 0.423	 Prepared 10/29/18 11:58	Analyzed 11/12/18 16:30	Dil Fac
Carrier Ba Carrier	%Yield 97.6	Qualifier	Limits 40 - 110				Prepared 10/29/18 11:58	Analyzed 11/12/18 16:30	Dil Fac
Y Carrier	77.4		40 - 110				10/29/18 11:58	11/12/18 16:30	1

Method: Ra226	Ra228 -	- Combined	Radium-226	and Radium-2	28
MICHICA: IXALLO	ILUEEU	COMBINE	Nualulli EEU	una nuanani L	

Welliou. Nazzo_Na	220 - CUII	inilien Va	lululli-226 a	iiu Nauiui	11-220				
			Count	Total					
			Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.304	U	0.263	0.263	5.00	0.423 pCi/L		11/26/18 15:23	1

+ 228

9

11

12

2

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-20

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 400-160240-46 Matrix: Water

Date Collected: 10/18/18 10:35 Date Received: 10/20/18 08:28

Analyte	,	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride		11		1.0	0.89	mg/L			11/03/18 05:11	1
Fluoride		0.23	В	0.20	0.082	mg/L			11/03/18 05:11	1
Method: 6020 - Meta	ls (ICP/N	IS) - Total Re	ecoverab	le						
Analyte	•		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic		<0.00046		0.0013	0.00046	mg/L		11/09/18 11:50	11/09/18 18:17	- 5
Barium		0.027		0.0025	0.00049	mg/L		11/09/18 11:50	11/09/18 18:17	5
Beryllium		0.00079	J	0.0025	0.00034	mg/L		11/09/18 11:50	11/09/18 18:17	5
Cadmium		<0.00034		0.0025	0.00034	mg/L		11/09/18 11:50	11/09/18 18:17	5
Calcium		12		0.25	0.13	mg/L		11/09/18 11:50	11/09/18 18:17	5
Chromium		<0.0011		0.0025	0.0011	mg/L		11/09/18 11:50	11/09/18 18:17	5
Cobalt		0.16		0.0025	0.00040	mg/L		11/09/18 11:50	11/09/18 18:17	5
Lead		< 0.00035		0.0013	0.00035	mg/L		11/09/18 11:50	11/09/18 18:17	5
Lithium		0.0062	В	0.0050	0.0011	mg/L		11/09/18 11:50	11/09/18 18:17	5
Molybdenum		<0.00085		0.015	0.00085	mg/L		11/09/18 11:50	11/09/18 18:17	5
Selenium		0.00049	J	0.0013	0.00024	mg/L		11/09/18 11:50	11/09/18 18:17	5
Thallium		0.00018	J	0.00050	0.000085	mg/L		11/09/18 11:50	11/09/18 18:17	5
Method: 6020 - Meta	ls (ICP/N									
Analyte			Qualifier	RL		Unit	_ D	Prepared	Analyzed	Dil Fac
Boron		2.3		0.25	0.11	mg/L		11/09/18 11:50	11/09/18 20:07	25
Method: 7470A - Mer	cury (C\	/AA)								
Analyte		Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Mercury		<0.000070		0.00020	0.000070	mg/L		11/08/18 12:53	11/13/18 10:05	1
General Chemistry										
Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids		370		5.0	3.4	mg/L			10/25/18 12:27	1
Method: 9315 - Radiu	ım-226 (GFPC)								
mounour corro reading	((0.1.0)	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC Unit		Prepared	Analyzed	Dil Fac
Radium-226	0.251		0.102	0.105		.103 pCi/L		10/25/18 10:04	11/20/18 07:54	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	91.4		40 - 110					10/25/18 10:04	11/20/18 07:54	1
-	J1.4		.0-110					. 5, 25, 10 10.04	, 20, 10 01.04	,
Method: 9320 - Radio	um- <mark>228</mark> ((GFPC)								
			Count	Total						

Analyzed

Analyzed

10/25/18 10:33 11/13/18 13:42

10/25/18 10:33 11/13/18 13:42

10/25/18 10:33 11/13/18 13:42

Uncert.

 $(2\sigma + / -)$

Limits

40 - 110

40 - 110

0.230

Result Qualifier

%Yield Qualifier

0.148 U

91.4

87.1

Analyte

Carrier

Ba Carrier

Y Carrier

Radium-228

Uncert.

 $(2\sigma + / -)$

0.231

RL

1.00

MDC Unit

0.388 pCi/L

Prepared

Prepared

Dil Fac

Dil Fac

Client Sample Results

Client: Southern Company TestAmerica Job ID: 400-160240-1 Project/Site: CCR - Plant Scherer

SDG: Ash Pond

Client Sample ID: SGWC-20 Lab Sample ID: 400-160240-46

Matrix: Water

Date Collected: 10/18/18 10:35 Date Received: 10/20/18 08:28

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Count	iotai	
Uncert.	Uncert.	

Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.399	0.252	0.254	5.00	0.388 pCi/L		11/26/18 15:23	1

226 + 228

Definitions/Glossary

Client: Southern Company Project/Site: CCR - Plant Scherer

Qualifier Description

Result is less than the sample detection limit.

Not Detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Quality Control

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Qualifiers

HPLC/IC

Qualifier	Qualifier Description
*	LCS or LCSD is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.

Metals

Qualifier	Qualifier Description
F1	MS and/or MSD Recovery is outside acceptance limits.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
E	Result exceeded calibration range.

Glossary

Rad Qualifier

ND

PQL

QC

RER

RL RPD

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated

TestAmerica Pensacola

2

1

4

6

8

10

12

13

1.4

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWA-1

Date Collected: 10/05/18 09:00 Date Received: 10/06/18 08:31

Lab Sample ID: 400-160240-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			415543	10/15/18 23:39	BAW	TAL PEN
Total Recoverable	Prep	3005A			415485	10/15/18 14:59	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 12:08	DRE	TAL PEN
Total/NA	Prep	7470A			415482	10/16/18 09:44	JAP	TAL PEN
Total/NA	Analysis	7470A		1	416025	10/18/18 12:57	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394199	10/10/18 11:51	JLC	TAL SL
Total/NA	Analysis	9315		1	398697	11/01/18 05:56	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394218	10/10/18 13:30	JLC	TAL SL
Total/NA	Analysis	9320		1	397302	10/25/18 09:44	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Lab Sample ID: 400-160240-2 **Client Sample ID: FB-1(AP) Matrix: Water**

Date Collected: 10/05/18 08:40

Date Received: 10/06/18 08:31

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			415543	10/16/18 00:02	BAW	TAL PEN
Total Recoverable	Prep	3005A			415485	10/15/18 14:59	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 12:58	DRE	TAL PEN
Total/NA	Prep	7470A			415482	10/16/18 09:44	JAP	TAL PEN
Total/NA	Analysis	7470A		1	416025	10/18/18 13:08	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394199	10/10/18 11:51	JLC	TAL SL
Total/NA	Analysis	9315		1	398697	11/01/18 05:57	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394218	10/10/18 13:30	JLC	TAL SL
Total/NA	Analysis	9320		1	397302	10/25/18 09:44	CDR	TAL SL
Total/NA	Analysis	Ra226 Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: SGWA-2 Lab Sample ID: 400-160240-3 Date Collected: 10/05/18 10:15 **Matrix: Water**

Date Received: 10/06/18 08:31

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	415543	10/16/18 00:25	BAW	TAL PEN
Total Recoverable	Prep	3005A			415485	10/15/18 14:59	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 13:02	DRE	TAL PEN
Total/NA	Prep	7470A			415482	10/16/18 09:44	JAP	TAL PEN
Total/NA	Analysis	7470A		1	416025	10/18/18 13:10	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394199	10/10/18 11:51	JLC	TAL SL
Total/NA	Analysis	9315		1	398697	11/01/18 05:57	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394218	10/10/18 13:30	JLC	TAL SL
Total/NA	Analysis	9320		1	397302	10/25/18 09:44	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

TestAmerica Pensacola

Page 54 of 110

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: EB-1(AP)

Lab Sample ID: 400-160240-4

Matrix: Water

Date Collected: 10/05/18 11:15 Date Received: 10/06/18 08:31

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	415543	10/16/18 00:48	BAW	TAL PEN
Total Recoverable	Prep	3005A			415485	10/15/18 14:59	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 13:07	DRE	TAL PEN
Total/NA	Prep	7470A			415482	10/16/18 09:44	JAP	TAL PEN
Total/NA	Analysis	7470A		1	416025	10/18/18 13:12	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394199	10/10/18 11:51	JLC	TAL SL
Total/NA	Analysis	9315		1	398697	11/01/18 05:57	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394218	10/10/18 13:30	JLC	TAL SL
Total/NA	Analysis	9320		1	397302	10/25/18 09:45	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: SGWA-3

Lab Sample ID: 400-160240-5 Date Collected: 10/05/18 09:45

Matrix: Water

Date Received: 10/06/18 08:31

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	415543	10/16/18 01:10	BAW	TAL PEN
Total Recoverable	Prep	3005A			415485	10/15/18 14:59	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 13:11	DRE	TAL PEN
Total/NA	Prep	7470A			415482	10/16/18 09:44	JAP	TAL PEN
Total/NA	Analysis	7470A		1	416025	10/18/18 13:13	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394199	10/10/18 11:51	JLC	TAL SL
Total/NA	Analysis	9315		1	398697	11/01/18 05:57	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394218	10/10/18 13:30	JLC	TAL SL
Total/NA	Analysis	9320		1	397302	10/25/18 09:45	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: SGWA-24

Date Collected: 10/05/18 11:15 Date Received: 10/06/18 08:31

Date Received:	10/06/16 0	0:31						
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			415543	10/16/18 02:19	BAW	TAL PEN
Total Recoverable	Prep	3005A			415485	10/15/18 14:59	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 13:16	DRE	TAL PEN
Total/NA	Prep	7470A			415482	10/16/18 09:44	JAP	TAL PEN
Total/NA	Analysis	7470A		1	416025	10/18/18 13:15	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394199	10/10/18 11:51	JLC	TAL SL
Total/NA	Analysis	9315		1	398697	11/01/18 05:57	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394218	10/10/18 13:30	JLC	TAL SL
Total/NA	Analysis	9320		1	397302	10/25/18 09:45	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

TestAmerica Pensacola

Page 55 of 110

Lab Sample ID: 400-160240-6 **Matrix: Water**

11/30/2018

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-22

Lab Sample ID: 400-160240-7

Matrix: Water

Date Collected: 10/08/18 14:20 Date Received: 10/10/18 08:58

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	415543	10/16/18 02:42	BAW	TAL PEN
Total Recoverable	Prep	3005A			415485	10/15/18 14:59	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 13:20	DRE	TAL PEN
Total/NA	Prep	7470A			415495	10/16/18 10:16	DRE	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 14:43	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394786	10/12/18 11:33	JLC	TAL SL
Total/NA	Analysis	9315		1	399232	11/05/18 10:16	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394791	10/12/18 12:42	JLC	TAL SL
Total/NA	Analysis	9320		1	398413	10/31/18 17:01	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Lab Sample ID: 400-160240-8 **Client Sample ID: SGWC-23**

Matrix: Water

Date Collected: 10/08/18 15:50 Date Received: 10/10/18 08:58

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			415543	10/16/18 03:05	BAW	TAL PEN
Total Recoverable	Prep	3005A			415485	10/15/18 14:59	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 13:24	DRE	TAL PEN
Total/NA	Prep	7470A			415495	10/16/18 10:16	DRE	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 15:00	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394786	10/12/18 11:33	JLC	TAL SL
Total/NA	Analysis	9315		1	399232	11/05/18 10:16	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394791	10/12/18 12:42	JLC	TAL SL
Total/NA	Analysis	9320		1	398413	10/31/18 17:01	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Lab Sample ID: 400-160240-9 **Client Sample ID: EB-2(AP)**

Date Collected: 10/08/18 16:30 **Matrix: Water**

Date Received: 10/10/18 08:58

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	415543	10/16/18 04:13	BAW	TAL PEN
Total Recoverable	Prep	3005A			415485	10/15/18 14:59	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 13:29	DRE	TAL PEN
Total/NA	Prep	7470A			415495	10/16/18 10:16	DRE	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 15:02	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394786	10/12/18 11:33	JLC	TAL SL
Total/NA	Analysis	9315		1	399232	11/05/18 10:16	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394791	10/12/18 12:42	JLC	TAL SL
Total/NA	Analysis	9320		1	398413	10/31/18 17:01	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-21

Date Collected: 10/08/18 12:05 Date Received: 10/10/18 08:58

Lab Sample ID: 400-160240-10

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	415543	10/16/18 04:36	BAW	TAL PEN
Total Recoverable	Prep	3005A			415485	10/15/18 14:59	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 13:33	DRE	TAL PEN
Total/NA	Prep	7470A			415495	10/16/18 10:16	DRE	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 15:04	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394786	10/12/18 11:33	JLC	TAL SL
Total/NA	Analysis	9315		1	399232	11/05/18 10:16	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394791	10/12/18 12:42	JLC	TAL SL
Total/NA	Analysis	9320		1	398413	10/31/18 17:01	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: SGWC-7

Date Collected: 10/09/18 09:25

Lab Sample ID: 400-160240-11

Matrix: Water

Date Received: 10/10/18 08:58

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			415684	10/17/18 02:27	BAW	TAL PEN
Total Recoverable	Prep	3005A			415485	10/15/18 14:59	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 14:00	DRE	TAL PEN
Total/NA	Prep	7470A			415495	10/16/18 10:16	DRE	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 15:06	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394786	10/12/18 11:33	JLC	TAL SL
Total/NA	Analysis	9315		1	399232	11/05/18 10:17	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394791	10/12/18 12:42	JLC	TAL SL
Total/NA	Analysis	9320		1	398414	10/31/18 17:03	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: SGWC-8

Date Collected: 10/09/18 10:35

Date Received: 10/10/18 08:58

Lab Sample ID: 400-160240-12

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			415684	10/17/18 02:50	BAW	TAL PEN
Total Recoverable	Prep	3005A			415485	10/15/18 14:59	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 14:05	DRE	TAL PEN
Total/NA	Prep	7470A			415495	10/16/18 10:16	DRE	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 15:08	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394786	10/12/18 11:33	JLC	TAL SL
Total/NA	Analysis	9315		1	399232	11/05/18 10:17	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394791	10/12/18 12:42	JLC	TAL SL
Total/NA	Analysis	9320		1	398414	10/31/18 17:03	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-9

Date Collected: 10/09/18 10:20 Date Received: 10/10/18 08:58

Lab Sample ID: 400-160240-13

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			415543	10/16/18 05:44	BAW	TAL PEN
Total Recoverable	Prep	3005A			415485	10/15/18 14:59	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 14:09	DRE	TAL PEN
Total/NA	Prep	7470A			415608	10/16/18 10:42	JAP	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 15:13	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394786	10/12/18 11:33	JLC	TAL SL
Total/NA	Analysis	9315		1	399232	11/05/18 10:17	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394791	10/12/18 12:42	JLC	TAL SL
Total/NA	Analysis	9320		1	398414	10/31/18 17:03	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: SGWC-10

Date Collected: 10/09/18 09:10

Date Received: 10/10/18 08:58

Lab Sample ID: 400-160240-14

Matrix: Water

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 300.0 415543 10/16/18 06:07 BAW TAL PEN Total Recoverable Prep 3005A 415485 10/15/18 14:59 DRE TAL PEN Total Recoverable Analysis 6020 5 415796 10/16/18 14:20 DRE TAL PEN 7470A Total/NA Prep 415608 10/16/18 10:42 JAP TAL PEN Total/NA Analysis 7470A 415840 10/17/18 15:30 JAP TAL PEN 1 Total/NA Prep PrecSep-21 394786 10/12/18 11:33 JLC TAL SL Total/NA Analysis 9315 399232 11/05/18 10:17 CDR TAL SL TAL SI Total/NA PrecSep 0 Pren 394791 10/12/18 12:42 JLC T

Date Collected: 10/09/18 08:50

Date Received: 10/10/18 08:58

Date Collected: 10/09/18 08:50							Matrix: Water
Client Sample ID: SGWC-19					Lab S	Sample ID: 400	0-160240-15
Total/NA	Analysis	Ra226_Ra228	1	402686	11/26/18 15:23 RTM	TAL SL	
Total/NA	Analysis	9320	1	398414	10/31/18 17:03 CDR	TAL SL	
10(0)/14/	1 100	1 1000cp_0		00-1701	10/12/10 12.42 020	ITAL OL	

Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			415749	10/17/18 13:07	BAW	TAL PEN
Total Recoverable	Prep	3005A			415485	10/15/18 14:59	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 14:25	DRE	TAL PEN
Total/NA	Prep	7470A			415608	10/16/18 10:42	JAP	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 15:32	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394786	10/12/18 11:33	JLC	TAL SL
Total/NA	Analysis	9315		1	399232	11/05/18 10:17	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394791	10/12/18 12:42	JLC	TAL SL
Total/NA	Analysis	9320		1	398414	10/31/18 17:03	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

TestAmerica Job ID: 400-160240-1 SDG: Ash Pond

Client Sample ID: FD-3(AP) Date Collected: 10/09/18 00:00

Lab Sample ID: 400-160240-16

Matrix: Water

Date Received: 10/10/18 08:58

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	415684	10/16/18 19:13	BAW	TAL PEN
Total Recoverable	Prep	3005A			415485	10/15/18 14:59	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 14:29	DRE	TAL PEN
Total/NA	Prep	7470A			415608	10/16/18 10:42	JAP	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 15:34	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394786	10/12/18 11:33	JLC	TAL SL
Total/NA	Analysis	9315		1	399232	11/05/18 10:17	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394791	10/12/18 12:42	JLC	TAL SL
Total/NA	Analysis	9320		1	398414	10/31/18 17:03	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: FB-3(AP)

Lab Sample ID: 400-160240-17 Date Collected: 10/09/18 08:45

402686 11/26/18 15:23 RTM

Matrix: Water

Date Received: 10/10/18 08:58

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 300.0 415684 10/16/18 22:16 BAW TAL PEN Total Recoverable Prep 3005A 415485 10/15/18 14:59 DRE TAL PEN Total Recoverable Analysis 6020 5 415796 10/16/18 14:34 DRE TAL PEN Total/NA Prep 7470A 415608 10/16/18 10:42 JAP TAL PEN 7470A Total/NA Analysis 415840 10/17/18 15:36 JAP TAL PEN 1 Total/NA Prep PrecSep-21 394786 10/12/18 11:33 JLC TAL SL Total/NA Analysis 9315 399232 11/05/18 10:17 CDR TAL SL 1 Total/NA Prep PrecSep 0 394791 10/12/18 12:42 JLC TAL SL Total/NA 9320 398414 10/31/18 17:04 CDR TAL SL Analysis 1

Client Sample ID: EB-3(AP)

Analysis

Ra226_Ra228

Date Collected: 10/09/18 11:30

Total/NA

Date Received: 10/10/18 08:58

_ab	Samp	le ID:	400-1	160240)-18

TAL SL

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	415749	10/17/18 07:24	BAW	TAL PEN
Total Recoverable	Prep	3005A			415485	10/15/18 14:59	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 14:38	DRE	TAL PEN
Total/NA	Prep	7470A			415608	10/16/18 10:42	JAP	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 15:38	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394786	10/12/18 11:33	JLC	TAL SL
Total/NA	Analysis	9315		1	399232	11/05/18 10:17	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394791	10/12/18 12:42	JLC	TAL SL
Total/NA	Analysis	9320		1	398414	10/31/18 17:04	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

TestAmerica Job ID: 400-160240-1 SDG: Ash Pond

Client Sample ID: SGWA-25

Date Collected: 10/08/18 14:20 Date Received: 10/10/18 08:58

Lab Sample ID: 400-160240-19

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	415749	10/17/18 07:47	BAW	TAL PEN
Total Recoverable	Prep	3005A			415485	10/15/18 14:59	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 14:43	DRE	TAL PEN
Total/NA	Prep	7470A			415608	10/16/18 10:42	JAP	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 15:39	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394786	10/12/18 11:33	JLC	TAL SL
Total/NA	Analysis	9315		1	399232	11/05/18 10:18	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394791	10/12/18 12:42	JLC	TAL SL
Total/NA	Analysis	9320		1	398414	10/31/18 17:04	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: SGWA-4

Date Collected: 10/08/18 13:15

Date Received: 10/10/18 08:58

Lab Sample ID: 400-160240-20

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			415749	10/17/18 08:55	BAW	TAL PEN
Total Recoverable	Prep	3005A			415485	10/15/18 14:59	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 15:05	DRE	TAL PEN
Total/NA	Prep	7470A			415608	10/16/18 10:42	JAP	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 15:41	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394786	10/12/18 11:33	JLC	TAL SL
Total/NA	Analysis	9315		1	399232	11/05/18 10:18	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394791	10/12/18 12:42	JLC	TAL SL
Total/NA	Analysis	9320		1	398414	10/31/18 17:04	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: SGWA-5

Date Collected: 10/08/18 10:45

Date Received: 10/10/18 08:58

₋ab Sampl	le ID:	400-1	6024	40-21
		Ma	atrix:	Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			415749	10/17/18 09:18	BAW	TAL PEN
Total Recoverable	Prep	3005A			415486	10/15/18 15:02	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 15:23	DRE	TAL PEN
Total/NA	Prep	7470A			415608	10/16/18 10:42	JAP	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 15:43	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394766	10/12/18 09:37	JLC	TAL SL
Total/NA	Analysis	9315		1	399234	11/05/18 05:59	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394779	10/12/18 10:51	JLC	TAL SL
Total/NA	Analysis	9320		1	396712	10/23/18 09:44	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Page 60 of 110

TestAmerica Job ID: 400-160240-1 SDG: Ash Pond

Client Sample ID: SGWC-6

Date Collected: 10/08/18 15:25 Date Received: 10/10/18 08:58

Lab Sample ID: 400-160240-22

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	415749	10/17/18 09:41	BAW	TAL PEN
Total Recoverable	Prep	3005A			415486	10/15/18 15:02	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 15:45	DRE	TAL PEN
Total/NA	Prep	7470A			415608	10/16/18 10:42	JAP	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 15:45	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394766	10/12/18 09:37	JLC	TAL SL
Total/NA	Analysis	9315		1	399234	11/05/18 05:59	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394779	10/12/18 10:51	JLC	TAL SL
Total/NA	Analysis	9320		1	396712	10/23/18 09:44	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: SGWC-12

Date Collected: 10/08/18 10:40 Date Received: 10/10/18 08:58

Lab Sample ID: 400-160240-23

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	415749	10/17/18 10:04	BAW	TAL PEN
Total Recoverable	Prep	3005A			415486	10/15/18 15:02	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 15:49	DRE	TAL PEN
Total/NA	Prep	7470A			415608	10/16/18 10:42	JAP	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 15:56	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394766	10/12/18 09:37	JLC	TAL SL
Total/NA	Analysis	9315		1	399234	11/05/18 05:59	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394779	10/12/18 10:51	JLC	TAL SL
Total/NA	Analysis	9320		1	396712	10/23/18 09:45	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: FB-2(AP)

Date Collected: 10/08/18 10:15

Date Received: 10/10/18 08:58

Lab Sample ID: 400-160240-24 **Matrix: Water**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			415749	10/17/18 10:27	BAW	TAL PEN
Total Recoverable	Prep	3005A			415486	10/15/18 15:02	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 16:12	DRE	TAL PEN
Total/NA	Prep	7470A			415608	10/16/18 10:42	JAP	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 15:58	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394766	10/12/18 09:37	JLC	TAL SL
Total/NA	Analysis	9315		1	399234	11/05/18 05:59	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394779	10/12/18 10:51	JLC	TAL SL
Total/NA	Analysis	9320		1	396712	10/23/18 09:45	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-13

Date Collected: 10/08/18 12:25 Date Received: 10/10/18 08:58

Lab Sample ID: 400-160240-25

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	415749	10/17/18 11:35	BAW	TAL PEN
Total Recoverable	Prep	3005A			415486	10/15/18 15:02	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 16:16	DRE	TAL PEN
Total/NA	Prep	7470A			415608	10/16/18 10:42	JAP	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 16:00	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394766	10/12/18 09:37	JLC	TAL SL
Total/NA	Analysis	9315		1	399234	11/05/18 08:08	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394779	10/12/18 10:51	JLC	TAL SL
Total/NA	Analysis	9320		1	396712	10/23/18 09:45	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: SGWC-14

Date Collected: 10/08/18 13:30

Lab Sample ID: 400-160240-26

Matrix: Water

Date Received: 10/10/18 08:58

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	415749	10/17/18 11:58	BAW	TAL PEN
Total Recoverable	Prep	3005A			415486	10/15/18 15:02	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 16:21	DRE	TAL PEN
Total/NA	Prep	7470A			415608	10/16/18 10:42	JAP	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 16:01	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394766	10/12/18 09:37	JLC	TAL SL
Total/NA	Analysis	9315		1	399234	11/05/18 08:08	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394779	10/12/18 10:51	JLC	TAL SL
Total/NA	Analysis	9320		1	396712	10/23/18 09:45	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Date Collected: 10/08/18 14:40

Date Received: 10/10/18 08:58

Date Collected: 10/08/18 14:40					Matrix: W				
Client San	ple ID: SG	NC-16		Lab Sample ID: 400-16024					
Total/NA	Analysis	Ra226_Ra228	1	402686	11/26/18 15:23	RTM	TAL SL		
Total/NA	Analysis	9320	1	396712	10/23/18 09:45	CDR	TAL SL		
Total/NA	Prep	PrecSep_0		394779	10/12/18 10:51	JLC	TAL SL		

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type Total/NA	Type Analysis	Method 300.0	Run		Number 415749	or Analyzed 10/17/18 12:21	Analyst BAW	Lab TAL PEN
Total Recoverable Total Recoverable	Prep Analysis	3005A 6020		5	415486 415796	10/15/18 15:02 10/16/18 16:25		TAL PEN TAL PEN
Total/NA Total/NA	Prep Analysis	7470A 7470A		1	415608 415840	10/16/18 10:42 10/17/18 16:03	** "	TAL PEN TAL PEN
Total/NA Total/NA	Prep Analysis	PrecSep-21 9315		1	394766 399234	10/12/18 09:37 11/05/18 08:08		TAL SL TAL SL
Total/NA Total/NA	Prep Analysis	PrecSep_0 9320		1	394779 396712	10/12/18 10:51 10/23/18 09:45		TAL SL TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

TestAmerica Job ID: 400-160240-1 SDG: Ash Pond

Client Sample ID: SGWC-17

Date Collected: 10/08/18 10:30 Date Received: 10/10/18 08:58

Lab Sample ID: 400-160240-28

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			415684	10/16/18 21:53	BAW	TAL PEN
Total Recoverable	Prep	3005A			415486	10/15/18 15:02	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 16:30	DRE	TAL PEN
Total/NA	Prep	7470A			415608	10/16/18 10:42	JAP	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 16:05	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394766	10/12/18 09:37	JLC	TAL SL
Total/NA	Analysis	9315		1	399234	11/05/18 08:09	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394779	10/12/18 10:51	JLC	TAL SL
Total/NA	Analysis	9320		1	396712	10/23/18 09:45	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: FD-1(AP)

Date Collected: 10/08/18 00:00

Lab Sample ID: 400-160240-29

Matrix: Water

Date Received: 10/10/18 08:58

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			415062	10/12/18 00:15	BAW	TAL PEN
Total Recoverable	Prep	3005A			415486	10/15/18 15:02	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 16:34	DRE	TAL PEN
Total/NA	Prep	7470A			415608	10/16/18 10:42	JAP	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 16:07	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394766	10/12/18 09:37	JLC	TAL SL
Total/NA	Analysis	9315		1	399234	11/05/18 08:09	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394779	10/12/18 10:51	JLC	TAL SL
Total/NA	Analysis	9320		1	396712	10/23/18 09:45	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: FD-2(AP)

Date Collected: 10/08/18 00:00

Date Received: 10/10/18 08:58

Lab Sample ID: 400-16	0240-30
Matı	ix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	415062	10/12/18 00:38	BAW	TAL PEN
Total Recoverable	Prep	3005A			415486	10/15/18 15:02	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	415796	10/16/18 16:39	DRE	TAL PEN
Total/NA	Prep	7470A			415608	10/16/18 10:42	JAP	TAL PEN
Total/NA	Analysis	7470A		1	415840	10/17/18 16:09	JAP	TAL PEN
Total/NA	Prep	PrecSep-21			394766	10/12/18 09:37	JLC	TAL SL
Total/NA	Analysis	9315		1	399234	11/05/18 08:09	CDR	TAL SL
Total/NA	Prep	PrecSep_0			394779	10/12/18 10:51	JLC	TAL SL
Total/NA	Analysis	9320		1	396712	10/23/18 09:46	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-11

Lab Sample ID: 400-160240-31 Date Collected: 10/16/18 10:50 Date Received: 10/19/18 09:04

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			418094	11/02/18 18:54	BAW	TAL PEN
Total Recoverable	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 15:29	DRE	TAL PEN
Total/NA	Prep	7470A			418701	11/08/18 10:02	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419038	11/09/18 15:42	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	416446	10/22/18 14:36	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			397279	10/25/18 10:07	JLC	TAL SL
Total/NA	Analysis	9315		1	401802	11/20/18 05:47	CDR	TAL SL
Total/NA	Prep	PrecSep_0			397318	10/25/18 11:56	JLC	TAL SL
Total/NA	Analysis	9320		1	400469	11/12/18 14:58	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Lab Sample ID: 400-160240-32 **Client Sample ID: SGWC-15**

Matrix: Water

Date Collected: 10/16/18 15:15 Date Received: 10/19/18 09:04

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	418094	11/02/18 19:17	BAW	TAL PEN
Total/NA	Analysis	300.0	DL	5	418361	11/05/18 15:32	BAW	TAL PEN
Total Recoverable	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 15:47	DRE	TAL PEN
Total/NA	Prep	7470A			418701	11/08/18 10:02	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419038	11/09/18 15:44	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	416446	10/22/18 14:36	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			397279	10/25/18 10:07	JLC	TAL SL
Total/NA	Analysis	9315		1	401802	11/20/18 05:47	CDR	TAL SL
Total/NA	Prep	PrecSep_0			397318	10/25/18 11:56	JLC	TAL SL
Total/NA	Analysis	9320		1	400469	11/12/18 14:59	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: SGWC-18 Lab Sample ID: 400-160240-45

Date Collected: 10/18/18 09:05 Date Received: 10/20/18 08:28

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		5	418361	11/05/18 23:31	BAW	TAL PEN
Dissolved	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Dissolved	Analysis	6020		5	419210	11/09/18 17:28	DRE	TAL PEN
Total Recoverable	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 16:36	DRE	TAL PEN
Total Recoverable	Prep	3005A	DL		418952	11/09/18 11:00	KWN	TAL PEN
Total Recoverable	Analysis	6020	DL	25	419210	11/09/18 17:35	DRE	TAL PEN

TestAmerica Pensacola

Matrix: Water

Lab Chronicle

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Client Sample ID: SGWC-18

Date Collected: 10/18/18 09:05 Date Received: 10/20/18 08:28

Lab Sample ID: 400-160240-45

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	7470A			418848	11/08/18 12:53	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419409	11/13/18 10:07	JAP	TAL PEN
Total/NA	Analysis	SM 2540C		1	416940	10/25/18 12:27	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			398027	10/29/18 11:40	JLC	TAL SL
Total/NA	Analysis	9315		1	401803	11/20/18 11:17	CDR	TAL SL
Total/NA	Prep	PrecSep_0			398030	10/29/18 11:58	JLC	TAL SL
Total/NA	Analysis	9320		1	400470	11/12/18 16:30	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: SGWC-20 Lab Sample ID: 400-160240-46

Matrix: Water Date Collected: 10/18/18 10:35 Date Received: 10/20/18 08:28

Batch **Batch** Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 300.0 418296 11/03/18 05:11 BAW TAL PEN Total Recoverable Prep 3005A 418964 11/09/18 11:50 KWN **TAL PEN** Total Recoverable Analysis 6020 5 419210 11/09/18 18:17 DRE TAL PEN Total Recoverable Prep 3005A DL 418964 11/09/18 11:50 KWN TAL PEN Total Recoverable Analysis 6020 DL 25 419210 11/09/18 20:07 DRE TAL PEN Total/NA Prep 7470A 418848 11/08/18 12:53 JAP TAL PEN Total/NA 7470A 419409 11/13/18 10:05 JAP TAL PEN Analysis 1 Total/NA Analysis SM 2540C 416940 10/25/18 12:27 CLB **TAL PEN** TAL SL Total/NA Prep PrecSep-21 397276 10/25/18 10:04 JLC Total/NA Analysis 9315 1 401803 11/20/18 07:54 CDR TAL SL TAL SL Total/NA Prep PrecSep_0 397294 10/25/18 10:33 JLC Total/NA 9320 400703 11/13/18 13:42 CDR TAL SL Analysis 1 TAL SL Total/NA Analysis Ra226_Ra228 1 402686 11/26/18 15:23 RTM

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001 TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

HPLC/IC

Analysis Batch: 415062

Client: Southern Company Project/Site: CCR - Plant Scherer

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-29	FD-1(AP)	Total/NA	Water	300.0	
400-160240-30	FD-2(AP)	Total/NA	Water	300.0	
MB 400-415062/17	Method Blank	Total/NA	Water	300.0	
LCS 400-415062/38	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-415062/39	Lab Control Sample Dup	Total/NA	Water	300.0	
400-160367-I-1 MS	Matrix Spike	Total/NA	Water	300.0	
400-160367-I-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Analysis Batch: 415543

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
400-160240-1	SGWA-1	Total/NA	Water	300.0	
400-160240-2	FB-1(AP)	Total/NA	Water	300.0	
400-160240-3	SGWA-2	Total/NA	Water	300.0	
400-160240-4	EB-1(AP)	Total/NA	Water	300.0	
400-160240-5	SGWA-3	Total/NA	Water	300.0	
400-160240-6	SGWA-24	Total/NA	Water	300.0	
400-160240-7	SGWC-22	Total/NA	Water	300.0	
400-160240-8	SGWC-23	Total/NA	Water	300.0	
400-160240-9	EB-2(AP)	Total/NA	Water	300.0	
400-160240-10	SGWC-21	Total/NA	Water	300.0	
400-160240-13	SGWC-9	Total/NA	Water	300.0	
400-160240-14	SGWC-10	Total/NA	Water	300.0	
MB 400-415543/36	Method Blank	Total/NA	Water	300.0	
LCS 400-415543/37	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-415543/38	Lab Control Sample Dup	Total/NA	Water	300.0	
400-160196-D-3 MS	Matrix Spike	Total/NA	Water	300.0	
400-160196-D-3 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Analysis Batch: 415684

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-11	SGWC-7	Total/NA	Water	300.0	
400-160240-12	SGWC-8	Total/NA	Water	300.0	
400-160240-16	FD-3(AP)	Total/NA	Water	300.0	
400-160240-17	FB-3(AP)	Total/NA	Water	300.0	
400-160240-28	SGWC-17	Total/NA	Water	300.0	
MB 400-415684/21	Method Blank	Total/NA	Water	300.0	
LCS 400-415684/22	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-415684/23	Lab Control Sample Dup	Total/NA	Water	300.0	
400-160284-B-2 MS	Matrix Spike	Total/NA	Water	300.0	
400-160284-B-3 MS	Matrix Spike	Total/NA	Water	300.0	
400-160284-B-3 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Analysis Batch: 415749

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-15	SGWC-19	Total/NA	Water	300.0	
400-160240-18	EB-3(AP)	Total/NA	Water	300.0	
400-160240-19	SGWA-25	Total/NA	Water	300.0	
400-160240-20	SGWA-4	Total/NA	Water	300.0	
400-160240-21	SGWA-5	Total/NA	Water	300.0	
400-160240-22	SGWC-6	Total/NA	Water	300.0	
400-160240-23	SGWC-12	Total/NA	Water	300.0	

TestAmerica Pensacola

Page 66 of 110

6

3

4

6

8

4.0

11

1.4

11/30/2018

Project/Site: CCR - Plant Scherer

HPLC/IC (Continued)

Client: Southern Company

Analysis Batch: 415749 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-24	FB-2(AP)	Total/NA	Water	300.0	
400-160240-25	SGWC-13	Total/NA	Water	300.0	
400-160240-26	SGWC-14	Total/NA	Water	300.0	
400-160240-27	SGWC-16	Total/NA	Water	300.0	
MB 400-415749/4	Method Blank	Total/NA	Water	300.0	
LCS 400-415749/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-415749/6	Lab Control Sample Dup	Total/NA	Water	300.0	
400-160302-A-1 MS	Matrix Spike	Total/NA	Water	300.0	
400-160302-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Analysis Batch: 418094

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-31	SGWC-11	Total/NA	Water	300.0	
400-160240-32	SGWC-15	Total/NA	Water	300.0	
MB 400-418094/4	Method Blank	Total/NA	Water	300.0	
LCS 400-418094/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-418094/6	Lab Control Sample Dup	Total/NA	Water	300.0	
400-161260-E-1 MS	Matrix Spike	Total/NA	Water	300.0	
400-161260-E-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Analysis Batch: 418296

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-46	SGWC-20	Total/NA	Water	300.0	_
MB 400-418296/40	Method Blank	Total/NA	Water	300.0	
LCS 400-418296/46	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-418296/47	Lab Control Sample Dup	Total/NA	Water	300.0	
400-161260-E-3 MS	Matrix Spike	Total/NA	Water	300.0	
400-161260-E-3 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Analysis Batch: 418361

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-32 - DL	SGWC-15	Total/NA	Water	300.0	_
400-160240-45	SGWC-18	Total/NA	Water	300.0	
MB 400-418361/4	Method Blank	Total/NA	Water	300.0	
LCS 400-418361/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-418361/6	Lab Control Sample Dup	Total/NA	Water	300.0	
400-161340-H-3 MS	Matrix Spike	Total/NA	Water	300.0	
400-161340-H-3 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Metals

Prep Batch: 415482

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-1	SGWA-1	Total/NA	Water	7470A	_
400-160240-2	FB-1(AP)	Total/NA	Water	7470A	
400-160240-3	SGWA-2	Total/NA	Water	7470A	
400-160240-4	EB-1(AP)	Total/NA	Water	7470A	
400-160240-5	SGWA-3	Total/NA	Water	7470A	
400-160240-6	SGWA-24	Total/NA	Water	7470A	
MB 400-415482/13-A	Method Blank	Total/NA	Water	7470A	

TestAmerica Pensacola

Page 67 of 110

2

3

4

6

8

11

12

4 4

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Metals (Continued)

Prep Batch: 415482 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 400-415482/14-A	Lab Control Sample	Total/NA	Water	7470A	
400-160138-B-1-E MS	Matrix Spike	Total/NA	Water	7470A	
400-160138-B-1-F MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Prep Batch: 415485

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-1	SGWA-1	Total Recoverable	Water	3005A	
400-160240-2	FB-1(AP)	Total Recoverable	Water	3005A	
400-160240-3	SGWA-2	Total Recoverable	Water	3005A	
400-160240-4	EB-1(AP)	Total Recoverable	Water	3005A	
400-160240-5	SGWA-3	Total Recoverable	Water	3005A	
400-160240-6	SGWA-24	Total Recoverable	Water	3005A	
400-160240-7	SGWC-22	Total Recoverable	Water	3005A	
400-160240-8	SGWC-23	Total Recoverable	Water	3005A	
400-160240-9	EB-2(AP)	Total Recoverable	Water	3005A	
400-160240-10	SGWC-21	Total Recoverable	Water	3005A	
400-160240-11	SGWC-7	Total Recoverable	Water	3005A	
400-160240-12	SGWC-8	Total Recoverable	Water	3005A	
400-160240-13	SGWC-9	Total Recoverable	Water	3005A	
400-160240-14	SGWC-10	Total Recoverable	Water	3005A	
400-160240-15	SGWC-19	Total Recoverable	Water	3005A	
400-160240-16	FD-3(AP)	Total Recoverable	Water	3005A	
400-160240-17	FB-3(AP)	Total Recoverable	Water	3005A	
400-160240-18	EB-3(AP)	Total Recoverable	Water	3005A	
400-160240-19	SGWA-25	Total Recoverable	Water	3005A	
400-160240-20	SGWA-4	Total Recoverable	Water	3005A	
MB 400-415485/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-415485/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
400-160240-1 MS	SGWA-1	Total Recoverable	Water	3005A	
400-160240-1 MSD	SGWA-1	Total Recoverable	Water	3005A	

Prep Batch: 415486

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-21	SGWA-5	Total Recoverable	Water	3005A	_
400-160240-22	SGWC-6	Total Recoverable	Water	3005A	
400-160240-23	SGWC-12	Total Recoverable	Water	3005A	
400-160240-24	FB-2(AP)	Total Recoverable	Water	3005A	
400-160240-25	SGWC-13	Total Recoverable	Water	3005A	
400-160240-26	SGWC-14	Total Recoverable	Water	3005A	
400-160240-27	SGWC-16	Total Recoverable	Water	3005A	
400-160240-28	SGWC-17	Total Recoverable	Water	3005A	
400-160240-29	FD-1(AP)	Total Recoverable	Water	3005A	
400-160240-30	FD-2(AP)	Total Recoverable	Water	3005A	
MB 400-415486/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-415486/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
400-160240-21 MS	SGWA-5	Total Recoverable	Water	3005A	
400-160240-21 MSD	SGWA-5	Total Recoverable	Water	3005A	

Prep Batch: 415495

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-7	SGWC-22	Total/NA	Water	7470A	

TestAmerica Pensacola

Page 68 of 110

11/30/2018

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Metals (Continued)

Client: Southern Company

Prep Batch: 415495 (Continued)

Project/Site: CCR - Plant Scherer

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-8	SGWC-23	Total/NA	Water	7470A	_
400-160240-9	EB-2(AP)	Total/NA	Water	7470A	
400-160240-10	SGWC-21	Total/NA	Water	7470A	
400-160240-11	SGWC-7	Total/NA	Water	7470A	
400-160240-12	SGWC-8	Total/NA	Water	7470A	
MB 400-415495/13-A	Method Blank	Total/NA	Water	7470A	
LCS 400-415495/14-A	Lab Control Sample	Total/NA	Water	7470A	
400-160036-B-1-C MS	Matrix Spike	Total/NA	Water	7470A	
400-160036-B-1-D MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Prep Batch: 415608

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-13	SGWC-9	Total/NA	Water	7470A	
400-160240-14	SGWC-10	Total/NA	Water	7470A	
400-160240-15	SGWC-19	Total/NA	Water	7470A	
400-160240-16	FD-3(AP)	Total/NA	Water	7470A	
400-160240-17	FB-3(AP)	Total/NA	Water	7470A	
400-160240-18	EB-3(AP)	Total/NA	Water	7470A	
400-160240-19	SGWA-25	Total/NA	Water	7470A	
400-160240-20	SGWA-4	Total/NA	Water	7470A	
400-160240-21	SGWA-5	Total/NA	Water	7470A	
400-160240-22	SGWC-6	Total/NA	Water	7470A	
400-160240-23	SGWC-12	Total/NA	Water	7470A	
400-160240-24	FB-2(AP)	Total/NA	Water	7470A	
400-160240-25	SGWC-13	Total/NA	Water	7470A	
400-160240-26	SGWC-14	Total/NA	Water	7470A	
400-160240-27	SGWC-16	Total/NA	Water	7470A	
400-160240-28	SGWC-17	Total/NA	Water	7470A	
400-160240-29	FD-1(AP)	Total/NA	Water	7470A	
400-160240-30	FD-2(AP)	Total/NA	Water	7470A	
MB 400-415608/13-A	Method Blank	Total/NA	Water	7470A	
LCS 400-415608/14-A	Lab Control Sample	Total/NA	Water	7470A	
400-160240-13 MS	SGWC-9	Total/NA	Water	7470A	
400-160240-13 MSD	SGWC-9	Total/NA	Water	7470A	

Analysis Batch: 415796

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-1	SGWA-1	Total Recoverable	Water	6020	415485
400-160240-2	FB-1(AP)	Total Recoverable	Water	6020	415485
400-160240-3	SGWA-2	Total Recoverable	Water	6020	415485
400-160240-4	EB-1(AP)	Total Recoverable	Water	6020	415485
400-160240-5	SGWA-3	Total Recoverable	Water	6020	415485
400-160240-6	SGWA-24	Total Recoverable	Water	6020	415485
400-160240-7	SGWC-22	Total Recoverable	Water	6020	415485
400-160240-8	SGWC-23	Total Recoverable	Water	6020	415485
400-160240-9	EB-2(AP)	Total Recoverable	Water	6020	415485
400-160240-10	SGWC-21	Total Recoverable	Water	6020	415485
400-160240-11	SGWC-7	Total Recoverable	Water	6020	415485
400-160240-12	SGWC-8	Total Recoverable	Water	6020	415485
400-160240-13	SGWC-9	Total Recoverable	Water	6020	415485
400-160240-14	SGWC-10	Total Recoverable	Water	6020	415485

TestAmerica Job ID: 400-160240-1

Metals (Continued)

Client: Southern Company

Project/Site: CCR - Plant Scherer

Analysis Batch: 415796 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-15	SGWC-19	Total Recoverable	Water	6020	415485
400-160240-16	FD-3(AP)	Total Recoverable	Water	6020	415485
400-160240-17	FB-3(AP)	Total Recoverable	Water	6020	415485
400-160240-18	EB-3(AP)	Total Recoverable	Water	6020	415485
400-160240-19	SGWA-25	Total Recoverable	Water	6020	415485
400-160240-20	SGWA-4	Total Recoverable	Water	6020	415485
400-160240-21	SGWA-5	Total Recoverable	Water	6020	415486
400-160240-22	SGWC-6	Total Recoverable	Water	6020	415486
400-160240-23	SGWC-12	Total Recoverable	Water	6020	415486
400-160240-24	FB-2(AP)	Total Recoverable	Water	6020	415486
400-160240-25	SGWC-13	Total Recoverable	Water	6020	415486
400-160240-26	SGWC-14	Total Recoverable	Water	6020	415486
400-160240-27	SGWC-16	Total Recoverable	Water	6020	415486
400-160240-28	SGWC-17	Total Recoverable	Water	6020	415486
400-160240-29	FD-1(AP)	Total Recoverable	Water	6020	415486
400-160240-30	FD-2(AP)	Total Recoverable	Water	6020	415486
MB 400-415485/1-A ^5	Method Blank	Total Recoverable	Water	6020	415485
MB 400-415486/1-A ^5	Method Blank	Total Recoverable	Water	6020	415486
LCS 400-415485/2-A	Lab Control Sample	Total Recoverable	Water	6020	415485
LCS 400-415486/2-A	Lab Control Sample	Total Recoverable	Water	6020	415486
400-160240-1 MS	SGWA-1	Total Recoverable	Water	6020	415485
400-160240-1 MSD	SGWA-1	Total Recoverable	Water	6020	415485
400-160240-21 MS	SGWA-5	Total Recoverable	Water	6020	415486
400-160240-21 MSD	SGWA-5	Total Recoverable	Water	6020	415486

Analysis Batch: 415840

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-7	SGWC-22	Total/NA	Water	7470A	415495
400-160240-8	SGWC-23	Total/NA	Water	7470A	415495
400-160240-9	EB-2(AP)	Total/NA	Water	7470A	415495
400-160240-10	SGWC-21	Total/NA	Water	7470A	415495
400-160240-11	SGWC-7	Total/NA	Water	7470A	415495
400-160240-12	SGWC-8	Total/NA	Water	7470A	415495
400-160240-13	SGWC-9	Total/NA	Water	7470A	415608
400-160240-14	SGWC-10	Total/NA	Water	7470A	415608
400-160240-15	SGWC-19	Total/NA	Water	7470A	415608
400-160240-16	FD-3(AP)	Total/NA	Water	7470A	415608
400-160240-17	FB-3(AP)	Total/NA	Water	7470A	415608
400-160240-18	EB-3(AP)	Total/NA	Water	7470A	415608
400-160240-19	SGWA-25	Total/NA	Water	7470A	415608
400-160240-20	SGWA-4	Total/NA	Water	7470A	415608
400-160240-21	SGWA-5	Total/NA	Water	7470A	415608
400-160240-22	SGWC-6	Total/NA	Water	7470A	415608
400-160240-23	SGWC-12	Total/NA	Water	7470A	415608
400-160240-24	FB-2(AP)	Total/NA	Water	7470A	415608
400-160240-25	SGWC-13	Total/NA	Water	7470A	415608
400-160240-26	SGWC-14	Total/NA	Water	7470A	415608
400-160240-27	SGWC-16	Total/NA	Water	7470A	415608
400-160240-28	SGWC-17	Total/NA	Water	7470A	415608
400-160240-29	FD-1(AP)	Total/NA	Water	7470A	415608
400-160240-30	FD-2(AP)	Total/NA	Water	7470A	415608

TestAmerica Pensacola

SDG: Ash Pond

2

F

8

10

12

13

14

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Metals (Continued)

Analysis Batch: 415840 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 400-415495/13-A	Method Blank	Total/NA	Water	7470A	415495
MB 400-415608/13-A	Method Blank	Total/NA	Water	7470A	415608
LCS 400-415495/14-A	Lab Control Sample	Total/NA	Water	7470A	415495
LCS 400-415608/14-A	Lab Control Sample	Total/NA	Water	7470A	415608
400-160036-B-1-C MS	Matrix Spike	Total/NA	Water	7470A	415495
400-160036-B-1-D MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	415495
400-160240-13 MS	SGWC-9	Total/NA	Water	7470A	415608
400-160240-13 MSD	SGWC-9	Total/NA	Water	7470A	415608

Analysis Batch: 416025

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-1	SGWA-1	Total/NA	Water	7470A	415482
400-160240-2	FB-1(AP)	Total/NA	Water	7470A	415482
400-160240-3	SGWA-2	Total/NA	Water	7470A	415482
400-160240-4	EB-1(AP)	Total/NA	Water	7470A	415482
400-160240-5	SGWA-3	Total/NA	Water	7470A	415482
400-160240-6	SGWA-24	Total/NA	Water	7470A	415482
MB 400-415482/13-A	Method Blank	Total/NA	Water	7470A	415482
LCS 400-415482/14-A	Lab Control Sample	Total/NA	Water	7470A	415482
400-160138-B-1-E MS	Matrix Spike	Total/NA	Water	7470A	415482
400-160138-B-1-F MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	415482

Prep Batch: 418701

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-31	SGWC-11	Total/NA	Water	7470A	
400-160240-32	SGWC-15	Total/NA	Water	7470A	
MB 400-418701/14-A	Method Blank	Total/NA	Water	7470A	
LCS 400-418701/15-A	Lab Control Sample	Total/NA	Water	7470A	
400-161395-A-3-B MS	Matrix Spike	Total/NA	Water	7470A	
400-161395-A-3-C MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Prep Batch: 418848

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-45	SGWC-18	Total/NA	Water	7470A	
400-160240-46	SGWC-20	Total/NA	Water	7470A	
MB 400-418848/14-A	Method Blank	Total/NA	Water	7470A	
LCS 400-418848/15-A	Lab Control Sample	Total/NA	Water	7470A	
400-160240-B-42-B MS	Matrix Spike	Total/NA	Water	7470A	
400-160240-B-42-C MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Prep Batch: 418952

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-31	SGWC-11	Total Recoverable	Water	3005A	_
400-160240-32	SGWC-15	Total Recoverable	Water	3005A	
400-160240-45	SGWC-18	Dissolved	Water	3005A	
400-160240-45 - DL	SGWC-18	Total Recoverable	Water	3005A	
400-160240-45	SGWC-18	Total Recoverable	Water	3005A	
MB 400-418952/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-418952/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
400-160240-31 MS	SGWC-11	Total Recoverable	Water	3005A	
400-160240-31 MSD	SGWC-11	Total Recoverable	Water	3005A	

TestAmerica Pensacola

11/30/2018

Page 71 of 110

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

Prep Batch: 418964

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-46	SGWC-20	Total Recoverable	Water	3005A	_
400-160240-46 - DL	SGWC-20	Total Recoverable	Water	3005A	
MB 400-418964/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-418964/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
400-160240-46 MS	SGWC-20	Total Recoverable	Water	3005A	
400-160240-46 MSD	SGWC-20	Total Recoverable	Water	3005A	

Analysis Batch: 419038

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-31	SGWC-11	Total/NA	Water	7470A	418701
400-160240-32	SGWC-15	Total/NA	Water	7470A	418701
MB 400-418701/14-A	Method Blank	Total/NA	Water	7470A	418701
LCS 400-418701/15-A	Lab Control Sample	Total/NA	Water	7470A	418701
400-161395-A-3-B MS	Matrix Spike	Total/NA	Water	7470A	418701
400-161395-A-3-C MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	418701

Analysis Batch: 419210

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-31	SGWC-11	Total Recoverable	Water	6020	418952
400-160240-32	SGWC-15	Total Recoverable	Water	6020	418952
400-160240-45	SGWC-18	Dissolved	Water	6020	418952
400-160240-45	SGWC-18	Total Recoverable	Water	6020	418952
400-160240-45 - DL	SGWC-18	Total Recoverable	Water	6020	418952
400-160240-46	SGWC-20	Total Recoverable	Water	6020	418964
400-160240-46 - DL	SGWC-20	Total Recoverable	Water	6020	418964
MB 400-418952/1-A ^5	Method Blank	Total Recoverable	Water	6020	418952
MB 400-418964/1-A ^5	Method Blank	Total Recoverable	Water	6020	418964
LCS 400-418952/2-A	Lab Control Sample	Total Recoverable	Water	6020	418952
LCS 400-418964/2-A	Lab Control Sample	Total Recoverable	Water	6020	418964
400-160240-31 MS	SGWC-11	Total Recoverable	Water	6020	418952
400-160240-31 MSD	SGWC-11	Total Recoverable	Water	6020	418952
400-160240-46 MS	SGWC-20	Total Recoverable	Water	6020	418964
400-160240-46 MSD	SGWC-20	Total Recoverable	Water	6020	418964

Analysis Batch: 419409

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-45	SGWC-18	Total/NA	Water	7470A	418848
400-160240-46	SGWC-20	Total/NA	Water	7470A	418848
MB 400-418848/14-A	Method Blank	Total/NA	Water	7470A	418848
LCS 400-418848/15-A	Lab Control Sample	Total/NA	Water	7470A	418848
400-160240-B-42-B MS	Matrix Spike	Total/NA	Water	7470A	418848
400-160240-B-42-C MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	418848

General Chemistry

Analysis Batch: 416446

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-31	SGWC-11	Total/NA	Water	SM 2540C	
400-160240-32	SGWC-15	Total/NA	Water	SM 2540C	
MB 400-416446/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 400-416446/2	Lab Control Sample	Total/NA	Water	SM 2540C	
400-160742-E-4 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 2540C	
400-160240-32 DU	SGWC-15	Total/NA	Water	SM 2540C	

TestAmerica Pensacola

SDG: Ash Pond

5

b

8

10

40

13

14

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Analysis Batch: 416940

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-45	SGWC-18	Total/NA	Water	SM 2540C	
400-160240-46	SGWC-20	Total/NA	Water	SM 2540C	
MB 400-416940/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 400-416940/2	Lab Control Sample	Total/NA	Water	SM 2540C	
400-160240-A-54 DU	Duplicate	Total/NA	Water	SM 2540C	

Rad

Prep Batch: 394199

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-1	SGWA-1	Total/NA	Water	PrecSep-21	
400-160240-2	FB-1(AP)	Total/NA	Water	PrecSep-21	
400-160240-3	SGWA-2	Total/NA	Water	PrecSep-21	
400-160240-4	EB-1(AP)	Total/NA	Water	PrecSep-21	
400-160240-5	SGWA-3	Total/NA	Water	PrecSep-21	
400-160240-6	SGWA-24	Total/NA	Water	PrecSep-21	
MB 160-394199/21-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-394199/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
400-160240-6 DU	SGWA-24	Total/NA	Water	PrecSep-21	

Prep Batch: 394218

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-1	SGWA-1	Total/NA	Water	PrecSep_0	
400-160240-2	FB-1(AP)	Total/NA	Water	PrecSep_0	
400-160240-3	SGWA-2	Total/NA	Water	PrecSep_0	
400-160240-4	EB-1(AP)	Total/NA	Water	PrecSep_0	
400-160240-5	SGWA-3	Total/NA	Water	PrecSep_0	
400-160240-6	SGWA-24	Total/NA	Water	PrecSep_0	
MB 160-394218/21-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-394218/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
400-160240-6 DU	SGWA-24	Total/NA	Water	PrecSep_0	

Prep Batch: 394766

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-21	SGWA-5	Total/NA	Water	PrecSep-21	
400-160240-22	SGWC-6	Total/NA	Water	PrecSep-21	
400-160240-23	SGWC-12	Total/NA	Water	PrecSep-21	
400-160240-24	FB-2(AP)	Total/NA	Water	PrecSep-21	
400-160240-25	SGWC-13	Total/NA	Water	PrecSep-21	
400-160240-26	SGWC-14	Total/NA	Water	PrecSep-21	
400-160240-27	SGWC-16	Total/NA	Water	PrecSep-21	
400-160240-28	SGWC-17	Total/NA	Water	PrecSep-21	
400-160240-29	FD-1(AP)	Total/NA	Water	PrecSep-21	
400-160240-30	FD-2(AP)	Total/NA	Water	PrecSep-21	
MB 160-394766/17-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-394766/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
500-152940-W-1-B MS	Matrix Spike	Total/NA	Water	PrecSep-21	
500-152940-W-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	PrecSep-21	
400-160240-21 DU	SGWA-5	Total/NA	Water	PrecSep-21	

Prep Batch: 394779

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-21	SGWA-5	Total/NA	Water	PrecSep_0	

TestAmerica Pensacola

Page 73 of 110

Client: Southern Company Project/Site: CCR - Plant Scherer

Rad (Continued)

Prep Batch: 394779 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-22	SGWC-6	Total/NA	Water	PrecSep_0	
400-160240-23	SGWC-12	Total/NA	Water	PrecSep_0	
400-160240-24	FB-2(AP)	Total/NA	Water	PrecSep_0	
400-160240-25	SGWC-13	Total/NA	Water	PrecSep_0	
400-160240-26	SGWC-14	Total/NA	Water	PrecSep_0	
400-160240-27	SGWC-16	Total/NA	Water	PrecSep_0	
400-160240-28	SGWC-17	Total/NA	Water	PrecSep_0	
400-160240-29	FD-1(AP)	Total/NA	Water	PrecSep_0	
400-160240-30	FD-2(AP)	Total/NA	Water	PrecSep_0	
MB 160-394779/17-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-394779/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
500-152940-W-1-E MS	Matrix Spike	Total/NA	Water	PrecSep_0	
500-152940-W-1-F MSD	Matrix Spike Duplicate	Total/NA	Water	PrecSep_0	
400-160240-21 DU	SGWA-5	Total/NA	Water	PrecSep_0	

Prep Batch: 394786

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
400-160240-7	SGWC-22	Total/NA	Water	PrecSep-21	
400-160240-8	SGWC-23	Total/NA	Water	PrecSep-21	
400-160240-9	EB-2(AP)	Total/NA	Water	PrecSep-21	
400-160240-10	SGWC-21	Total/NA	Water	PrecSep-21	
400-160240-11	SGWC-7	Total/NA	Water	PrecSep-21	
400-160240-12	SGWC-8	Total/NA	Water	PrecSep-21	
400-160240-13	SGWC-9	Total/NA	Water	PrecSep-21	
400-160240-14	SGWC-10	Total/NA	Water	PrecSep-21	
400-160240-15	SGWC-19	Total/NA	Water	PrecSep-21	
400-160240-16	FD-3(AP)	Total/NA	Water	PrecSep-21	
400-160240-17	FB-3(AP)	Total/NA	Water	PrecSep-21	
400-160240-18	EB-3(AP)	Total/NA	Water	PrecSep-21	
400-160240-19	SGWA-25	Total/NA	Water	PrecSep-21	
400-160240-20	SGWA-4	Total/NA	Water	PrecSep-21	
MB 160-394786/22-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-394786/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
400-160240-11 DU	SGWC-7	Total/NA	Water	PrecSep-21	

Prep Batch: 394791

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-7	SGWC-22	Total/NA	Water	PrecSep_0	
400-160240-8	SGWC-23	Total/NA	Water	PrecSep_0	
400-160240-9	EB-2(AP)	Total/NA	Water	PrecSep_0	
400-160240-10	SGWC-21	Total/NA	Water	PrecSep_0	
400-160240-11	SGWC-7	Total/NA	Water	PrecSep_0	
400-160240-12	SGWC-8	Total/NA	Water	PrecSep_0	
400-160240-13	SGWC-9	Total/NA	Water	PrecSep_0	
400-160240-14	SGWC-10	Total/NA	Water	PrecSep_0	
400-160240-15	SGWC-19	Total/NA	Water	PrecSep_0	
400-160240-16	FD-3(AP)	Total/NA	Water	PrecSep_0	
400-160240-17	FB-3(AP)	Total/NA	Water	PrecSep_0	
400-160240-18	EB-3(AP)	Total/NA	Water	PrecSep_0	
400-160240-19	SGWA-25	Total/NA	Water	PrecSep_0	
400-160240-20	SGWA-4	Total/NA	Water	PrecSep 0	

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Rad (Continued)

Pren	Batch:	394791	(Continu	ied)
I ICP	Dateii.	00 71 01		46U)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 160-394791/22-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-394791/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
400-160240-11 DU	SGWC-7	Total/NA	Water	PrecSep_0	

Prep Batch: 397276

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-46	SGWC-20	Total/NA	Water	PrecSep-21	
MB 160-397276/23-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-397276/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
400-160832-A-8-A DU	Duplicate	Total/NA	Water	PrecSep-21	

Prep Batch: 397279

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-31	SGWC-11	Total/NA	Water	PrecSep-21	
400-160240-32	SGWC-15	Total/NA	Water	PrecSep-21	
MB 160-397279/24-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-397279/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
400-160240-A-35-A DU	Duplicate	Total/NA	Water	PrecSep-21	

Prep Batch: 397294

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
400-160240-46	SGWC-20	Total/NA	Water	PrecSep_0
MB 160-397294/23-A	Method Blank	Total/NA	Water	PrecSep_0
LCS 160-397294/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0
400-160832-A-8-B DU	Duplicate	Total/NA	Water	PrecSep_0

Prep Batch: 397318

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-31	SGWC-11	Total/NA	Water	PrecSep_0	
400-160240-32	SGWC-15	Total/NA	Water	PrecSep_0	
MB 160-397318/24-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-397318/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
400-160240-A-35-B DU	Duplicate	Total/NA	Water	PrecSep_0	

Prep Batch: 398027

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
400-160240-45	SGWC-18	Total/NA	Water	PrecSep-21
MB 160-398027/11-A	Method Blank	Total/NA	Water	PrecSep-21
LCS 160-398027/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21
LCSD 160-398027/2-A	Lab Control Sample Dup	Total/NA	Water	PrecSep-21

Prep Batch: 398030

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-45	SGWC-18	Total/NA	Water	PrecSep_0	
MB 160-398030/11-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-398030/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
LCSD 160-398030/2-A	Lab Control Sample Dup	Total/NA	Water	PrecSep_0	

TestAmerica Pensacola

11/30/2018

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 400-415062/17 Client Sample ID: Method Blank **Prep Type: Total/NA Matrix: Water**

Analysis Batch: 415062

MB MB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared 0.20 Fluoride <0.082 0.082 mg/L 10/11/18 17:04

Lab Sample ID: LCS 400-415062/38 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 415062

Spike LCS LCS %Rec. Added Limits Analyte Result Qualifier Unit %Rec Fluoride 10.0 10.3 mg/L 103 90 - 110

Lab Sample ID: LCSD 400-415062/39 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 415062

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Fluoride 10.0 10.7 mg/L 107

Lab Sample ID: 400-160367-I-1 MS **Client Sample ID: Matrix Spike Matrix: Water** Prep Type: Total/NA

Analysis Batch: 415062

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Fluoride 0.17 J 10.0 11.6 114 80 - 120 mg/L

Lab Sample ID: 400-160367-I-1 MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 415062

Spike MSD MSD %Rec. RPD Sample Sample Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits RPD Limit Fluoride 10.0 mg/L 80 - 120 0.17 J 11.6 114

Lab Sample ID: MB 400-415543/36 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 415543

MB MB Analyte Result Qualifier RL MDL Unit Prepared D Analyzed Dil Fac Fluoride 0.20 <0.082 0.082 mg/L 10/15/18 19:05

Lab Sample ID: LCS 400-415543/37 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 415543

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit %Rec Limits Fluoride 10.0 11.1 111 90 - 110

Lab Sample ID: LCSD 400-415543/38 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 415543

LCSD LCSD RPD Spike %Rec. Added Limits Analyte Result Qualifier Unit D %Rec RPD Limit Fluoride 10.0 11.0 mg/L 110 90 - 110

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Lab Sample ID: 400-160196-D-3 MS

Client Sample ID: Matrix Spike Prep Type: Total/NA

Matrix: Water

Analysis Batch: 415543

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluoride	0.091	J *	10.0	11.6		mg/L		115	80 - 120	

Lab Sample ID: MB 400-415684/21 **Client Sample ID: Method Blank Matrix: Water**

Prep Type: Total/NA

Analysis Batch: 415684

MB MB

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082	0.20	0.082 mg/L			10/16/18 15:47	1

Lab Sample ID: LCS 400-415684/22 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA **Matrix: Water**

Analysis Batch: 415684

		Spike	LCS	LCS				%Rec.	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluoride	 	10.0	10.5		mg/L		105	90 - 110	

Lab Sample ID: LCSD 400-415684/23 **Client Sample ID: Lab Control Sample Dup Matrix: Water Prep Type: Total/NA**

Analysis Batch: 415684

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Fluoride	10.0	10.7		mg/L		107	90 - 110	2	15

Lab Sample ID: 400-160284-B-2 MS **Client Sample ID: Matrix Spike Matrix: Water Prep Type: Total/NA**

Analysis Batch: 415684

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluoride	<0.082		10.0	11.0		mg/L		110	80 - 120	

Lab Sample ID: 400-160284-B-3 MS Client Sample ID: Matrix Spike **Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 415684

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluoride	<0.082		10.0	11.2		mg/L	_	112	80 - 120	

Lab Sample ID: 400-160284-B-3 MSD **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 415684

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Fluoride	<0.082		10.0	11.5		mg/L		115	80 - 120	3	20

Lab Sample ID: MB 400-415749/4 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 415749

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fluoride	<0.082		0.20	0.082	ma/l			10/17/18 04:21	

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 400-415749/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 415749

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 10.0 Fluoride 10.6 mg/L 106 90 - 110

Lab Sample ID: LCSD 400-415749/6 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 415749

Spike LCSD LCSD %Rec. **RPD** Added Result Qualifier Limits Analyte Unit **RPD** Limit %Rec Fluoride 10.0 10.7 mg/L 107 90 - 110

Lab Sample ID: 400-160302-A-1 MS **Client Sample ID: Matrix Spike Matrix: Water** Prep Type: Total/NA

Analysis Batch: 415749

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits Analyte Unit D %Rec Fluoride 0.34 10.0 11.0 107 80 - 120 mg/L

Lab Sample ID: 400-160302-A-1 MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Water** Prep Type: Total/NA

Analysis Batch: 415749

Sample Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits **RPD** Limit Fluoride 0.34 10.0 11.3 mg/L 110 80 - 120

Lab Sample ID: MB 400-418094/4 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

MR MR

Analysis Batch: 418094

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride 1.0 <0.89 0.89 mg/L 11/02/18 07:05 Fluoride 0.0951 J 0.20 0.082 mg/L 11/02/18 07:05 0.70 mg/L Sulfate < 0.70 1.0 11/02/18 07:05

Lab Sample ID: LCS 400-418094/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 418094

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chloride 10.0 9.95 mg/L 100 90 - 110 Fluoride 10.0 9.95 mg/L 99 90 - 110 Sulfate 10.0 10.8 108 90 - 110 mg/L

Lab Sample ID: LCSD 400-418094/6 Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 418094

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Chloride 10.0 9.95 mg/L 99 90 - 110 0 15 Fluoride 10.0 9.96 mg/L 100 90 - 110 0 15 Sulfate 10.0 110 90 - 110 15 11.0 mg/L 2

TestAmerica Pensacola

Page 78 of 110

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Method: 300.0 - Anions, Ion Chromatography (Continued)

9.6

Lab Sample ID: 400-161260-E-1 MS

Matrix: Water

Analyte

Chloride

Fluoride

Sulfate

Analysis Batch: 418094

Client Sample ID: Matrix Spike Prep Type: Total/NA

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Unit D %Rec Limits 10.0 7.1 16.8 mg/L 97 80 - 120 <0.082 10.0 9.67 97 80 - 120 mg/L

20.0

Lab Sample ID: 400-161260-E-1 MSD

Matrix: Water

Analysis Batch: 418094

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Matrix Spike

104

80 - 120

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	7.1		10.0	17.2		mg/L		100	80 - 120	2	20
Fluoride	<0.082		10.0	9.97		mg/L		100	80 - 120	3	20
Sulfate	9.6		10.0	20.7		mg/L		110	80 - 120	3	20

10.0

Lab Sample ID: MB 400-418296/40

Matrix: Water

Analysis Batch: 418296

Client Sample ID: Method Blank Prep Type: Total/NA

mg/L

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89		1.0	0.89	mg/L			11/02/18 21:57	1
Fluoride	0.0932	J	0.20	0.082	mg/L			11/02/18 21:57	1

Lab Sample ID: LCS 400-418296/46

Matrix: Water

Analysis Batch: 418296

Analysis Baton: 410200	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	9.88		mg/L		99	90 - 110	 _
Fluoride	10.0	9.80		ma/L		98	90 - 110	

Lab Sample ID: LCSD 400-418296/47

Matrix: Water

Analysis Batch: 418296

, , , , , , , , , , , , , , , , , , , ,	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	 10.0	9.86		mg/L		99	90 - 110	0	15	
Fluoride	10.0	9.87		mg/L		99	90 - 110	1	15	

Lab Sample ID: 400-161260-E-3 MS

Matrix: Water

Analysis Batch: 418296

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	2.9		10.0	12.9		mg/L		101	80 - 120	
Fluoride	<0.082		10.0	10.1		mg/L		101	80 - 120	

TestAmerica Pensacola

11/30/2018

20

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Method: 300.0 - Anions, Ion Chromatography (Continued)

Sample Sample

2.9

<0.082

Result Qualifier

Lab Sample ID: 400-161260-E-3 MSD

Matrix: Water

Analyte

Chloride

Fluoride

Analysis Batch: 418296

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

101

Spike MSD MSD %Rec. RPD Added Result Qualifier Unit D %Rec Limits RPD Limit 10.0 12.8 mg/L 80 - 120 20 100

mg/L

Lab Sample ID: MB 400-418361/4

Matrix: Water

Analysis Batch: 418361

Client Sample ID: Method Blank

80 - 120

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

	IVID	IAID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89		1.0	0.89	mg/L			11/05/18 12:03	1
Fluoride	<0.082		0.20	0.082	mg/L			11/05/18 12:03	1
Sulfate	<0.70		1.0	0.70	mg/L			11/05/18 12:03	1

10.1

10.0

Lab Sample ID: LCS 400-418361/5

Matrix: Water

Analysis Batch: 418361

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Spike LCS LCS %Rec. Analyte Added Result Qualifier Limits Unit %Rec Chloride 10.0 9.93 99 90 - 110 mg/L Fluoride 10.0 9.88 mg/L 99 90 - 110 Sulfate 10.0 10.7 mg/L 107 90 - 110

Lab Sample ID: LCSD 400-418361/6

Matrix: Water

Analysis Batch: 418361

7 mary old Batom 4 root								
•	Spike	LCSD	LCSD		%Rec.		RPD	
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	RPD	Limit	
Chloride	10.0	9.76	mg/l	98	90 - 110	2	15	
Fluoride	10.0	10.2	mg/l	_ 102	90 - 110	3	15	
Sulfate	10.0	10.6	mg/l	_ 106	90 - 110	0	15	

Matrix: Water

Analysis Batch: 418361

Lab Sample ID: 400-161340-H-3 MS				Client Sa	mple ID: M	atrix S _i	oike
Sulfate	10.0	10.6	mg/L	106	90 - 110	0	15
Fluoride	10.0	10.2	mg/L	102	90 - 110	3	15

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Chloride 100 50.0 150 mg/L 95 80 - 120 Fluoride 0.45 J 50.0 53.9 107 80 - 120 mg/L Sulfate 50.0 190 140 mg/L 104 80 - 120

Lab Sample ID: 400-161340-H-3

Matrix: Water

Analysis Batch: 418361

MSD	Client Sample ID: Matrix Spike Duplicate
	Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	100		50.0	152	-	mg/L		99	80 - 120	1	20
Fluoride	0.45	J	50.0	53.9		mg/L		107	80 - 120	0	20
Sulfate	140		50.0	193		mg/L		111	80 - 120	2	20

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 400-415485/1-A ^5

Matrix: Water

Analysis Batch: 415796

Client: Southern Company

Project/Site: CCR - Plant Scherer

Client Sample ID: Method Blank **Prep Type: Total Recoverable Prep Batch: 415485**

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	<0.0010		0.0025	0.0010	mg/L		10/15/18 14:59	10/16/18 11:46	5
Arsenic	<0.00046		0.0013	0.00046	mg/L		10/15/18 14:59	10/16/18 11:46	5
Barium	<0.00049		0.0025	0.00049	mg/L		10/15/18 14:59	10/16/18 11:46	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 11:46	5
Cadmium	< 0.00034		0.0025	0.00034	mg/L		10/15/18 14:59	10/16/18 11:46	5
Chromium	<0.0011		0.0025	0.0011	mg/L		10/15/18 14:59	10/16/18 11:46	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		10/15/18 14:59	10/16/18 11:46	5
Lead	< 0.00035		0.0013	0.00035	mg/L		10/15/18 14:59	10/16/18 11:46	5
Lithium	<0.0011		0.0050	0.0011	mg/L		10/15/18 14:59	10/16/18 11:46	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		10/15/18 14:59	10/16/18 11:46	5
Selenium	0.000305	J	0.0013	0.00024	mg/L		10/15/18 14:59	10/16/18 11:46	5
Thallium	<0.000085		0.00050	0.000085	mg/L		10/15/18 14:59	10/16/18 11:46	5
_									

Lab Sample ID: LCS 400-415485/2-A

Matrix: Water

Analysis Batch: 415796

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 415485

7 maryolo Batom 410700	Spike	LCS LCS			%Rec.
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits
Antimony	0.0500	0.0495	mg/L	99	80 - 120
Arsenic	0.0500	0.0512	mg/L	102	80 - 120
Barium	0.0500	0.0510	mg/L	102	80 - 120
Beryllium	0.0500	0.0491	mg/L	98	80 - 120
Cadmium	0.0500	0.0514	mg/L	103	80 - 120
Chromium	0.0500	0.0525	mg/L	105	80 - 120
Cobalt	0.0500	0.0531	mg/L	106	80 - 120
Lead	0.0500	0.0518	mg/L	104	80 - 120
Lithium	0.0500	0.0533	mg/L	107	80 - 120
Molybdenum	0.0500	0.0496	mg/L	99	80 - 120
Selenium	0.0500	0.0499	mg/L	100	80 - 120
Thallium	0.0100	0.0100	mg/L	100	80 - 120

Lab Sample ID: 400-160240-1 MS

Matrix: Water

Client Sample ID: SGWA-1 Prep Type: Total Recoverable

Analysis Batch: 415796	Sample	Sample	Spike	MS	MS				Prep Batch: 415485 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	<0.0010		0.0500	0.0533		mg/L		107	75 - 125
Arsenic	0.00064	J	0.0500	0.0528		mg/L		104	75 - 125
Barium	0.058		0.0500	0.111		mg/L		106	75 - 125
Beryllium	<0.00034		0.0500	0.0497		mg/L		99	75 - 125
Cadmium	<0.00034		0.0500	0.0544		mg/L		109	75 - 125
Chromium	0.0014	J	0.0500	0.0575		mg/L		112	75 - 125
Cobalt	0.00075	J	0.0500	0.0550		mg/L		109	75 - 125
Lead	<0.00035		0.0500	0.0508		mg/L		102	75 - 125
Lithium	0.0018	J	0.0500	0.0541		mg/L		105	75 - 125
Molybdenum	<0.00085		0.0500	0.0514		mg/L		103	75 - 125
Selenium	0.00031	JB	0.0500	0.0518		mg/L		103	75 - 125
Thallium	<0.000085		0.0100	0.0105		mg/L		105	75 - 125

TestAmerica Pensacola

Page 81 of 110

Client Sample ID: SGWA-1

Method: 6020 - Metals (ICP/MS) (Continued)

Client: Southern Company

Project/Site: CCR - Plant Scherer

Lab Sample ID: 400-160240-1 MSD

Matrix: Water							P		coverable		
Analysis Batch: 415796									Prep Ba	itch: 41	
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	<0.0010		0.0500	0.0517		mg/L		103	75 - 125	3	20
Arsenic	0.00064	J	0.0500	0.0527		mg/L		104	75 - 125	0	20
Barium	0.058		0.0500	0.109		mg/L		103	75 - 125	1	20
Beryllium	<0.00034		0.0500	0.0502		mg/L		100	75 - 125	1	20
Cadmium	<0.00034		0.0500	0.0544		mg/L		109	75 - 125	0	20
Chromium	0.0014	J	0.0500	0.0577		mg/L		113	75 - 125	0	20
Cobalt	0.00075	J	0.0500	0.0554		mg/L		109	75 - 125	1	20
Lead	< 0.00035		0.0500	0.0516		mg/L		103	75 - 125	2	20
Lithium	0.0018	J	0.0500	0.0543		mg/L		105	75 - 125	0	20
Molybdenum	<0.00085		0.0500	0.0502		mg/L		100	75 - 125	2	20
Selenium	0.00031	JB	0.0500	0.0512		mg/L		102	75 - 125	1	20

0.0106

mg/L

0.0100

Lab Sample ID: MB 400-415486/1-A ^5

<0.000085

MB MB

< 0.0011

< 0.00085

< 0.00024

<0.000085

Matrix: Water

Thallium

Analysis Batch: 415796

Client Sample ID: Method Blank Prep Type: Total Recoverable

75 - 125

106

Prep Batch: 415486

5

5

5

Dil Fac **Analyte** Result Qualifier RL **MDL** Unit Prepared Analyzed **Antimony** <0.0010 0.0025 0.0010 mg/L 10/15/18 15:02 10/16/18 15:09 Arsenic 0.00111 J 0.0013 0.00046 mg/L 5 10/15/18 15:02 10/16/18 15:09 Barium < 0.00049 0.0025 0.00049 mg/L 10/15/18 15:02 10/16/18 15:09 5 Beryllium 0.0025 0.00034 mg/L 5 < 0.00034 10/15/18 15:02 10/16/18 15:09 Cadmium <0.00034 0.0025 0.00034 mg/L 10/15/18 15:02 10/16/18 15:09 5 Chromium <0.0011 0.0025 0.0011 mg/L 10/15/18 15:02 10/16/18 15:09 5 5 Cobalt <0.00040 0.0025 0.00040 mg/L 10/15/18 15:02 10/16/18 15:09 Lead < 0.00035 0.0013 0.00035 mg/L 10/15/18 15:02 10/16/18 15:09 5

0.0050

0.015

0.0013

0.00050

0.0011 mg/L

0.00085 mg/L

0.00024 mg/L

0.000085 mg/L

Lab Sample ID: LCS 400-415486/2-A

Matrix: Water

Lithium

Molybdenum

Selenium

Thallium

Analysis Batch: 415796

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 415486

10/15/18 15:02 10/16/18 15:09

10/15/18 15:02 10/16/18 15:09

10/15/18 15:02 10/16/18 15:09

10/15/18 15:02 10/16/18 15:09

Analysis Daten. 413790	Spike	LCS LCS				%Rec.
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits
Antimony	0.0500	0.0510	mg/L		102	80 - 120
Arsenic	0.0500	0.0512	mg/L		102	80 - 120
Barium	0.0500	0.0519	mg/L		104	80 - 120
Beryllium	0.0500	0.0488	mg/L		98	80 - 120
Cadmium	0.0500	0.0519	mg/L		104	80 - 120
Chromium	0.0500	0.0537	mg/L		107	80 - 120
Cobalt	0.0500	0.0532	mg/L		106	80 - 120
Lead	0.0500	0.0520	mg/L		104	80 - 120
Lithium	0.0500	0.0533	mg/L		107	80 - 120
Molybdenum	0.0500	0.0502	mg/L		100	80 - 120
Selenium	0.0500	0.0497	mg/L		99	80 - 120
Thallium	0.0100	0.0102	mg/L		102	80 - 120

TestAmerica Pensacola

Page 82 of 110

11/30/2018

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 400-160240-21 MS

Matrix: Water

Analysis Ratch: 415796

Client: Southern Company

Project/Site: CCR - Plant Scherer

Client Sample ID: SGWA-5 Prep Type: Total Recoverable Prep Batch: 415486

Analysis Batch: 415/96	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	<0.0010		0.0500	0.0530		mg/L		106	75 - 125
Arsenic	0.00052	JB	0.0500	0.0534		mg/L		106	75 - 125
Barium	0.011		0.0500	0.0646		mg/L		108	75 - 125
Beryllium	<0.00034		0.0500	0.0500		mg/L		100	75 - 125
Cadmium	< 0.00034		0.0500	0.0538		mg/L		108	75 - 125
Chromium	0.0011	J	0.0500	0.0594		mg/L		119	75 - 125
Cobalt	<0.00040		0.0500	0.0566		mg/L		113	75 - 125
Lead	< 0.00035		0.0500	0.0509		mg/L		102	75 - 125
Lithium	<0.0011		0.0500	0.0563		mg/L		113	75 - 125
Molybdenum	<0.00085		0.0500	0.0516		mg/L		103	75 - 125
Selenium	<0.00024		0.0500	0.0509		mg/L		102	75 - 125
Thallium	<0.000085		0.0100	0.0104		mg/L		104	75 - 125

Lab Sample ID: 400-160240-21 MSD

Matrix: Water

Client Sample ID: SGWA-5 Prep Type: Total Recoverable

Analysis Batch: 415796									Prep Ba	atch: 4'	15486
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Antimony	<0.0010		0.0500	0.0511		mg/L		102	75 - 125	4	20
Arsenic	0.00052	JB	0.0500	0.0531		mg/L		105	75 - 125	1	20
Barium	0.011		0.0500	0.0643		mg/L		108	75 - 125	1	20
Beryllium	<0.00034		0.0500	0.0503		mg/L		101	75 - 125	0	20
Cadmium	< 0.00034		0.0500	0.0543		mg/L		109	75 - 125	1	20
Chromium	0.0011	J	0.0500	0.0598		mg/L		120	75 - 125	1	20
Cobalt	<0.00040		0.0500	0.0555		mg/L		111	75 - 125	2	20
Lead	<0.00035		0.0500	0.0511		mg/L		102	75 - 125	0	20
Lithium	<0.0011		0.0500	0.0550		mg/L		110	75 - 125	2	20
Molybdenum	<0.00085		0.0500	0.0496		mg/L		99	75 - 125	4	20
Selenium	<0.00024		0.0500	0.0495		mg/L		99	75 - 125	3	20
Thallium	<0.000085		0.0100	0.0104		mg/L		104	75 - 125	1	20

Lab Sample ID: MB 400-418952/1-A ^5

Matrix: Water

Analysis Batch: 419210

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 418952

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 15:18	5
Arsenic, Dissolved	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 15:18	5
Barium	<0.00049		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 15:18	5
Barium, Dissolved	<0.00049		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 15:18	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 15:18	5
Beryllium, Dissolved	<0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 15:18	5
Boron	<0.021		0.050	0.021	mg/L		11/09/18 11:00	11/09/18 15:18	5
Cadmium	<0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 15:18	5
Iron, Dissolved	< 0.053		0.13	0.053	mg/L		11/09/18 11:00	11/09/18 15:18	5
Calcium	<0.13		0.25	0.13	mg/L		11/09/18 11:00	11/09/18 15:18	5
Chromium	<0.0011		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 15:18	5
Chromium, Dissolved	<0.0011		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 15:18	5

MD MD

TestAmerica Pensacola

Page 83 of 110

11/30/2018

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 400-418952/1-A ^5

Matrix: Water

Analysis Batch: 419210

Client: Southern Company

Project/Site: CCR - Plant Scherer

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 418952

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	<0.00040		0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 15:18	5
Cobalt, Dissolved	<0.00040		0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 15:18	5
Lead	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 15:18	5
Lead, Dissolved	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 15:18	5
Lithium	<0.0011		0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 15:18	5
Lithium, Dissolved	<0.0011		0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 15:18	5
Molybdenum	<0.00085		0.015	0.00085	mg/L		11/09/18 11:00	11/09/18 15:18	5
Selenium	<0.00024		0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 15:18	5
Selenium, Dissolved	<0.00024		0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 15:18	5
Thallium	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 15:18	5
Thallium, Dissolved	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 15:18	5

Lab Sample ID: LCS 400-418952/2-A

Matrix: Water

Analysis Batch: 419210

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 418952

Analysis Baton: 410210	Spike	LCS L	_cs		%Rec.
Analyte	Added	Result C	Qualifier Unit	D %Rec	Limits
Arsenic	0.0500	0.0484	mg/L	97	80 - 120
Arsenic, Dissolved	0.0500	0.0484	mg/L	97	80 - 120
Barium	0.0500	0.0484	mg/L	97	80 - 120
Barium, Dissolved	0.0500	0.0484	mg/L	97	80 - 120
Beryllium	0.0500	0.0520	mg/L	104	80 - 120
Beryllium, Dissolved	0.0500	0.0520	mg/L	104	80 - 120
Boron	0.100	0.102	mg/L	102	80 - 120
Cadmium	0.0500	0.0494	mg/L	99	80 - 120
Iron, Dissolved	5.00	4.87	mg/L	97	80 - 120
Calcium	5.00	4.91	mg/L	98	80 - 120
Chromium	0.0500	0.0471	mg/L	94	80 - 120
Chromium, Dissolved	0.0500	0.0471	mg/L	94	80 - 120
Cobalt	0.0500	0.0493	mg/L	99	80 - 120
Cobalt, Dissolved	0.0500	0.0493	mg/L	99	80 - 120
Lead	0.0500	0.0500	mg/L	100	80 - 120
Lead, Dissolved	0.0500	0.0500	mg/L	100	80 - 120
Lithium	0.0500	0.0522	mg/L	104	80 - 120
Lithium, Dissolved	0.0500	0.0522	mg/L	104	80 - 120
Molybdenum	0.0500	0.0468	mg/L	94	80 - 120
Selenium	0.0500	0.0473	mg/L	95	80 - 120
Selenium, Dissolved	0.0500	0.0473	mg/L	95	80 - 120
Thallium	0.0100	0.00975	mg/L	98	80 - 120
Thallium, Dissolved	0.0100	0.00975	mg/L	98	80 - 120

Lab Sample ID: 400-160240-31 MS

Matrix: Water

Analysis Batch: 419210

Client Sample ID: SGWC-11 **Prep Type: Total Recoverable Prep Batch: 418952**

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	<0.00046		0.0500	0.0484		mg/L		97	75 - 125	
Arsenic, Dissolved	<0.00046		0.0500	0.0484		mg/L		97	75 - 125	
Barium	0.037		0.0500	0.0850		mg/L		96	75 - 125	

TestAmerica Pensacola

Page 84 of 110

11/30/2018

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 400-160240-31 MS **Matrix: Water**

Client: Southern Company

Project/Site: CCR - Plant Scherer

Client Sample ID: SGWC-11 **Prep Type: Total Recoverable**

Analysis Batch: 419210	Sample	Sample	Spike	MS	MS				Prep Batch: 418952 %Rec.
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
Barium, Dissolved	0.037		0.0500	0.0850		mg/L		96	75 - 125
Beryllium	<0.00034		0.0500	0.0513		mg/L		103	75 - 125
Beryllium, Dissolved	< 0.00034		0.0500	0.0513		mg/L		103	75 - 125
Boron	0.35		0.100	0.447		mg/L		97	75 - 125
Cadmium	< 0.00034		0.0500	0.0496		mg/L		99	75 - 125
Iron, Dissolved	1.1		5.00	5.97		mg/L		98	75 - 125
Calcium	1.8		5.00	6.67		mg/L		97	75 - 125
Chromium	<0.0011		0.0500	0.0471		mg/L		94	75 - 125
Chromium, Dissolved	<0.0011		0.0500	0.0471		mg/L		94	75 - 125
Cobalt	0.023		0.0500	0.0719		mg/L		99	75 - 125
Cobalt, Dissolved	0.023		0.0500	0.0719		mg/L		99	75 - 125
Lead	< 0.00035		0.0500	0.0496		mg/L		99	75 - 125
Lead, Dissolved	<0.00035		0.0500	0.0496		mg/L		99	75 - 125
Lithium	0.0031	J	0.0500	0.0564		mg/L		107	75 - 125
Lithium, Dissolved	0.0031	J	0.0500	0.0564		mg/L		107	75 - 125
Molybdenum	<0.00085		0.0500	0.0471		mg/L		94	75 - 125
Selenium	0.00046	J	0.0500	0.0490		mg/L		97	75 - 125
Selenium, Dissolved	0.00046	J	0.0500	0.0490		mg/L		97	75 - 125
Thallium	<0.000085		0.0100	0.00970		mg/L		97	75 - 125
Thallium, Dissolved	<0.000085		0.0100	0.00970		mg/L		97	75 - 125

Lab Sample ID: 400-160240-31 MSD

Matrix: Water

Client Sample ID: SGWC-11 Prep Type: Total Recoverable

Analysis Batch: 419210	Sample	Sample	Spike	Men	MSD				Prep Ba	atch: 4	18952 RPD
Analyte	•	Qualifier	Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	<0.00046	<u> </u>	0.0500	0.0504		mg/L		101	75 - 125	4	20
Arsenic, Dissolved	<0.00046		0.0500	0.0504		mg/L		101	75 - 125	4	20
Barium	0.037		0.0500	0.0884		mg/L		103	75 - 125	4	20
Barium, Dissolved	0.037		0.0500	0.0884		mg/L		103	75 - 125	4	20
Beryllium	< 0.00034		0.0500	0.0529		mg/L		106	75 - 125	3	20
Beryllium, Dissolved	< 0.00034		0.0500	0.0529		mg/L		106	75 - 125	3	20
Boron	0.35		0.100	0.467		mg/L		117	75 - 125	4	20
Cadmium	<0.00034		0.0500	0.0517		mg/L		103	75 - 125	4	20
Iron, Dissolved	1.1		5.00	6.17		mg/L		102	75 - 125	3	20
Calcium	1.8		5.00	6.97		mg/L		103	75 - 125	4	20
Chromium	<0.0011		0.0500	0.0492		mg/L		98	75 - 125	4	20
Chromium, Dissolved	<0.0011		0.0500	0.0492		mg/L		98	75 - 125	4	20
Cobalt	0.023		0.0500	0.0751		mg/L		105	75 - 125	4	20
Cobalt, Dissolved	0.023		0.0500	0.0751		mg/L		105	75 - 125	4	20
Lead	< 0.00035		0.0500	0.0513		mg/L		103	75 - 125	3	20
Lead, Dissolved	<0.00035		0.0500	0.0513		mg/L		103	75 - 125	3	20
Lithium	0.0031	J	0.0500	0.0582		mg/L		110	75 - 125	3	20
Lithium, Dissolved	0.0031	J	0.0500	0.0582		mg/L		110	75 - 125	3	20
Molybdenum	<0.00085		0.0500	0.0482		mg/L		96	75 - 125	2	20
Selenium	0.00046	J	0.0500	0.0503		mg/L		100	75 - 125	3	20
Selenium, Dissolved	0.00046	J	0.0500	0.0503		mg/L		100	75 - 125	3	20
Thallium	<0.000085		0.0100	0.00997		mg/L		100	75 - 125	3	20

TestAmerica Pensacola

Page 85 of 110

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 400-16024				Client Sample ID: SGWC-1							
Matrix: Water							P	rep Ty	pe: Total I	Recove	rable
Analysis Batch: 419210									Prep Ba	atch: 4	18952
•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Thallium, Dissolved	<0.000085		0.0100	0.00997		ma/L		100	75 - 125	3	20

Lab Sample ID: MB 400-418964/1-A ^5

Matrix: Water

Analysis Batch: 419210

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 418964

	ME	В МВ						
Analyte	Resul	lt Qualifier R	L MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046	6 0.001	3 0.00046	mg/L		11/09/18 11:50	11/09/18 17:59	- 5
Barium	<0.00049	9 0.002	5 0.00049	mg/L		11/09/18 11:50	11/09/18 17:59	5
Berylliur	n <0.00034	4 0.002	5 0.00034	mg/L		11/09/18 11:50	11/09/18 17:59	5
Boron	<0.02	1 0.05	0.021	mg/L		11/09/18 11:50	11/09/18 17:59	5
Cadmiu	m <0.00034	4 0.002	5 0.00034	mg/L		11/09/18 11:50	11/09/18 17:59	5
Calcium	<0.13	3 0.2	5 0.13	mg/L		11/09/18 11:50	11/09/18 17:59	5
Chromiu	m <0.001	1 0.002	5 0.0011	mg/L		11/09/18 11:50	11/09/18 17:59	5
Cobalt	<0.00040	0.002	5 0.00040	mg/L		11/09/18 11:50	11/09/18 17:59	5
Lead	<0.0003	5 0.001	3 0.00035	mg/L		11/09/18 11:50	11/09/18 17:59	5
Lithium	0.00119	9 J 0.005	0.0011	mg/L		11/09/18 11:50	11/09/18 17:59	5
Molybde	num <0.00085	5 0.01	5 0.00085	mg/L		11/09/18 11:50	11/09/18 17:59	į
Seleniur	n <0.00024	4 0.001	3 0.00024	mg/L		11/09/18 11:50	11/09/18 17:59	į
Thallium	<0.00008	5 0.0005	0.000085	mg/L		11/09/18 11:50	11/09/18 17:59	5

Lab Sample ID: LCS 400-418964/2-A

Matrix: Water

Analysis Batch: 419210

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 418964

Alialysis Batch. 419210	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	0.0500	0.0495		mg/L		99	80 - 120
Barium	0.0500	0.0491		mg/L		98	80 - 120
Beryllium	0.0500	0.0533		mg/L		107	80 - 120
Boron	0.100	0.105		mg/L		105	80 - 120
Cadmium	0.0500	0.0513		mg/L		103	80 - 120
Calcium	5.00	5.07		mg/L		101	80 - 120
Chromium	0.0500	0.0485		mg/L		97	80 - 120
Cobalt	0.0500	0.0506		mg/L		101	80 - 120
Lead	0.0500	0.0519		mg/L		104	80 - 120
Lithium	0.0500	0.0524		mg/L		105	80 - 120
Molybdenum	0.0500	0.0477		mg/L		95	80 - 120
Selenium	0.0500	0.0487		mg/L		97	80 - 120
Thallium	0.0100	0.0100		mg/L		100	80 - 120

Lab Sample ID: 400-160240-46 MS

Matrix: Water

Client Sample ID: SGWC-20 **Prep Type: Total Recoverable** Prop Ratch: 418964

Analysis Batch: 419210	Sample	Sample	Spike	MS	MS				%Rec.	cn: 418964
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	<0.00046		0.0500	0.0509		mg/L		102	75 - 125	
Barium	0.027		0.0500	0.0755		mg/L		97	75 - 125	
Beryllium	0.00079	J	0.0500	0.0546		mg/L		108	75 - 125	
Boron	2.3	Ē	0.100	2.23	E 4	mg/L		-52	75 - 125	

TestAmerica Pensacola

Page 86 of 110

11/30/2018

5 5 5

5 5

5

5

TestAmerica Job ID: 400-160240-1 SDG: Ash Pond

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 400-160240-46 MS Client Sample ID: SGWC-20 **Matrix: Water Prep Type: Total Recoverable Analysis Batch: 419210 Prep Batch: 418964** MS MS Sample Sample Spike %Rec. Result Qualifier Added Analyte Result Qualifier Unit %Rec Limits Cadmium < 0.00034 0.0500 0.0513 75 - 125 mg/L 103 Calcium 12 5.00 16.9 mg/L 99 75 - 125 Chromium < 0.0011 0.0500 0.0493 mg/L 99 75 - 125 Cobalt 0.16 0.0500 0.212 mg/L 96 75 - 125 75 - 125 Lead <0.00035 0.0500 0.0510 mg/L 102 Lithium 0.0062 B 0.0500 0.0615 mg/L 110 75 - 125 Molybdenum <0.00085 0.0500 0.0484 mg/L 97 75 - 125 Selenium 0.0500 0.0503 mg/L 100 75 - 125 0.00049 J Thallium 0.00018 J 0.0100 0.00997 mg/L 98 75 - 125

Lab Sample ID: 400-160240-46 MSD

Matrix: Water

Client Sample ID: SGWC-20 **Prep Type: Total Recoverable**

Analysis Batch: 419210									Prep Ba	atch: 4	18964
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	<0.00046		0.0500	0.0497		mg/L		99	75 - 125	2	20
Barium	0.027		0.0500	0.0728		mg/L		92	75 - 125	4	20
Beryllium	0.00079	J	0.0500	0.0553		mg/L		109	75 - 125	1	20
Boron	2.3	Ė	0.100	2.20	E 4	mg/L		-82	75 - 125	1	20
Cadmium	< 0.00034		0.0500	0.0507		mg/L		101	75 - 125	1	20
Calcium	12		5.00	16.5		mg/L		92	75 - 125	2	20
Chromium	<0.0011		0.0500	0.0490		mg/L		98	75 - 125	1	20
Cobalt	0.16		0.0500	0.211		mg/L		93	75 - 125	1	20
Lead	< 0.00035		0.0500	0.0502		mg/L		100	75 - 125	2	20
Lithium	0.0062	В	0.0500	0.0620		mg/L		112	75 - 125	1	20
Molybdenum	<0.00085		0.0500	0.0478		mg/L		96	75 - 125	1	20
Selenium	0.00049	J	0.0500	0.0490		mg/L		97	75 - 125	3	20
Thallium	0.00018	J	0.0100	0.00960		mg/L		94	75 - 125	4	20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 400-415482/13-A

Matrix: Water

Analysis Batch: 416025

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 415482

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.00020 <u>10/15/18 14:40</u> <u>10/18/18 11:30</u> Mercury < 0.000070 0.000070 mg/L

Lab Sample ID: LCS 400-415482/14-A

Matrix: Water

Analysis Batch: 416025

Client Sample ID: Lab Control Sample Prep Type: Total/NA Prep Batch: 415482

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits 0.00101 0.000988 98 80 - 120 Mercury mg/L

MB MB

Matrix: Water

Analysis Batch: 415840

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: 400-16013	Lab Sample ID: 400-160138-B-1-E MS								Client Sample ID: Matrix S					
Matrix: Water									Prep Ty	pe: Total/NA				
Analysis Batch: 416025									Prep Ba	atch: 415482				
	Sample	Sample	Spike	MS	MS				%Rec.					
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits					
Mercury	<0.000070		0.00201	0.00200		mg/L		99	80 - 120					

Lab Sample ID: 400-16013			Client S	amp	le ID: N	Matrix Spil	ke Dup	licate			
Matrix: Water									Prep Ty	pe: Tot	al/NA
Analysis Batch: 416025									Prep Ba	tch: 41	5482
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	<0.000070		0.00201	0.00197		mg/L		98	80 - 120	1	20

,					3				
Lab Sample ID: MB 4 Matrix: Water Analysis Batch: 4158							į.	le ID: Method Prep Type: To Prep Batch:	otal/NA
_	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		10/15/18 15:14	10/17/18 13:37	1

Lab Sample ID: LCS 400-415495/14-A				Clie	nt Sar	mple ID	: Lab Contro	ol Sample
Matrix: Water							Prep Type:	Total/NA
Analysis Batch: 415840							Prep Batch	n: 415495
-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.00101	0.000992		mg/L		99	80 - 120	

Lab Sample ID: 400-16003	6-B-1-C MS						CI	ient Sa	mple ID: N	Matrix Spike
Matrix: Water									Prep Typ	e: Total/NA
Analysis Batch: 415840									Prep Ba	tch: 415495
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	<0.000070	F1	0.00201	0.00143	F1	mg/L		71	80 - 120	

Lab Sample ID: 400-16003	6-B-1-D MS	D				Client	Samp	le ID: N	latrix Spil	ke Dup	licate
Matrix: Water									Prep Ty	pe: Tot	al/NA
Analysis Batch: 415840									Prep Ba	atch: 41	15495
_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	< 0.000070	F1	0.00201	0.00142	F1	ma/L		70	80 - 120		20

	Campio	oup.o	Opino						701 1001			
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Mercury	<0.000070	F1	0.00201	0.00142	F1	mg/L		70	80 - 120	1	20	
Lab Sample ID: MB 400-41	5608/13-A						Clie	nt Sam	ple ID: Me	ethod E	Blank	

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		10/16/18 10:40	10/17/18 15:10	1

Lab Sample ID: LCS 400-415608/14-A Matrix: Water Analysis Batch: 415840	Spike	LCS	LCS	Clie	nt Sar	nple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 415608 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Mercury	0.00101	0.000986		mg/L		98	80 - 120

TestAmerica Pensacola

Prep Type: Total/NA

Prep Batch: 415608

QC Sample Results Client: Southern Company TestAmerica Job ID: 400-160240-1 Project/Site: CCR - Plant Scherer SDG: Ash Pond Lab Sample ID: 400-160240-13 MS Client Sample ID: SGWC-9 **Matrix: Water** Prep Type: Total/NA Analysis Batch: 415840 **Prep Batch: 415608** Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits <0.000070 0.00201 0.00174 80 - 120 Mercury mg/L 87 Lab Sample ID: 400-160240-13 MSD Client Sample ID: SGWC-9 **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 415840 Prep Batch: 415608** Sample Sample Spike MSD MSD %Rec. **RPD** Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec RPD Limit Mercury <0.000070 0.00201 0.00195 mg/L 97 80 - 120 11 Lab Sample ID: MB 400-418701/14-A Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 419038 Prep Batch: 418701** MB MB RL **MDL** Unit **Analyte** Result Qualifier Analyzed Dil Fac Prepared 11/07/18 13:53 11/09/18 14:47 Mercury 0.0000845 J 0.00020 0.000070 mg/L Lab Sample ID: LCS 400-418701/15-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Analysis Batch: 419038 Prep Batch: 418701** Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Mercury 0.00101 0.00103 mg/L 103 80 - 120 Lab Sample ID: 400-161395-A-3-B MS **Client Sample ID: Matrix Spike Matrix: Water** Prep Type: Total/NA **Analysis Batch: 419038 Prep Batch: 418701** Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec Mercury 0.00014 JF1 B 0.00201 0.00153 F1 69 80 - 120 mg/L Lab Sample ID: 400-161395-A-3-C MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 419038 Prep Batch: 418701** MSD MSD Sample Sample Spike %Rec. **RPD** Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits **RPD** Limit 0.00201 Mercury 0.00014 JF1B 0.00149 F1 mg/L 67 80 - 120 Lab Sample ID: MB 400-418848/14-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Lab Sample ID: LCS 400-418848/15-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Prep Batch: 418848 **Analysis Batch: 419409** LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits Mercury 0.00101 0.000957 mg/L 95 80 - 120

RL

0.00020

MDL Unit

0.000070 mg/L

MB MB Result Qualifier

<0.000070

Analysis Batch: 419409

Analyte

Mercury

TestAmerica Pensacola

Prep Batch: 418848

Analyzed

11/08/18 12:35 11/13/18 09:32

Prepared

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: 400-160240-B-42-B MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 419409 Prep Batch: 418848** Sample Sample Spike MS MS %Rec.

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits 94 80 - 120 <0.000070 0.00201 0.00190 mg/L Mercury

Lab Sample ID: 400-160240-B-42-C MSD Client Sample ID: Matrix Spike Duplicate **Matrix: Water** Prep Type: Total/NA **Analysis Batch: 419409 Prep Batch: 418848** Sample Sample Spike MSD MSD **RPD** %Rec.

Result Qualifier Added Limits Limit Analyte Result Qualifier RPD Unit D %Rec Mercury <0.000070 0.00201 0.00184 mg/L 92 80 - 120 20

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 400-416446/1 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 416446

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac **Total Dissolved Solids** 5.0 3.4 mg/L 10/22/18 14:36 <34

Lab Sample ID: LCS 400-416446/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 416446

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits

Total Dissolved Solids 293 328 mg/L 112 78 - 122

Lab Sample ID: 400-160240-32 DU Client Sample ID: SGWC-15 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 416446

Sample Sample DII DII RPD Result Qualifier Result Qualifier Unit RPD Limit Analyte Total Dissolved Solids 350 348 0.6 mg/L

Lab Sample ID: MB 400-416940/1 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 416940

MB MB Result Qualifier RL **MDL** Unit Analyte Analyzed Dil Fac Prepared 5.0 **Total Dissolved Solids** 3.4 mg/L 10/25/18 12:27 <3.4

Lab Sample ID: LCS 400-416940/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 416940

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit D %Rec Limits **Total Dissolved Solids** 293 234 mg/L 80 78 - 122

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: 400-160240-A-54 DU

Matrix: Water

Analysis Batch: 416940

Sample Sample Result Qualifier **Total Dissolved Solids** 840

DU DU Result Qualifier

842

Unit D mg/L

RPD Limit 0.2

Prep Type: Total/NA

Client Sample ID: Duplicate

RPD

Method: 9315 - Radium-226 (GFPC)

Lab Sample ID: MB 160-394199/21-A

Matrix: Water

Analyte

Analyte

Radium-226

Matrix: Water

Analyte

Carrier

Analyte

Radium-226

Ba Carrier

Radium-226

Analysis Batch: 398696

Total

Count Uncert. $(2\sigma + / -)$

LCS LCS

Result Qual

11 75

0.2229

0.0772

Uncert. $(2\sigma + / -)$ 0.0787

RL 1.00

MDC Unit 0.0729 pCi/L

Prepared 10/10/18 11:51 11/01/18 06:00

Prepared

Analyzed

Client Sample ID: Method Blank

Analyzed Dil Fac

Prep Type: Total/NA

Prep Batch: 394199

Dil Fac

MB MB

Lab Sample ID: LCS 160-394199/1-A

Carrier %Yield Qualifier Limits Ba Carrier 100 40 - 110

0 1722

MB MB

Result Qualifier

<u>10/10/18 11:51</u> <u>11/01/18 06:00</u> **Client Sample ID: Lab Control Sample**

Prep Type: Total/NA **Prep Batch: 394199**

Analysis Batch: 398697

Total

Uncert. $(2\sigma + / -)$

1.23

MDC Unit 0.105 pCi/L %Rec 103 %Rec.

LCS LCS

%Yield Qualifier 85.8

Limits 40 - 110

Spike

Added

11.4

Lab Sample ID: 400-160240-6 DU

Matrix: Water

Analysis Batch: 398697

Client Sample ID: SGWA-24

Limits

68 - 137

Prep Type: Total/NA

Prep Batch: 394199

Sample Sample

DU DU Result Qual Result Qual

Total Uncert. $(2\sigma + / -)$

0.0923

RL 1.00

RL

1.00

MDC Unit 0.0887 pCi/L

RER RER

0.54

Limit

DU DU

Carrier %Yield Qualifier Limits

40 - 110 Ba Carrier 101

0.133

Lab Sample ID: MB 160-394766/17-A

Matrix: Water

Radium-226

Ba Carrier

Analysis Batch: 399232

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 394766

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$

0.2099 0.0808 $(2\sigma + / -)$ 0.0830

MDC Unit 0.0749 pCi/L

RL

1.00

Prepared 10/12/18 09:37 11/05/18 09:31

Analyzed

MB MB Carrier

%Yield Qualifier Limits 105 40 - 110

Prepared 10/12/18 09:37 11/05/18 09:31

Analyzed

11/30/2018

Dil Fac

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Lab Sample ID: LCS 160-394766/1-A

Matrix: Water

Analysis Batch: 399234

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 394766

Total Spike LCS LCS Uncert.

%Rec. Analyte Added RL MDC Unit Limits Result Qual $(2\sigma + / -)$ %Rec Radium-226 11.4 11.55 1.19 1.00 0.0806 pCi/L 102 68 - 137

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 40 - 110 94.7

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 394766

Lab Sample ID: 500-152940-W-1-B MS **Matrix: Water**

Analysis Batch: 399234

Total Spike %Rec. Sample Sample MS MS Uncert. Analyte Result Qual Added Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits Radium-226 1.00 2.42 15.1 16.52 1.68 0.128 pCi/L 93 75 - 138

MS MS

Carrier %Yield Qualifier Limits Ba Carrier 101 40 - 110

Lab Sample ID: 500-152940-W-1-C MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Water

Analysis Batch: 399232

Prep Type: Total/NA

Prep Batch: 394766

MSD MSD Sample Sample Spike Uncert.

%Rec. **RER** Analyte Result Qual Added Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits RER Limit Radium-226 2.42 15.1 15.81 1.61 1.00 0.0776 pCi/L 88 75 - 138 0.22

Total

MSD MSD

Carrier %Yield Qualifier Limits Ba Carrier 103 40 - 110

Lab Sample ID: 400-160240-21 DU Client Sample ID: SGWA-5

Matrix: Water

Analysis Batch: 399234

Prep Type: Total/NA

Prep Batch: 394766

Sample Sample DU DU Uncert. **RER** RLAnalyte Result Qual Result Qual $(2\sigma + / -)$ **MDC** Unit RER Limit 0.2911 0.101 Radium-226 0.210 1.00 0.0874 pCi/L 0.42

Total

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 102 40 - 110

Lab Sample ID: MB 160-394786/22-A Client Sample ID: Method Blank

Matrix: Water Prep Type: Total/NA **Analysis Batch: 399234** Prep Batch: 394786 Count Total

MB MB Uncert. Uncert. Result Qualifier Analyte $(2\sigma + / -)$ $(2\sigma + / -)$ **MDC** Unit RL Prepared Analyzed Dil Fac Radium-226 0.2751 0.119 0.122 1.00 0.135 pCi/L 10/12/18 11:33 11/05/18 10:28

MB MB

Carrier **%Yield Qualifier** Limits Prepared Dil Fac Analyzed Ba Carrier 101 40 - 110 10/12/18 11:33 11/05/18 10:28

%Rec.

SDG: Ash Pond

Lab Sample ID: LCS 160-394786/1-A

Matrix: Water

Analysis Batch: 399232

Client: Southern Company

Project/Site: CCR - Plant Scherer

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 394786

Total Spike LCS LCS Uncert.

Analyte Added RL **MDC** Unit Limits Result Qual $(2\sigma + / -)$ %Rec Radium-226 11.4 11.03 1.17 1.00 0.120 pCi/L 97 68 - 137

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 40 - 110 104

Client Sample ID: SGWC-7

Prep Batch: 394786

Lab Sample ID: 400-160240-11 DU **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 399232

Total DU DU RER Sample Sample Uncert. Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-226 0.158 1.00 0.1935 0.101 0.121 pCi/L 0.18

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 100 40 - 110

0.1769

Lab Sample ID: MB 160-397276/23-A Client Sample ID: Method Blank

Matrix: Water

Radium-226

Prep Type: Total/NA

Prep Batch: 397276 Analysis Batch: 401802 Count Total

0.0826

MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac

1.00

0.0796 pCi/L

MB MB

Qualifier Carrier %Yield Limits Prepared Analyzed Dil Fac Ba Carrier 94.1 40 - 110 10/25/18 10:04 11/20/18 07:55

Lab Sample ID: LCS 160-397276/1-A

Matrix: Water

Analysis Batch: 401873

Client Sample ID: Lab Control Sample Prep Type: Total/NA

10/25/18 10:04 11/20/18 07:55

Prep Batch: 397276

Spike LCS LCS Uncert. %Rec.

0.0810

Added RL Analyte Result Qual $(2\sigma + / -)$ **MDC** Unit %Rec Limits Radium-226 11.4 12.62 1.31 1.00 0.127 pCi/L 111 68 - 137

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 99.7 40 - 110

Lab Sample ID: 400-160832-A-8-A DU Client Sample ID: Duplicate

Matrix: Water Prep Type: Total/NA

Total

Analysis Batch: 401803 Prep Batch: 397276

Total DU DU **RER** Sample Sample Uncert.

Analyte Result Qual Result Qual $(2\sigma + / -)$ RL**MDC** Unit RER Limit Radium-226 0.207 0.2120 0.0952 1.00 0.0985 pCi/L 0.03

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 95.0 40 - 110

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Lab Sample ID: MB 160-397279/24-A

Lab Sample ID: LCS 160-397279/1-A

Matrix: Water

Analysis Batch: 401873

Client Sample ID: Method Blank

Prep Type: Total/NA **Prep Batch: 397279**

	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.1764		0.0941	0.0955	1.00	0.115	pCi/L	10/26/18 08:34	11/20/18 07:43	1

Total

Count

MB MB

Carrier **%Yield Qualifier** Limits Prepared Analyzed Dil Fac Ba Carrier 40 - 110 <u>10/26/18 08:34</u> <u>11/20/18 07:43</u> 97.3

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 397279

Matrix: Water Analysis Batch: 401802 Total LCS LCS %Rec. **Spike** Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits Radium-226 1.00 11.4 10.06 1.06 0.0998 pCi/L 89 68 - 137 LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 97.9 40 - 110

Client Sample ID: Duplicate Lab Sample ID: 400-160240-A-35-A DU

Matrix: Water

Analysis Batch: 401874

Prep Type: Total/NA

Prep Batch: 397279

Total DU DU **RER** Sample Sample Uncert. Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit 0.0879 pCi/L Radium-226 0.143 0.1438 0.0776 1.00 0.01

DU DU Carrier %Yield Qualifier Limits Ba Carrier 101

Lab Sample ID: MB 160-398027/11-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 401803

Prep Type: Total/NA

Prep Batch: 398027

			Count	rotai						
	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.2707		0.172	0.174	1.00	0.234	pCi/L	10/29/18 11:40	11/20/18 11:18	1
	МВ	МВ								

Carrier Limits Prepared **%Yield Qualifier** Analyzed Dil Fac 10/29/18 11:40 11/20/18 11:18 Ba Carrier 95.9 40 - 110

Lab Sample ID: LCS 160-398027/1-A **Client Sample ID: Lab Control Sample**

Prep Type: Total/NA

Matrix: Water Analysis Batch: 401803 Prep Batch: 398027 Total

LCS LCS %Rec. Spike Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL**MDC** Unit %Rec Limits Radium-226 22.7 21.18 2.22 1.00 0.203 pCi/L 68 - 137

LCS LCS %Yield Qualifier

Carrier Limits Ba Carrier 90.9 40 - 110

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Lab Sample ID: LCSD 160-398027/2-A

Matrix: Water

Analysis Batch: 401803

Client: Southern Company

Project/Site: CCR - Plant Scherer

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 398027**

				iolai						
	Spike	LCSD	LCSD	Uncert.				%Rec.		RER
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	RER	Limit
Radium-226	22.7	22.04		2.32	1.00	0.216 pCi/L	97	68 - 137	0.19	1

LCSD LCSD Carrier %Yield Qualifier Limits 40 - 110 Ba Carrier 90.6

Method: 9320 - Radium-228 (GFPC)

0.3833 U

Lab Sample ID: MB 160-394218/21-A **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Radium-228

Analysis Batch: 397303

Prep Batch: 394218 Total Count MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL**MDC** Unit Prepared Analyzed Dil Fac

1.00

0.439 pCi/L

0.282

0.279

MB MB Carrier %Yield Qualifier Limits Prepared Dil Fac Analyzed Ba Carrier 100 40 - 110 <u>10/10/18 13:30</u> <u>10/25/18 09:48</u> 40 - 110 10/10/18 13:30 10/25/18 09:48 Y Carrier 72.5

Lab Sample ID: LCS 160-394218/1-A

Matrix: Water

Analysis Batch: 397302

Client Sample ID: Lab Control Sample

10/10/18 13:30 10/25/18 09:48

Prep Type: Total/NA Prep Batch: 394218

Total Spike LCS LCS Uncert. %Rec. Limits Analyte Added $(2\sigma + / -)$ RL **MDC** Unit Result Qual %Rec Radium-228 10.9 13.06 1.43 1.00 0.378 pCi/L 120 56 - 140

LCS LCS Carrier %Yield Qualifier Limits 40 - 110 Ba Carrier 85.8 40 - 110 Y Carrier 87.9

Lab Sample ID: 400-160240-6 DU Client Sample ID: SGWA-24

Matrix: Water

Analysis Batch: 397302

Prep Type: Total/NA Prep Batch: 394218

Total Sample Sample DU DU Uncert. **RER** Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-228 0.435 0.233 1.00 0.13 0.3733 0.351 pCi/L

DU DU Carrier %Yield Qualifier Limits Ba Carrier 101 40 - 110 Y Carrier 78.9 40 - 110

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample ID: MB 160-394779/17-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA Analysis Batch: 396712 **Prep Batch: 394779**

	МВ	МВ	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.4433		0.220	0.223	1.00	0.318	pCi/L	10/12/18 10:51	10/23/18 09:46	1
	MB	MB								
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	105		40 - 110					10/12/18 10:51	10/23/18 09:46	1
Y Carrier	80.7		40 - 110					10/12/18 10:51	10/23/18 09:46	1

Lab Sample ID: LCS 160-394779/1-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA **Prep Batch: 394779** Analysis Batch: 396712

				Total						
	Spike	LCS	LCS	Uncert.					%Rec.	
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC	Unit	%Rec	Limits	
Radium-228	9.29	9.233		1.08	1.00	0.411	pCi/L	99	56 - 140	
LCS LCS										

	LCS	LCS	
Carrier	%Yield	Qualifier	Limits
Ba Carrier	94.7		40 - 110
Y Carrier	81.5		40 - 110

Lab Sample ID: 500-152940-W-1-E MS Client Sample ID: Matrix Spike **Matrix: Water** Prep Type: Total/NA

Client: Southern Company

Project/Site: CCR - Plant Scherer

Analysis Batch: 396712 **Prep Batch: 394779**

					Total					
	Sample Sample	Spike	MS	MS	Uncert.				%Rec.	
Analyte	Result Qual	Added	Result	Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	
Radium-228	1.14	12.4	11.52		1.36	1.00	0.499 pCi/L	84	45 - 150	
	MS MS									
Carrier	%Yield Qualifier	Limits								

Carrier	%Yield	Qualifier	Limits
Ba Carrier	101		40 - 110
Y Carrier	77.8		40 - 110
_			

Lab Sample ID: 500-152940-W-1-F MSD **Client Sample ID: Matrix Spike Duplicate Matrix: Water** Prep Type: Total/NA

Analysis Batch: 396712

						ıotai							
	Sample	Sample	Spike	MSD	MSD	Uncert.					%Rec.		RER
Analyte	Result	Qual	Added	Result	Qual	(2σ+/-)	RL	MDC	Unit	%Rec	Limits	RER	Limit
Radium-228	1.14		12.4	12.39		1.43	1.00	0.453	pCi/L	91	45 - 150	0.31	

Radium-228	1.14	12.4	12.39	1.43	1.00	0.453 pCi/L	91	45 - 150	0.31	
	MSD MSD									
Carrier	%Yield Qualifier	Limits								
Ba Carrier	103	40 - 110								
Y Carrier	80.0	40 - 110								

TestAmerica Pensacola

Prep Batch: 394779

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample ID: 400-160240-21 DU

Matrix: Water

Matrix: Water

Matrix: Water

Analysis Batch: 398413

Analysis Batch: 398414

Analysis Batch: 396712

Client Sample ID: SGWA-5 Prep Type: Total/NA

Prep Batch: 394779

Total Sample Sample DU DU Uncert. **RER Analyte** Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-228 0.554 0.3344 U 0.244 1.00 0.379 pCi/L 0.42

DU DU

Carrier %Yield Qualifier I imits Ba Carrier 102 40 - 110 Y Carrier 78.9 40 - 110

Lab Sample ID: MB 160-394791/22-A

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 394791

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-228 -0.05032 Ū 0.189 0.190 1.00 0.351 pCi/L 10/12/18 12:42 10/31/18 17:04

> MR MR Qualifier Limits %Yield

Carrier Ba Carrier 40 - 110 101 Y Carrier 87.9 40 - 110

10/12/18 12:42 10/31/18 17:04 Client Sample ID: Lab Control Sample

10/12/18 12:42 10/31/18 17:04

Prepared

Prep Type: Total/NA

Dil Fac

Prep Batch: 394791

Analyzed

Total LCS LCS %Rec. Spike Uncert. Added **MDC** Unit Analyte Result Qual $(2\sigma + / -)$ RL %Rec Limits Radium-228 9.26 0.979 1.00 0.375 pCi/L 90 56 - 140 8.304

LCS LCS

Lab Sample ID: LCS 160-394791/1-A

Carrier %Yield Qualifier Limits Ba Carrier 104 40 - 110 Y Carrier 86.4 40 - 110

Lab Sample ID: 400-160240-11 DU

Matrix: Water

Analysis Batch: 398414

Client Sample ID: SGWC-7

Prep Type: Total/NA

Prep Batch: 394791

Total Sample Sample DU DU Uncert. **RER** Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-228 0.227 U 0.4048 0.237 1.00 0.351 pCi/L 0.38

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 100 40 - 110 Y Carrier 85.2 40 - 110

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample ID: MB 160-397294/23-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA **Analysis Batch: 400703 Prep Batch: 397294** Count Total

	MB	MB	Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.1355	U	0.230	0.230	1.00	0.389 pCi/L	10/25/18 10:33	11/13/18 13:43	1

	MB	MB				
Carrier	%Yield	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Ba Carrier	94.1		40 - 110	10/25/18 10:33	11/13/18 13:43	1
Y Carrier	83.7		40 - 110	10/25/18 10:33	11/13/18 13:43	1

Lab Sample ID: LCS 160-397294/1-A **Client Sample ID: Lab Control Sample Matrix: Water**

Prep Type: Total/NA Prep Batch: 397294 Analysis Batch: 400703

				Total					
	Spike	LCS	LCS	Uncert.					%Rec.
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC	Unit	%Rec	Limits
Radium-228	9.22	9.166		1.08	1.00	0.399	pCi/L	99	56 - 140

	LCS	LCS	
Carrier	%Yield	Qualifier	Limits
Ba Carrier	99.7		40 - 110
Y Carrier	77.4		40 - 110

Lab Sample ID: 400-160832-A-8-B DU **Client Sample ID: Duplicate**

Matrix: Water Prep Type: Total/NA

Analysis Batch: 400703 Prep Batch: 397294 Total

	Sample	Sample	DU	DU	Uncert.						RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit		RER	Limit
Radium-228	0.413	U	0.0000	U	0.231	1.00	0.414	pCi/L	_	 0.82	1

	DU	DU	
Carrier	%Yield	Qualifier	Limits
Ba Carrier	95.0		40 - 110
V Carrier	81 5		40 110

Lab Sample ID: MB 160-397318/24-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 400469 Prep Batch: 397318

			Count	Total						
	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.8277		0.403	0.410	1.00	0.586	pCi/L	10/26/18 08:49	11/12/18 14:58	1

	IVID	IVID				
Carrier	%Yield	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Ba Carrier	97.3		40 - 110	10/26/18 08:49	11/12/18 14:58	1
Y Carrier	56.4		40 - 110	10/26/18 08:49	11/12/18 14:58	1

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCS 160-397318/1-A

Matrix: Water

Carrier

Ba Carrier

Y Carrier

Analysis Batch: 400469

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 397318

Total Spike LCS LCS Uncert. %Rec. Added **Analyte** Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits Radium-228 9.22 8.223 0.987 1.00 0.386 pCi/L 89 56 - 140

LCS LCS %Yield Qualifier

I imits 97.9 40 - 110 89.3 40 - 110

Client Sample ID: Duplicate

Prep Type: Total/NA

Lab Sample ID: 400-160240-A-35-B DU **Matrix: Water**

Analysis Batch: 400469

Total Uncert. **Prep Batch: 397318**

Sample Sample DU DU **RER Analyte** Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-228 0.497 0.6104 0.299 1.00 0.430 pCi/L 0.19

> DU DU %Yield Qualifier

Carrier Limits Ba Carrier 101 40 - 110 Y Carrier 80.4 40 - 110

Lab Sample ID: MB 160-398030/11-A

Matrix: Water

Analysis Batch: 400470

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 398030

Count Total MB MB Uncert. Uncert. **MDC** Unit Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL Prepared Analyzed Dil Fac Radium-228 0.3114 Ū 0.522 0.523 1.00 0.883 pCi/L 10/29/18 11:58 11/12/18 16:29

MB MB Carrier %Yield Qualifier Limits Prepared Analyzed Dil Fac Ba Carrier 40 - 110 10/29/18 11:58 11/12/18 16:29 95.9 10/29/18 11:58 11/12/18 16:29 Y Carrier 74.0 40 - 110

Total

Lab Sample ID: LCS 160-398030/1-A

Matrix: Water

Analysis Batch: 400470

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 398030

Spike %Rec. LCS LCS Uncert. Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-228 18.4 19.82 2.34 1.00 0.710 pCi/L 107 56 - 140

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 90.9 40 - 110 Y Carrier 77.0 40 - 110

TestAmerica Job ID: 400-160240-1

SDG: Ash Pond

Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCSD 160-398030/2-A Client Sample ID: Lab Control Sample Dup **Matrix: Water** Prep Type: Total/NA Analysis Batch: 400470 **Prep Batch: 398030** Total

				i Otai						
	Spike	LCSD	LCSD	Uncert.				%Rec.		RER
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	RER	Limit
Radium-228	18.4	19.28		2.31	1.00	0.844 pCi/L	105	56 - 140	0.12	1

	LCSD	LCSD	
Carrier	%Yield	Qualifier	Limits
Ba Carrier	90.6		40 - 110
Y Carrier	77.8		40 - 110

Method: Ra226 Ra228 - Combined Radium-226 and Radium-228

Lab Sample ID: 400-160240-6 DU Client Sample ID: SGWA-24 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 402686

					Total						
	Sample	Sample	DU	DU	Uncert.						RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit		RER	Limit
Combined	0.568		0.5961		0.251	5.00	0.351	pCi/L		0.06	
Radium 226 +											
228											

Lab Sample ID: 400-160240-11 DU

Matrix: Water

Analysis Batch: 402686

, ,					Total					
	Sample	Sample	DU	DU	Uncert.					RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit	RER	Limit
Combined	0.385		0.5983		0.258	5.00	0.351	pCi/L	 0.42	

Radium 226 + 228

Lab Sample ID: 400-160240-21 DU

Matrix: Water

Analysis Batch: 402686

					Total						
	Sample	Sample	DU	DU	Uncert.						RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit		RER	Limit
Combined	0.764		 0.6255		0.264	5.00	0.379	pCi/L		0.25	
Radium 226 +											

228

Lab Sample ID: 400-160240-A-35 DU **Client Sample ID: Duplicate Matrix: Water Prep Type: Total/NA**

Analysis Batch: 402686

				Total				
Sample	Sample	DU	DU	Uncert.				RER
Analyte Result	Qual	Result	Qual	(2σ+/-)	RL	MDC Unit	RER	Limit
Combined 0.640		0.7542		0.309	5.00	0.430 pCi/L	 0.18	

Radium 226 +

228

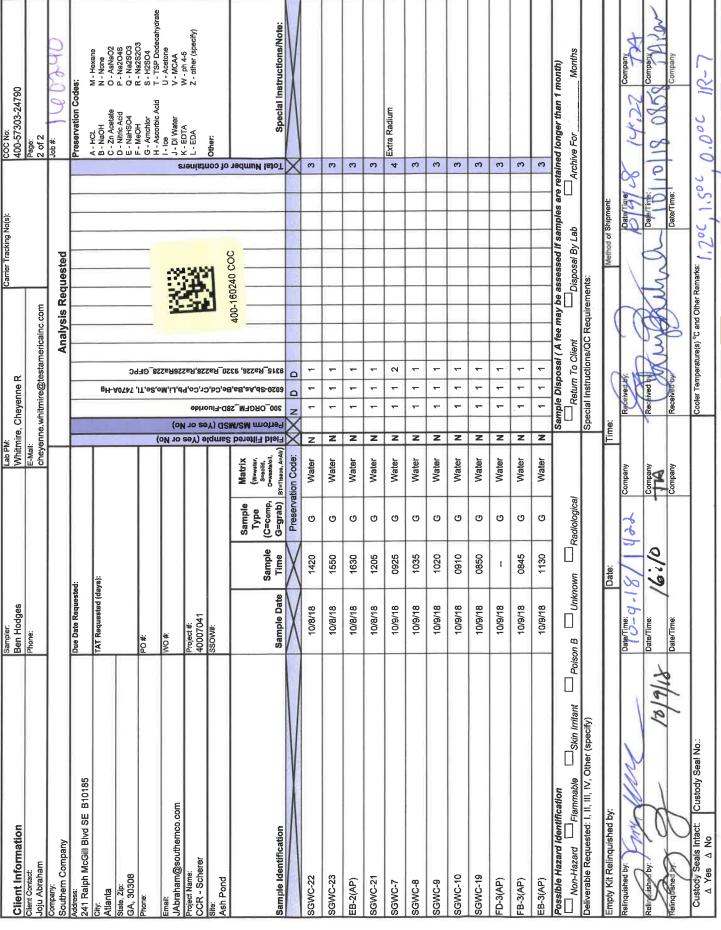
TestAmerica Pensacola

Client Sample ID: SGWC-7

Client Sample ID: SGWA-5

Prep Type: Total/NA

Prep Type: Total/NA


estAmenca Pensacola										9	المحاد	An	TactAmerica
3355 McLemore Drive Pensacola El 32514	0	Chain of Custody Record	f Cust	ody Re	COL	ō			137/61 61	2012	3		2
474-1001 Fax (850) 478-2671											THE LEADE	ir in enviro	THE LEADER IN ENVIRONMENTAL TESTING
ormation	Sampler: Ben Hodges			Lab PM Whitm	Lab PM: Whitmire, Cheyenne R	eyenne	ez.		Carrier Tracking No(s)	4o(s):	COC No: 400-57303-24790	3-24790	
	Phone:			E-Mail: cheye	hw.enr	itmire@	gtestam	E-Mail: cheyenne.whitmire@testamericainc.com			Page: 1 of 1		
Company: Southern Company								Analysis	Analysis Requested		Job #:		
Address: 241 Ralph McGill Blvd SE B10185	Due Date Requested:	÷i				L					Preservation Codes	le l	
City: Atlanta	TAT Requested (days):	ys):				pH-					A - HCL B - NaOH C - Zn Acetate		M - Hexane N - None O - AsNaO2
State, Zip: GA, 30308					ŢŢ.	A0T4T ,	96				D - Nitric Aci		P - Na2048 Q - Na2803
Phone:	PO #					,IT,98,c	149_8 <u>8</u>				G - Amchlor H - Ascorbic		vazszos 42SO4 FSP Dodecahydrate
Email: JAbraham@southernco.com	WO#:					b,Li,Mo	S6Ra2		至				Acetone MCAA
Project Name: CCR - Scherer	Project #: 40007041						28,Ra2		4		renist L-EDA		vv - pn 4-5 Z - other (specify)
Site: Ash Pond	SSOW#:						Z&F_02				of con		
Sample Identfication	Sample Date	Sample Time	Sample Type (C=comp,	Matrix (Wewster, Sesolid, Oewaste/oil, ET-Tissue, A-Alc)	Field Filtered M\2M mmoh99	300_0RGFM_2: 5020-5b,As,Ba,I	9316_Ra226, 93		20240 COC		TedmuM lstoT	eclai Instru	Special Instructions/Note:
	X	1			X	-	٥					Λ	V
SGWA-1	10/5/18	0060	υ	Water	z	-					m		
FB-1(AP)	10/5/18	0840	ტ	Water	z	1	-				8		
SGWA-2	10/5/18	1015	ŋ	Water	z	1	-				3		
EB-1(AP)	10/5/18	1115	ŋ	Water	z	-	-				က		
SGWA-3	10/5/18	0945	g	Water	z	-					n		
SGWA-24	10/5/18	1115	ŋ	Water	z	1	7				4 Extra Radium	шn	
Possible Hazard Identification	son B Unknown		□ Radiological		San	ple Di. □Retu	ile Disposal (A f Return To Client	(A fee may ient	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month, Return To Client Disposal By Lab Mor	mples are ret	retained longer t	than 1 mor	onth) Months
, III, IV, Othe					Spec	cial Ins	truction	s/QC Requir	Special Instructions/QC Requirements: Equ Golder_Rad UDS and Equ Golder UDS Equis EDDs	e_Rad UDS a	ınd Equ Golder	r UDS Equi	s EDDs
Empty Kit Relinquished by:		Date:		П	Time:	9	1		Method of Shipment	Shipment:			
Relinquishesby:	Date/Time: 5 -	18/ 19	brud	Company Golder		Received by	<u>, 7</u>	A	3/15/01	Date/Time:	15844	ğ	Company
Relinquished (%)	18 Tings	181	6,	Compa		Received by:	žá		1 /	Date/Time:		5	npany
	Dae/Time:		8	Company		Received by:	D.	Il	10	Date/Time: 10-6-18	083	Ö	Company
Custody Seals Intact: Custody Seal No.: △ Yes △ No						Cooler T	emperatu	Cooler Temperature(s) °C and Other Remarks:	er Remarks: H.	100 H	300	1 R-7	
												*	

Chain of Custody Record

Phone (850) 474-1001 Fax (850) 478-2671

Pensacola, FL 32514

3355 McLemore Drive

Chain of Custody Record

i estAmerica Pensacoia													-	AAA	
3355 McLemore Drive	O	Chain of Custody Record	f Cust	ody Re	COL	Þ							Ď	₹ <u>₹</u>	
Phone (850) 474-1001 Fax (850) 478-2671													THE LEA	DER IN EN	RONMENTAL TESTING
Client Information	Sampler: Ben Hodges			Lab PM Whitm	Lab PM: Whitmire, Cheyenne R	eyenn	<u>م</u>			Carrier Tracking No(s)	ding No(s):		COC No: 400-573	COC No: 400-57303-24790	
Gient Contact: Joju Abraham	Phone:			E-Mail: cheye	hw.enn	itmire	2)testan	E-Mail: cheyenne.whitmire@testamericainc.com					Page: 1 of 1	4 <u>-</u>	
Company: Southern Company								Analysis Requested	Seg	ested			# dot		
Address: 241 Ralph McGill Blvd SE B10185	Due Date Requested:	#											Preserva	1.0	
	TAT Requested (day	(days):				pH-							A - HCL B - NaOF		M - Hexane N - None
State, Zip: GA, 30308					ų,	AOYÞY	_						D - Nitric Acid E - NaHSO4		D - Na2048 Q - Na2SO3
Phone:	PO #;					.IT.92.							G - Amch		R - Na2S2O3 S - H2SO4 T - TSD Dodgoobudents
uthernco.com	,wo#:					oM.iJ.d	_								U - Acetone V - MCAA
Project Name: CCR - Scherer	Project #: 40007041						_						K-EDTA		W - ph 4-5 Z - other (specify)
	SSOW#:												Other:		
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp,	Matrix (Wewater, Sesolid, Oewestatoil, BT=Tissue, Ae-Air)	beretli? blei? MISM mrohe9	300_0RGFM_28 3020-Sb,As,Ba,B	9316_Razze, 932						Tedmit Number of	Decial Ins	Special instructions/Note:
	X	\	Preservation Code.	1	X	H	-							\backslash	V
SGWA-25	10/8/18	1420	O		Z	T_	_						n		
SGWA-4	10/8/18	1315	Ø	Water	z	-	-						6		
SGWA-5	10/8/18	1045	g	Water	z	-	N						4 Extra Radium	dium	
SGWC-6	10/8/18	1525	O	Water	z	-	-						ю		
SGWC-12	10/8/18	1040	ŋ	Water	z		-						е		
FB-2(AP)	10/8/18	1015	Ø	Water	z	-	-						ю		
SGWC-13	10/8/18	1225	O	Water	z	-	-						ന		
SGWC-14	10/8/18	1330	O	Water	z	-	-						m		
SGWC-16	10/8/18	1440	o	Water	z	-	-						m		
SGWC-17	10/8/18	1030	ŋ	Water	z	-1	-						m		
FD-1(AP)	10/8/18	1	ŋ	Water	z	1	-						m		
FD-2(AP)	10/8/18	1	უ	Water	z	1	-						n		
Possible Hazard Identification Non-Hazard — Flammable Skin Imitant Poison B	оп В 🔲 Uпкпоwп		Radiological		Sam	ple Di	nple Disposal (Af ⊐Retum To Client	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	be ass	oe assessed if san	sample: Lab	are retai	etained longe Archive For	r than 1 n	onth) Months
Deliverable Requested: I, II, III, IV, Other (specify)					Spec	ial Ins	truction	Special Instructions/QC Requirements: Equ Golder_Rad UDS and Equ Golder UDS Equis EDDs	ements	Equ G	older_Ra	d UDS an	d Equ Gold	er UDS E	juis EDDs
inquished by:		Date:		Г	Time:					Metho	Method of Shipment:	¥			
myma	Date/Time: 4 - {	h1/8	43	Company Golder		Received by:	è d		_ 6		Date/Time:	ime: //K	J	4.27	Company
Relinquished by:	Date/Time:	16:10		Company	, L	Received M:		3	*	7	Date/Time:	Ne.	181	10858	Company Company
Custody Seals/Intact: Custody Seal No Δ Yes Δ No					ľ	coler T	emperatur	Cooler Temperature(s) °C and Other Remarks:	her Rema	rks:	-				
					1	1		1	1	1	K				

N - None
O - Anhao2
O - Anhao2
P - Na2O4S
Q - Na2SO3
R - Na2SO4
R - Na2SO4
T - TSP Dodecahydrate
U - Acebrae
V - MCAA
W - ph 4-5 Special Instructions/Note: Special Instructions/QC Requirements: Equ Golder_Rad UDS and Equ Golder UDS Equis EDDs Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Mon 400-57303-24790 Page: 1 of 1 35.70 A - HCL
B - NaOH
C - Zn Acetate
D - Nirto Acid
E - NaHSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid 9,9 J - Di Water K - EDTA L - EDA Archive For Total Number of containers fethod of Shipment Carrier Tracking No(s) **Analysis Requested** Cooler Temperature(s) °C and Other Remarks: COS cheyenne.whitmire@testamericainc.com Received by: 3315_Ra226, 9320_Ra228,Ra226Ra228_GFPC Lab PM: Whitmire, Cheyenne R 020-As,Ba,Be,Cd,Cr,Co,Pb,Li,Mo,Se,Tl, 7470A-H9 Perform MS/MSD (Yes or No) Time: Field Fittered Sample (Yes or No) E-Mall: Company Matrix (wawater, Basolid, Owesteloli, Preservation Code: Water Water Company Golder Radiological (C=comb, G=grab) Sample Type Ø Ø 3:40 0750 Sample Time 1515 1050 Date: Unknown FAT Requested (days): Due Date Requested: Sample Date Sampler: Ben Hodges 10/16/18 10/16/18 Project #: 40007041 SSOW#: Phone: # 08 Poison B 0 Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seals Intact. | Qustody Seal No. Non-Hazard Flammable 241 Ralph McGill Blvd SE B10185 Possible Hazard Identification JAbraham@southernco.com Empty Kit Relinquished by: Client Information Sample Identification Southern Company Project Name: CCR - Scherer efinquished by: Joju Abraham alingdished by: Client Contact: State, Zip: GA, 30308 SGWC-15 SGWC-11 Ash Pond Atlanta

TestAmerica

Chain of Custody Record

Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671

TestAmerica Pensacola

3355 McLemore Drive

	Sampler:			Lab PM					Carrier Tracking Note	king Mo(s)		COC No.		
Client Information	Ben Hodges			Whitm	Whitmire, Cheyenne R	eyenn	ar ar			dela . S		400-57303-24790	-24790	
Cifent Contact: Joju Abraham	Phone:			E-Mail: cheye	ne.wh	lmire(@testar	E-Mail: cheyenne.whitmire@testamericainc.com	F			Page: 1 of 1		
Company: Southern Company								Analysis	Analysis Requested			Job #;	7600	1
Address: 241 Raiph McGill Blvd SE B10185	Oue Date Requested:	#				\vdash						Preservation Codes:	1.0	
City: Atlanta	TAT Requested (days)	rs):										B - NaOH	M - Hexane N - None	xane ne NaO3
State, Zip: GA, 30308												D - Nitric Acid E - NaHSO4		204S 2503
Phone.	#0d					_	_					G - Amchlor	S-H2	25203 SO4
Ensil: JAbraham@southernco.com	WO #:				(on		_					1 - fce J - DI Water	Acid I - 75	I - 13P Dodecanydrate U - Acetone V - MCAA
Project Name: CCR - Scherer	Project #: 40007041				10 \$9							K-EDTA		.4-5 er (specify)
Site: Ash Pond	SSOW#:				A) QS	_						of cor		
Sample Identification	Sample Date	Sample	Sample Type (C=Comp,	Matrix (www.ee. Smolid. Ownereddi,	Field Filtered M\2M mrohe9	300_0RGFM_2I	6020-As,Ba,Be,C					TedmuM listoT	Special Instructions/Note:	ions(Note:
	\bigvee	X	• 65		X	Z								
SGWC-18	10/18/18	9060	ŋ	Water	z	-	1					m		
SGWC-20	10/16/18	1035	g	Water	2	-	1					60		
							-				-			
					H		-							
					F	\vdash	-							
							-				-			
					+	\pm	-				+			
					+		++				-			
Possible Hazard Identification					E C] sjour	- Sporsic	A fee ms	Sample Disnes (A fee may be assessed if samples are retained beaute than 4 months	if complet	- 020	Toward bonie	from 4 month	1
Non-Hazard Flammable Skin Irritant Poison B	ison B Unknown	- 1	Radiological			چ آ	Return To Client	Client	Disposal By Lab	By Lab		Archive For	Mc	Months
Deliverable Requested: I, II, III, IV, Other (specify)					g	ecial Ir	nstructik	ons/QC Req	Special Instructions/QC Requirements: Equ Golder_Rad UDS and Equ Golder UDS Equis EDDs	Golder_Rat	1 UDS a	and Equ Golder	r UDS Equis	EDDs
Empty Kit Relinquished by:		Date:			Time:				Me	Method of Shipment:	岩			
Reimquished by, Karin M	Date/Time:	8401/		Company Golder		Received by	V	7	0	10/00 / O	Jo	16:4	0	Company
reminustration by:	Date/Time;	01.0		Company		Receiv	Received W:	B		/ Satistime	ST JO	118 E	T.	Company
				Company		Recer	Received by:	D		Date/	line.	83	Сол	Сотрапу
A Yes A No						Coole	Тетры	ature(s) °C and	Cooler Temperature(s) °C and Other Remarks:			2.702	25	
											١			

TestAmerica

Chain of Custody Record

3355 McLemore Drive Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671

Client: Southern Company

Job Number: 400-160240-1 SDG Number: Ash Pond

Login Number: 160240 List Source: TestAmerica Pensacola

List Number: 1

Creator: Conrady, Hank W

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	4.2°C 4.3°C IR-7, 2.6°C, 1.5°C IR-7, 5.7°C, IR-8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Southern Company

Job Number: 400-160240-1 SDG Number: Ash Pond

Login Number: 160240
List Source: TestAmerica St. Louis
List Number: 2
List Creation: 10/08/18 06:17 PM

Creator: McKinney, Gerrod E

Creator: McKinney, Gerrod E		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	20.0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Southern Company

Job Number: 400-160240-1 SDG Number: Ash Pond

Login Number: 160240
List Source: TestAmerica St. Louis
List Number: 3
List Creation: 10/10/18 05:29 PM

Creator: McKinney, Gerrod E

Creator: McKinney, Gerrod E		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	21.0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Job ID: 400-160240-1 SDG: Ash Pond

Client: Southern Company Project/Site: CCR - Plant Scherer

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-19
ANAB	ISO/IEC 17025		L2471	02-22-20
Arizona	State Program	9	AZ0710	01-12-19
Arkansas DEQ	State Program	6	88-0689	09-01-19
California	State Program	9	2510	06-30-19
Florida	NELAP	4	E81010	06-30-19
Georgia	State Program	4	E81010 (FL)	06-30-19
Illinois	NELAP	5	200041	10-09-19
Iowa	State Program	7	367	08-01-20
Kansas	NELAP	7	E-10253	10-31-18 *
Kentucky (UST)	State Program	4	53	06-30-19
Kentucky (WW)	State Program	4	98030	12-31-18
Louisiana	NELAP	6	30976	06-30-19
Louisiana (DW)	NELAP	6	LA180023	12-31-18
Maryland	State Program	3	233	09-30-19
Massachusetts	State Program	1	M-FL094	06-30-19
Michigan	State Program	5	9912	06-30-19
New Jersey	NELAP	2	FL006	06-30-19
North Carolina (WW/SW)	State Program	4	314	12-31-18
Oklahoma	State Program	6	9810	08-31-19
Pennsylvania	NELAP	3	68-00467	01-31-19
Rhode Island	State Program	1	LAO00307	12-30-18
South Carolina	State Program	4	96026	06-30-19
Tennessee	State Program	4	TN02907	06-30-19
Texas	NELAP	6	T104704286-18-15	09-30-19
US Fish & Wildlife	Federal		LE058448-0	07-31-19
USDA	Federal		P330-18-00148	05-17-21
Virginia	NELAP	3	460166	06-14-19
Washington	State Program	10	C915	05-15-19
West Virginia DEP	State Program	3	136	06-30-19

Laboratory: TestAmerica St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date	
Alaska	laska State Program		MO00054	06-30-19	
ANAB	DoD ELAP		L2305	04-06-19	
Arizona	State Program	9	AZ0813	12-08-18 *	
California	State Program	9	2886	06-30-19	
Connecticut	State Program	1	PH-0241	03-31-19	
Florida	NELAP	4	E87689	06-30-19	
Illinois	NELAP	5	200023	11-30-18 * 12-01-18 *	
lowa	State Program	7	373		
Kansas	NELAP	7	E-10236	10-31-18 *	
Kentucky (DW)	State Program	4	90125	12-31-18	
Louisiana	NELAP	6	04080	06-30-19	
Louisiana (DW)	NELAP	6	LA180017	12-31-18 *	
Maryland	State Program	3	310	09-30-19	
Michigan	State Program	5	9005	06-30-18 *	
Missouri	State Program	7	780	06-30-19	

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Pensacola

3

5

9

11

12

13

11/30/2018

Accreditation/Certification Summary

Client: Southern Company
Project/Site: CCR - Plant Scherer
TestAmerica Job ID: 400-160240-1
SDG: Ash Pond

Laboratory: TestAmerica St. Louis (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date	
Nevada	State Program		MO000542018-1	07-31-19	
New Jersey	NELAP	2	MO002	06-30-19	
New York	NELAP	2	11616	03-31-19	
North Dakota	State Program	8	R207	06-30-19	
NRC	NRC		24-24817-01	12-31-22	
Oklahoma	State Program	6	9997	08-31-19	
Pennsylvania	NELAP	3	68-00540	02-28-19	
South Carolina	State Program	4	85002001	06-30-19	
Texas	NELAP	6	T104704193-18-12	07-31-19	
US Fish & Wildlife	Federal		058448	07-31-19	
USDA	Federal		P330-17-0028	02-02-20	
Utah	NELAP	8	MO000542018-10	07-31-19	
Virginia	NELAP	3	460230	06-14-19	
Washington	State Program	10	C592	08-30-19	
West Virginia DEP	State Program	3	381	08-31-19	

3

4

5

9

10

15

13

12

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-160240-2

TestAmerica Sample Delivery Group: Ash Pond

Client Project/Site: CCR - Plant Scherer

For:

Southern Company 241 Ralph McGill Blvd SE B10185 Atlanta, Georgia 30308

Attn: Joju Abraham

Authorized for release by: 11/30/2018 6:54:18 PM

Cheyenne Whitmire, Project Manager II (850)471-6222

chevenne.whitmire@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	5
Method Summary	16
Sample Summary	17
Client Sample Results	18
	62
Chronicle	64
QC Association	75
QC Sample Results	85
Chain of Custody	108
Receipt Checklists	111
Cartification Summary	114

5

7

0

10

11

12

13

Case Narrative

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Job ID: 400-160240-2

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-160240-2

HPLC/IC

Method(s) 300.0: The method blank for analytical batch 418094 contained Fluoride above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 300.0: The method blank for analytical batch 418296 contained Fluoride above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 300.0: The following sample was diluted due to conductivity: SGWC-18 (400-160240-45). Elevated reporting limits (RL) are provided.

Method(s) 300.0: The continuing calibration blank for analytical batch 418094 contained Fluoride above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: SGWC-15 (400-160240-32), SGWC-20 (400-160240-46), FD-2 (400-160240-47), PZ-42I (400-160240-49), PZ-41S (400-160240-51), PZ-17I (400-160240-52), PZ-43S (400-160240-53) and PZ-40I (400-160240-54), Elevated reporting limits (RLs) are provided.

Method(s) 300.0: The continuing calibration verification (CCV) associated with batch 418474 recovered above the upper control limit for Sulfate. The method blank associated with this CCV was non-detect for the affected analyte and the LCS/LCSD/MS/MSD was within recovery limits; therefore, the data has been reported. The following samples are impacted: (LCS 400-418474/5), (LCSD 400-418474/6), (MB 400-418474/4), (400-161490-V-1 MS) and (400-161490-V-1 MSD).

RAD

Method(s) 9315: Ra-226 Prep Batch 160-397461: The barium carrier recovery is outside the lower control limit (40%) for the following sample: PZ-25I (400-160240-43). There was physical evidence of matrix interference apparent during the initial preparation of the sample. The pellet was noted as smaller during the out-of-ingrowth process. The QC samples associated with the batch have acceptable carrier recovery indicating the presence of matrix interference.

Method(s) 9320: Ra-228 Prep Batch 160-397471: The barium carrier recovery is outside the lower control limit (40%) for the following sample: PZ-25I (400-160240-43). There was physical evidence of matrix interference apparent during the initial preparation of the sample. The pellet was noted as smaller during the out of ingrowth process. The QC samples associated with the batch have acceptable carrier recovery indicating the presence of matrix interference.

Method(s) 9320: Ra-228 Prep Batch 160-397471: The following sample did not meet the requested limit (RL) due to the low carrier recovery due to the presence of matrix interferences (see prep NCM 160-154346). The data have been reported with this narrative. PZ-25I (400-160240-43)

Method(s) PrecSep 0: Radium 228 Prep Batch 160-398030: Insufficient sample volume was available to perform a sample duplicate (DUP) for the following samples: PZ-39S (400-160240-44) and SGWC-18 (400-160240-45). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

Method(s) PrecSep 0: Radium 228 Prep Batch 160-397318: Sample SGWC-15 (400-160240-32) and the method blank associated with prep batch 160-397318 were partially spilled during the plating process contributing to the lower-than-normal yttrium carrier recovery. The carrier weights are within passing limits.

Method(s) PrecSep 0: Radium 228 Prep Batch 160-397318: The following sample aliquots were reduced due to potential matrix interference. Sample was reduced due to discoloration and heavy sediment levels. PZ-44I (400-160240-34)

Method(s) PrecSep 0: Radium-228 Prep Batch 160-397471: The barium carrier recovery is outside the lower control limit (40%) for the following sample: PZ-25I (400-160240-43). The QC samples associated with the batch have acceptable carrier recovery indicating the presence of matrix interference. The pellet was noted as smaller during the out of ingrowth process.

Case Narrative

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Job ID: 400-160240-2 (Continued)

Laboratory: TestAmerica Pensacola (Continued)

Method(s) PrecSep-21: Radium 226 Prep Batch 160-398027: Insufficient sample volume was available to perform a sample duplicate (DUP) for the following samples: PZ-39S (400-160240-44) and SGWC-18 (400-160240-45). A laboratory control sample/ laboratory control sample duplicate (LCS/LCSD) were prepared instead to demonstrate batch precision.

Method(s) PrecSep-21: Radium 226 Prep Batch 160-397279: The following sample aliquots were reduced due to potential matrix interference. Sample was reduced due to discoloration and heavy sediment levels. PZ-44I (400-160240-34)

Method(s) PrecSep-21: Radium-226 Prep Batch 160-397461: The barium carrier recovery is outside the lower control limit (40%) for the following sample: PZ-25I (400-160240-43). The QC samples associated with the batch have acceptable carrier recovery indicating the presence of matrix interference. The pellet was noted as smaller during the out of ingrowth process.

Method(s) 7470A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 418701 and analytical batch 400-419038 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method(s) 7470A: The method blank for preparation batch 418701 and analytical batch 419038 contained Mercury above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-analysis of samples was not performed.

Method(s) 6020: The method blank for preparation batch 418964 and analytical batch 419210 contained Lithium above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

Method(s) 6020: The following samples were diluted to bring the concentration of target analytes within the calibration range: SGWC-18 (400-160240-45), SGWC-20 (400-160240-46), FD-2 (400-160240-47), PZ-42I (400-160240-49), PZ-41S (400-160240-51) and PZ-40I (400-160240-54). Elevated reporting limits (RLs) are provided.

General Chemistry

Method(s) SM 2320B: The sample duplicate precision for the following sample associated with analytical batch 417274 was outside control limits: (400-160645-A-3) and (400-160645-A-3 DU). The associated Laboratory Control Sample(LCS)met acceptance criteria. 3

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: SGWC-11

Lab Sample ID: 400-160240-31

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chloride	7.8		1.0	0.89	mg/L		300.0	Total/NA
Barium	0.037		0.0025	0.00049	mg/L	5	6020	Total
								Recoverable
Boron	0.35		0.050	0.021	mg/L	5	6020	Total
						<u>.</u>		Recoverable
Calcium	1.8		0.25	0.13	mg/L	5	6020	Total
Cobalt	0.023		0.0025	0.00040	m a /l	5	6020	Recoverable
Copail	0.023		0.0025	0.00040	mg/L	5	6020	Total
Lithium	0.0031	ı	0.0050	0.0011	ma/l	5	6020	Recoverable Total
Littlian	0.0031	3	0.0000	0.0011	mg/L	3	0020	Recoverable
Selenium	0.00046	J	0.0013	0.00024	ma/L	5	6020	Total
								Recoverable
Sodium	7.7		0.25	0.17	mg/L	5	6020	Total
								Recoverable
Potassium	0.30		0.25	0.11	mg/L	5	6020	Total
								Recoverable
Magnesium	1.5		0.13	0.032	mg/L	5	6020	Total
								Recoverable
Mercury	0.000072	JB	0.00020	0.000070	-	1	7470A	Total/NA
Alkalinity, Total	140		1.0	0.98	mg/L	1	SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	140		1.0	0.98	mg/L	1	SM 2320B	Total/NA
Total Dissolved Solids	100		5.0	3.4	mg/L	1	SM 2540C	Total/NA

Client Sample ID: SGWC-15

Lab Sample ID: 400-160240-32

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	10		1.0	0.89	mg/L	1	_	300.0	Total/NA
Fluoride	0.14	JB	0.20	0.082	mg/L	1		300.0	Total/NA
Barium	0.031		0.0025	0.00049	mg/L	5		6020	Total
									Recoverable
Beryllium	0.00040	J	0.0025	0.00034	mg/L	5		6020	Total
									Recoverable
Boron	1.5		0.050	0.021	mg/L	5		6020	Total
									Recoverable
Calcium	16		0.25	0.13	mg/L	5		6020	Total
									Recoverable
Chromium	0.032		0.0025	0.0011	mg/L	5		6020	Total
					_	_			Recoverable
Cobalt	0.27		0.0025	0.00040	mg/L	5		6020	Total
	0.0004		0.0050	0.0044		_		2222	Recoverable
Lithium	0.0034	J	0.0050	0.0011	mg/L	5		6020	Total
Collegions	0.0004		0.0042	0.00004				0000	Recoverable
Selenium	0.0021		0.0013	0.00024	mg/L	5		6020	Total
Thallium	0.00010		0.00050	0.000085	ma/l	5		6020	Recoverable
mailium	0.00010	J	0.00030	0.000003	IIIg/L	5		0020	Total
Sodium	44		0.25	0.17	mg/L	5		6020	Recoverable Total
Socialii			0.23	0.17	IIIg/L	5		0020	Recoverable
Potassium	4.8		0.25	0.11	mg/L	5		6020	Total
- otacolam	1.0		0.20	0.11	mg/L	Ū		0020	Recoverable
Magnesium	17		0.13	0.032	ma/L	5		6020	Total
g									Recoverable
Mercury	0.00013	JB	0.00020	0.000070	mg/L	1		7470A	Total/NA
Total Dissolved Solids	350		5.0		mg/L	1		SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

11/30/2018

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: FD-1

Lab Sample ID: 400-160240-33

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	7.4		1.0	0.89	mg/L		_	300.0	Total/NA
Barium	0.039		0.0025	0.00049	mg/L	5		6020	Total
									Recoverable
Boron	0.38		0.050	0.021	mg/L	5		6020	Total
						<u>.</u> .			Recoverable
Calcium	1.8		0.25	0.13	mg/L	5		6020	Total
Coholt	0.022		0.0025	0.00040	m a /l	5		6000	Recoverable
Cobalt	0.023		0.0025	0.00040	mg/L	5		6020	Total
Lithium	0.0032	1	0.0050	0.0011	ma/l	5		6020	Recoverable
Littiidiii	0.0032	J	0.0050	0.0011	IIIg/L	5		0020	Total
Selenium	0.00030		0.0013	0.00024	ma/l	5		6020	Recoverable Total
	0.0000		0.00.0	0.0002		· ·		0020	Recoverable
Sodium	7.8		0.25	0.17	mg/L	5		6020	Total
					Ū				Recoverable
Potassium	0.32		0.25	0.11	mg/L	5		6020	Total
									Recoverable
Magnesium	1.5		0.13	0.032	mg/L	5		6020	Total
									Recoverable
Mercury	0.000083	JB	0.00020	0.000070	mg/L	1		7470A	Total/NA
Alkalinity, Total	110		1.0	0.98	mg/L	1		SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	110		1.0	0.98	mg/L	1		SM 2320B	Total/NA
Total Dissolved Solids	82		5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: PZ-44I

Lab Sample ID: 400-160240-34

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	4.3		1.0	0.89	mg/L	1	_	300.0	Total/NA
Sulfate	6.0		1.0	0.70	mg/L	1		300.0	Total/NA
Barium	0.014		0.0025	0.00049	mg/L	5		6020	Total Recoverable
Calcium	21		0.25	0.13	mg/L	5		6020	Total Recoverable
Chromium	0.0046		0.0025	0.0011	mg/L	5		6020	Total Recoverable
Cobalt	0.0021	J	0.0025	0.00040	mg/L	5		6020	Total Recoverable
Lithium	0.069		0.0050	0.0011	mg/L	5		6020	Total Recoverable
Selenium	0.00046	J	0.0013	0.00024	mg/L	5		6020	Total Recoverable
Sodium	12		0.25	0.17	mg/L	5		6020	Total Recoverable
Potassium	14		0.25	0.11	mg/L	5		6020	Total Recoverable
Magnesium	11		0.13	0.032	mg/L	5		6020	Total Recoverable
Mercury	0.000084	JB	0.00020	0.000070	mg/L	1		7470A	Total/NA
Alkalinity, Total	140		1.0	0.98	mg/L	1		SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	140		1.0	0.98	mg/L	1		SM 2320B	Total/NA
Total Dissolved Solids	180		5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: PZ-25S

Lab Sample ID: 400-160240-35

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

Page 6 of 115

11/30/2018

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-25S (Continued)

Lab Sample ID: 400-160240-3											
Dil Fac D Method	Prep Type										

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	4.7		1.0	0.89	mg/L		_	300.0	Total/NA
Sulfate	1.1		1.0	0.70	mg/L	1		300.0	Total/NA
Barium	0.022		0.0025	0.00049	mg/L	5		6020	Total
									Recoverable
Calcium	1.5		0.25	0.13	mg/L	5		6020	Total
									Recoverable
Cobalt	0.026		0.0025	0.00040	mg/L	5		6020	Total
									Recoverable
Lithium	0.0068		0.0050	0.0011	mg/L	5		6020	Total
									Recoverable
Sodium	3.3		0.25	0.17	mg/L	5		6020	Total
									Recoverable
Potassium	0.33		0.25	0.11	mg/L	5		6020	Total
					_	_			Recoverable
Magnesium	0.40		0.13	0.032	mg/L	5		6020	Total
									Recoverable
Mercury	0.000086	JB	0.00020	0.000070	mg/L	1		7470A	Total/NA
Alkalinity, Total	5.9		1.0	0.98	mg/L	1		SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	5.9		1.0	0.98	mg/L	1		SM 2320B	Total/NA
Total Dissolved Solids	66		5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: EB-1

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac	D Method	Prep Type
Mercury	0.000096 JB	0.00020	0.000070 mg/L	1	7470A	Total/NA

Client Sample ID: FB-1

ah	Campl	~ ID:	400 4	60	240-37	,
_au ·	Samu	e ID.	4UU- I	ou	Z4U-3/	

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Mercury	0.000087	JB	0.00020	0.000070	mg/L	1	_	7470A	Total/NA

Client Sample ID: SGWC-11

Lab Sample ID: 400-160240-38

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium, Dissolved	0.039		0.0025	0.00049	mg/L	5	_	6020	Dissolved
Cobalt, Dissolved	0.022		0.0025	0.00040	mg/L	5		6020	Dissolved
Iron, Dissolved	0.99		0.13	0.053	mg/L	5		6020	Dissolved
Lithium, Dissolved	0.0027	J	0.0050	0.0011	mg/L	5		6020	Dissolved
Mercury, Dissolved	0.000080	JB	0.00020	0.000070	mg/L	1		7470A	Dissolved

Client Sample ID: SGWC-15

Lab Sample ID: 400-160240-39

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium, Dissolved	0.032		0.0025	0.00049	mg/L	5	_	6020	Dissolved
Beryllium, Dissolved	0.00039	J	0.0025	0.00034	mg/L	5		6020	Dissolved
Chromium, Dissolved	0.031		0.0025	0.0011	mg/L	5		6020	Dissolved
Cobalt, Dissolved	0.27		0.0025	0.00040	mg/L	5		6020	Dissolved
Lithium, Dissolved	0.0037	J	0.0050	0.0011	mg/L	5		6020	Dissolved
Selenium, Dissolved	0.0011	J	0.0013	0.00024	mg/L	5		6020	Dissolved
Mercury, Dissolved	0.00010	JB	0.00020	0.000070	mg/L	1		7470A	Dissolved

This Detection Summary does not include radiochemical test results.

TestAmerica Job ID: 400-160240-2

Lab Sample ID: 400-160240-40

SDG: Ash Pond

Client Sample ID: PZ-44I

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Barium, Dissolved	0.010	0.0025	0.00049	mg/L	5	_	6020	Dissolved
Cobalt, Dissolved	0.0018 J	0.0025	0.00040	mg/L	5		6020	Dissolved
Iron, Dissolved	0.77	0.13	0.053	mg/L	5		6020	Dissolved
Lithium, Dissolved	0.055	0.0050	0.0011	mg/L	5		6020	Dissolved
Selenium, Dissolved	0.00025 J	0.0013	0.00024	mg/L	5		6020	Dissolved

Lab Sample ID: 400-160240-41 **Client Sample ID: PZ-25S**

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac [Method	Prep Type
Barium, Dissolved	0.025	0.0025	0.00049	mg/L	5	6020	Dissolved
Cobalt, Dissolved	0.030	0.0025	0.00040	mg/L	5	6020	Dissolved
Iron, Dissolved	0.25	0.13	0.053	mg/L	5	6020	Dissolved
Lithium, Dissolved	0.0054	0.0050	0.0011	mg/L	5	6020	Dissolved

Client Sample ID: PZ-36S Lab Sample ID: 400-160240-42

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	Method	Prep Type
Chloride	6.9		1.0	0.89	mg/L		_ 3	300.0	Total/NA
Barium	0.030		0.0025	0.00049	mg/L	5	6	6020	Total
									Recoverable
Boron	0.15		0.050	0.021	mg/L	5	6	6020	Total
									Recoverable
Calcium	6.0		0.25	0.13	mg/L	5	6	6020	Total
									Recoverable
Chromium	0.0011	J	0.0025	0.0011	mg/L	5	6	6020	Total
									Recoverable
Cobalt	0.0021	J	0.0025	0.00040	mg/L	5	6	6020	Total
						<u>.</u> .			Recoverable
Lithium	0.0019	J	0.0050	0.0011	mg/L	5	6	6020	Total
On alicens	2.0		0.05	0.47		-	,	6020	Recoverable
Sodium	2.9		0.25	0.17	mg/L	5	C	0020	Total
Potassium	0.93		0.25	0.11	mg/L	5	6	6020	Recoverable
Fotassium	0.93		0.23	0.11	IIIg/L	5		0020	Total Recoverable
Magnesium	3.2		0.13	0.032	ma/l	5		6020	Total
Wagnesiani	0.2		0.10	0.002	111g/L	Ü	•	0020	Recoverable
Barium, Dissolved	0.030		0.0025	0.00049	ma/L	5	6	6020	Dissolved
Chromium, Dissolved	0.0013	J	0.0025	0.0011	Ū	5	6	6020	Dissolved
Cobalt, Dissolved	0.0017		0.0025	0.00040	-	5		6020	Dissolved
Lithium, Dissolved	0.0017		0.0020	0.0011	-	5		6020	Dissolved
,	29	J	1.0		-			SM 2320B	Total/NA
Alkalinity, Total					mg/L	1			
Bicarbonate Alkalinity as CaCO3	29		1.0		mg/L	1		SM 2320B	Total/NA
Total Dissolved Solids	64		5.0	3.4	mg/L	1	5	SM 2540C	Total/NA

Client Sample ID: PZ-25I Lab Sample ID: 400-160240-43

Analyte Chloride	Result 0	Qualifier RL 1.0		Unit mg/L	Dil Fac	Method 300.0	Prep Type Total/NA
Barium	0.070	0.0025	0.00049	mg/L	5	6020	Total Recoverable
Calcium	26	0.25	0.13	mg/L	5	6020	Total Recoverable

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

11/30/2018

TestAmerica Job ID: 400-160240-2

Lab Sample ID: 400-160240-43

SDG: Ash Pond

Client Sample ID: PZ-25I (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.0041		0.0025	0.0011	mg/L		_	6020	Total
									Recoverable
Cobalt	0.0073		0.0025	0.00040	mg/L	5		6020	Total
		_			_	_			Recoverable
Lithium	0.0037	J	0.0050	0.0011	mg/L	5		6020	Total
O THE COLUMN TO	· · · · · · · · · · ·								Recoverable
Sodium	5.0		0.25	0.17	mg/L	5		6020	Total
Potassium	1.1		0.25	0.11	mg/L	5		6020	Recoverable
Fotassium	1.1		0.23	0.11	IIIg/L	5		0020	Total Recoverable
Magnesium	14		0.13	0.032	ma/l	5		6020	Total
Magnosiam			0.10	0.002	mg/L	· ·		0020	Recoverable
Barium, Dissolved	0.064		0.0025	0.00049	mg/L	5		6020	Dissolved
Chromium, Dissolved	0.0012	J	0.0025	0.0011	mg/L	5		6020	Dissolved
Cobalt, Dissolved	0.0043		0.0025	0.00040	mg/L	5		6020	Dissolved
Iron, Dissolved	0.48		0.13	0.053	mg/L	5		6020	Dissolved
Lithium, Dissolved	0.0025	J	0.0050	0.0011	mg/L	5		6020	Dissolved
Alkalinity, Total	140		1.0	0.98	mg/L	1		SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	140		1.0	0.98	mg/L	1		SM 2320B	Total/NA
Total Dissolved Solids	150		5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: PZ-39S

Lab Sample ID: 400-160240-44

-									
Analyte		Qualifier	RL		Unit	Dil Fac	D	Method	Prep Type
Chloride	8.3		1.0	0.89	mg/L	1	_	300.0	Total/NA
Fluoride	0.087	J	0.20	0.082	mg/L	1		300.0	Total/NA
Sulfate	4.0		1.0	0.70	mg/L	1		300.0	Total/NA
Arsenic	0.0011	J	0.0013	0.00046	mg/L	5		6020	Total
									Recoverable
Barium	0.020		0.0025	0.00049	mg/L	5		6020	Total
									Recoverable
Calcium	22		0.25	0.13	mg/L	5		6020	Total
									Recoverable
Chromium	0.0027		0.0025	0.0011	mg/L	5		6020	Total
						_			Recoverable
Cobalt	0.00051	J	0.0025	0.00040	mg/L	5		6020	Total
Lithium	0.0027		0.0050	0.0011	ma/l	5		6020	Recoverable
Littiuiti	0.0027	J	0.0050	0.0011	IIIg/L	5		0020	Total
Sodium	8.0		0.25	0.17	mg/L	5		6020	Recoverable Total
Codidin	0.0		0.20	0.17	mg/L	Ü		0020	Recoverable
Potassium	1.9		0.25	0.11	mg/L	5		6020	Total
					3				Recoverable
Magnesium	7.4		0.13	0.032	mg/L	5		6020	Total
-					•				Recoverable
Arsenic, Dissolved	0.0019		0.0013	0.00046	mg/L	5		6020	Dissolved
Barium, Dissolved	0.017		0.0025	0.00049	mg/L	5		6020	Dissolved
Iron, Dissolved	0.48		0.13	0.053	mg/L	5		6020	Dissolved
Lithium, Dissolved	0.0015	J	0.0050	0.0011	mg/L	5		6020	Dissolved
Alkalinity, Total	98		1.0	0.98	mg/L	1		SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	98		1.0	0.98	mg/L	1		SM 2320B	Total/NA
Total Dissolved Solids	140		5.0	3.4	mg/L	1		SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

11/30/2018

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: SGWC-18

Lab Sample ID: 400-160240-45

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	16		5.0	4.5	mg/L		_	300.0	Total/NA
Sulfate - DL	1200		50	35	mg/L	50		300.0	Total/NA
Arsenic	0.0023		0.0013	0.00046	mg/L	5		6020	Total Recoverable
Barium	0.033		0.0025	0.00049	mg/L	5		6020	Total Recoverable
Calcium	100		0.25	0.13	mg/L	5		6020	Total Recoverable
Chromium	0.0090		0.0025	0.0011	mg/L	5		6020	Total Recoverable
Cobalt	0.21		0.0025	0.00040	mg/L	5		6020	Total Recoverable
Lithium	0.0054		0.0050	0.0011	mg/L	5		6020	Total Recoverable
Magnesium	62		0.13	0.032	mg/L	5		6020	Total Recoverable
Potassium	4.5		0.25	0.11	mg/L	5		6020	Total Recoverable
Selenium	0.017		0.0013	0.00024	mg/L	5		6020	Total Recoverable
Thallium	0.00019	J	0.00050	0.000085	mg/L	5		6020	Total Recoverable
Boron - DL	4.9		0.25	0.11	mg/L	25		6020	Total Recoverable
Sodium - DL	290		1.3	0.84	mg/L	25		6020	Total Recoverable
Mercury	0.00024		0.00020	0.000070	mg/L	1		7470A	Total/NA
Total Dissolved Solids	1200		10	6.8	mg/L	1		SM 2540C	Total/NA

Client Sample ID: SGWC-20

Lab Sample ID: 400-160240-46

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	11		1.0	0.89	mg/L	1	_	300.0	Total/NA
Fluoride	0.23	В	0.20	0.082	mg/L	1		300.0	Total/NA
Sulfate - DL	210		5.0	3.5	mg/L	5		300.0	Total/NA
Barium	0.027		0.0025	0.00049	mg/L	5		6020	Total Recoverable
Beryllium	0.00079	J	0.0025	0.00034	mg/L	5		6020	Total Recoverable
Calcium	12		0.25	0.13	mg/L	5		6020	Total Recoverable
Cobalt	0.16		0.0025	0.00040	mg/L	5		6020	Total Recoverable
Lithium	0.0062	В	0.0050	0.0011	mg/L	5		6020	Total Recoverable
Magnesium	17		0.13	0.032	mg/L	5		6020	Total Recoverable
Potassium	3.4		0.25	0.11	mg/L	5		6020	Total Recoverable
Selenium	0.00049	J	0.0013	0.00024	mg/L	5		6020	Total Recoverable
Sodium	54		0.25	0.17	mg/L	5		6020	Total Recoverable
Thallium	0.00018	J	0.00050	0.000085	mg/L	5		6020	Total Recoverable

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

11/30/2018

TestAmerica Job ID: 400-160240-2

Lab Sample ID: 400-160240-46

SDG: Ash Pond

Client Sample ID: SGWC-20 (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron - DL	2.3		0.25	0.11	mg/L	25	_	6020	Total
Barium, Dissolved	0.025		0.0025	0.00049	mg/L	5		6020	Recoverable Dissolved
Beryllium, Dissolved	0.00062	J	0.0025	0.00034	mg/L	5		6020	Dissolved
Cobalt, Dissolved	0.13		0.0025	0.00040	mg/L	5		6020	Dissolved
Lithium, Dissolved	0.0047	JB	0.0050	0.0011	mg/L	5		6020	Dissolved
Selenium, Dissolved	0.00032	J	0.0013	0.00024	mg/L	5		6020	Dissolved
Thallium, Dissolved	0.00017	J	0.00050	0.000085	mg/L	5		6020	Dissolved
Total Dissolved Solids	370		5.0	3.4	mg/L	1		SM 2540C	Total/NA

Client Sample ID: FD-2

Lab Car	anda ID.	400 400040 47
Lab Sar	nbie iu:	400-160240-47

Analyte		Qualifier	RL		Unit	Dil Fac	D	Method	Prep Type
Chloride	16		1.0	0.89	mg/L	1	_	300.0	Total/NA
Fluoride	0.087	JB	0.20	0.082	mg/L	1		300.0	Total/NA
Sulfate - DL	1200		100	70	mg/L	100		300.0	Total/NA
Arsenic	0.0025		0.0013	0.00046	mg/L	5		6020	Total
									Recoverable
Barium	0.035		0.0025	0.00049	mg/L	5		6020	Total
D	0.0000		0.000	0.00004	,,	_		0000	Recoverable
Beryllium	0.00038	J	0.0025	0.00034	mg/L	5		6020	Total
Calcium	100		0.25	n 13	mg/L	5		6020	Recoverable Total
Calcium	100		0.23	0.13	IIIg/L	3		0020	Recoverable
Chromium	0.0095		0.0025	0.0011	mg/L	5		6020	Total
					3				Recoverable
Cobalt	0.22		0.0025	0.00040	mg/L	5		6020	Total
									Recoverable
Lithium	0.0060	В	0.0050	0.0011	mg/L	5		6020	Total
			0.40	0.000	,,	_		0000	Recoverable
Magnesium	63		0.13	0.032	mg/L	5		6020	Total
Potassium	4.6		0.25	0.11	mg/L	5		6020	Recoverable
Fotassium	4.0		0.25	0.11	IIIg/L	3		0020	Total Recoverable
Selenium	0.017		0.0013	0.00024	ma/L	5		6020	Total
					9. =	_			Recoverable
Thallium	0.00021	J	0.00050	0.000085	mg/L	5		6020	Total
									Recoverable
Boron - DL	4.6		0.50	0.21	mg/L	50		6020	Total
				<u></u>		<u></u>			Recoverable
Sodium - DL	310		2.5	1.7	mg/L	50		6020	Total
Argania Diagahyad	0.0024		0.0013	0.00046	ma/l	5		6020	Recoverable
Arsenic, Dissolved	0.0024		0.0013	0.00046	-				Dissolved
Barium, Dissolved				0.00049	•	5		6020	Dissolved
Chromium, Dissolved	0.0091		0.0025	0.0011	-	5		6020	Dissolved
Cobalt, Dissolved	0.21	_	0.0025	0.00040	-	5		6020	Dissolved
Lithium, Dissolved	0.0063	. В 	0.0050	0.0011	-	5		6020	Dissolved
Selenium, Dissolved	0.016		0.0013	0.00024	-	5		6020	Dissolved
Thallium, Dissolved	0.00020	J	0.00050	0.000085	•	5		6020	Dissolved
Mercury	0.00025		0.00020	0.000070		1		7470A	Total/NA
Mercury, Dissolved	0.00012	J	0.00020	0.000070	-	1		7470A	Dissolved
Total Dissolved Solids	1600		10	6.8	mg/L	1		SM 2540C	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

11/30/2018

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: FB-2

Lab Sample ID: 400-160240-48

No Detections.

Client Sample ID: PZ-42I Lab Sample ID: 400-160240-49

Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
12		1.0	0.89	mg/L		_	300.0	Total/NA
0.083	J	0.20	0.082	mg/L	1		300.0	Total/NA
250		10	7.0	mg/L	10		300.0	Total/NA
0.10		0.0025	0.00049	mg/L	5		6020	Total
								Recoverable
64		0.25	0.13	mg/L	5		6020	Total
					_			Recoverable
0.0064		0.0025	0.00040	mg/L	5		6020	Total
0.0040		0.0050	0.0011	ma/l			6020	Recoverable
0.0040	JB	0.0050	0.0011	IIIg/L	5		0020	Total Recoverable
27		0.13	0.032	ma/l	5		6020	Total
			****					Recoverable
4.7		0.25	0.11	mg/L	5		6020	Total
								Recoverable
0.00026	J	0.0013	0.00024	mg/L	5		6020	Total
				_	_			Recoverable
24		0.25	0.17	mg/L	5		6020	Total
2.6		0.25	0.11	ma/l	25		6020	Recoverable
2.0		0.25	0.11	IIIg/L	25		0020	Total Recoverable
0.096		0.0025	0.00049	ma/L	5		6020	Dissolved
				•				Dissolved
				-				Dissolved
	J B							Dissolved
				-				Total/NA
				-	-			Total/NA
								Total/NA
	12 0.083 250 0.10 64 0.0064 0.0040 27 4.7 0.00026 24 2.6 0.096 0.0060 1.7	12 0.083 J 250 0.10 64 0.0064 0.0040 JB 27 4.7 0.00026 J 24 2.6 0.096 0.0060 1.7 0.0047 JB 84 84	12 1.0 0.083 J 0.20 250 10 0.10 0.0025 64 0.25 0.0064 0.0025 0.0040 JB 0.0050 27 0.13 4.7 0.25 0.00026 J 0.0013 24 0.25 26 0.25 0.096 0.025 0.0060 0.0025 1.7 0.13 0.0047 JB 0.0050 84 1.0	12	12	12 1.0 0.89 mg/L 1 0.083 J 0.20 0.082 mg/L 1 250 10 7.0 mg/L 10 0.10 0.0025 0.00049 mg/L 5 64 0.25 0.13 mg/L 5 0.0064 0.0025 0.00040 mg/L 5 0.0040 JB 0.0050 0.0011 mg/L 5 27 0.13 0.032 mg/L 5 4.7 0.25 0.11 mg/L 5 0.00026 J 0.0013 0.00024 mg/L 5 24 0.25 0.17 mg/L 5 2.6 0.25 0.11 mg/L 5 0.096 0.0025 0.00049 mg/L 5 0.0060 0.0025 0.00040 mg/L 5 0.0047 JB 0.0050 0.0011 mg/L 5 0.0047 <	12 1.0 0.89 mg/L 1 0.083 J 0.20 0.082 mg/L 1 250 10 7.0 mg/L 10 0.10 0.0025 0.00049 mg/L 5 64 0.25 0.13 mg/L 5 0.0064 0.0025 0.00040 mg/L 5 0.0040 JB 0.0050 0.0011 mg/L 5 27 0.13 0.032 mg/L 5 4.7 0.25 0.11 mg/L 5 0.00026 J 0.0013 0.00024 mg/L 5 24 0.25 0.17 mg/L 5 2.6 0.25 0.11 mg/L 5 0.096 0.0025 0.00049 mg/L 5 0.0060 0.0025 0.00040 mg/L 5 0.0047 JB 0.0050 0.0011 mg/L 5 0.0047 JB 0.0050 0.0011 mg/L 5 0.0047 JB	12 1.0 0.89 mg/L 1 300.0 0.083 J 0.20 0.082 mg/L 1 300.0 250 10 7.0 mg/L 10 300.0 0.10 0.0025 0.00049 mg/L 5 6020 64 0.25 0.13 mg/L 5 6020 0.0064 0.0025 0.00040 mg/L 5 6020 0.0040 JB 0.0050 0.0011 mg/L 5 6020 27 0.13 0.032 mg/L 5 6020 4.7 0.25 0.11 mg/L 5 6020 0.00026 J 0.0013 0.00024 mg/L 5 6020 24 0.25 0.17 mg/L 5 6020 2.6 0.25 0.11 mg/L 25 6020 0.096 0.0025 0.00049 mg/L 5 6020 0.0060 0.0025 0.00040 mg/L 5 6020 1.7 0.13 0.053 mg/L 5 6020 0.

Client Sample ID: EB-2 Lab Sample ID: 400-160240-50

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	0.039 J	0.050	0.021	mg/L	5	_	6020	Total
								Recoverable
Alkalinity, Total	5.5	1.0	0.98	mg/L	1		SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	5.5	1.0	0.98	mg/L	1		SM 2320B	Total/NA

Client Sample ID: PZ-41S Lab Sample ID: 400-160240-51

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	6.8		1.0	0.89	mg/L	1	_	300.0	Total/NA
Sulfate	550		20	14	mg/L	20		300.0	Total/NA
Barium	0.059		0.0025	0.00049	mg/L	5		6020	Total Recoverable
Cobalt	0.0092		0.0025	0.00040	mg/L	5		6020	Total Recoverable
Lithium	0.0029	JB	0.0050	0.0011	mg/L	5		6020	Total Recoverable
Magnesium	43		0.13	0.032	mg/L	5		6020	Total Recoverable

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

TestAmerica Job ID: 400-160240-2

Lab Sample ID: 400-160240-51

SDG: Ash Pond

Client Sample ID: PZ-41S (Continued)

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Potassium	3.7	0.25	0.11	mg/L	5	6020	Total
							Recoverable
Selenium	0.0045	0.0013	0.00024	mg/L	5	6020	Total
							Recoverable
Sodium	79	0.25	0.17	mg/L	5	6020	Total
							Recoverable
Boron - DL	3.5	0.25	0.11	mg/L	25	6020	Total
							Recoverable
Calcium - DL	120	1.3	0.63	mg/L	25	6020	Total
							Recoverable
Barium, Dissolved	0.058	0.0025	0.00049	mg/L	5	6020	Dissolved
Cobalt, Dissolved	0.0093	0.0025	0.00040	mg/L	5	6020	Dissolved
Iron, Dissolved	0.92	0.13	0.053	mg/L	5	6020	Dissolved
Lithium, Dissolved	0.0030 JB	0.0050	0.0011	mg/L	5	6020	Dissolved
Selenium, Dissolved	0.0050	0.0013	0.00024	mg/L	5	6020	Dissolved
Alkalinity, Total	39	1.0	0.98	mg/L	1	SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	39	1.0	0.98	mg/L	1	SM 2320B	Total/NA
Total Dissolved Solids	670	5.0	3.4	mg/L	1	SM 2540C	Total/NA

Clie

				•	60240-52
olyto Poo	ult Qualifier	ы	MDI Unit	Dil Eco D. Mothod	Dron Tuno

Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
5.5		1.0	0.89	mg/L	1	_	300.0	Total/NA
92		2.0	1.4	mg/L	2		300.0	Total/NA
0.055		0.0025	0.00049	mg/L	5		6020	Total
								Recoverable
0.067		0.050	0.021	mg/L	5		6020	Total
								Recoverable
33		0.25	0.13	mg/L	5		6020	Total
					_			Recoverable
0.0049		0.0025	0.0011	mg/L	5		6020	Total
0.0017		0.0050	0.0011				6020	Recoverable
0.0017	JB	0.0050	0.0011	mg/L	5		6020	Total
15		0.13	0.032	ma/l	5		6020	Recoverable Total
10		0.13	0.002	mg/L	3		0020	Recoverable
2.0		0.25	0.11	ma/L	5		6020	Total
				3				Recoverable
0.00047	J	0.0013	0.00024	mg/L	5		6020	Total
								Recoverable
11		0.25	0.17	mg/L	5		6020	Total
								Recoverable
0.055		0.0025	0.00049	mg/L	5		6020	Dissolved
0.0037		0.0025	0.0011	mg/L	5		6020	Dissolved
0.0020	JB	0.0050	0.0011	mg/L	5		6020	Dissolved
0.00047	J	0.0013	0.00024	mg/L	5		6020	Dissolved
66		1.0	0.98	mg/L	1		SM 2320B	Total/NA
66		1.0	0.98	mg/L	1		SM 2320B	Total/NA
260		5.0		-	1		SM 2540C	Total/NA
	5.5 92 0.055 0.067 33 0.0049 0.0017 15 2.0 0.00047 11 0.055 0.0037 0.0020 0.00047 66 66	92 0.055 0.067 33 0.0049 0.0017 JB 15 2.0 0.00047 J 11 0.055 0.0037 0.0020 JB 0.00047 J 66 66	5.5 1.0 92 2.0 0.055 0.0025 0.067 0.050 33 0.25 0.0049 0.0025 0.0017 JB 0.0050 15 0.13 2.0 0.25 0.00047 J 0.0013 11 0.25 0.0055 0.0025 0.0037 0.0025 0.0020 JB 0.0050 0.00047 J 0.0013 66 1.0 66 1.0	5.5 1.0 0.89 92 2.0 1.4 0.055 0.0025 0.00049 0.067 0.050 0.021 33 0.25 0.13 0.0049 0.0025 0.0011 15 0.13 0.032 2.0 0.25 0.11 0.00047 J 0.0013 0.00024 11 0.25 0.17 0.055 0.0025 0.0049 0.0037 0.0025 0.0011 0.0020 JB 0.0050 0.0011 0.00047 J 0.0013 0.00024 66 1.0 0.98 66 1.0 0.98 66 1.0 0.98	5.5 1.0 0.89 mg/L 92 2.0 1.4 mg/L 0.055 0.0025 0.00049 mg/L 0.067 0.050 0.021 mg/L 33 0.25 0.13 mg/L 0.0049 0.0025 0.0011 mg/L 0.0017 JB 0.0050 0.0011 mg/L 2.0 0.25 0.11 mg/L 0.00047 J 0.0013 0.00024 mg/L 0.0037 0.0025 0.0011 mg/L 0.0020 JB 0.0050 0.0011 mg/L 0.00047 J 0.0013 0.00024 mg/L 0.00047 J 0.0013 0.00024 mg/L 0.00047 J 0.0013 0.00024 mg/L 0.0 0.98 mg/L 0.0 0.98 mg/L 0.0 0.98 mg/L	5.5 1.0 0.89 mg/L 1 92 2.0 1.4 mg/L 2 0.055 0.0025 0.00049 mg/L 5 0.067 0.050 0.021 mg/L 5 33 0.25 0.13 mg/L 5 0.0049 0.0025 0.0011 mg/L 5 0.0017 J B 0.0050 0.0011 mg/L 5 15 0.13 0.032 mg/L 5 2.0 0.25 0.11 mg/L 5 0.00047 J 0.0013 0.00024 mg/L 5 0.0055 0.0025 0.00049 mg/L 5 0.0037 0.0025 0.0011 mg/L 5 0.0020 J B 0.0050 0.0011 mg/L 5 0.00047 J 0.0013 0.00024 mg/L 5 0.00047 J 0.0013 0.00024 mg/L 5	5.5 1.0 0.89 mg/L 1 92 2.0 1.4 mg/L 2 0.055 0.0025 0.00049 mg/L 5 0.067 0.050 0.021 mg/L 5 33 0.25 0.13 mg/L 5 0.0049 0.0025 0.0011 mg/L 5 0.0017 JB 0.0050 0.0011 mg/L 5 15 0.13 0.032 mg/L 5 2.0 0.25 0.11 mg/L 5 0.00047 J 0.0013 0.00024 mg/L 5 0.055 0.0025 0.00049 mg/L 5 0.0037 0.0025 0.0011 mg/L 5 0.0020 JB 0.0050 0.0011 mg/L 5 0.00047 J 0.0013 0.00024 mg/L 5 0.00047 J 0.0013 0.00024 mg/L 5 0.00047 J 0.0013 0.00024 mg/L 5	5.5 1.0 0.89 mg/L 1 300.0 92 2.0 1.4 mg/L 2 300.0 0.055 0.0025 0.00049 mg/L 5 6020 0.067 0.050 0.021 mg/L 5 6020 33 0.25 0.13 mg/L 5 6020 0.0049 0.0025 0.0011 mg/L 5 6020 0.0017 JB 0.0050 0.0011 mg/L 5 6020 15 0.13 0.032 mg/L 5 6020 2.0 0.25 0.11 mg/L 5 6020 0.00047 J 0.0013 0.00024 mg/L 5 6020 0.0037 0.0025 0.0011 mg/L 5 6020 0.0020 JB 0.0050 0.0011 mg/L 5 6020 0.00047 J 0.0013 0.00024 mg/L 5 6020

Client Sample ID: PZ-43S

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Chloride	6.3	1.0	0.89 mg/L	1 300.0	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

Lab Sample ID: 400-160240-53

TestAmerica Job ID: 400-160240-2

Lab Sample ID: 400-160240-53

SDG: Ash Pond

Client Sample ID: PZ-43S (Continued)

	y (o minuou)						.p.o . . .	0 1002 10 00
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac I	D Method	Prep Type
Sulfate - DL	140		5.0	3.5	mg/L	5	300.0	Total/NA
Barium	0.12		0.0025	0.00049	mg/L	5	6020	Total
								Recoverable
Boron	0.82		0.050	0.021	mg/L	5	6020	Total
								Recoverable
Calcium	44		0.25	0.13	mg/L	5	6020	Total
-								Recoverable
Cobalt	0.0086		0.0025	0.00040	mg/L	5	6020	Total
		<u></u>				<u>.</u>		Recoverable
Lithium	0.0015	JB	0.0050	0.0011	mg/L	5	6020	Total
Manager	4.4		0.40	0.000		-	0000	Recoverable
Magnesium	14		0.13	0.032	mg/L	5	6020	Total
Deteccium	3.6		0.25	0.11	∞ a /I	-	6020	Recoverable
Potassium	3.0		0.25	0.11	mg/L	5	0020	Total
Sodium	12		0.25	0.17	mg/L	5	6020	Recoverable
Socialii	12		0.23	0.17	IIIg/L	3	0020	Total Recoverable
Barium. Dissolved	0.13		0.0025	0.00049	ma/L	5	6020	Dissolved
Cobalt, Dissolved	0.0091		0.0025	0.00040	•	5	6020	Dissolved
Iron, Dissolved	0.97		0.13	0.053	ū	5	6020	Dissolved
Lithium, Dissolved	0.0027	I D	0.0050	0.0011	-	5	6020	Dissolved
·		JB			ū			
Alkalinity, Total	63		1.0		mg/L	1	SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	63		1.0		mg/L	1	SM 2320B	Total/NA
Total Dissolved Solids	230		5.0	3.4	mg/L	1	SM 2540C	Total/NA

Client Sample ID: PZ-40I

Lab Sample ID: 400-160240-54

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	9.3		1.0	0.89	mg/L	1	_	300.0	Total/NA
Sulfate - DL	570		20	14	mg/L	20		300.0	Total/NA
Barium	0.089		0.0025	0.00049	mg/L	5		6020	Total
									Recoverable
Cobalt	0.0076		0.0025	0.00040	mg/L	5		6020	Total
									Recoverable
Lithium	0.015	В	0.0050	0.0011	mg/L	5		6020	Total
Manus a Sura	47		0.40	0.000		-		0000	Recoverable
Magnesium	47		0.13	0.032	mg/L	5		6020	Total
Potassium	9.4		0.25	0.11	mg/L	5		6020	Recoverable
i otassium	5.4		0.23	0.11	IIIg/L	3		0020	Total Recoverable
Selenium	0.00059	J	0.0013	0.00024	ma/L	5		6020	Total
		-							Recoverable
Sodium	37		0.25	0.17	mg/L	5		6020	Total
									Recoverable
Boron - DL	3.8		0.25	0.11	mg/L	25		6020	Total
									Recoverable
Calcium - DL	120		1.3	0.63	mg/L	25		6020	Total
					_	_			Recoverable
Barium, Dissolved	0.089		0.0025	0.00049		5		6020	Dissolved
Cobalt, Dissolved	0.0078		0.0025	0.00040	J	5		6020	Dissolved
Iron, Dissolved	3.8		0.13	0.053	mg/L	5		6020	Dissolved
Lithium, Dissolved	0.015	В	0.0050	0.0011	mg/L	5		6020	Dissolved
Selenium, Dissolved	0.00062	J	0.0013	0.00024	mg/L	5		6020	Dissolved
Alkalinity, Total	55		1.0	0.98	mg/L	1		SM 2320B	Total/NA
Bicarbonate Alkalinity as CaCO3	55		1.0	0.98	mg/L	1		SM 2320B	Total/NA

This Detection Summary does not include radiochemical test results.

Detection Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-40I (Continued)

Lab Sample ID: 400-160240-54

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Total Dissolved Solids	840	5.0	3.4 mg/L	1 SM 2540C	Total/NA

Method Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	TAL PEN
6020	Metals (ICP/MS)	SW846	TAL PEN
7470A	Mercury (CVAA)	SW846	TAL PEN
SM 2320B	Alkalinity	SM	TAL PEN
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL PEN
9315	Radium-226 (GFPC)	SW846	TAL SL
9320	Radium-228 (GFPC)	SW846	TAL SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	TAL SL
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PEN
7470A	Preparation, Mercury	SW846	TAL PEN
PrecSep_0	Preparation, Precipitate Separation	None	TAL SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	TAL SL

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

None = None

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001 TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

TestAmerica Pensacola

11/30/2018

Sample Summary

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-160240-31	SGWC-11	Water	10/16/18 10:50	10/19/18 09:04
400-160240-32	SGWC-15	Water	10/16/18 15:15	10/19/18 09:04
400-160240-33	FD-1	Water	10/16/18 00:00	10/19/18 09:04
400-160240-34	PZ-44I	Water	10/16/18 13:45	10/19/18 09:04
400-160240-35	PZ-25S	Water	10/16/18 10:40	10/19/18 09:04
400-160240-36	EB-1	Water	10/16/18 16:50	10/19/18 09:04
400-160240-37	FB-1	Water	10/16/18 13:30	10/19/18 09:04
400-160240-38	SGWC-11	Water	10/17/18 12:30	10/19/18 09:04
400-160240-39	SGWC-15	Water	10/17/18 15:00	10/19/18 09:04
400-160240-40	PZ-44I	Water	10/17/18 13:50	10/19/18 09:04
400-160240-41	PZ-25S	Water	10/17/18 09:50	10/19/18 09:04
400-160240-42	PZ-36S	Water	10/17/18 09:35	10/19/18 09:04
400-160240-43	PZ-25I	Water	10/17/18 11:15	10/19/18 09:04
400-160240-44	PZ-39S	Water	10/17/18 13:15	10/19/18 09:04
400-160240-45	SGWC-18	Water	10/18/18 09:05	10/20/18 08:28
400-160240-46	SGWC-20	Water	10/18/18 10:35	10/20/18 08:28
400-160240-47	FD-2	Water	10/18/18 00:00	10/20/18 08:28
400-160240-48	FB-2	Water	10/18/18 10:30	10/20/18 08:28
400-160240-49	PZ-42I	Water	10/18/18 12:15	10/20/18 08:28
400-160240-50	EB-2	Water	10/18/18 15:30	10/20/18 08:28
400-160240-51	PZ-41S	Water	10/18/18 13:50	10/20/18 08:28
400-160240-52	PZ-17I	Water	10/18/18 09:10	10/20/18 08:28
400-160240-53	PZ-43S	Water	10/18/18 15:20	10/20/18 08:28
400-160240-54	PZ-40I	Water	10/18/18 14:05	10/20/18 08:28

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: SGWC-11

Date Collected: 10/16/18 10:50 Date Received: 10/19/18 09:04

Analyte

Carrier

Ba Carrier

Y Carrier

Radium-228

Result Qualifier

%Yield Qualifier

0.858

93.2

82.2

 $(2\sigma + / -)$

Limits

40 - 110

40 - 110

0.308

Lab Sample ID: 400-160240-31

. Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	7.8		1.0	0.89	mg/L			11/02/18 18:54	
Fluoride	<0.082		0.20	0.082	mg/L			11/02/18 18:54	
Method: 6020 - Metals (ICP/MS) - Total R	ecoverab	le						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 15:29	
Barium	0.037		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 15:29	
Beryllium	<0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 15:29	
Boron	0.35		0.050	0.021	mg/L		11/09/18 11:00	11/09/18 15:29	
Calcium	1.8		0.25	0.13	mg/L		11/09/18 11:00	11/09/18 15:29	
Chromium	<0.0011		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 15:29	
Cobalt	0.023		0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 15:29	
Lead	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 15:29	
Lithium	0.0031	J	0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 15:29	
Selenium	0.00046	J	0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 15:29	
Thallium	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 15:29	
Sodium	7.7		0.25	0.17	mg/L		11/09/18 11:00	11/09/18 15:29	
Potassium	0.30		0.25	0.11	mg/L		11/09/18 11:00	11/09/18 15:29	
Magnesium	1.5		0.13	0.032	mg/L		11/09/18 11:00	11/09/18 15:29	
Analyte Mercury	Result	Qualifier J B	- RL 0.00020	0.000070	Unit mg/L	_ D	Prepared 11/08/18 10:02	Analyzed 11/09/18 15:42	Dil Fa
Mercury	0.000072	JB	0.00020	0.000070	mg/L		11/08/18 10:02	11/09/18 15:42	
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Alkalinity, Total	140		1.0	0.98	mg/L			10/28/18 09:36	
Bicarbonate Alkalinity as C	aCO3 140		1.0	0.98	mg/L			10/28/18 09:36	
Carbonate Alkalinity as CaCO3			1.0	0.98	mg/L			10/28/18 09:36	
Total Dissolved Solids	100		5.0	3.4	mg/L			10/22/18 14:36	
Method: 9315 - Radium	-226 (GFPC)								
		Count	Total						
		Uncert.	Uncert.						
Analyte F	Result Qualifier	(2σ+/-)	(2σ+/-)	RL I	MDC Unit		Prepared	Analyzed	Dil Fa
Radium-226	0.200	0.0877	0.0895	1.00 0.0	0880 pCi/L		10/25/18 10:07	11/20/18 05:47	
Carrier %	%Yield Qualifier	Limits					Prepared	Analyzed	Dil Fa
Ba Carrier	93.2	40 - 110					10/25/18 10:07	11/20/18 05:47	
Method: 9320 - Radium	228 (GEPC)								
MICHIOU. 3320 - RAUIUIII	-220 (GFFC)	Count	Total						
		Uncert.	Uncert.						
									

TestAmerica Pensacola

Analyzed

Analyzed

<u>10/25/18 11:56</u> <u>11/12/18 14:58</u>

<u>10/25/18 11:56</u> <u>11/12/18 14:58</u>

10/25/18 11:56 11/12/18 14:58

 $(2\sigma + / -)$

0.318

RL

1.00

MDC Unit

0.411 pCi/L

Prepared

Prepared

Dil Fac

Dil Fac

Client: Southern Company
Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-160240-2
SDG: Ash Pond

Client Sample ID: SGWC-11 Lab Sample ID: 400-160240-31

Date Collected: 10/16/18 10:50 Matrix: Water Date Received: 10/19/18 09:04

Method: Ra226 Ra	228 - Con	nbined Ra	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.06		0.320	0.330	5.00	0.411	pCi/L	_	11/26/18 15:23	1
226 + 228										

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: SGWC-15

Date Collected: 10/16/18 15:15 Date Received: 10/19/18 09:04

Carrier

Ba Carrier

Y Carrier

%Yield Qualifier

95.6

61.7

Limits

40 - 110

40 - 110

Lab Sample ID: 400-160240-32

Matrix: Water

			phy Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride		10		1.0	0.89	mg/L			11/02/18 19:17	
Fluoride		0.14	JB	0.20	0.082	mg/L			11/02/18 19:17	
Method: 6020 - Meta	ıls (ICP/MS	S) - Total Re	coverabl	e						
Analyte	()	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic		<0.00046		0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 15:47	
Barium		0.031		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 15:47	
Beryllium		0.00040	J	0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 15:47	
Boron		1.5		0.050	0.021	mg/L		11/09/18 11:00	11/09/18 15:47	
Calcium		16		0.25	0.13	mg/L		11/09/18 11:00	11/09/18 15:47	
Chromium		0.032		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 15:47	
Cobalt		0.27		0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 15:47	
Lead		<0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 15:47	
Lithium		0.0034	J	0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 15:47	
Selenium		0.0021		0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 15:47	
Thallium		0.00010	J	0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 15:47	
Sodium		44		0.25	0.17	mg/L		11/09/18 11:00	11/09/18 15:47	
Potassium		4.8		0.25	0.11	mg/L		11/09/18 11:00	11/09/18 15:47	
Magnesium		17		0.13	0.032	mg/L		11/09/18 11:00	11/09/18 15:47	
General Chemistry										
Analyte		Result	Qualifier	RL	MDL	Unit	D	Duamanad		
		ittosuit					_	Prepared	Analyzed	Dil F
Alkalinity, Total		<0.98		1.0	0.98	mg/L	- -	Prepared	Analyzed 10/28/18 10:18	Dil Fa
Alkalinity, Total Bicarbonate Alkalinity as Ca	aCO3					mg/L mg/L	_ =	Prepared		Dil Fa
•		<0.98		1.0	0.98	-	_ =	Prepared	10/28/18 10:18	Dil F
· · · · · · · · · · · · · · · · · · ·		<0.98 <0.98		1.0 1.0	0.98 0.98	mg/L	<u> </u>	Prepared	10/28/18 10:18 10/28/18 10:18	Dil Fa
Bicarbonate Alkalinity as Ca Carbonate Alkalinity as Ca	CO3	<0.98 <0.98 <0.98		1.0 1.0 1.0	0.98 0.98	mg/L mg/L		Prepared	10/28/18 10:18 10/28/18 10:18 10/28/18 10:18	Dil F
Bicarbonate Alkalinity as Ca Carbonate Alkalinity as Ca Total Dissolved Solids	CO3	<0.98 <0.98 <0.98	Count	1.0 1.0 1.0	0.98 0.98	mg/L mg/L	_ =	Prepared	10/28/18 10:18 10/28/18 10:18 10/28/18 10:18	Dil Fa
Bicarbonate Alkalinity as Ca Carbonate Alkalinity as Ca Total Dissolved Solids	CO3	<0.98 <0.98 <0.98		1.0 1.0 1.0 5.0	0.98 0.98	mg/L mg/L	_ =	Prepared	10/28/18 10:18 10/28/18 10:18 10/28/18 10:18	Dil Fa
Bicarbonate Alkalinity as Ca Carbonate Alkalinity as Ca Total Dissolved Solids Method: 9315 - Radio	CO3	<0.98 <0.98 <0.98 350 3FPC)	Count	1.0 1.0 1.0 5.0	0.98 0.98 3.4	mg/L mg/L	_ =	Prepared	10/28/18 10:18 10/28/18 10:18 10/28/18 10:18	Dil Fa
Bicarbonate Alkalinity as Carbonate Alkalinity as Carb	CO3 um-226 (G	<0.98 <0.98 <0.98 350 3FPC)	Count Uncert.	1.0 1.0 1.0 5.0 Total Uncert.	0.98 0.98 3.4	mg/L mg/L mg/L	_ =	······································	10/28/18 10:18 10/28/18 10:18 10/28/18 10:18 10/22/18 14:36 Analyzed	
Bicarbonate Alkalinity as Ca Carbonate Alkalinity as Ca Total Dissolved Solids Method: 9315 - Radio	CO3 um-226 (G	<0.98 <0.98 <0.98 350 GFPC)	Count Uncert. (2σ+/-)	1.0 1.0 1.0 5.0 Total Uncert. (2σ+/-)	0.98 0.98 3.4	mg/L mg/L mg/L		Prepared	10/28/18 10:18 10/28/18 10:18 10/28/18 10:18 10/22/18 14:36 Analyzed	Dil F
Bicarbonate Alkalinity as Ca Carbonate Alkalinity as Ca Total Dissolved Solids Method: 9315 - Radio Analyte Radium-226	Result 0.214	<0.98 <0.98 <0.98 350 GFPC)	Count Uncert. (2σ+/-) 0.0914	1.0 1.0 1.0 5.0 Total Uncert. (2σ+/-)	0.98 0.98 3.4	mg/L mg/L mg/L		Prepared 10/25/18 10:07 Prepared	10/28/18 10:18 10/28/18 10:18 10/28/18 10:18 10/22/18 14:36 Analyzed 11/20/18 05:47	Dil F
Bicarbonate Alkalinity as Carbonate Alkalinity as Carb	Result 0 0.214 % Yield 95.6	<0.98 <0.98 <0.98 350 GFPC)	Count Uncert. (2σ+/-) 0.0914	1.0 1.0 1.0 5.0 Total Uncert. (2σ+/-)	0.98 0.98 3.4	mg/L mg/L mg/L		Prepared 10/25/18 10:07 Prepared	10/28/18 10:18 10/28/18 10:18 10/28/18 10:18 10/22/18 14:36 Analyzed 11/20/18 05:47	Dil F
Bicarbonate Alkalinity as Ca Carbonate Alkalinity as Ca Total Dissolved Solids Method: 9315 - Radio Analyte Radium-226 Carrier Ba Carrier	Result 0 0.214 % Yield 95.6	<0.98 <0.98 <0.98 350 GFPC)	Count Uncert. (2σ+/-) 0.0914	1.0 1.0 1.0 5.0 Total Uncert. (2σ+/-)	0.98 0.98 3.4	mg/L mg/L mg/L		Prepared 10/25/18 10:07 Prepared	10/28/18 10:18 10/28/18 10:18 10/28/18 10:18 10/22/18 14:36 Analyzed 11/20/18 05:47	Dil Fa
Bicarbonate Alkalinity as Ca Carbonate Alkalinity as Ca Total Dissolved Solids Method: 9315 - Radio Analyte Radium-226 Carrier Ba Carrier	Result 0.214 95.6 wm-228 (G	<0.98 <0.98 <0.98 350 GFPC) Qualifier	Count Uncert. (2σ+/-) 0.0914 Limits 40 - 110	1.0 1.0 5.0 Total Uncert. (2σ+/-) 0.0934	0.98 0.98 3.4	mg/L mg/L mg/L	- -	Prepared 10/25/18 10:07 Prepared	10/28/18 10:18 10/28/18 10:18 10/28/18 10:18 10/22/18 14:36 Analyzed 11/20/18 05:47	
Bicarbonate Alkalinity as Ca Carbonate Alkalinity as Ca Total Dissolved Solids Method: 9315 - Radio Analyte Radium-226 Carrier Ba Carrier	Result 0 0.214 % Yield 95.6	<0.98 <0.98 <0.98 350 GFPC) Qualifier Qualifier Qualifier	Count Uncert. (2σ+/-) 0.0914	1.0 1.0 1.0 5.0 Total Uncert. (2σ+/-) 0.0934	0.98 0.98 3.4 RL 1 1.00 0.0	mg/L mg/L mg/L		Prepared 10/25/18 10:07 Prepared	10/28/18 10:18 10/28/18 10:18 10/28/18 10:18 10/22/18 14:36 Analyzed 11/20/18 05:47	Dil Fa

TestAmerica Pensacola

Analyzed

Prepared

<u>10/25/18 11:56</u> <u>11/12/18 14:59</u>

10/25/18 11:56 11/12/18 14:59

Dil Fac

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: SGWC-15 Lab Sample ID: 400-160240-32 Date Collected: 10/16/18 15:15

Matrix: Water

Date Received: 10/19/18 09:04

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Count	Total
Uncert.	Uncert.

	Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
ı	Combined Radium	0.731	0.358	0.361	5.00	0.532 pCi/L		11/26/18 15:23	1

226 + 228

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: FD-1

Date Collected: 10/16/18 00:00 Date Received: 10/19/18 09:04 Lab Sample ID: 400-160240-33

. Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	7.4		1.0	0.89	mg/L			11/05/18 22:23	
Fluoride	<0.082		0.20	0.082	mg/L			11/05/18 22:23	
Method: 6020 - Metals (ICP/M	S) - Total Re	coverabl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 15:50	
Barium	0.039		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 15:50	
Beryllium	< 0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 15:50	
Boron	0.38		0.050	0.021	mg/L		11/09/18 11:00	11/09/18 15:50	
Calcium	1.8		0.25	0.13	mg/L		11/09/18 11:00	11/09/18 15:50	
Chromium	< 0.0011		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 15:50	
Cobalt	0.023		0.0025	0.00040			11/09/18 11:00	11/09/18 15:50	
Lead	< 0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 15:50	
Lithium	0.0032	J	0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 15:50	
Selenium	0.00030	J	0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 15:50	
Thallium	<0.000085		0.00050	0.000085	-		11/09/18 11:00	11/09/18 15:50	
Sodium	7.8		0.25	0.17	mg/L		11/09/18 11:00	11/09/18 15:50	
Potassium	0.32		0.25		mg/L		11/09/18 11:00	11/09/18 15:50	
Magnesium	1.5		0.13	0.032	•		11/09/18 11:00	11/09/18 15:50	
-									
Method: 7470A - Mercury (CV	' AA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.000083	JB	0.00020	0.000070	mg/L		11/08/18 10:02	11/09/18 15:46	
General Chemistry									
	Decult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	
Analyte	Result	Qualifici		MDL	••				Dil Fa
•	110	Quanner	1.0		mg/L			10/26/18 14:35	Dil Fa
Analyte Alkalinity, Total		Quanner		0.98				10/26/18 14:35 10/26/18 14:35	
Analyte	110	Quanner	1.0	0.98 0.98	mg/L				
Analyte Alkalinity, Total Bicarbonate Alkalinity as CaCO3	110 110	Quainer	1.0	0.98 0.98 0.98	mg/L mg/L			10/26/18 14:35	
Analyte Alkalinity, Total Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Total Dissolved Solids	110 110 <0.98	Qualifier	1.0 1.0 1.0	0.98 0.98 0.98	mg/L mg/L mg/L	 -		10/26/18 14:35 10/26/18 14:35	
Analyte Alkalinity, Total Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3	110 110 <0.98	Count	1.0 1.0 1.0	0.98 0.98 0.98	mg/L mg/L mg/L	— – 		10/26/18 14:35 10/26/18 14:35	
Analyte Alkalinity, Total Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Total Dissolved Solids	110 110 <0.98 82 GFPC)		1.0 1.0 1.0 5.0	0.98 0.98 0.98	mg/L mg/L mg/L			10/26/18 14:35 10/26/18 14:35	
Analyte Alkalinity, Total Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Total Dissolved Solids Method: 9315 - Radium-226 (Carbonate Alkalinity as CaCO3)	110 110 <0.98 82 GFPC)	Count	1.0 1.0 1.0 5.0	0.98 0.98 0.98 3.4	mg/L mg/L mg/L		Prepared	10/26/18 14:35 10/26/18 14:35	
Analyte Alkalinity, Total Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3 Total Dissolved Solids Method: 9315 - Radium-226 (Cache Cache	110 110 <0.98 82 GFPC)	Count Uncert.	1.0 1.0 1.0 5.0 Total Uncert.	0.98 0.98 0.98 3.4	mg/L mg/L mg/L mg/L		Prepared 10/25/18 10:07	10/26/18 14:35 10/26/18 14:35 10/22/18 14:36 Analyzed	

Method: 9320 - Radium-228 (GFPC)

79.6

Ba Carrier

Y Carrier

		•	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.502		0.323	0.327	1.00	0.502	pCi/L	10/25/18 11:56	11/12/18 14:59	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.9		40 - 110					10/25/18 11:56	11/12/18 14:59	1

40 - 110

40 - 110

TestAmerica Pensacola

10/25/18 10:07 11/20/18 05:47

10/25/18 11:56 11/12/18 14:59

Client: Southern Company
Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-160240-2
SDG: Ash Pond

Client Sample ID: FD-1 Lab Sample ID: 400-160240-33

Date Collected: 10/16/18 00:00 Matrix: Water Date Received: 10/19/18 09:04

Method: Ra226_Ra	228 - Con	nbined Ra	dium-226 a	nd Radiur	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.640		0.333	0.337	5.00	0.502	pCi/L		11/26/18 15:23	1
226 + 228										

9

10

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-44I

Lab Sample ID: 400-160240-34

Matrix: Water

Date Collecte	d: 10/16/18 13:45
Date Receive	d: 10/19/18 09:04

Analyte	ons, Ion Chromatogra Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4.3		1.0	0.89	mg/L			11/02/18 19:40	1
Fluoride	<0.082		0.20	0.082	mg/L			11/02/18 19:40	1
Sulfate	6.0		1.0	0.70	mg/L			11/02/18 19:40	1
Analyte	ils (ICP/MS) - Total Re Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	,		RI	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 16:12	- 5
Barium	0.014		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 16:12	5
Beryllium	< 0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 16:12	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046	- -	0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 16:12	
Barium	0.014		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 16:12	ţ
Beryllium	<0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 16:12	ţ
Boron	<0.021		0.050	0.021	mg/L		11/09/18 11:00	11/09/18 16:12	
Calcium	21		0.25	0.13	mg/L		11/09/18 11:00	11/09/18 16:12	
Chromium	0.0046		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 16:12	
Cobalt	0.0021	J	0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 16:12	
Lead	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 16:12	
Lithium	0.069		0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 16:12	
Selenium	0.00046	J	0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 16:12	:
Thallium	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 16:12	
Sodium	12		0.25	0.17	mg/L		11/09/18 11:00	11/09/18 16:12	
Potassium	14		0.25	0.11	mg/L		11/09/18 11:00	11/09/18 16:12	:
Magnesium	11		0.13	0.032	mg/L		11/09/18 11:00	11/09/18 16:12	

Method: 7470A - Mercury (CVA	AA)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000084 JB	0.00020	0.000070 mg/L		11/08/18 10:02	11/09/18 15:48	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	140		1.0	0.98	mg/L			10/28/18 10:25	1
Bicarbonate Alkalinity as CaCO3	140		1.0	0.98	mg/L			10/28/18 10:25	1
Carbonate Alkalinity as CaCO3	<0.98		1.0	0.98	mg/L			10/28/18 10:25	1
Total Dissolved Solids	180		5.0	3.4	mg/L			10/22/18 14:36	1

Method: 9315 - R	Radium-226 (GFPC)								
		, - ,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.216		0.107	0.109	1.00	0.111	pCi/L	10/25/18 10:07	11/20/18 05:47	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	92.0		40 - 110					10/25/18 10:07	11/20/18 05:47	1

Method: 9320 - Rad	dium-228 (GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.335	U	0.384	0.386	1.00	0.632	pCi/L	10/25/18 11:56	11/12/18 14:59	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	92.0		40 - 110					10/25/18 11:56	11/12/18 14:59	1
Y Carrier	74.4		40 - 110					10/25/18 11:56	11/12/18 14:59	1

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-44I

Lab Sample ID: 400-160240-34

Matrix: Water

Date Collected: 10/16/18 13:45 Date Received: 10/19/18 09:04

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Count	Total
Uncert.	Uncert.

Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Uni	t Prepared	Analyzed	Dil Fac
Combined Radium 226	0.551	U	0.399	0.401	5.00	0.632 pCi/	'L	11/26/18 15:23	1

+ 228

5

0

9

11

12

4 /

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-25S

Lab Sample ID: 400-160240-35 Date Collected: 10/16/18 10:40

Matrix: Water

Date Received: 10/19/18 09:04

Analyte

Carrier

Ba Carrier

Y Carrier

Radium-228

Result Qualifier

%Yield Qualifier

0.497

92.3

81.5

 $(2\sigma + / -)$

0.304

Limits

40 - 110

40 - 110

Analyte		Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
Chloride		4.7		1.0	0.89	mg/L			11/02/18 20:03	
Fluoride		<0.082		0.20	0.082	mg/L			11/02/18 20:03	
Sulfate		1.1		1.0	0.70	mg/L			11/02/18 20:03	
Method: 6020 - Metals	(ICP/N	IS) - Total Re	coverabl	е						
Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Arsenic		<0.00046		0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 16:15	
Barium		0.022		0.0025	0.00049	-		11/09/18 11:00	11/09/18 16:15	
Beryllium		<0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 16:15	
Boron		<0.021		0.050	0.021	mg/L		11/09/18 11:00	11/09/18 16:15	
Calcium		1.5		0.25	0.13	mg/L		11/09/18 11:00	11/09/18 16:15	
Chromium		<0.0011		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 16:15	
obalt		0.026		0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 16:15	
ead		<0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 16:15	
ithium		0.0068		0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 16:15	
elenium		<0.00024		0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 16:15	
hallium		<0.000085		0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 16:15	
odium		3.3		0.25	0.17	mg/L		11/09/18 11:00	11/09/18 16:15	
otassium		0.33		0.25	0.11	mg/L		11/09/18 11:00	11/09/18 16:15	
บเฉออเนเม									44/00/40 40 45	
Magnesium		0.40		0.13	0.032	mg/L		11/09/18 11:00	11/09/18 16:15	
Magnesium Method: 7470A - Merc Analyte	ury (C\	/AA) Result	Qualifier	RL	MDL	Unit	_ <u>D</u>	Prepared	Analyzed	Dil
Magnesium Method: 7470A - Merc	ury (C\	/AA)				Unit	_ <u>D</u>		Analyzed	Dil
Magnesium Method: 7470A - Merc Analyte Mercury	ury (C\	/AA) Result		RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil
Magnesium Method: 7470A - Merconalyte Mercury General Chemistry Analyte	eury (C\	/AA) Result 0.000086		RL 0.00020	MDL MDL	Unit mg/L Unit	_ D_	Prepared	Analyzed 11/09/18 16:11 Analyzed	
Magnesium Method: 7470A - Mercanalyte Mercury General Chemistry unalyte	eury (C\	/AA) Result 0.000086	JB	RL 0.00020	MDL MDL	Unit mg/L		Prepared 11/08/18 10:02	Analyzed 11/09/18 16:11	
Magnesium Method: 7470A - Merc Analyte Mercury General Chemistry Analyte Alkalinity, Total		/AA) Result 0.000086	JB	RL 0.00020	MDL 0.000070	Unit mg/L Unit		Prepared 11/08/18 10:02	Analyzed 11/09/18 16:11 Analyzed	
Magnesium Method: 7470A - Mercunalyte Mercury General Chemistry Analyte Alkalinity, Total Bicarbonate Alkalinity as	CaCO3	Result	JB	RL 0.00020	MDL 0.000070 MDL 0.98 0.98 0.98	Unit mg/L Unit mg/L mg/L mg/L mg/L		Prepared 11/08/18 10:02	Analyzed 11/09/18 16:11 Analyzed 10/28/18 10:30	
Magnesium Method: 7470A - Merconalyte Mercury General Chemistry Analyte Alkalinity, Total Bicarbonate Alkalinity as Carbonate Alkalinity as Cacco	CaCO3	Result 0.000086 Result 5.9 5.9	JB	RL 0.00020 RL 1.0 1.0	MDL 0.000070 MDL 0.98 0.98 0.98	Unit mg/L Unit mg/L mg/L		Prepared 11/08/18 10:02	Analyzed 11/09/18 16:11 Analyzed 10/28/18 10:30 10/28/18 10:30	
Method: 7470A - Merconalyte Mercury Seneral Chemistry Analyte Alkalinity, Total Bicarbonate Alkalinity as Carbonate Alkalinity as Cacco Total Dissolved Solids	CaCO3	Result 0.000086 Result 5.9 <0.98 66	JB	RL 0.00020 RL 1.0 1.0 1.0	MDL 0.000070 MDL 0.98 0.98 0.98	Unit mg/L Unit mg/L mg/L mg/L mg/L		Prepared 11/08/18 10:02	Analyzed 11/09/18 16:11 Analyzed 10/28/18 10:30 10/28/18 10:30 10/28/18 10:30	
Magnesium Method: 7470A - Merc Analyte Mercury General Chemistry Analyte Alkalinity, Total Bicarbonate Alkalinity as Carbonate Alkalinity as Cacc Total Dissolved Solids	CaCO3	Result 0.000086 Result 5.9 <0.98 66	JB	RL 0.00020 RL 1.0 1.0 1.0	MDL 0.000070 MDL 0.98 0.98 0.98	Unit mg/L Unit mg/L mg/L mg/L mg/L		Prepared 11/08/18 10:02	Analyzed 11/09/18 16:11 Analyzed 10/28/18 10:30 10/28/18 10:30 10/28/18 10:30	
Magnesium Method: 7470A - Merc Analyte Mercury General Chemistry Analyte Alkalinity, Total Bicarbonate Alkalinity as Carbonate Alkalinity as Cacc Total Dissolved Solids	CaCO3	Result 0.000086 Result 5.9 <0.98 66 GFPC)	J B Qualifier	RL 0.00020 RL 1.0 1.0 1.0 5.0	MDL 0.000070 MDL 0.98 0.98 0.98	Unit mg/L Unit mg/L mg/L mg/L mg/L		Prepared 11/08/18 10:02	Analyzed 11/09/18 16:11 Analyzed 10/28/18 10:30 10/28/18 10:30 10/28/18 10:30	
Method: 7470A - Mercanalyte Mercury General Chemistry Inalyte Ilikalinity, Total Isicarbonate Alkalinity as Cacco Indicate Alkalinit	CaCO3 D3 m-226 (Result 0.000086 Result 5.9 <0.98 66 GFPC)	J B Qualifier Count	RL 0.00020 RL 1.0 1.0 5.0 Total	MDL 0.000070 MDL 0.98 0.98 0.98 3.4	Unit mg/L Unit mg/L mg/L mg/L mg/L		Prepared 11/08/18 10:02	Analyzed 11/09/18 16:11 Analyzed 10/28/18 10:30 10/28/18 10:30 10/28/18 10:30	Dil
Method: 7470A - Mercanalyte Mercury General Chemistry Inalyte Ilicarbonate Alkalinity as Carbonate Alk	CaCO3 D3 m-226 (Result 0.000086 Result 5.9 5.9 <0.98 66 GFPC)	Qualifier Count Uncert.	RL 0.00020 RL 1.0 1.0 5.0 Total Uncert.	MDL 0.000070 MDL 0.98 0.98 0.98 3.4	Unit mg/L Unit mg/L mg/L mg/L mg/L mg/L		Prepared 11/08/18 10:02 Prepared Prepared	Analyzed 11/09/18 16:11 Analyzed 10/28/18 10:30 10/28/18 10:30 10/28/18 10:30 10/28/18 10:30	Dil
Method: 7470A - Mercanalyte Mercury General Chemistry Inalyte Ilitarionate Alkalinity as Carbonate Al	CaCO3 D3 m-226 (Result 0.143	Result 0.000086 Result 5.9 5.9 <0.98 66 GFPC)	Qualifier Count Uncert. (2σ+/-)	RL 0.00020 RL 1.0 1.0 5.0 Total Uncert. (2σ+/-)	MDL 0.000070 MDL 0.98 0.98 0.98 3.4	Unit mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 11/08/18 10:02 Prepared Prepared	Analyzed 11/09/18 16:11 Analyzed 10/28/18 10:30 10/28/18 10:30 10/28/18 10:30 10/22/18 14:36 Analyzed	Dil
Method: 7470A - Mercanalyte Mercury General Chemistry Analyte Alkalinity, Total Bicarbonate Alkalinity as Carbonate Alkalinity as Cacco Total Dissolved Solids Method: 9315 - Radium Analyte Radium-226 Carrier	CaCO3 D3 m-226 (Result 0.143	Result 0.000086 Result 5.9 5.9 <0.98 66 GFPC) Qualifier	Qualifier Count Uncert. (20+/-) 0.0770	RL 0.00020 RL 1.0 1.0 5.0 Total Uncert. (2σ+/-)	MDL 0.000070 MDL 0.98 0.98 0.98 3.4	Unit mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 11/08/18 10:02 Prepared Prepared 10/25/18 10:07 Prepared	Analyzed 11/09/18 16:11 Analyzed 10/28/18 10:30 10/28/18 10:30 10/28/18 10:30 10/22/18 14:36 Analyzed 11/20/18 05:47	Dil Dil Dil
Method: 7470A - Mercanalyte Mercury General Chemistry Analyte Alkalinity, Total Bicarbonate Alkalinity as Carbonate Alkalinit	CaCO3 D3 m-226 (Result 0.143 %Yield 92.3	Result 0.000086 Result 5.9 5.9 <0.98 66 GFPC) Qualifier	Qualifier Count Uncert. (2σ+/-) 0.0770 Limits	RL 0.00020 RL 1.0 1.0 5.0 Total Uncert. (2σ+/-)	MDL 0.000070 MDL 0.98 0.98 0.98 3.4	Unit mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 11/08/18 10:02 Prepared Prepared 10/25/18 10:07 Prepared	Analyzed 11/09/18 16:11 Analyzed 10/28/18 10:30 10/28/18 10:30 10/28/18 10:30 10/22/18 14:36 Analyzed 11/20/18 05:47 Analyzed	Dil
Magnesium Method: 7470A - Merc Analyte	CaCO3 D3 m-226 (Result 0.143 %Yield 92.3	Result 0.000086 Result 5.9 5.9 <0.98 66 GFPC) Qualifier	Qualifier Count Uncert. (2σ+/-) 0.0770 Limits	RL 0.00020 RL 1.0 1.0 5.0 Total Uncert. (2σ+/-)	MDL 0.000070 MDL 0.98 0.98 0.98 3.4	Unit mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 11/08/18 10:02 Prepared Prepared 10/25/18 10:07 Prepared	Analyzed 11/09/18 16:11 Analyzed 10/28/18 10:30 10/28/18 10:30 10/28/18 10:30 10/22/18 14:36 Analyzed 11/20/18 05:47 Analyzed	Dil

TestAmerica Pensacola

Analyzed

Analyzed

<u>10/25/18 11:56</u> <u>11/12/18 14:59</u>

10/25/18 11:56 11/12/18 14:59

10/25/18 11:56 11/12/18 14:59

 $(2\sigma + / -)$

0.307

RL

1.00

MDC Unit

0.463 pCi/L

Prepared

Prepared

Dil Fac

Dil Fac

Client: Southern Company TestAmerica Job ID: 400-160240-2 Project/Site: CCR - Plant Scherer

SDG: Ash Pond

Lab Sample ID: 400-160240-35 **Client Sample ID: PZ-25S** Date Collected: 10/16/18 10:40

Matrix: Water

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Count	Total
Uncert.	Uncert.

Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.640	0.314	0.317	5.00	0.463 pCi/L		11/26/18 15:23	1

226 + 228

Date Received: 10/19/18 09:04

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: EB-1

Lab Sample ID: 400-160240-36

Date Collected: 10/16/18 16:50 Date Received: 10/19/18 09:04

Matrix: Water

Method: 300.0 - An	ions, Ion	_						_			
Analyte			Qualifier	- RL		DL U		_ D	Prepared	Analyzed	Dil Fa
Chloride		<0.89		1.0		89 m	-			11/02/18 20:26	
Fluoride		<0.082		0.20	0.0	82 m	g/L			11/02/18 20:26	
Method: 6020 - Me	tals (ICP/N		ecoverabl Qualifier	e RL	М	DL Ui	nit	D	Prepared	Analyzed	Dil Fa
Arsenic		- <0.00046	Qualifier	0.0013				- –	·	11/09/18 16:19	
Barium		<0.00049		0.0015		49 m	•			11/09/18 16:19	
Beryllium		<0.00049		0.0025		34 m	-			11/09/18 16:19	
Boron		<0.0034		0.0023		21 m	-			11/09/18 16:19	
Calcium		<0.021		0.030		13 m	-			11/09/18 16:19	
Chromium		<0.0011					-			11/09/18 16:19	
				0.0025		11 m					
Cobalt		<0.00040		0.0025		40 m	•			11/09/18 16:19	
Lead		<0.00035		0.0013		35 m	•			11/09/18 16:19	
Lithium		<0.0011		0.0050		11 m	•			11/09/18 16:19	
Selenium		<0.00024		0.0013		24 m	-			11/09/18 16:19	
Thallium		<0.000085		0.00050			-			11/09/18 16:19	
Sodium		<0.17		0.25		17 m	T			11/09/18 16:19	
Potassium		<0.11		0.25		11 m	-			11/09/18 16:19	
Magnesium		<0.032		0.13	0.0	32 m	g/L		11/09/18 11:00	11/09/18 16:19	
Method: 7470A - M	ercury (C	•									
Analyte		Result	Qualifier	- RL 0.00020		DL U		D	Prepared	Analyzed	Dil Fa
General Chemistry Analyte Alkalinity, Total		- Result <0.98	Qualifier	- RL		OL Ui		D	Prepared	Analyzed 10/28/18 10:35	Dil Fa
•	CaCO2	<0.98		1.0		98 m	-			10/28/18 10:35	
Bicarbonate Alkalinity as							-				
Carbonate Alkalinity as C Total Dissolved Solids		<0.98 <3.4		1.0 5.0		98 m	•			10/28/18 10:35 10/22/18 14:36	
				5.0	`	, , , , , , , , , , , , , , , , , , , 	g/L			10/22/10 14:50	
Method: 9315 - Rad	dium-226 ((GFPC)	Count	Total							
			Uncert.	Uncert.							
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MD	C Unit		Prepared	Analyzed	Dil Fa
Radium-226	0.0869	<u>U</u>	0.0665	0.0669	1.00	0.091	7 pCi/L		10/25/18 10:07	11/20/18 05:48	
Carrier	%Yield	Qualifier	Limits						Prepared	Analyzed	Dil Fa
Ba Carrier	95.3		40 - 110						-	11/20/18 05:48	
		(CEDC)									
Method: 9320 - Rad	dium-228 (GFPC)									
Method: 9320 - Rad	dium-228 ((GFPC)	Count	Total							
Method: 9320 - Rad	dium-228 ((GFPC)	Count Uncert.	Total Uncert.							
Analyte	Result	Qualifier	Uncert. (2σ+/-)	Uncert. (2σ+/-)	RL		C Unit		Prepared	Analyzed	Dil Fa
Method: 9320 - Rad Analyte Radium-228			Uncert.	Uncert.	RL 1.00		C Unit pCi/L		•	Analyzed 11/12/18 14:59	Dil Fa
Analyte Radium-228 Carrier	Result 0.564		Uncert. (2σ+/-) 0.340 Limits	Uncert. (2σ+/-)					10/25/18 11:56 Prepared	11/12/18 14:59 Analyzed	Dil Fa
Analyte Radium-228	Result 0.564	Qualifier	Uncert. (2σ+/-) 0.340	Uncert. (2σ+/-)					10/25/18 11:56 Prepared 10/25/18 11:56	11/12/18 14:59	

2

4

5

7

9

10

12

Client: Southern Company TestAmerica Job ID: 400-160240-2 Project/Site: CCR - Plant Scherer

Lab Sample ID: 400-160240-36

Client Sample ID: EB-1 Date Collected: 10/16/18 16:50 **Matrix: Water** Date Received: 10/19/18 09:04

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Count	Total	
Uncert.	Uncert.	

Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.651	0.346	0.350	5.00	0.522 pCi/L		11/26/18 15:23	1

226 + 228

SDG: Ash Pond

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: FB-1

Date Collected: 10/16/18 13:30 Date Received: 10/19/18 09:04 Lab Sample ID: 400-160240-37

. Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89		1.0	0.89	mg/L			11/02/18 20:48	
Fluoride	<0.082		0.20	0.082	mg/L			11/02/18 20:48	
Method: 6020 - Metals	(ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 16:22	
Barium	< 0.00049		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 16:22	į
Beryllium	<0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 16:22	Ę
Boron	<0.021		0.050	0.021	mg/L		11/09/18 11:00	11/09/18 16:22	
Calcium	<0.13		0.25	0.13	mg/L		11/09/18 11:00	11/09/18 16:22	Ę
Chromium	<0.0011		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 16:22	į
Cobalt	<0.00040		0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 16:22	
₋ead	< 0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 16:22	į
₋ithium	<0.0011		0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 16:22	į
Selenium	<0.00024		0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 16:22	
Γhallium	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 16:22	į
Sodium	<0.17		0.25	0.17	mg/L		11/09/18 11:00	11/09/18 16:22	į
Potassium	<0.11		0.25	0.11	mg/L		11/09/18 11:00	11/09/18 16:22	
Magnesium	<0.032		0.13	0.032	mg/L		11/09/18 11:00	11/09/18 16:22	ţ
Method: 7470A - Mercı	ırv (CVAA)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.000087	J B	0.00020	0.000070	mg/L		11/08/18 10:02	11/09/18 16:15	

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	<0.98		1.0	0.98	mg/L			10/28/18 10:40	1
Bicarbonate Alkalinity as CaCO3	<0.98		1.0	0.98	mg/L			10/28/18 10:40	1
Carbonate Alkalinity as CaCO3	<0.98		1.0	0.98	mg/L			10/28/18 10:40	1
Total Dissolved Solids	<3.4		5.0	3.4	mg/L			10/22/18 14:36	1

Method: 9315 - F	Radium-226 (GFPC)								
	·	,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.196		0.0862	0.0880	1.00	0.0870	pCi/L	10/25/18 10:07	11/20/18 05:48	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	96.5		40 - 110					10/25/18 10:07	11/20/18 05:48	1

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.862		0.308	0.318	1.00	0.418	pCi/L	10/25/18 11:56	11/12/18 14:59	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	96.5		40 - 110					10/25/18 11:56	11/12/18 14:59	1
Y Carrier	83.4		40 - 110					10/25/18 11:56	11/12/18 14:59	1

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: FB-1 Lab Sample ID: 400-160240-37

Matrix: Water

Date Collected: 10/16/18 13:30 Date Received: 10/19/18 09:04

Method: Ra226_Ra	228 - Con	nbined Ra	dium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.06		0.320	0.330	5.00	0.418	pCi/L		11/26/18 15:23	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: SGWC-11 Date Collected: 10/17/18 12:30 Lab Sample ID: 400-160240-38

Matrix: Water

Date Received: 10/19/18 09:04

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic, Dissolved	<0.00046	0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 16:40	5
Barium, Dissolved	0.039	0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 16:40	5
Beryllium, Dissolved	<0.00034	0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 16:40	5
Chromium, Dissolved	<0.0011	0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 16:40	5
Cobalt, Dissolved	0.022	0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 16:40	5
Iron, Dissolved	0.99	0.13	0.053	mg/L		11/09/18 11:00	11/09/18 16:40	5
Lead, Dissolved	<0.00035	0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 16:40	5
Lithium, Dissolved	0.0027 J	0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 16:40	5
Selenium, Dissolved	<0.00024	0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 16:40	5
Thallium, Dissolved	<0.000085	0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 16:40	5

Method: 7470A - Mercury (CVAA) - Dissolved											
Analyte	Result Qualifier	r RL	MDL I	Unit	D	Prepared	Analyzed	Dil Fac			
Mercury, Dissolved	0.000080 JB	0.00020	0.000070 r	mg/L		11/08/18 10:02	11/09/18 16:17	1			

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: SGWC-15

Date Collected: 10/17/18 15:00 Date Received: 10/19/18 09:04

Mercury, Dissolved

Lab Sample ID: 400-160240-39

<u>11/08/18 10:02</u> <u>11/09/18 16:19</u>

Matrix: Water

0.0013 0.0025 0.0025 0.0025 0.0025	0.00046 0.00049 0.00034 0.0011	mg/L mg/L		11/09/18 11:00 11/09/18 11:00 11/09/18 11:00	11/09/18 16:43 11/09/18 16:43 11/09/18 16:43	
0.0025 0.0025	0.00034	mg/L				5 5
0.0025				11/09/18 11:00	11/09/18 16:43	5
	0.0011	mg/L				
0.0025				11/09/18 11:00	11/09/18 16:43	5
0.0023	0.00040	mg/L		11/09/18 11:00	11/09/18 16:43	5
0.13	0.053	mg/L		11/09/18 11:00	11/09/18 16:43	5
0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 16:43	5
0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 16:43	5
0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 16:43	5
0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 16:43	5
	0.0013 0.0050 0.0013	0.0013 0.00035 0.0050 0.0011 0.0013 0.00024	0.0013	0.0013 0.00035 mg/L 0.0050 0.0011 mg/L 0.0013 0.00024 mg/L	0.0013 0.00035 mg/L 11/09/18 11:00 0.0050 0.0011 mg/L 11/09/18 11:00 0.0013 0.00024 mg/L 11/09/18 11:00	0.0013 0.00035 mg/L 11/09/18 11:00 11/09/18 16:43 0.0050 0.0011 mg/L 11/09/18 11:00 11/09/18 16:43 0.0013 0.00024 mg/L 11/09/18 11:00 11/09/18 16:43

0.00020

0.000070 mg/L

0.00010 JB

12

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-44I

Lab Sample ID: 400-160240-40 Date Collected: 10/17/18 13:50 Date Received: 10/19/18 09:04

Matrix: Water

Method: 6020 - Metals (ICP/M	S) - Dissolv	ed							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic, Dissolved	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 17:05	5
Barium, Dissolved	0.010		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 17:05	5
Beryllium, Dissolved	< 0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 17:05	5
Chromium, Dissolved	<0.0011		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 17:05	5
Cobalt, Dissolved	0.0018	J	0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 17:05	5
Iron, Dissolved	0.77		0.13	0.053	mg/L		11/09/18 11:00	11/09/18 17:05	5
Lead, Dissolved	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 17:05	5
Lithium, Dissolved	0.055		0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 17:05	5
Selenium, Dissolved	0.00025	J	0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 17:05	5
Thallium, Dissolved	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 17:05	5
- Method: 7470A - Mercury (CV	AA) - Disso	lved							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury, Dissolved	<0.000070		0.00020	0.000070	mg/L		11/08/18 12:35	11/13/18 09:47	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-25S

Lab Sample ID: 400-160240-41

Date Collected: 10/17/18 09:50 Date Received: 10/19/18 09:04 Matrix: Water

Method: 6020 - Metals (ICP/MS) - Dissolved							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic, Dissolved	<0.00046	0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 17:08	5
Barium, Dissolved	0.025	0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 17:08	5
Beryllium, Dissolved	<0.00034	0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 17:08	5
Chromium, Dissolved	<0.0011	0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 17:08	5
Cobalt, Dissolved	0.030	0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 17:08	5
Iron, Dissolved	0.25	0.13	0.053	mg/L		11/09/18 11:00	11/09/18 17:08	5
Lead, Dissolved	<0.00035	0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 17:08	5
Lithium, Dissolved	0.0054	0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 17:08	5
Selenium, Dissolved	<0.00024	0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 17:08	5
Thallium, Dissolved	<0.00085	0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 17:08	5
- Method: 7470A - Mercu	ry (CVAA) - Dissolved							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury, Dissolved	<0.000070	0.00020	0.000070	mg/L		11/08/18 12:35	11/13/18 09:48	1

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-36S Lab Sample ID: 400-160240-42 Date Collected: 10/17/18 09:35

Matrix: Water

Date Received: 10/19/18 09:04

Total Dissolved Solids

Chloride	_					_			 -
Method: 6020 - Metals (ICP/MS) - Total Recoverable Analyte		Qualitier				D	Prepared		Dil Fac
Method: 6020 - Metals (ICP/MS) - Total Recoverable Analyte					J				1
Method: 6020 - Metals (ICP/MS) - Total Recoverable Analyte Result Qualifier Result					•				1
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Ansenic Analyzed Analyzed An	<0.70		1.0	0.70	mg/L			11/05/18 22:00	1
Arsenic			DI.	MDI	l lmi4	_	Drenered	Amalumad	Dil Foo
Barlum		Qualifier					•	-	Dil Fac
Beryllium					-				5
11/09/18 11:00 11/0					•				5
Calcium					-				5
Chromium					_				5
Cobalt					J				5
Lead									5
Lithium		J			J				5
Selenium					•				5
Thaillium	0.0019	J	0.0050				11/09/18 11:00	11/09/18 16:26	5
Column C	<0.00024		0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 16:26	5
Magnesium 0.93 0.25 0.11 mg/L 11/09/18 11:00 11/09/18 16:26	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 16:26	5
Method: 6020 - Metals (ICP/MS) - Dissolved Analyte Result Qualifier RL MDL Unit D Prepared 11/09/18 11:00 Analyzed Analyte Arsenic, Dissolved Arsenic, Dissolved Arsenic, Dissolved Arsenic, Dissolved (a) 0.00046 0.0013 0.00046 mg/L 11/09/18 11:00 11/09/18 17:12 Barium, Dissolved (a) 0.0030 0.0025 0.00034 mg/L 11/09/18 11:00 11/09/18 11:00 11/09/18 17:12 Chromium, Dissolved (a) 0.0013 0.0025 0.00014 mg/L 11/09/18 11:00 11/09/18 11:00 11/09/18 17:12 Chromium, Dissolved (a) 0.0017 J 0.0025 0.00014 mg/L 11/09/18 11:00 11/09/18 17:12 Chromium, Dissolved (a) 0.0013 0.0025 0.00040 mg/L 11/09/18 11:00 11/09/18 17:12 Lithium, Dissolved (a) 0.0035 0.013 0.0035 mg/L 11/09/18 11:00 11/09/18 17:12 Elenium, Dissolved (a) 0.00044 0.00050 0.00011 mg/L 11/09/18 11:00 11/09/18 17:12 Method: 7470A - Mercury (CVAA) Result (a) Qualifier (a) <td>2.9</td> <td></td> <td>0.25</td> <td>0.17</td> <td>mg/L</td> <td></td> <td>11/09/18 11:00</td> <td>11/09/18 16:26</td> <td>5</td>	2.9		0.25	0.17	mg/L		11/09/18 11:00	11/09/18 16:26	5
Method: 6020 - Metals (ICP/MS) - Dissolved Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Arsenic, Dissolved	0.93		0.25	0.11	mg/L		11/09/18 11:00	11/09/18 16:26	5
Method: 6020 - Metals (ICP/MS) - Dissolved Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Arsenic, Dissolved	3.2		0.13	0.032	mg/L		11/09/18 11:00	11/09/18 16:26	5
Chromium, Dissolved Commonstrate					-				5
Beryllium, Dissolved					-				5
Chromium, Dissolved 0.0013 J 0.0025 0.0011 mg/L 11/09/18 11:00 11/09/18 17:12 11/09/18 17:12 11/09/18 17:12 11/09/18 17:12 11/09/18 17:12 11/09/18 11:00 11/09/18 17:12 11/09/18 17:12 11/09/18 17:12 11/09/18 11:00 11/09/18 11:00			0.0025		J		11/09/18 11:00	11/09/18 17:12	5
Cobalt, Dissolved 0.0017 J 0.0025 0.0040 mg/L 11/09/18 11:00 11/09/18 17:12 ron, Dissolved <0.053	0.0013	. J	0.0025				11/09/18 11:00	11/09/18 17:12	5
Trop					-				5
Lead, Dissolved					ū				5
Dissolved O.0014	<0.00035		0.0013		-		11/09/18 11:00	11/09/18 17:12	5
Selenium, Dissolved <0.00024 0.0013 0.00024 mg/L 11/09/18 11:00 11/09/18 17:12	0.0014	J	0.0050		-		11/09/18 11:00	11/09/18 17:12	5
Method: 7470A - Mercury (CVAA) Analyte Result Qualifier RL MDL Unit mg/L D Prepared mg/L Analyzed mg/L Method: 7470A - Mercury (CVAA) - Dissolved Analyte Result Qualifier RL MDL Unit mg/L D Prepared mg/L Analyzed mg/L Mercury, Dissolved <0.000070	< 0.00024		0.0013	0.00024	mg/L				5
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 17:12	5
Analyte Result Qualifier RL MDL Unit mg/L 11/08/18 12:35 11/13/18 09:35 Method: 7470A - Mercury (CVAA) - Dissolved Analyte Result Qualifier RL MDL Unit Mercury, Dissolved Mercury, Dissolved Result Qualifier RL MDL Unit Mercury, Dissolved Mercury, Dissolved Result Qualifier RL MDL Unit Mercury, Dissolved Mercury, Dissolved Mercury, Dissolved Mercury, Dissolved Result Qualifier RL MDL Unit D Prepared Analyzed Mercury, Dissolved Mercury, Dissolved Mercury, Dissolved Result Qualifier RL MDL Unit D Prepared Analyzed Analyzed Analyzed Mercury, Dissolved Mercury, Dissolved Mercury, Dissolved Diss	4A)								
Mercury CVAA - Dissolved Result Qualifier RL MDL Unit D Prepared Analyzed Analyzed Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Anal	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Result Mercury, Dissolved Qualifier RL OLD OLD OLD OLD OLD OLD OLD OLD OLD OL	<0.000070		0.00020	0.000070	mg/L		•	-	1
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed 11/08/18 12:35 11/13/18 09:59	AA) - Disso	lved							
General Chemistry Analyte Result Alkalinity, Total Qualifier RL Description MDL Unit Description Description Prepared Description Analyzed Total Description Bicarbonate Alkalinity as CaCO3 29 1.0 0.98 mg/L 10/29/18 13:08	•		RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Result Alkalinity, Total Qualifier RL NDL NDL NDL NDL NDL NDL NDL NDL NDL ND	<0.000070		0.00020	0.000070	mg/L		11/08/18 12:35	11/13/18 09:59	1
Analyte Result Alkalinity, Total Qualifier RL NDL Unit mg/L D Prepared mg/L Analyzed 10/29/18 13:08 Bicarbonate Alkalinity as CaCO3 29 1.0 0.98 mg/L mg/L 10/29/18 13:08									
Bicarbonate Alkalinity as CaCO3 29 1.0 0.98 mg/L 10/29/18 13:08	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bicarbonate Alkalinity as CaCO3 29 1.0 0.98 mg/L 10/29/18 13:08	29		1.0	0.98	mg/L			10/29/18 13:08	1
									1
Carbonate Alkalinity as CaCO3 < 0.98 1.0 0.98 mg/L 10/29/18 13:08	<0.98		1.0		-			10/29/18 13:08	1
Cardonate Alkalinity as CaCO3		Result 6.9 <0.082 <0.70 6) - Total Re Result <0.00046 0.030 <0.00034 0.15 6.0 0.0011 0.0021 <0.00024 <0.00085 2.9 0.93 3.2 6) - Dissolve Result <0.00046 0.030 <0.00034 0.0013 0.0017 <0.053 <0.00035 0.0014 <0.00085 AA) Result <0.00085 AA) Result <0.00070 Result <0.00070 Result <0.00070 Result <0.00070	<0.082 <0.70 S) - Total Recoverable Result Qualifier <0.00046 0.030 <0.00034 0.15 6.0 0.0011 J <0.00021 J <0.00024 <0.000085 2.9 0.93 3.2 S) - Dissolved Result Qualifier <0.00046 0.030 <0.00034 0.0013 J <0.00035 <0.00034 <0.00035 <0.00034 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00004 <0.000085 AA) Result Qualifier <0.000070 AA) - Dissolved Result Qualifier <0.000070 Co.000070 Result Qualifier <0.000070 Qualifier <0.000070 Co.000070 Result Qualifier <0.000070 Qualifier <0.000070	Result Qualifier RL	Result Qualifier RL MDL	Result Qualifier RL MDL Unit	Result Qualifier RL MDL Unit D	Result Qualifier RL MDL Unit D Prepared	Result Qualifier RL MDL Unit D Prepared Analyzed

10/23/18 11:59

5.0

3.4 mg/L

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-36S

Lab Sample ID: 400-160240-42

Matrix: Water

Date Collected: 10/17/18 09:35 Date Received: 10/19/18 09:04

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.199		0.105	0.107	1.00	0.127	pCi/L	10/26/18 10:06	11/20/18 05:34	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	86.7		40 - 110					10/26/18 10:06	11/20/18 05:34	1

Method: 9320 - R	adium-228 (GFPC)								
Analyta	Popult	Qualifier	Count Uncert.	Total Uncert.	DI	MDC	llnit	Dronored	Analyzad	Dil Fac
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	DII Fac
Radium-228	0.449	Ū	0.297	0.300	1.00	0.455	pCi/L	10/26/18 10:46	11/14/18 16:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	86.7		40 - 110					10/26/18 10:46	11/14/18 16:11	1
Y Carrier	77.0		40 - 110					10/26/18 10:46	11/14/18 16:11	1

Method: Ra226_Ra	228 - Con	bined Rad	dium-226 a	nd Radium	-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.648		0.315	0.319	5.00	0.455	pCi/L	_	11/26/18 15:23	1

4

5

7

9

10

12

13

14

11/30/2018

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-25I Lab Sample ID: 400-160240-43 Date Collected: 10/17/18 11:15

Matrix: Water

Date Received: 10/19/18 09:04

General Chemistry

Total Dissolved Solids

Bicarbonate Alkalinity as CaCO3

Carbonate Alkalinity as CaCO3

Alkalinity, Total

Analyte

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4.6		1.0	0.89	mg/L			11/05/18 22:46	1
Fluoride	<0.082		0.20	0.082	mg/L			11/05/18 22:46	1
Sulfate	<0.70		1.0	0.70	mg/L			11/05/18 22:46	1
Method: 6020 - Metals (ICP/MS)	- Total Re	ecoverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 16:29	5
Barium	0.070		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 16:29	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 16:29	5
Boron	<0.021		0.050	0.021	mg/L		11/09/18 11:00	11/09/18 16:29	5
Calcium	26		0.25	0.13	mg/L		11/09/18 11:00	11/09/18 16:29	5
Chromium	0.0041		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 16:29	5
Cobalt	0.0073		0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 16:29	5
Lead	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 16:29	5
Lithium	0.0037	J	0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 16:29	5
Selenium	<0.00024		0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 16:29	5
Thallium	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 16:29	5
Sodium	5.0		0.25	0.17	mg/L		11/09/18 11:00	11/09/18 16:29	5
Potassium	1.1		0.25	0.11	mg/L		11/09/18 11:00	11/09/18 16:29	5
Magnesium	14		0.13	0.032	mg/L		11/09/18 11:00	11/09/18 16:29	5
Method: 6020 - Metals (ICP/MS)									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Arsenic, Dissolved	<0.00046		0.0013		mg/L			11/09/18 17:17	5
Barium, Dissolved	0.064		0.0025	0.00049	mg/L			11/09/18 17:17	5
Beryllium, Dissolved	<0.00034		0.0025	0.00034			11/09/18 11:00	11/09/18 17:17	5
Chromium, Dissolved	0.0012	J	0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 17:17	5
Cobalt, Dissolved	0.0043		0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 17:17	5
Iron, Dissolved	0.48		0.13	0.053	mg/L		11/09/18 11:00	11/09/18 17:17	5
Lead, Dissolved	< 0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 17:17	5
Lithium, Dissolved	0.0025	J	0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 17:17	5
Selenium, Dissolved	<0.00024		0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 17:17	5
Thallium, Dissolved	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 17:17	5
Method: 7470A - Mercury (CVAA	()								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		11/08/18 12:35	11/13/18 09:43	1
Method: 7470A - Mercury (CVAA	a) - Disso	lved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
				0.000070					

Analyzed

10/29/18 13:13

10/29/18 13:13

10/29/18 13:13

10/23/18 11:59

Prepared

RL

1.0

1.0

1.0

5.0

MDL Unit

0.98 mg/L

0.98 mg/L

0.98 mg/L

3.4 mg/L

Result Qualifier

140

140

150

<0.98

Dil Fac

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-25I

Lab Sample ID: 400-160240-43

Matrix: Water

Date Collected: 10/17/18 11:15 Date Received: 10/19/18 09:04

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.147	U	0.164	0.164	1.00	0.263	pCi/L	10/26/18 10:06	11/20/18 05:34	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	37.8	X	40 - 110					10/26/18 10:06	11/20/18 05:34	1

Method: 9320 - I	Radium-228 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.843	U G	0.676	0.681	1.00	1.07	pCi/L	10/26/18 10:46	11/14/18 16:11	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	37.8	X	40 - 110					10/26/18 10:46	11/14/18 16:11	
Y Carrier	75.5		40 - 110					10/26/18 10:46	11/14/18 16:11	1

Method: Ra226_Ra2	228 - Con	nbined Rad	dium-226 a	nd Radium	n- 228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.989	Ū	0.696	0.700	5.00	1.07	pCi/L		11/26/18 15:23	1

6

7

9

10

12

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-39S Lab Sample ID: 400-160240-44 Date Collected: 10/17/18 13:15

Matrix: Water

Date Received: 10/19/18 09:04

Thallium, Dissolved

Method: 300.0 - Anions, I	on Chromatogra	ıphy							
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Chloride	8.3		1.0	0.89	mg/L			11/05/18 23:09	•
Fluoride	0.087	J	0.20	0.082	-			11/05/18 23:09	•
Sulfate	4.0		1.0	0.70	mg/L			11/05/18 23:09	•
Method: 6020 - Metals (IC	P/MS) - Total Re	ecoverable							
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Arsenic	0.0011	J	0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 16:33	
Barium	0.020		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 16:33	
Beryllium	< 0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 16:33	
Boron	<0.021		0.050	0.021	mg/L		11/09/18 11:00	11/09/18 16:33	
Calcium	22		0.25	0.13	mg/L		11/09/18 11:00	11/09/18 16:33	
Chromium	0.0027		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 16:33	
Cobalt	0.00051	J	0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 16:33	:
Lead	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 16:33	
Lithium	0.0027	J	0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 16:33	
Selenium	<0.00024		0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 16:33	
Thallium	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 16:33	
Sodium	8.0		0.25	0.17	mg/L		11/09/18 11:00	11/09/18 16:33	
Potassium	1.9		0.25	0.11	mg/L		11/09/18 11:00	11/09/18 16:33	
Magnesium	7.4		0.13	0.032	mg/L		11/09/18 11:00	11/09/18 16:33	
Method: 6020 - Metals (IC	P/MS) - Dissolve	ed							
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Arsenic, Dissolved	0.0019		0.0013	0.00046	mg/L		11/20/18 08:56	11/20/18 15:57	- !
Barium, Dissolved	0.017		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 17:21	
Beryllium, Dissolved	< 0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 17:21	
Chromium, Dissolved	<0.0011		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 17:21	
Cobalt, Dissolved	<0.00040		0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 17:21	
Iron, Dissolved	0.48		0.13	0.053	mg/L		11/09/18 11:00	11/09/18 17:21	
Lead, Dissolved	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 17:21	
Lithium, Dissolved	0.0015	J	0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 17:21	

Method: 7470A - Mercury (CV)	4A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		11/08/18 12:35	11/13/18 09:45	1

0.00050

0.000085 mg/L

<0.000085

Method: 7470A - Mercury (CVA	AA) - Dissolv	ved	Method: 7470A - Mercury (CVAA) - Dissolved										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac				
Mercury, Dissolved	<0.000070		0.00020	0.000070	mg/L		11/08/18 12:35	11/13/18 10:03	1				

General Chemistry Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	98	1.0	0.98	mg/L			10/29/18 13:20	1
Bicarbonate Alkalinity as CaCO3	98	1.0	0.98	mg/L			10/29/18 13:20	1
Carbonate Alkalinity as CaCO3	<0.98	1.0	0.98	mg/L			10/29/18 13:20	1
Total Dissolved Solids	140	5.0	3.4	mg/L			10/23/18 11:59	1

TestAmerica Pensacola

11/09/18 11:00 11/09/18 17:21

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-39S

Lab Sample ID: 400-160240-44

Matrix: Water

Date Collected: 10/17/18 13:15 Date Received: 10/19/18 09:04

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.196		0.100	0.102	1.00	0.121	pCi/L	10/29/18 11:40	11/20/18 11:17	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	80.2		40 - 110					10/29/18 11:40	11/20/18 11:17	1

	Radium-228 ((GFPC)								
Analyte		Qualifier	Count Uncert. (2σ+/-)	Total Uncert. (2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Analyte	Result	Qualifier	(20+/-)	(20+/-)	KL _			Prepareu	Allalyzeu	DII Fac
Radium-228	-0.134	U	0.251	0.251	1.00	0.484	pCi/L	10/29/18 11:58	11/12/18 16:30	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	80.2		40 - 110					10/29/18 11:58	11/12/18 16:30	1
Y Carrier	75.1		40 - 110					10/29/18 11:58	11/12/18 16:30	1

Method: Ra226 Ra2	228 - Con	nbined Ra	dium-226 a	nd Radiun	n- 228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.0623	Ū	0.270	0.271	5.00	0.484	pCi/L		11/26/18 15:23	1

2

4

7

10

11

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: SGWC-18
Date Collected: 10/18/18 09:05

Lab Sample ID: 400-160240-45

Matrix: Water

Date Received: 10/20/18 08:28

Analyte

Carrier

Ba Carrier

Radium-226

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	16		5.0	4.5	mg/L			11/05/18 23:31	
Fluoride	<0.41		1.0	0.41	mg/L			11/05/18 23:31	
Method: 300.0 - Anions, Ion C									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Sulfate	1200		50	35	mg/L			11/06/18 15:10	50
Method: 6020 - Metals (ICP/M	S) - Total Re	coverable	•						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	0.0023		0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 16:36	
Barium	0.033		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 16:36	
Beryllium	< 0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 16:36	
Calcium	100		0.25	0.13	mg/L		11/09/18 11:00	11/09/18 16:36	
Chromium	0.0090		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 16:36	
Cobalt	0.21		0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 16:36	:
Lead	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 16:36	
Lithium	0.0054		0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 16:36	:
Magnesium	62		0.13	0.032	mg/L		11/09/18 11:00	11/09/18 16:36	:
Potassium	4.5		0.25	0.11	mg/L		11/09/18 11:00	11/09/18 16:36	
Selenium	0.017		0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 16:36	:
Thallium	0.00019	J	0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 16:36	!
- Method: 6020 - Metals (ICP/M	S) - Total Re	coverable	e - DL						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Boron	4.9		0.25	0.11	mg/L		11/09/18 11:00	11/09/18 17:35	2
Sodium	290		1.3	0.84	mg/L		11/09/18 11:00	11/09/18 17:35	2
Method: 7470A - Mercury (CV	/AA)								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.00024		0.00020	0.000070	mg/L		11/08/18 12:53	11/13/18 10:07	•
General Chemistry									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Alkalinity, Total	<0.98		1.0		mg/L			10/29/18 13:25	
Bicarbonate Alkalinity as CaCO3	<0.98		1.0		mg/L			10/29/18 13:25	
Carbonate Alkalinity as CaCO3	<0.98		1.0		mg/L			10/29/18 13:25	
Total Dissolved Solids	1200		10	6.8	mg/L			10/25/18 12:27	
Method: 9315 - Radium-226 (GFPC)								
•	•	0	T-4-1						

Analyzed

Analyzed

<u>10/29/18 11:40</u> <u>11/20/18 11:17</u>

<u>10/29/18 11:40</u> <u>11/20/18 11:17</u>

Count

Uncert.

(2σ+/-)

0.0806

Limits

40 - 110

Result Qualifier

%Yield Qualifier

0.161

97.6

Total

MDC Unit

0.0917 pCi/L

RL

1.00

Prepared

Prepared

Uncert.

(2σ+/-)

0.0819

Dil Fac

Dil Fac

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: SGWC-18

Lab Sample ID: 400-160240-45

Matrix: Water

Date Collected: 10/18/18 09:05 Date Received: 10/20/18 08:28

Method: 9320 -	Radium-228	(GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.143	U	0.250	0.250	1.00	0.423	pCi/L	10/29/18 11:58	11/12/18 16:30	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	97.6		40 - 110					10/29/18 11:58	11/12/18 16:30	1
Y Carrier	77.4		40 - 110					10/29/18 11:58	11/12/18 16:30	1

Method: Ra226 Ra2	228 - Con	nbined Ra	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.304	U	0.263	0.263	5.00	0.423	pCi/L	_	11/26/18 15:23	1
+ 228										

12

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: SGWC-20

Date Collected: 10/18/18 10:35 Date Received: 10/20/18 08:28 Lab Sample ID: 400-160240-46

. Matrix: Water

Analyte	Chromatogra Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride			1.0	0.89	mg/L			11/03/18 05:11	
Fluoride	0.23	В	0.20	0.082	mg/L			11/03/18 05:11	
Method: 300.0 - Anions, Ion	Chromatogra	phy - DL							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Sulfate	210		5.0	3.5	mg/L			11/05/18 17:03	
Method: 6020 - Metals (ICP/I	MS) - Total Re	coverable							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:50	11/09/18 18:17	
Barium	0.027		0.0025	0.00049	mg/L		11/09/18 11:50	11/09/18 18:17	
Beryllium	0.00079	J	0.0025	0.00034	mg/L		11/09/18 11:50	11/09/18 18:17	
Calcium	12		0.25	0.13	mg/L		11/09/18 11:50	11/09/18 18:17	
Chromium	<0.0011		0.0025	0.0011	mg/L		11/09/18 11:50	11/09/18 18:17	
Cobalt	0.16		0.0025	0.00040	mg/L		11/09/18 11:50	11/09/18 18:17	
Lead	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:50	11/09/18 18:17	
Lithium	0.0062	В	0.0050	0.0011	mg/L		11/09/18 11:50	11/09/18 18:17	
Magnesium	17		0.13	0.032	ū		11/09/18 11:50	11/09/18 18:17	
Potassium	3.4		0.25		mg/L		11/09/18 11:50	11/09/18 18:17	
Selenium	0.00049	J	0.0013	0.00024	_		11/09/18 11:50	11/09/18 18:17	
			0.25		mg/L			11/09/18 18:17	
Sodium	54								
Thallium Method: 6020 - Metals (ICP/I Analyte	Result		0.00050	0.000085 MDL	Unit	D	11/09/18 11:50 Prepared 11/09/18 11:50	11/09/18 18:17 Analyzed 11/09/18 20:07	
Thallium Method: 6020 - Metals (ICP/I Analyte Boron	0.00018 MS) - Total Re Result 2.3	ecoverable Qualifier	0.00050 - DL RL	0.000085 MDL	-	<u>D</u>	Prepared	Analyzed	
Thallium Method: 6020 - Metals (ICP/I Analyte Boron Method: 6020 - Metals (ICP/I	0.00018 MS) - Total Result Result 2.3 MS) - Dissolve	ecoverable Qualifier	0.00050 - DL RL 0.25	0.000085 MDL 0.11	Unit mg/L		Prepared 11/09/18 11:50	Analyzed 11/09/18 20:07	
Thallium Method: 6020 - Metals (ICP/I Analyte Boron Method: 6020 - Metals (ICP/I Analyte	0.00018 MS) - Total Result Result 2.3 MS) - Dissolve	ecoverable Qualifier	0.00050 - DL RL 0.25	0.000085 MDL 0.11	Unit mg/L	<u>D</u>	Prepared 11/09/18 11:50	Analyzed	
Thallium Method: 6020 - Metals (ICP/I Analyte Boron Method: 6020 - Metals (ICP/I Analyte Arsenic, Dissolved	0.00018 MS) - Total Result 2.3 MS) - Dissolve Result <0.00046	ecoverable Qualifier	0.00050 - DL RL 0.25 - RL 0.0013	0.000085 MDL 0.11 MDL 0.00046	Unit mg/L Unit mg/L		Prepared 11/09/18 11:50 Prepared 11/09/18 11:50	Analyzed 11/09/18 20:07 Analyzed 11/09/18 19:17	
Thallium Method: 6020 - Metals (ICP/I Analyte Boron Method: 6020 - Metals (ICP/I Analyte Arsenic, Dissolved Barium, Dissolved	0.00018 MS) - Total Result 2.3 MS) - Dissolve Result <0.00046 0.025	Qualifier ed Qualifier	0.00050 - DL RL 0.25	0.000085 MDL 0.11 MDL 0.00046 0.00049	Unit mg/L Unit mg/L mg/L		Prepared 11/09/18 11:50 Prepared 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 20:07 Analyzed 11/09/18 19:17 11/09/18 19:17	2
Thallium Method: 6020 - Metals (ICP/I Analyte Boron Method: 6020 - Metals (ICP/I Analyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved	0.00018 MS) - Total Result 2.3 MS) - Dissolve Result <0.00046 0.025 0.00062	Qualifier ed Qualifier	0.00050 - DL RL 0.25 - RL 0.0013 0.0025 0.0025	0.000085 MDL 0.11 MDL 0.00046 0.00049 0.00034	Unit mg/L Unit mg/L mg/L mg/L mg/L		Prepared 11/09/18 11:50 Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 20:07 Analyzed 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17	2
Sodium Thallium Method: 6020 - Metals (ICP/I Analyte Boron Method: 6020 - Metals (ICP/I Analyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved	0.00018 MS) - Total Result 2.3 MS) - Dissolve Result <0.00046 0.025 0.00062 <0.0011	Qualifier ed Qualifier	0.00050 - DL RL 0.25 - RL 0.0013 0.0025 0.0025 0.0025	0.000085 MDL 0.11 MDL 0.00046 0.00049 0.00034 0.0011	Unit mg/L Unit mg/L mg/L mg/L mg/L mg/L		Prepared 11/09/18 11:50 Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 20:07 Analyzed 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17	Dil Fa
Method: 6020 - Metals (ICP/I Analyte Boron Method: 6020 - Metals (ICP/I Analyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved	0.00018 MS) - Total Result 2.3 MS) - Dissolve Result <0.00046 0.025 0.00062 <0.0011 0.13	Qualifier ed Qualifier	0.00050 - DL RL 0.25 - RL 0.0013 0.0025 0.0025 0.0025 0.0025	MDL 0.00046 0.00034 0.0011 0.00040	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 11/09/18 11:50 Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 20:07 Analyzed 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17	2
Method: 6020 - Metals (ICP/I Analyte Boron Method: 6020 - Metals (ICP/I Analyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved	0.00018 MS) - Total Result 2.3 MS) - Dissolve Result <0.00046 0.025 0.00062 <0.0011 0.13 <0.053	Qualifier ed Qualifier	0.00050 - DL RL 0.25 - RL 0.0013 0.0025 0.0025 0.0025 0.13	MDL 0.00046 0.00049 0.00011 0.00040 0.053	Unit mg/L	Prepared 11/09/18 11:50 Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 20:07 Analyzed 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17	Dil Fa	
Method: 6020 - Metals (ICP/I Analyte Boron Method: 6020 - Metals (ICP/I Analyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Iron, Dissolved Lead, Dissolved	0.00018 MS) - Total Result 2.3 MS) - Dissolve Result <0.00046 0.025 0.00062 <0.0011 0.13 <0.053 <0.00035	ecoverable Qualifier ed Qualifier J	0.00050 - DL RL 0.25 - RL 0.0013 0.0025 0.0025 0.0025 0.0025 0.13 0.0013	0.000085 MDL 0.11 MDL 0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 11/09/18 11:50 Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 20:07 Analyzed 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17	Dil Fa
Method: 6020 - Metals (ICP/I Analyte Boron Method: 6020 - Metals (ICP/I Analyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Crobalt, Dissolved Iron, Dissolved Lead, Dissolved Lithium, Dissolved	0.00018 MS) - Total Result 2.3 MS) - Dissolve Result <0.00046 0.025 0.00062 <0.0011 0.13 <0.053 <0.00035 0.00047	ecoverable Qualifier ed Qualifier J	0.00050 - DL RL 0.25 - RL 0.0013 0.0025 0.0025 0.0025 0.13	0.000085 MDL 0.11 MDL 0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035 0.0011	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 11/09/18 11:50 Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 20:07 Analyzed 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17	Dil Fa
Method: 6020 - Metals (ICP/I Analyte Boron Method: 6020 - Metals (ICP/I Analyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Iron, Dissolved Lead, Dissolved	0.00018 MS) - Total Result 2.3 MS) - Dissolve Result <0.00046 0.025 0.00062 <0.0011 0.13 <0.053 <0.00035	ecoverable Qualifier ed Qualifier J J J J J J J J J J J J J	0.00050 RL 0.025 RL 0.0013 0.0025 0.0025 0.0025 0.0025 0.13 0.0013 0.0050	0.000085 MDL 0.11 MDL 0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 11/09/18 11:50 Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 20:07 Analyzed 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17	Dil Fa
Method: 6020 - Metals (ICP/I Analyte Boron Method: 6020 - Metals (ICP/I Analyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Crobalt, Dissolved Iron, Dissolved Lead, Dissolved Lead, Dissolved Selenium, Dissolved Selenium, Dissolved Thallium, Dissolved	0.00018 MS) - Total Received Result 2.3 MS) - Dissolved Result <0.00046 0.025 0.00062 <0.0011 0.13 <0.053 <0.00035 0.0047 0.00032 0.00017	ecoverable Qualifier ed Qualifier J J J J J J J J J J J J J	0.00050 RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.0025 0.13 0.0013 0.0050 0.0013	0.000085 MDL 0.11 MDL 0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035 0.0011 0.00024	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 11/09/18 11:50 Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 20:07 Analyzed 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17	2
Method: 6020 - Metals (ICP/I Analyte Boron Method: 6020 - Metals (ICP/I Analyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Crobalt, Dissolved Iron, Dissolved Lead, Dissolved Lead, Dissolved Lead, Dissolved Selenium, Dissolved Selenium, Dissolved	0.00018 MS) - Total Result 2.3 MS) - Dissolve Result <0.00046 0.025 0.00062 <0.0011 0.13 <0.053 <0.00035 0.0047 0.00032 0.00017	ecoverable Qualifier ed Qualifier J J J J J J J J J J J J J	0.00050 RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.0025 0.0013 0.0050 0.0013 0.00050	MDL 0.00085 MDL 0.0046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035 0.00011 0.00024 0.00085	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 11/09/18 11:50 Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 20:07 Analyzed 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17	Dil Fa
Method: 6020 - Metals (ICP/I Analyte Boron Method: 6020 - Metals (ICP/I Analyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Cobalt, Dissolved Iron, Dissolved Lead, Dissolved Lead, Dissolved Lithium, Dissolved Selenium, Dissolved Thallium, Dissolved Method: 7470A - Mercury (C	0.00018 MS) - Total Result 2.3 MS) - Dissolve Result <0.00046 0.025 0.00062 <0.0011 0.13 <0.053 <0.00035 0.0047 0.00032 0.00017	ecoverable Qualifier ed Qualifier J J J J J J	0.00050 RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.0025 0.0013 0.0050 0.0013 0.00050	0.000085 MDL 0.11 0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035 0.0011 0.00024 0.00085	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 11/09/18 11:50 Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 20:07 Analyzed 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17	Dil Fa
Method: 6020 - Metals (ICP/I Analyte Boron Method: 6020 - Metals (ICP/I Analyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved Iron, Dissolved Lead, Dissolved Lead, Dissolved Lead, Dissolved Selenium, Dissolved Selenium, Dissolved Thallium, Dissolved Method: 7470A - Mercury (C	0.00018 MS) - Total Result 2.3 MS) - Dissolve Result <0.00046 0.025 0.00062 <0.0011 0.13 <0.053 <0.00035 0.0047 0.00032 0.00017 EVAA) Result <0.000070	ecoverable Qualifier ed Qualifier J J Qualifier J Qualifier	0.00050 RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.0025 0.0013 0.0050 0.0013 0.00050	MDL 0.00085 MDL 0.0046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035 0.00011 0.00024 0.00085	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 11/09/18 11:50 Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 20:07 Analyzed 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17	Dil Fa
Method: 6020 - Metals (ICP/IAnalyte Boron Method: 6020 - Metals (ICP/IAnalyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Iron, Dissolved Lead, Dissolved Lead, Dissolved Lead, Dissolved Lithium, Dissolved Selenium, Dissolved Thallium, Dissolved Method: 7470A - Mercury (CAnalyte Mercury Method: 7470A - Mercury (C	0.00018 MS) - Total Result 2.3 MS) - Dissolve Result <0.00046 0.025 0.00062 <0.0011 0.13 <0.053 <0.00035 0.0047 0.00032 0.00017 EVAA) Result <0.000070	ecoverable Qualifier ed Qualifier J J Qualifier J Qualifier	0.00050 RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.0025 0.0013 0.0050 0.0013 0.00050	0.000085 MDL 0.11 MDL 0.00046 0.00034 0.0011 0.00040 0.053 0.00011 0.00024 0.000085	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 11/09/18 11:50 Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 20:07 Analyzed 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17	Dil Fa
Method: 6020 - Metals (ICP/I Analyte Boron Method: 6020 - Metals (ICP/I Analyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Crobalt, Dissolved Iron, Dissolved Lead, Dissolved Lead, Dissolved Lithium, Dissolved Selenium, Dissolved Thallium, Dissolved Method: 7470A - Mercury (Canalyte Mercury	0.00018 MS) - Total Result 2.3 MS) - Dissolve Result <0.00046 0.025 0.00062 <0.0011 0.13 <0.053 <0.00035 0.0047 0.00032 0.00017 EVAA) Result <0.000070	ecoverable Qualifier ed Qualifier J J Qualifier	0.00050 RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.13 0.0013 0.0050 0.0013 0.00050 RL 0.00020	0.000085 MDL 0.11 MDL 0.00046 0.00034 0.0011 0.00040 0.053 0.00011 0.00024 0.000085	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 11/09/18 11:50 Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 Prepared 11/08/18 12:53	Analyzed 11/09/18 20:07 Analyzed 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17	Dil Fa
Method: 6020 - Metals (ICP/IAnalyte Boron Method: 6020 - Metals (ICP/IAnalyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Crobalt, Dissolved Iron, Dissolved Lead, Dissolved Lead, Dissolved Lithium, Dissolved Selenium, Dissolved Thallium, Dissolved Method: 7470A - Mercury (CAnalyte Method: 7470A - Mercury (CAnalyte	0.00018 MS) - Total Result 2.3 MS) - Dissolve Result <0.00046 0.025 0.00062 <0.0011 0.13 <0.053 <0.00035 0.0047 0.00032 0.00017 EVAA) Result <0.000070 EVAA) - Dissolve Result	ecoverable Qualifier ed Qualifier J J Qualifier	0.00050 RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.13 0.0013 0.0050 0.0013 0.00050 RL 0.00020	0.000085 MDL 0.11 MDL 0.00046 0.00034 0.0011 0.00045 0.00035 0.0011 0.00024 0.00085 MDL 0.000070	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 11/09/18 11:50 Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 Prepared 11/08/18 12:53	Analyzed 11/09/18 20:07 Analyzed 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 11/09/18 19:17 Analyzed 11/13/18 10:05	Dil Fa

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: SGWC-20

Lab Sample ID: 400-160240-46

Matrix: Water

Cile	iit s	aiii	hie	שו	. 30	344	J-Z	J
Data	Cal	locto	٠d٠ /	10/4	0/40	10.3	25	

Date Received: 10/20/18 08:28

General Chemistry (Continued)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bicarbonate Alkalinity as CaCO3	<0.98	1.0	0.98	mg/L			10/29/18 13:28	1
Carbonate Alkalinity as CaCO3	<0.98	1.0	0.98	mg/L			10/29/18 13:28	1
Total Dissolved Solids	370	5.0	3.4	mg/L			10/25/18 12:27	1

Method: 9315 - F	Radium-226 (GFPC)								
	·	,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.251		0.102	0.105	1.00	0.103	pCi/L	10/25/18 10:04	11/20/18 07:54	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	91.4		40 - 110					10/25/18 10:04	11/20/18 07:54	1

Method: 9320 - F	Radium-228 (GFPC)								
		•	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.148	U	0.230	0.231	1.00	0.388	pCi/L	10/25/18 10:33	11/13/18 13:42	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	91.4		40 - 110					10/25/18 10:33	11/13/18 13:42	1
Y Carrier	87.1		40 - 110					10/25/18 10:33	11/13/18 13:42	1

Method: Ra226_Ra	228 - Con	nbined Ra	dium-226 a	nd Radiun	1-228					
-			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.399		0.252	0.254	5.00	0.388	pCi/L		11/26/18 15:23	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: FD-2 Lab Sample ID: 400-160240-47 Date Collected: 10/18/18 00:00

Matrix: Water

Date Received: 10/20/18 08:28

Method: 300.0 - Anions, Ion Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	16		1.0	0.89	mg/L			11/03/18 05:34	
Fluoride	0.087	JB	0.20	0.082	mg/L			11/03/18 05:34	
Method: 300.0 - Anions, Ion	Chromatogra	phy - DL							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Sulfate	1200		100	70	mg/L			11/05/18 18:12	10
Method: 6020 - Metals (ICP/I	/IS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	0.0025		0.0013	0.00046	mg/L		11/09/18 11:50	11/09/18 18:53	
Barium	0.035		0.0025	0.00049	mg/L		11/09/18 11:50	11/09/18 18:53	
Beryllium	0.00038	J	0.0025	0.00034	mg/L		11/09/18 11:50	11/09/18 18:53	
Calcium	100		0.25	0.13	mg/L		11/09/18 11:50	11/09/18 18:53	
Chromium	0.0095		0.0025	0.0011	mg/L		11/09/18 11:50	11/09/18 18:53	
Cobalt	0.22		0.0025	0.00040	mg/L		11/09/18 11:50	11/09/18 18:53	
Lead	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:50	11/09/18 18:53	
Lithium	0.0060	В	0.0050	0.0011	mg/L		11/09/18 11:50	11/09/18 18:53	
Magnesium	63		0.13	0.032	mg/L		11/09/18 11:50	11/09/18 18:53	
Potassium	4.6		0.25	0.11	mg/L		11/09/18 11:50	11/09/18 18:53	
Selenium	0.017		0.0013	0.00024	mg/L		11/09/18 11:50	11/09/18 18:53	
Thallium	0.00021	J	0.00050	0.000085	mg/L		11/09/18 11:50	11/09/18 18:53	
Method: 6020 - Metals (ICP/N	//S) - Total Po	ocovorablo	- DI						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Boron	4.6		0.50	0.21	mg/L		11/09/18 11:50	11/13/18 10:50	- !
Sodium	310		2.5	1.7	mg/L		11/09/18 11:50	11/13/18 10:50	ţ
Method: 6020 - Metals (ICP/I	MS) - Dissolv	ed							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic, Dissolved	0.0024		0.0013	0.00046	mg/L		11/09/18 11:50	11/09/18 19:21	-
Barium, Dissolved	0.034		0.0025	0.00049	mg/L		11/09/18 11:50	11/09/18 19:21	
Beryllium, Dissolved	<0.00034		0.0025	0.00034	mg/L		11/09/18 11:50	11/09/18 19:21	
Chromium, Dissolved	0.0091		0.0025	0.0011	mg/L		11/09/18 11:50	11/09/18 19:21	
Cobalt, Dissolved	0.21		0.0025	0.00040	mg/L		11/09/18 11:50	11/09/18 19:21	
Iron, Dissolved	<0.053		0.13	0.053	mg/L		11/09/18 11:50	11/09/18 19:21	
Lead, Dissolved	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:50	11/09/18 19:21	
Lithium, Dissolved	0.0063	В	0.0050	0.0011	mg/L		11/09/18 11:50	11/09/18 19:21	
Selenium, Dissolved	0.016		0.0013	0.00024	mg/L		11/09/18 11:50	11/09/18 19:21	
Thallium, Dissolved	0.00020	J	0.00050	0.000085	mg/L		11/09/18 11:50	11/09/18 19:21	
Method: 7470A - Mercury (C	VAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury	0.00025		0.00020	0.000070	mg/L		11/08/18 12:53	11/13/18 10:09	
Method: 7470A - Mercury (C	VAA) - Disso	lved							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Mercury, Dissolved	0.00012	J	0.00020	0.000070	mg/L		11/09/18 09:03	11/12/18 15:00	
General Chemistry									
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

TestAmerica Pensacola

11/30/2018

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: FD-2

Lab Sample ID: 400-160240-47

Matrix: Water

Date Collected: 10/18/18 00:00

Date Received: 10/20/18 08:28

General Chemistry (Continued)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bicarbonate Alkalinity as CaCO3	<0.98	1.0	0.98	mg/L			10/29/18 13:33	1
Carbonate Alkalinity as CaCO3	<0.98	1.0	0.98	mg/L			10/29/18 13:33	1
Total Dissolved Solids	1600	10	6.8	mg/L			10/23/18 11:59	1

Method: 9315 - F	Radium-226 (GFPC)								
	·	,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.207		0.0955	0.0973	1.00	0.107	pCi/L	10/25/18 10:04	11/20/18 07:54	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.4		40 - 110					10/25/18 10:04	11/20/18 07:54	1

Method: 9320 - R	tadium-228 (GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.133	U	0.257	0.257	1.00	0.437	pCi/L	10/25/18 10:33	11/13/18 13:42	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	94.4		40 - 110					10/25/18 10:33	11/13/18 13:42	1
Y Carrier	77.4		40 - 110					10/25/18 10:33	11/13/18 13:42	1

Method: Ra226_Ra2	228 - Con	nbined Ra	dium-226 a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.340	U	0.274	0.275	5.00	0.437	pCi/L		11/26/18 15:23	1

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: FB-2 Lab Sample ID: 400-160240-48 Date Collected: 10/18/18 10:30

Matrix: Water

Date Received: 10/20/18 08:28

Method: 300.0 - Anio	ns, Ion Chromatogra	phy							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89		1.0	0.89	mg/L			11/03/18 05:57	1
Fluoride	<0.082		0.20	0.082	mg/L			11/03/18 05:57	1
Sulfate	<0.70		1.0	0.70	mg/L			11/03/18 05:57	1
- Method: 6020 - Metal	s (ICP/MS) - Total Re	coverable							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 17:24	5
Barium	<0.00049		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 17:24	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 17:24	5
Boron	<0.021		0.050	0.021	mg/L		11/09/18 11:00	11/09/18 17:24	5
Calcium	<0.13		0.25	0.13	mg/L		11/09/18 11:00	11/09/18 17:24	5
Chromium	<0.0011		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 17:24	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 17:24	5
Lead	< 0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 17:24	5
Lithium	<0.0011		0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 17:24	5
Magnesium	<0.032		0.13	0.032	mg/L		11/09/18 11:00	11/09/18 17:24	5
Potassium	<0.11		0.25	0.11	mg/L		11/09/18 11:00	11/09/18 17:24	5
Selenium	<0.00024		0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 17:24	5
Sodium	<0.17		0.25	0.17	mg/L		11/09/18 11:00	11/09/18 17:24	5
Thallium -	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 17:24	5
- Method: 7470A - Mer	cury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		11/08/18 12:53	11/13/18 10:10	1

General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	<0.98		1.0	0.98	mg/L			10/29/18 13:38	1
Bicarbonate Alkalinity as CaCO3	<0.98		1.0	0.98	mg/L			10/29/18 13:38	1
Carbonate Alkalinity as CaCO3	<0.98		1.0	0.98	mg/L			10/29/18 13:38	1
Total Dissolved Solids	<3.4		5.0	3.4	mg/L			10/25/18 12:27	1

Method: 9315 - Ra	dium-226 (GF	FPC)								
	•	,	Count Uncert.	Total Uncert.						
Analyte	Result Qu	ualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.148		0.0866	0.0876	1.00	0.107	pCi/L	10/25/18 10:04	11/20/18 07:54	1
Carrier	%Yield Qเ	ualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	89.1		40 - 110					10/25/18 10:04	11/20/18 07:54	1

Method: 9320 - R	adium-228 ((GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.339	U	0.273	0.275	1.00	0.433	pCi/L	10/25/18 10:33	11/13/18 13:42	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	89.1		40 - 110					10/25/18 10:33	11/13/18 13:42	1
Y Carrier	77.8		40 - 110					10/25/18 10:33	11/13/18 13:42	1

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-160240-2 SDG: Ash Pond

Client Sample ID: FB-2 Lab Sample ID: 400-160240-48 Date Collected: 10/18/18 10:30

Matrix: Water

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Count	Total
Uncert.	Uncert.

Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.487	0.286	0.289	5.00	0.433 pCi/L		11/26/18 15:23	1

226 + 228

Date Received: 10/20/18 08:28

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-42I Lab Sample ID: 400-160240-49 Date Collected: 10/18/18 12:15

Matrix: Water

Date Received: 10/20/18 08:28

Analyte	lon Chromatogra Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	12		1.0	0.89	mg/L			11/05/18 18:35	
Fluoride	0.083	J	0.20	0.082	mg/L			11/05/18 18:35	
Wethod: 300.0 - Anions, I	lon Chromatogra	phy - DL							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Sulfate	250		10	7.0	mg/L			11/06/18 15:55	•
Method: 6020 - Metals (IC	CP/MS) - Total Re	coverable							
Analyte `	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Arsenic	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:50	11/09/18 18:56	
Barium	0.10		0.0025	0.00049	mg/L		11/09/18 11:50	11/09/18 18:56	
Beryllium	<0.00034		0.0025	0.00034	mg/L		11/09/18 11:50	11/09/18 18:56	
Calcium	64		0.25	0.13	mg/L		11/09/18 11:50	11/09/18 18:56	
Chromium	<0.0011		0.0025	0.0011	mg/L		11/09/18 11:50	11/09/18 18:56	
obalt	0.0064		0.0025	0.00040	mg/L		11/09/18 11:50	11/09/18 18:56	
ead	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:50	11/09/18 18:56	
ithium	0.0040	J B	0.0050	0.0011	mg/L		11/09/18 11:50	11/09/18 18:56	
lagnesium	27		0.13	0.032	mg/L		11/09/18 11:50	11/09/18 18:56	
otassium	4.7		0.25	0.11	mg/L		11/09/18 11:50	11/09/18 18:56	
selenium	0.00026	J	0.0013	0.00024	-		11/09/18 11:50	11/09/18 18:56	
odium	24		0.25		mg/L			11/09/18 18:56	
hallium	<0.000085		0.00050	0.000085	•		11/00/18 11:50	11/09/18 18:56	
lethod: 6020 - Metals (IC nalyte		ecoverable Qualifier	- DL RL 0.25		Unit mg/L	<u>D</u>	Prepared 11/09/18 11:50	Analyzed 11/13/18 10:54	Dil
Method: 6020 - Metals (IC analyte Boron	Result 2.6	Qualifier	RL			<u>D</u>	•	•	Dill
Method: 6020 - Metals (IC Inalyte Boron Method: 6020 - Metals (IC	Result 2.6 CP/MS) - Dissolve	Qualifier	0.25	0.11	mg/L		11/09/18 11:50	11/13/18 10:54	
Method: 6020 - Metals (IC Analyte Boron Method: 6020 - Metals (IC Analyte	Result 2.6 CP/MS) - Dissolve Result	Qualifier	0.25 RL	0.11 MDL	mg/L Unit	<u>D</u>	11/09/18 11:50 Prepared	11/13/18 10:54 Analyzed	
Method: 6020 - Metals (IC snalyte Boron Method: 6020 - Metals (IC snalyte srsenic, Dissolved	Result 2.6	Qualifier	RL 0.25	0.11 MDL 0.00046	mg/L Unit mg/L		Prepared 11/09/18 11:50	11/13/18 10:54 Analyzed 11/09/18 19:24	
Method: 6020 - Metals (IC snalyte soron Method: 6020 - Metals (IC snalyte rsenic, Dissolved sarium, Dissolved	Result 2.6	Qualifier	RL 0.25 RL 0.0013 0.0025	0.11 MDL 0.00046 0.00049	mg/L Unit mg/L mg/L		Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 19:24 11/09/18 19:24	
Method: 6020 - Metals (IC nalyte foron Method: 6020 - Metals (IC nalyte rsenic, Dissolved tarium, Dissolved eryllium, Dissolved	Result 2.6 CP/MS) - Dissolve Result <0.00046 0.096 <0.00034	Qualifier	RL 0.25 RL 0.0013 0.0025 0.0025	0.11 MDL 0.00046 0.00049 0.00034	mg/L mg/L mg/L mg/L		Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24	
Method: 6020 - Metals (IC analyte Boron Method: 6020 - Metals (IC analyte arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved	Result 2.6 CP/MS) - Dissolve Result <0.00046 0.096 <0.00034 <0.0011	Qualifier	RL 0.25 RL 0.0013 0.0025 0.0025 0.0025	0.11 MDL 0.00046 0.00049 0.00034 0.0011	mg/L mg/L mg/L mg/L mg/L		Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24	
Method: 6020 - Metals (IC analyte Boron Method: 6020 - Metals (IC analyte arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved	Result 2.6 CP/MS) - Dissolve Result <0.00046 0.096 <0.00034 <0.0011 0.0060	Qualifier	RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.0025	0.11 MDL 0.00046 0.00049 0.00034 0.0011 0.00040	mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24	
Method: 6020 - Metals (IC analyte Boron Method: 6020 - Metals (IC analyte arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved Fon, Dissolved	Result 2.6 CP/MS) - Dissolve Result <0.00046 0.096 <0.00034 <0.0011 0.0060 1.7	Qualifier	RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.0025 0.13	0.11 MDL 0.00046 0.00049 0.00034 0.0011 0.00040 0.053	mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24	
Method: 6020 - Metals (IC malyte Boron Method: 6020 - Metals (IC malyte barsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Chromium, Dissolved Cobalt, Dissolved Barium, Dissolved Cobalt, Dissolved Barium, Dissolved Ba	Result 2.6 CP/MS) - Dissolve Result <0.00046 0.096 <0.00034 <0.0011 0.0060 1.7 <0.00035	Qualifier ed Qualifier	RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.0025 0.13 0.0013	0.11 MDL 0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24	
Method: 6020 - Metals (ICAnalyte Boron Method: 6020 - Metals (ICAnalyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved ron, Dissolved Lead, Dissolved Lead, Dissolved Lithium, Dissolved	Result 2.6 CP/MS) - Dissolve Result <0.00046 0.096 <0.00034 <0.0011 0.0060 1.7 <0.00035 0.0047	Qualifier ed Qualifier	RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.0025 0.13 0.0013 0.0050	0.11 MDL 0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035 0.00011	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24	
Method: 6020 - Metals (ICAnalyte Boron Method: 6020 - Metals (ICAnalyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved Lead, Dissolved Lead, Dissolved Lead, Dissolved Selenium, Dissolved Challium, Dissolved Challium, Dissolved Challium, Dissolved Challium, Dissolved	Result 2.6 CP/MS) - Dissolve Result <0.00046 0.096 <0.00034 <0.0011 0.0060 1.7 <0.00035	Qualifier ed Qualifier	RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.0025 0.13 0.0013	0.11 MDL 0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24	
Method: 6020 - Metals (ICAnalyte Boron Method: 6020 - Metals (ICAnalyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Cobalt, Dissolved Cobalt, Dissolved Lead, Dissolved Lead, Dissolved Lead, Dissolved Celenium, Dissolved Celenium, Dissolved Challium, Dissolved Challium, Dissolved Challium, Dissolved Challium, Dissolved	Result 2.6 CP/MS) - Dissolve Result <0.00046 0.096 <0.00034 <0.0011 0.0060 1.7 <0.00035 0.0047 <0.00024 <0.00085	Qualifier ed Qualifier	RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.0025 0.13 0.0013 0.0050 0.0013	0.11 MDL 0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035 0.0011 0.00024	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24	
Method: 6020 - Metals (ICAnalyte Boron Method: 6020 - Metals (ICAnalyte Arsenic, Dissolved Beryllium, Dissolved Chromium, Dissolved Chromium, Dissolved Cobalt, Dissolved Cob	Result 2.6 CP/MS) - Dissolve Result <0.00046 <0.00034 <0.0011 <0.00035 <0.00047 <0.00024 <0.00085 / (CVAA)	Qualifier ed Qualifier	RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.0025 0.13 0.0013 0.0050 0.0013	0.11 MDL 0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035 0.0011 0.00024 0.00085	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24	Dil I
Method: 6020 - Metals (ICAnalyte Boron Method: 6020 - Metals (ICAnalyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved Lead, Dissolved Lead, Dissolved Lead, Dissolved Lithium, Dissolved Challium, Dissolved	Result 2.6 CP/MS) - Dissolve Result <0.00046 <0.00034 <0.0011 <0.00035 <0.00047 <0.00024 <0.00085 / (CVAA)	ed Qualifier Ualifier	RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.0025 0.13 0.0013 0.0050 0.0013	0.11 MDL 0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035 0.0011 0.00024 0.00085	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24	Dil F
Method: 6020 - Metals (ICAnalyte Boron Method: 6020 - Metals (ICAnalyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Chromium, Dissolved Cobalt, Dissolved Lead, Dissolved Lead, Dissolved Lead, Dissolved Celenium, Dissolved Finallium, Dissolved Method: 7470A - Mercury Analyte Mercury	Result 2.6 CP/MS) - Dissolve Result <0.00046 <0.00034 <0.0011 <0.00035 <0.00024 <0.00085 / (CVAA) Result <0.00070	Qualifier ed Qualifier J B	RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.0025 0.13 0.0013 0.0050 0.0013 RL	0.11 MDL 0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035 0.0011 0.00024 0.00085	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed Analyzed 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 Analyzed	Dil F
Method: 6020 - Metals (ICAnalyte Boron Method: 6020 - Metals (ICAnalyte Arsenic, Dissolved Beryllium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved Lead, Dissolved Le	Result 2.6 CP/MS) - Dissolve Result <0.00046 0.096 <0.00034 <0.0011 0.0060 1.7 <0.00035 0.0047 <0.00024 <0.000085 / (CVAA) Result <0.000070	Qualifier ed Qualifier J B Qualifier	RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.0025 0.13 0.0013 0.0050 0.0013 0.0050	0.11 MDL 0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035 0.0011 0.00024 0.000085	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 11/09/18 11:50 Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24	Dil F
Method: 6020 - Metals (ICAnalyte Boron Method: 6020 - Metals (ICAnalyte Arsenic, Dissolved Beryllium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved Lead, Dissolved Le	Result 2.6 CP/MS) - Dissolve Result <0.00046 0.096 <0.00034 <0.0011 0.0060 1.7 <0.00035 0.0047 <0.00024 <0.000085 / (CVAA) Result <0.000070	Qualifier ed Qualifier J B	RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.0025 0.13 0.0013 0.0050 0.0013 RL	0.11 MDL 0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035 0.0011 0.00024 0.000085	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	Analyzed Analyzed 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 Analyzed	Dil F
Method: 6020 - Metals (ICAnalyte Boron Method: 6020 - Metals (ICAnalyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Chromium, Dissolved Cobalt, Dissolved Cob	Result 2.6	Qualifier ed Qualifier J B Qualifier	RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.13 0.0013 0.0050 0.0013 0.00050 RL 0.00020	0.11 MDL 0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035 0.0011 0.00024 0.000085 MDL 0.000070	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 11/09/18 11:50 Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 Prepared 11/08/18 12:53	Analyzed 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24	Dil F
Method: 6020 - Metals (ICAnalyte Boron Method: 6020 - Metals (ICAnalyte Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved Lead, Dissolved Lead, Dissolved Lead, Dissolved Challium, Dissolved	Result 2.6	Qualifier ed Qualifier J B Qualifier	RL 0.25 RL 0.0013 0.0025 0.0025 0.0025 0.13 0.0013 0.0050 0.0013 0.00050 RL 0.00020	0.11 MDL 0.00046 0.00049 0.00034 0.0011 0.00035 0.0011 0.00024 0.000085 MDL 0.000070	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared 11/09/18 11:50 Prepared 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 Prepared 11/08/18 12:53	Analyzed 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24 11/09/18 19:24	Dil F

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-42I

Lab Sample ID: 400-160240-49

Matrix: Water

Date Collected: 10/18/18 12:15 Date Received: 10/20/18 08:28

General Chemistry (Continued)												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Bicarbonate Alkalinity as CaCO3	84		1.0	0.98	mg/L			10/29/18 13:44	1			
Carbonate Alkalinity as CaCO3	<0.98		1.0	0.98	mg/L			10/29/18 13:44	1			
Total Dissolved Solids	440		5.0	3.4	mg/L			10/25/18 12:27	1			

Method: 9315 - F	Radium-226 (GFPC)								
	·		Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.126		0.0765	0.0774	1.00	0.0981	pCi/L	10/25/18 10:04	11/20/18 07:55	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	93.2		40 - 110					10/25/18 10:04	11/20/18 07:55	1

Method: 9320 - R	Radium-228 ((GFPC)								
			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.0615	U	0.233	0.233	1.00	0.409	pCi/L	10/25/18 10:33	11/13/18 13:42	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	93.2		40 - 110					10/25/18 10:33	11/13/18 13:42	1
Y Carrier	78.9		40 - 110					10/25/18 10:33	11/13/18 13:42	1

Method: Ra226_Ra	228 - Con	nbined Ra	dium-226 a	nd Radiur	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	0.188	Ū	0.245	0.246	5.00	0.409	pCi/L		11/26/18 15:23	1

TestAmerica Pensacola

6

0

9

11

12

14

11/30/2018

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: EB-2

Lab Sample ID: 400-160240-50 **Matrix: Water**

Date Collected: 10/18/18 15:30 Date Received: 10/20/18 08:28

Method: 300.0 - Anio	ons, Ion Chromatography							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89	1.0	0.89	mg/L			11/05/18 19:43	1
Fluoride	<0.082	0.20	0.082	mg/L			11/05/18 19:43	1
Sulfate	<0.70	1.0	0.70	mg/L			11/05/18 19:43	1
Method: 6020 - Meta Analyte	Is (ICP/MS) - Total Recoverable Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: 6020 - Metals									
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Arsenic	<0.00046	0.0013	0.00046	mg/L		11/09/18 11:50	11/09/18 19:00	5	
Barium	< 0.00049	0.0025	0.00049	mg/L		11/09/18 11:50	11/09/18 19:00	5	
Beryllium	< 0.00034	0.0025	0.00034	mg/L		11/09/18 11:50	11/09/18 19:00	5	
Boron	0.039	J 0.050	0.021	mg/L		11/09/18 11:50	11/09/18 19:00	5	
Calcium	<0.13	0.25	0.13	mg/L		11/09/18 11:50	11/09/18 19:00	5	
Chromium	<0.0011	0.0025	0.0011	mg/L		11/09/18 11:50	11/09/18 19:00	5	
Cobalt	<0.00040	0.0025	0.00040	mg/L		11/09/18 11:50	11/09/18 19:00	5	
Lead	< 0.00035	0.0013	0.00035	mg/L		11/09/18 11:50	11/09/18 19:00	5	
Lithium	<0.0011	0.0050	0.0011	mg/L		11/09/18 11:50	11/09/18 19:00	5	
Magnesium	<0.032	0.13	0.032	mg/L		11/09/18 11:50	11/09/18 19:00	5	
Potassium	<0.11	0.25	0.11	mg/L		11/09/18 11:50	11/09/18 19:00	5	
Selenium	<0.00024	0.0013	0.00024	mg/L		11/09/18 11:50	11/09/18 19:00	5	
Sodium	<0.17	0.25	0.17	mg/L		11/09/18 11:50	11/09/18 19:00	5	
Thallium	<0.000085	0.00050	0.000085	mg/L		11/09/18 11:50	11/09/18 19:00	5	

Method: /4/UA - Mercury (CVA	NA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		11/08/18 12:53	11/13/18 10:14	1

General Chemistry Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	5.5	1.0	0.98	mg/L			10/29/18 14:11	1
Bicarbonate Alkalinity as CaCO3	5.5	1.0	0.98	mg/L			10/29/18 14:11	1
Carbonate Alkalinity as CaCO3	<0.98	1.0	0.98	mg/L			10/29/18 14:11	1
Total Dissolved Solids	<3.4	5.0	3.4	mg/L			10/25/18 12:27	1

Method: 9315 - F	Radium-226 ((GFPC)								
	·	,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.150		0.0836	0.0847	1.00	0.100	pCi/L	10/25/18 10:07	11/20/18 05:48	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	90.3		40 - 110					10/25/18 10:07	11/20/18 05:48	1

- Method: 9320 - F	Radium-228 ((GFPC)								
		,	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.259	U	0.290	0.291	1.00	0.476	pCi/L	10/25/18 11:56	11/12/18 15:00	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	90.3		40 - 110					10/25/18 11:56	11/12/18 15:00	1
Y Carrier	81.5		40 - 110					10/25/18 11:56	11/12/18 15:00	1

TestAmerica Pensacola

Client: Southern Company
Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: EB-2

Lab Sample ID: 400-160240-50

Matrix: Water

Date Collected: 10/18/18 15:30 Date Received: 10/20/18 08:28

Method: Ra226_Ra228 - Combined Radium-226 and Radium-228

Count	Total
Uncert.	Uncert.

Analyte	Result Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226	0.409 U	0.302	0.303	5.00	0.476 pCi/L		11/26/18 15:23	1

+ 228

5

0

9

4 4

12

13

112

Client: Southern Company Project/Site: CCR - Plant Scherer

Date Received: 10/20/18 08:28

General Chemistry

Total Dissolved Solids

Bicarbonate Alkalinity as CaCO3

Carbonate Alkalinity as CaCO3

Alkalinity, Total

Analyte

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-41S Lab Sample ID: 400-160240-51 Date Collected: 10/18/18 13:50

Matrix: Water

Method: 300.0 - Anions, Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Chloride	6.8		1.0	0.89	mg/L			11/05/18 20:06	
Fluoride	<0.082		0.20	0.082	mg/L			11/05/18 20:06	
Sulfate	550		20	14	mg/L			11/07/18 17:49	
Method: 6020 - Metals (IC									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil F
Arsenic	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:50	11/09/18 19:03	
Barium	0.059		0.0025	0.00049	mg/L		11/09/18 11:50	11/09/18 19:03	
Beryllium	<0.00034		0.0025	0.00034	mg/L		11/09/18 11:50	11/09/18 19:03	
Chromium	<0.0011		0.0025	0.0011	mg/L		11/09/18 11:50	11/09/18 19:03	
Cobalt	0.0092		0.0025	0.00040	mg/L		11/09/18 11:50	11/09/18 19:03	
Lead	< 0.00035		0.0013	0.00035	mg/L		11/09/18 11:50	11/09/18 19:03	
Lithium	0.0029	JB	0.0050	0.0011	mg/L		11/09/18 11:50	11/09/18 19:03	
Magnesium	43		0.13	0.032	mg/L		11/09/18 11:50	11/09/18 19:03	
Potassium	3.7		0.25	0.11	mg/L		11/09/18 11:50	11/09/18 19:03	
Selenium	0.0045		0.0013	0.00024	mg/L		11/09/18 11:50	11/09/18 19:03	
Sodium	79		0.25	0.17	mg/L		11/09/18 11:50	11/09/18 19:03	
Thallium	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:50	11/09/18 19:03	
Method: 6020 - Metals (IC	CP/MS) - Total Re	coverable	- DI						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Boron	3.5		0.25	0.11	mg/L		•	11/13/18 10:58	
Calcium	120		1.3		mg/L		11/09/18 11:50	11/13/18 10:58	
: Method: 6020 - Metals (IC	CP/MS) - Dissolv	ad							
Analyte	•								
· ······· , ····	Resuit	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
	<0.00046	Qualifier	0.0013	MDL 0.00046		D	•	Analyzed 11/09/18 19:46	Dil F
Arsenic, Dissolved		Quaimer			mg/L	D	11/09/18 11:50	-	Dil F
Arsenic, Dissolved Barium, Dissolved	<0.00046	Quainer	0.0013	0.00046	mg/L mg/L	<u>D</u>	11/09/18 11:50 11/09/18 11:50	11/09/18 19:46	Dil F
Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved	<0.00046 0.058	Qualifier	0.0013 0.0025	0.00046 0.00049	mg/L mg/L mg/L	<u>D</u>	11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	11/09/18 19:46 11/09/18 19:46	Dil F
Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved	<0.00046 0.058 <0.00034	Quaimer	0.0013 0.0025 0.0025	0.00046 0.00049 0.00034	mg/L mg/L mg/L mg/L	D	11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	11/09/18 19:46 11/09/18 19:46 11/09/18 19:46	Dil F
Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved	<0.00046 0.058 <0.00034 <0.0011	Quaimer	0.0013 0.0025 0.0025 0.0025	0.00046 0.00049 0.00034 0.0011 0.00040	mg/L mg/L mg/L mg/L mg/L	<u>D</u>	11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46	Dil F
Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved Iron, Dissolved	<0.00046 0.058 <0.00034 <0.0011 0.0093	Quaimer	0.0013 0.0025 0.0025 0.0025 0.0025	0.00046 0.00049 0.00034 0.0011	mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46	Dil F
Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved Iron, Dissolved Lead, Dissolved	<0.00046 0.058 <0.00034 <0.0011 0.0093 0.92		0.0013 0.0025 0.0025 0.0025 0.0025 0.13	0.00046 0.00049 0.00034 0.0011 0.00040 0.053	mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46	DilF
Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved Iron, Dissolved Lead, Dissolved Lithium, Dissolved	<0.00046		0.0013 0.0025 0.0025 0.0025 0.0025 0.13 0.0013	0.00046 0.00049 0.00034 0.0011 0.00040 0.053	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46	Dil F
Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved Iron, Dissolved Lead, Dissolved Lithium, Dissolved Selenium, Dissolved	<0.00046		0.0013 0.0025 0.0025 0.0025 0.0025 0.13 0.0013 0.0050	0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035 0.0011	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46	DilF
Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved Iron, Dissolved Lead, Dissolved Lithium, Dissolved Selenium, Dissolved Thallium, Dissolved	<0.00046		0.0013 0.0025 0.0025 0.0025 0.0025 0.13 0.0013 0.0050 0.0013	0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035 0.0011	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46	Dil F
Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved Iron, Dissolved Lead, Dissolved Lithium, Dissolved Selenium, Dissolved Thallium, Dissolved Method: 7470A - Mercury	<0.00046		0.0013 0.0025 0.0025 0.0025 0.0025 0.13 0.0013 0.0050 0.0013	0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035 0.0011 0.00024 0.00085	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	D	11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46	
Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved Iron, Dissolved Lead, Dissolved Lithium, Dissolved Selenium, Dissolved Thallium, Dissolved Method: 7470A - Mercury Analyte	<0.00046	JB	0.0013 0.0025 0.0025 0.0025 0.0025 0.13 0.0013 0.0050 0.0013	0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035 0.0011 0.00024 0.00085	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46	
Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved Iron, Dissolved Lead, Dissolved Lithium, Dissolved Selenium, Dissolved Thallium, Dissolved Method: 7470A - Mercury Analyte Mercury	<0.00046	J B Qualifier	0.0013 0.0025 0.0025 0.0025 0.0025 0.13 0.0013 0.0050 0.0013	0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035 0.0011 0.00024 0.000085	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46	Dil F
Arsenic, Dissolved Barium, Dissolved Beryllium, Dissolved Chromium, Dissolved Cobalt, Dissolved Iron, Dissolved Lead, Dissolved Lithium, Dissolved Selenium, Dissolved Thallium, Dissolved Method: 7470A - Mercury Analyte	<pre><0.00046</pre>	J B Qualifier	0.0013 0.0025 0.0025 0.0025 0.0025 0.13 0.0013 0.0050 0.0013	0.00046 0.00049 0.00034 0.0011 0.00040 0.053 0.00035 0.0011 0.00024 0.000085	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50 11/09/18 11:50	11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46 11/09/18 19:46	

TestAmerica Pensacola

Analyzed

10/29/18 14:02

10/29/18 14:02

10/29/18 14:02 10/25/18 12:27

RL

1.0

1.0

1.0

5.0

MDL Unit

0.98 mg/L

0.98 mg/L

0.98 mg/L

3.4 mg/L

D

Prepared

Result Qualifier

39

39

<0.98

670

Dil Fac

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Method: 9315 - I	Radium-226 (GFPC)	Count	Total					
Analyte Radium-226	Result	Qualifier	Uncert. (2σ+/-) 0.0800	Uncert. (2σ+/-) 0.0812	RL 1.00	MDC Unit	Prepared 10/25/18 10:07	Analyzed 11/20/18 05:49	Dil Fac
Carrier Ba Carrier		Qualifier	Limits 40 - 110	0.0012	1.00	0.0900 PG#E	Prepared 10/25/18 10:07	Analyzed	Dil Fac
Method: 9320 - I	Radium-228 (GFPC)	Count Uncert.	Total Uncert.					

Analyte Radium-228	Result 0.547	Qualifier	(2σ+/-) 0.303	(2σ+/-) 0.307	1.00	MDC 0.457	 Prepared 10/25/18 11:56	Analyzed 11/12/18 15:00	Dil Fac
Carrier	%Yield	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Ba Carrier	92.9		40 - 110				10/25/18 11:56	11/12/18 15:00	1

Method: Ra226_Ra	228 - Con	nbined Rad	dium- <mark>226</mark> a	nd Radiun	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.698		0.313	0.318	5.00	0.457	pCi/L	_	11/26/18 15:23	1

3

5

7

8

9

44

10

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-17I

Date Collected: 10/18/18 09:10

Lab Sample ID: 400-160240-52

Matrix: Water

Date Received: 10/20/18 08:28

Method: 300.0 - Anions, Ion C Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	5.5	<u> </u>	1.0	0.89	mg/L			11/03/18 10:08	
Fluoride	<0.082		0.20	0.082	-			11/03/18 10:08	
Method: 300.0 - Anions, Ion C	hromatogra	iphy - DL							
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Sulfate	92		2.0	1.4	mg/L			11/05/18 14:46	
Method: 6020 - Metals (ICP/MS	S) - Total Re	ecoverable							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:50	11/09/18 19:07	
3arium	0.055		0.0025	0.00049	mg/L		11/09/18 11:50	11/09/18 19:07	
Beryllium	< 0.00034		0.0025	0.00034	mg/L		11/09/18 11:50	11/09/18 19:07	
Boron	0.067		0.050	0.021	mg/L		11/09/18 11:50	11/09/18 19:07	
Calcium	33		0.25	0.13	mg/L		11/09/18 11:50	11/09/18 19:07	
Chromium	0.0049		0.0025	0.0011	mg/L		11/09/18 11:50	11/09/18 19:07	
Cobalt	<0.00040		0.0025	0.00040	mg/L		11/09/18 11:50	11/09/18 19:07	
ead	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:50	11/09/18 19:07	
ithium	0.0017	JB	0.0050	0.0011	mg/L		11/09/18 11:50	11/09/18 19:07	
/lagnesium	15		0.13	0.032	mg/L		11/09/18 11:50	11/09/18 19:07	
Potassium	2.0		0.25	0.11	mg/L		11/09/18 11:50	11/09/18 19:07	
Selenium	0.00047	J	0.0013	0.00024	_		11/09/18 11:50	11/09/18 19:07	
Sodium	11		0.25	0.17	mg/L		11/09/18 11:50	11/09/18 19:07	
hallium	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:50	11/09/18 19:07	
Method: 6020 - Metals (ICP/MS	S) - Dissolv	ed							
Analyte	•	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Arsenic, Dissolved	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:50	11/09/18 19:49	
Barium, Dissolved	0.055		0.0025	0.00049	mg/L		11/09/18 11:50	11/09/18 19:49	
Beryllium, Dissolved	<0.00034		0.0025	0.00034	mg/L		11/09/18 11:50	11/09/18 19:49	
Chromium, Dissolved	0.0037		0.0025	0.0011	mg/L		11/09/18 11:50	11/09/18 19:49	
Cobalt, Dissolved	<0.00040		0.0025	0.00040	mg/L		11/09/18 11:50	11/09/18 19:49	
ron, Dissolved	< 0.053		0.13	0.053	•		11/09/18 11:50	11/09/18 19:49	
lead, Dissolved	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:50	11/09/18 19:49	
_ithium, Dissolved	0.0020	JB	0.0050	0.0011	mg/L		11/09/18 11:50	11/09/18 19:49	
Selenium, Dissolved	0.00047	J	0.0013	0.00024	mg/L		11/09/18 11:50	11/09/18 19:49	
hallium, Dissolved	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:50	11/09/18 19:49	
Method: 7470A - Mercury (CV)	AA)								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury	<0.000070		0.00020	0.000070	mg/L		11/08/18 12:53	11/13/18 10:32	
Method: 7470A - Mercury (CV)									
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
	<0.000070		0.00020	0.000070	mg/L		11/09/18 09:03	11/12/18 15:11	
	10.000070								
Mercury, Dissolved	10.000070								
Mercury, Dissolved General Chemistry		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Mercury, Dissolved General Chemistry Analyte		Qualifier	RL 1.0		Unit mg/L	D	Prepared	Analyzed 10/29/18 14:16	Dil Fa
Mercury, Dissolved General Chemistry Analyte Alkalinity, Total	Result	Qualifier		0.98		<u>D</u>	Prepared		Dil Fa
Mercury, Dissolved General Chemistry Analyte Alkalinity, Total Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3	Result 66	Qualifier	1.0	0.98 0.98	mg/L	<u>D</u>	Prepared	10/29/18 14:16	Dil Fa

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Method: 9315 - I	Radium-226 ((GFPC)								
		,	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.144		0.0781	0.0792	1.00	0.0886	pCi/L	10/25/18 10:07	11/20/18 05:49	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	91.2		40 - 110					10/25/18 10:07	11/20/18 05:49	1
_ Method: 9320 - I	Radium-228 ((GFPC)								
		•	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.738		0.466	0.471	1.00	0.725	pCi/L	10/25/18 11:56	11/12/18 15:00	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	91.2		40 - 110					10/25/18 11:56	11/12/18 15:00	1
Y Carrier	63.9		40 - 110					10/25/18 11:56	11/12/18 15:00	1
Г .										

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	0.882		0.472	0.478	5.00	0.725	pCi/L	_	11/26/18 15:23	1

3

5

Q

9

14

12

13

4 /

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Lab Sample ID: 400-160240-53 Client Sample ID: PZ-43S Date Collected: 10/18/18 15:20

Matrix: Water

Date Received: 10/20/18 08:28

Method: 300.0 - Anions, Ion C Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Chloride	6.3		1.0	0.89	mg/L			11/05/18 20:29	
Fluoride	<0.082		0.20	0.082	-			11/05/18 20:29	
Method: 300.0 - Anions, Ion C	hromatogra	phy - DL							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Sulfate	140		5.0	3.5	mg/L			11/06/18 14:47	
Method: 6020 - Metals (ICP/MS	S) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Arsenic	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:50	11/09/18 19:10	
Barium	0.12		0.0025	0.00049	mg/L		11/09/18 11:50	11/09/18 19:10	
Beryllium	<0.00034		0.0025	0.00034	mg/L		11/09/18 11:50	11/09/18 19:10	
Soron	0.82		0.050	0.021	mg/L		11/09/18 11:50	11/09/18 19:10	
alcium	44		0.25	0.13	mg/L		11/09/18 11:50	11/09/18 19:10	
hromium	< 0.0011		0.0025	0.0011	mg/L		11/09/18 11:50	11/09/18 19:10	
obalt	0.0086		0.0025	0.00040			11/09/18 11:50	11/09/18 19:10	
ead	< 0.00035		0.0013	0.00035	•		11/09/18 11:50	11/09/18 19:10	
ithium	0.0015	JB	0.0050	0.0011	J		11/09/18 11:50	11/09/18 19:10	
lagnesium	14		0.13	0.032			11/09/18 11:50	11/09/18 19:10	
otassium	3.6		0.25		mg/L		11/09/18 11:50		
elenium	<0.00024		0.0013	0.00024	•			11/09/18 19:10	
odium	12		0.25		mg/L			11/09/18 19:10	
nallium	<0.000085		0.00050	0.000085	-			11/09/18 19:10	
lethod: 6020 - Metals (ICP/MS nalyte rsenic, Dissolved	•	Qualifier	RL 0.0013	MDL 0.00046	Unit ma/l	D	Prepared 11/09/18 11:50	Analyzed 11/09/18 19:53	Dil
•			0.0013	0.00046	•		11/09/18 11:50	11/09/18 19:53	
arium, Dissolved	0.13 < 0.00034		0.0025		-				
eryllium, Dissolved				0.00034	ū		11/09/18 11:50	11/09/18 19:53	
hromium, Dissolved	<0.0011		0.0025	0.0011	-			11/09/18 19:53	
obalt, Dissolved	0.0091		0.0025	0.00040	•			11/09/18 19:53	
on, Dissolved	0.97		0.13	0.053	•			11/09/18 19:53	
ead, Dissolved	<0.00035		0.0013	0.00035	-			11/09/18 19:53	
thium, Dissolved	0.0027	JB	0.0050	0.0011	-		11/09/18 11:50		
elenium, Dissolved	<0.00024		0.0013	0.00024	-			11/09/18 19:53	
hallium, Dissolved	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:50	11/09/18 19:53	
lethod: 7470A - Mercury (CV	•	Ouglië	D.	MD:	l lm:4	_	Duamanad	A mak1	D::
nalyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil
ercury	<0.000070		0.00020	0.000070	ilig/L		11/08/18 12:53	11/13/18 10:34	
lethod: 7470A - Mercury (CV)		l <mark>ved</mark> Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil
ercury, Dissolved	<0.000070		0.00020	0.000070			11/09/18 09:03		
icroury, Dissolveu	~U.UUUU7U		0.00020	0.000070	ilig/L		11/09/10 09:03	11/12/10 10.13	
	D14	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil I
	KVCIIII	-cuuliii01	176				spareu		
nalyte			1 0	0 00	ma/l			10/20/18 14:21	
nalyte Ikalinity, Total	63		1.0	0.98	_			10/29/18 14:21	
Seneral Chemistry Analyte Alkalinity, Total Bicarbonate Alkalinity as CaCO3 Carbonate Alkalinity as CaCO3			1.0 1.0 1.0	0.98	mg/L mg/L mg/L			10/29/18 14:21 10/29/18 14:21 10/29/18 14:21	

TestAmerica Pensacola

11/30/2018

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Method: 9315 - Ra	adium-226 (GFPC)	Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.362		0.118	0.123	1.00	0.0955	pCi/L	10/25/18 10:07	11/20/18 05:49	1
Carrier Ba Carrier	% Yield 90.9	Qualifier	Limits 40 - 110					Prepared 10/25/18 10:07	Analyzed 11/20/18 05:49	Dil Fac

			Count Uncert.	Total Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	1.27		0.409	0.426	1.00	0.560	pCi/L	10/25/18 11:56	11/12/18 15:00	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	90.9		40 - 110					10/25/18 11:56	11/12/18 15:00	1
Y Carrier	79.6		40 - 110					10/25/18 11:56	11/12/18 15:00	1

Method: Ra226_Ra	228 - Com	bined Rad	dium-226 a	nd Radiun	n-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium	1.64		0.426	0.443	5.00	0.560	pCi/L	_	11/26/18 15:23	1
226 + 228										

Client: Southern Company Project/Site: CCR - Plant Scherer

Date Received: 10/20/18 08:28

Alkalinity, Total

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-40I Lab Sample ID: 400-160240-54 Date Collected: 10/18/18 14:05

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9.3		1.0	0.89	mg/L			11/05/18 21:37	1
Fluoride	<0.082		0.20	0.082	mg/L			11/05/18 21:37	1
Method: 300.0 - Anior	ns. Ion Chromatogra	phy - DL							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sulfate	570		20	14	mg/L			11/06/18 20:30	20
Method: 6020 - Metals	s (ICP/MS) - Total Re	coverable							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:50	11/09/18 19:14	5
Barium	0.089		0.0025	0.00049	mg/L		11/09/18 11:50	11/09/18 19:14	5
Beryllium	< 0.00034		0.0025	0.00034	mg/L		11/09/18 11:50	11/09/18 19:14	5
Chromium	<0.0011		0.0025	0.0011	mg/L		11/09/18 11:50	11/09/18 19:14	5
Cobalt	0.0076		0.0025	0.00040	mg/L		11/09/18 11:50	11/09/18 19:14	5
Lead	< 0.00035		0.0013	0.00035	mg/L		11/09/18 11:50	11/09/18 19:14	5
Lithium	0.015	В	0.0050	0.0011	mg/L		11/09/18 11:50	11/09/18 19:14	5
Magnesium	47		0.13	0.032	mg/L		11/09/18 11:50	11/09/18 19:14	5
Potassium	9.4		0.25		mg/L		11/09/18 11:50	11/09/18 19:14	5
Selenium	0.00059		0.0013	0.00024	mg/L		11/09/18 11:50	11/09/18 19:14	5
Sodium	37		0.25	0.17	mg/L		11/09/18 11:50	11/09/18 19:14	5
Thallium	<0.000085		0.00050	0.000085	Ū		11/09/18 11:50	11/09/18 19:14	5

Method: 6020 - Metals (ICP/MS) - Total Reco	overable - DL						
Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	3.8	0.25	0.11	mg/L		11/09/18 11:50	11/13/18 11:03	25
Calcium	120	1.3	0.63	mg/L		11/09/18 11:50	11/13/18 11:03	25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic, Dissolved	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:50	11/09/18 19:56	5
Barium, Dissolved	0.089		0.0025	0.00049	mg/L		11/09/18 11:50	11/09/18 19:56	5
Beryllium, Dissolved	< 0.00034		0.0025	0.00034	mg/L		11/09/18 11:50	11/09/18 19:56	5
Chromium, Dissolved	<0.0011		0.0025	0.0011	mg/L		11/09/18 11:50	11/09/18 19:56	5
Cobalt, Dissolved	0.0078		0.0025	0.00040	mg/L		11/09/18 11:50	11/09/18 19:56	5
Iron, Dissolved	3.8		0.13	0.053	mg/L		11/09/18 11:50	11/09/18 19:56	5
Lead, Dissolved	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:50	11/09/18 19:56	5
Lithium, Dissolved	0.015	В	0.0050	0.0011	mg/L		11/09/18 11:50	11/09/18 19:56	5
Selenium, Dissolved	0.00062	J	0.0013	0.00024	mg/L		11/09/18 11:50	11/09/18 19:56	5
Thallium, Dissolved	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:50	11/09/18 19:56	5

Method: 7470A - Mercur	y (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L		11/08/18 12:53	11/13/18 10:36	1
_ Method: 7470A - Mercur	y (CVAA) - Dissol	ved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury, Dissolved	<0.000070		0.00020	0.000070	mg/L		11/09/18 09:03	11/12/18 15:35	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

1.0

55

0.98 mg/L

TestAmerica Pensacola

10/29/18 14:26

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-40I

Lab Sample ID: 400-160240-54

Matrix: Water

Date Collected: 10/18/18 14:05 Date Received: 10/20/18 08:28

General Chemistry (Continued)								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bicarbonate Alkalinity as CaCO3	55	1.0	0.98	mg/L			10/29/18 14:26	1
Carbonate Alkalinity as CaCO3	<0.98	1.0	0.98	mg/L			10/29/18 14:26	1
Total Dissolved Solids	840	5.0	3.4	mg/L			10/25/18 12:27	1

adium-226 (GFPC)								
		Count Uncert.	Total Uncert.						
Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
0.360		0.136	0.140	1.00	0.135	pCi/L	10/25/18 10:07	11/20/18 05:52	1
%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
75.2		40 - 110					10/25/18 10:07	11/20/18 05:52	1
	Result 0.360 %Yield	%Yield Qualifier	Result 0.360Qualifier Qualifier(2σ+/-) 0.136%Yield QualifierLimits	Count Uncert. Uncert.	Count Total Uncert. Uncert. Uncert. Uncert.	Count Total Uncert. Uncert. Uncert. Uncert. Uncert. O.360 O.136 O.140 O.135	Count Total Uncert. Uncert. Uncert. O.360 Unit Uncert. O.136 O.140 O.135 PCi/L	Count Uncert. Uncert. Uncert.	Count Uncert. Uncert. Uncert. Variety V

Method: 9320 - R	tadium-228 (GFPC)	Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	1.23		0.437	0.451	1.00	0.599	pCi/L	10/25/18 11:56	11/12/18 15:00	1
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac
Ba Carrier	75.2		40 - 110					10/25/18 11:56	11/12/18 15:00	1
Y Carrier	80.4		40 - 110					10/25/18 11:56	11/12/18 15:00	1

Method: Ra226_Ra	228 - Con	nbined Rad	dium-226 a	nd Radium	1-228					
_			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	1.59		0.458	0.472	5.00	0.599	pCi/L		11/26/18 15:23	1

11/30/2018

Definitions/Glossary

Client: Southern Company TestAmerica Job ID: 400-160240-2 Project/Site: CCR - Plant Scherer

SDG: Ash Pond

Qualifiers

HPLC/IC

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
F1	MS and/or MSD Recovery is outside acceptance limits.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
Е	Result exceeded calibration range.

Metals

Qualifier

F3

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
E	Result exceeded calibration range.
F1	MS and/or MSD Recovery is outside acceptance limits.

General Chemistry

Qualifier Description

Duplicate RPD exceeds the control limit

Rad	
Qualifier	Qualifier Description
U	Result is less than the sample detection limit.
X	Carrier is outside acceptance limits.
G	The Sample MDC is greater than the requested RL.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
<u>n</u>	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

TestAmerica Pensacola

Definitions/Glossary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Glossary (Continued)

Abbreviation These commonly used abbreviations may or may not be present in this report.

TEQ Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: SGWC-11

Date Collected: 10/16/18 10:50 Date Received: 10/19/18 09:04

Lab Sample ID: 400-160240-31

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			418094	11/02/18 18:54	BAW	TAL PEN
Total Recoverable	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 15:29	DRE	TAL PEN
Total/NA	Prep	7470A			418701	11/08/18 10:02	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419038	11/09/18 15:42	JAP	TAL PEN
Total/NA	Analysis	SM 2320B		1	417274	10/28/18 09:36	BAB	TAL PEN
Total/NA	Analysis	SM 2540C		1	416446	10/22/18 14:36	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			397279	10/25/18 10:07	JLC	TAL SL
Total/NA	Analysis	9315		1	401802	11/20/18 05:47	CDR	TAL SL
Total/NA	Prep	PrecSep_0			397318	10/25/18 11:56	JLC	TAL SL
Total/NA	Analysis	9320		1	400469	11/12/18 14:58	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: SGWC-15 Lab Sample ID: 400-160240-32

Date Collected: 10/16/18 15:15 **Matrix: Water**

Date Received: 10/19/18 09:04

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			418094	11/02/18 19:17	BAW	TAL PEN
Total Recoverable	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 15:47	DRE	TAL PEN
Total/NA	Prep	7470A			418701	11/08/18 10:02	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419038	11/09/18 15:44	JAP	TAL PEN
Total/NA	Analysis	SM 2320B		1	417274	10/28/18 10:18	BAB	TAL PEN
Total/NA	Analysis	SM 2540C		1	416446	10/22/18 14:36	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			397279	10/25/18 10:07	JLC	TAL SL
Total/NA	Analysis	9315		1	401802	11/20/18 05:47	CDR	TAL SL
Total/NA	Prep	PrecSep_0			397318	10/25/18 11:56	JLC	TAL SL
Total/NA	Analysis	9320		1	400469	11/12/18 14:59	CDR	TAL SL
Total/NA	Analysis	Ra226 Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Lab Sample ID: 400-160240-33 **Client Sample ID: FD-1 Matrix: Water**

Date Collected: 10/16/18 00:00 Date Received: 10/19/18 09:04

Prep Type Total/NA Total Recoverable	Batch Type Analysis Prep	Batch Method 300.0 3005A	Run	Dilution Factor 1	8atch Number 418361 418952	Prepared or Analyzed 11/05/18 22:23 11/09/18 11:00		Lab TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 15:50	DRE	TAL PEN
Total/NA Total/NA	Prep Analysis	7470A 7470A		1	418701 419038	11/08/18 10:02 11/09/18 15:46	JAP	TAL PEN
Total/NA	Analysis	SM 2320B		1	417140	10/26/18 14:35	BAB	TAL PEN

Page 64 of 115

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: FD-1

Date Collected: 10/16/18 00:00 Date Received: 10/19/18 09:04

Lab Sample ID: 400-160240-33

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540C			416446	10/22/18 14:36	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			397279	10/25/18 10:07	JLC	TAL SL
Total/NA	Analysis	9315		1	401802	11/20/18 05:47	CDR	TAL SL
Total/NA	Prep	PrecSep_0			397318	10/25/18 11:56	JLC	TAL SL
Total/NA	Analysis	9320		1	400469	11/12/18 14:59	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: PZ-44I Lab Sample ID: 400-160240-34

Date Collected: 10/16/18 13:45 **Matrix: Water**

Date Received: 10/19/18 09:04

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	418094	11/02/18 19:40	BAW	TAL PEN
Total Recoverable	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 16:12	DRE	TAL PEN
Total/NA	Prep	7470A			418701	11/08/18 10:02	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419038	11/09/18 15:48	JAP	TAL PEN
Total/NA	Analysis	SM 2320B		1	417274	10/28/18 10:25	BAB	TAL PEN
Total/NA	Analysis	SM 2540C		1	416446	10/22/18 14:36	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			397279	10/25/18 10:07	JLC	TAL SL
Total/NA	Analysis	9315		1	401802	11/20/18 05:47	CDR	TAL SL
Total/NA	Prep	PrecSep_0			397318	10/25/18 11:56	JLC	TAL SL
Total/NA	Analysis	9320		1	400469	11/12/18 14:59	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: PZ-25S Lab Sample ID: 400-160240-35 Date Collected: 10/16/18 10:40 **Matrix: Water**

Date Received: 10/19/18 09:04

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	418094	11/02/18 20:03	BAW	TAL PEN
Total Recoverable	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 16:15	DRE	TAL PEN
Total/NA	Prep	7470A			418701	11/08/18 10:02	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419038	11/09/18 16:11	JAP	TAL PEN
Total/NA	Analysis	SM 2320B		1	417274	10/28/18 10:30	BAB	TAL PEN
Total/NA	Analysis	SM 2540C		1	416446	10/22/18 14:36	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			397279	10/25/18 10:07	JLC	TAL SL
Total/NA	Analysis	9315		1	401874	11/20/18 05:47	CDR	TAL SL
Total/NA	Prep	PrecSep_0			397318	10/25/18 11:56	JLC	TAL SL
Total/NA	Analysis	9320		1	400469	11/12/18 14:59	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

TestAmerica Pensacola

Page 65 of 115

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: EB-1

Date Collected: 10/16/18 16:50 Date Received: 10/19/18 09:04

Lab Sample ID: 400-160240-36

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			418094	11/02/18 20:26	BAW	TAL PEN
Total Recoverable	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 16:19	DRE	TAL PEN
Total/NA	Prep	7470A			418701	11/08/18 10:02	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419038	11/09/18 16:13	JAP	TAL PEN
Total/NA	Analysis	SM 2320B		1	417274	10/28/18 10:35	BAB	TAL PEN
Total/NA	Analysis	SM 2540C		1	416446	10/22/18 14:36	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			397279	10/25/18 10:07	JLC	TAL SL
Total/NA	Analysis	9315		1	401874	11/20/18 05:48	CDR	TAL SL
Total/NA	Prep	PrecSep_0			397318	10/25/18 11:56	JLC	TAL SL
Total/NA	Analysis	9320		1	400469	11/12/18 14:59	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: FB-1 Lab Sample ID: 400-160240-37

Date Collected: 10/16/18 13:30 **Matrix: Water** Date Received: 10/19/18 09:04

Batch **Batch** Dilution Batch **Prepared Prep Type** Type Method **Factor** Number or Analyzed Run Analyst Lab Analysis Total/NA 300.0 418094 11/02/18 20:48 BAW TAL PEN Total Recoverable Prep 3005A 418952 11/09/18 11:00 KWN TAL PEN Total Recoverable 6020 5 419210 11/09/18 16:22 DRE TAL PEN Analysis Total/NA Prep 7470A 418701 11/08/18 10:02 JAP TAL PEN Total/NA 7470A 419038 11/09/18 16:15 JAP Analysis 1 TAL PEN Total/NA Analysis SM 2320B 1 417274 10/28/18 10:40 BAB TAL PEN Total/NA SM 2540C TAL PEN Analysis 1 416446 10/22/18 14:36 CLB Total/NA TAL SL Prep PrecSep-21 397279 10/25/18 10:07 JLC TAL SL Total/NA Analysis 9315 1 401874 11/20/18 05:48 CDR Total/NA TAL SL Prep PrecSep_0 397318 10/25/18 11:56 JLC Total/NA Analysis 9320 1 400469 11/12/18 14:59 CDR TAL SL Total/NA 402686 11/26/18 15:23 RTM TAL SL Analysis Ra226_Ra228 1

Client Sample ID: SGWC-11 Lab Sample ID: 400-160240-38

Date Collected: 10/17/18 12:30 **Matrix: Water** Date Received: 10/19/18 09:04

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Dissolved	Analysis	6020		5	419210	11/09/18 16:40	DRE	TAL PEN
Dissolved	Prep	7470A			418701	11/08/18 10:02	JAP	TAL PEN
Dissolved	Analysis	7470A		1	419038	11/09/18 16:17	JAP	TAL PEN

TestAmerica Job ID: 400-160240-2 SDG: Ash Pond

Client Sample ID: SGWC-15

Date Collected: 10/17/18 15:00 Date Received: 10/19/18 09:04

Lab Sample ID: 400-160240-39

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Dissolved	Analysis	6020		5	419210	11/09/18 16:43	DRE	TAL PEN
Dissolved	Prep	7470A			418701	11/08/18 10:02	JAP	TAL PEN
Dissolved	Analysis	7470A		1	419038	11/09/18 16:19	JAP	TAL PEN

Client Sample ID: PZ-44I Lab Sample ID: 400-160240-40 Date Collected: 10/17/18 13:50

Date Received: 10/19/18 09:04

	Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Dissolved	Analysis	6020		5	419210	11/09/18 17:05	DRE	TAL PEN
Dissolved	Prep	7470A			418848	11/08/18 12:35	JAP	TAL PEN
Dissolved	Analysis	7470A		1	419409	11/13/18 09:47	JAP	TAL PEN

Lab Sample ID: 400-160240-41 **Client Sample ID: PZ-25S**

Date Collected: 10/17/18 09:50

Date Received: 10/19/18 09:04

_00	oup.o	 			
		Ν	/latrix:	Water	•

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Dissolved	Analysis	6020		5	419210	11/09/18 17:08	DRE	TAL PEN
Dissolved	Prep	7470A			418848	11/08/18 12:35	JAP	TAL PEN
Dissolved	Analysis	7470A		1	419409	11/13/18 09:48	JAP	TAL PEN

Client Sample ID: PZ-36S

Date Collected: 10/17/18 09:35 Date Received: 10/19/18 09:04

.ab	Samp	le ID	40	0-1	602	40-4	2
				Ma	atrix:	Wate	er

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			418361	11/05/18 22:00	BAW	TAL PEN
Dissolved	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Dissolved	Analysis	6020		5	419210	11/09/18 17:12	DRE	TAL PEN
Total Recoverable	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 16:26	DRE	TAL PEN
Dissolved	Prep	7470A			418848	11/08/18 12:35	JAP	TAL PEN
Dissolved	Analysis	7470A		1	419409	11/13/18 09:59	JAP	TAL PEN
Total/NA	Prep	7470A			418848	11/08/18 12:35	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419409	11/13/18 09:35	JAP	TAL PEN
Total/NA	Analysis	SM 2320B		1	417450	10/29/18 13:08	BAB	TAL PEN
Total/NA	Analysis	SM 2540C		1	416581	10/23/18 11:59	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			397461	10/26/18 10:06	JLC	TAL SL
Total/NA	Analysis	9315		1	401803	11/20/18 05:34	CDR	TAL SL

TestAmerica Pensacola

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-36S

Date Collected: 10/17/18 09:35 Date Received: 10/19/18 09:04

Lab Sample ID: 400-160240-42

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	PrecSep_0			397471	10/26/18 10:46	JLC	TAL SL
Total/NA	Analysis	9320		1	400864	11/14/18 16:11	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: PZ-25I Lab Sample ID: 400-160240-43

Date Collected: 10/17/18 11:15 **Matrix: Water**

Date Received: 10/19/18 09:04

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			418361	11/05/18 22:46	BAW	TAL PEN
Dissolved	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Dissolved	Analysis	6020		5	419210	11/09/18 17:17	DRE	TAL PEN
Total Recoverable	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 16:29	DRE	TAL PEN
Dissolved	Prep	7470A			418848	11/08/18 12:35	JAP	TAL PEN
Dissolved	Analysis	7470A		1	419409	11/13/18 10:01	JAP	TAL PEN
Total/NA	Prep	7470A			418848	11/08/18 12:35	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419409	11/13/18 09:43	JAP	TAL PEN
Total/NA	Analysis	SM 2320B		1	417450	10/29/18 13:13	BAB	TAL PEN
Total/NA	Analysis	SM 2540C		1	416581	10/23/18 11:59	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			397461	10/26/18 10:06	JLC	TAL SL
Total/NA	Analysis	9315		1	401803	11/20/18 05:34	CDR	TAL SL
Total/NA	Prep	PrecSep_0			397471	10/26/18 10:46	JLC	TAL SL
Total/NA	Analysis	9320		1	400864	11/14/18 16:11	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: PZ-39S Lab Sample ID: 400-160240-44 **Matrix: Water**

Date Collected: 10/17/18 13:15 Date Received: 10/19/18 09:04

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			418361	11/05/18 23:09	BAW	TAL PEN
Dissolved	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Dissolved	Analysis	6020		5	419210	11/09/18 17:21	DRE	TAL PEN
Dissolved	Prep	3005A			420195	11/20/18 08:56	DRE	TAL PEN
Dissolved	Analysis	6020		5	420409	11/20/18 15:57	DRE	TAL PEN
Total Recoverable	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 16:33	DRE	TAL PEN
Dissolved	Prep	7470A			418848	11/08/18 12:35	JAP	TAL PEN
Dissolved	Analysis	7470A		1	419409	11/13/18 10:03	JAP	TAL PEN
Total/NA	Prep	7470A			418848	11/08/18 12:35	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419409	11/13/18 09:45	JAP	TAL PEN
Total/NA	Analysis	SM 2320B		1	417450	10/29/18 13:20	BAB	TAL PEN

TestAmerica Pensacola

Page 68 of 115

Lab Chronicle

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540C		1	416581	10/23/18 11:59	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			398027	10/29/18 11:40	JLC	TAL SL
Total/NA	Analysis	9315		1	401803	11/20/18 11:17	CDR	TAL SL
Total/NA	Prep	PrecSep_0			398030	10/29/18 11:58	JLC	TAL SL
Total/NA	Analysis	9320		1	400470	11/12/18 16:30	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: SGWC-18

Date Collected: 10/18/18 09:05 Date Received: 10/20/18 08:28

Lab Sample ID: 400-160240-45

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		5	418361	11/05/18 23:31	BAW	TAL PEN
Total/NA	Analysis	300.0	DL	50	418474	11/06/18 15:10	BAW	TAL PEN
Total Recoverable	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 16:36	DRE	TAL PEN
Total Recoverable	Prep	3005A	DL		418952	11/09/18 11:00	KWN	TAL PEN
Total Recoverable	Analysis	6020	DL	25	419210	11/09/18 17:35	DRE	TAL PEN
Total/NA	Prep	7470A			418848	11/08/18 12:53	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419409	11/13/18 10:07	JAP	TAL PEN
Total/NA	Analysis	SM 2320B		1	417450	10/29/18 13:25	BAB	TAL PEN
Total/NA	Analysis	SM 2540C		1	416940	10/25/18 12:27	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			398027	10/29/18 11:40	JLC	TAL SL
Total/NA	Analysis	9315		1	401803	11/20/18 11:17	CDR	TAL SL
Total/NA	Prep	PrecSep_0			398030	10/29/18 11:58	JLC	TAL SL
Total/NA	Analysis	9320		1	400470	11/12/18 16:30	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: SGWC-20

Date Collected: 10/18/18 10:35 Date Received: 10/20/18 08:28

Lab Sample ID: 400-160240-46 **Matrix: Water**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			418296	11/03/18 05:11	BAW	TAL PEN
Total/NA	Analysis	300.0	DL	5	418361	11/05/18 17:03	BAW	TAL PEN
Dissolved	Prep	3005A			418964	11/09/18 11:50	KWN	TAL PEN
Dissolved	Analysis	6020		5	419210	11/09/18 19:17	DRE	TAL PEN
Total Recoverable	Prep	3005A			418964	11/09/18 11:50	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 18:17	DRE	TAL PEN
Total Recoverable	Prep	3005A	DL		418964	11/09/18 11:50	KWN	TAL PEN
Total Recoverable	Analysis	6020	DL	25	419210	11/09/18 20:07	DRE	TAL PEN
Dissolved	Prep	7470A			418848	11/08/18 13:02	JAP	TAL PEN
Dissolved	Analysis	7470A		1	419409	11/13/18 10:39	JAP	TAL PEN
Total/NA	Prep	7470A			418848	11/08/18 12:53	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419409	11/13/18 10:05	JAP	TAL PEN
Total/NA	Analysis	SM 2320B		1	417450	10/29/18 13:28	BAB	TAL PEN

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: SGWC-20

Date Collected: 10/18/18 10:35 Date Received: 10/20/18 08:28

Lab Sample ID: 400-160240-46

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2540C		1	416940	10/25/18 12:27	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			397276	10/25/18 10:04	JLC	TAL SL
Total/NA	Analysis	9315		1	401803	11/20/18 07:54	CDR	TAL SL
Total/NA	Prep	PrecSep_0			397294	10/25/18 10:33	JLC	TAL SL
Total/NA	Analysis	9320		1	400703	11/13/18 13:42	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Lab Sample ID: 400-160240-47 **Client Sample ID: FD-2**

Date Collected: 10/18/18 00:00 **Matrix: Water**

Date Received: 10/20/18 08:28

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	418296	11/03/18 05:34	BAW	TAL PEN
Total/NA	Analysis	300.0	DL	100	418361	11/05/18 18:12	BAW	TAL PEN
Dissolved	Prep	3005A			418964	11/09/18 11:50	KWN	TAL PEN
Dissolved	Analysis	6020		5	419210	11/09/18 19:21	DRE	TAL PEN
Total Recoverable	Prep	3005A			418964	11/09/18 11:50	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 18:53	DRE	TAL PEN
Total Recoverable	Prep	3005A	DL		418964	11/09/18 11:50	KWN	TAL PEN
Total Recoverable	Analysis	6020	DL	50	419485	11/13/18 10:50	DRE	TAL PEN
Dissolved	Prep	7470A			418938	11/09/18 09:03	JAP	TAL PEN
Dissolved	Analysis	7470A		1	419267	11/12/18 15:00	JAP	TAL PEN
Total/NA	Prep	7470A			418848	11/08/18 12:53	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419409	11/13/18 10:09	JAP	TAL PEN
Total/NA	Analysis	SM 2320B		1	417450	10/29/18 13:33	BAB	TAL PEN
Total/NA	Analysis	SM 2540C		1	416581	10/23/18 11:59	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			397276	10/25/18 10:04	JLC	TAL SL
Total/NA	Analysis	9315		1	401803	11/20/18 07:54	CDR	TAL SL
Total/NA	Prep	PrecSep_0			397294	10/25/18 10:33	JLC	TAL SL
Total/NA	Analysis	9320		1	400703	11/13/18 13:42	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: FB-2 Lab Sample ID: 400-160240-48 **Matrix: Water**

Date Collected: 10/18/18 10:30

Date Received: 10/20/18 08:28

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			418296	11/03/18 05:57	BAW	TAL PEN
Total Recoverable	Prep	3005A			418952	11/09/18 11:00	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 17:24	DRE	TAL PEN
Total/NA	Prep	7470A			418848	11/08/18 12:53	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419409	11/13/18 10:10	JAP	TAL PEN

Page 70 of 115

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: FB-2

Date Collected: 10/18/18 10:30 Date Received: 10/20/18 08:28

Lab Sample ID: 400-160240-48

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	SM 2320B			417450	10/29/18 13:38	BAB	TAL PEN
Total/NA	Analysis	SM 2540C		1	416940	10/25/18 12:27	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			397276	10/25/18 10:04	JLC	TAL SL
Total/NA	Analysis	9315		1	401803	11/20/18 07:54	CDR	TAL SL
Total/NA	Prep	PrecSep_0			397294	10/25/18 10:33	JLC	TAL SL
Total/NA	Analysis	9320		1	400703	11/13/18 13:42	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Lab Sample ID: 400-160240-49 **Client Sample ID: PZ-42I**

Date Collected: 10/18/18 12:15 **Matrix: Water** Date Received: 10/20/18 08:28

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	418361	11/05/18 18:35	BAW	TAL PEN
Total/NA	Analysis	300.0	DL	10	418474	11/06/18 15:55	BAW	TAL PEN
Dissolved	Prep	3005A			418964	11/09/18 11:50	KWN	TAL PEN
Dissolved	Analysis	6020		5	419210	11/09/18 19:24	DRE	TAL PEN
Total Recoverable	Prep	3005A			418964	11/09/18 11:50	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 18:56	DRE	TAL PEN
Total Recoverable	Prep	3005A	DL		418964	11/09/18 11:50	KWN	TAL PEN
Total Recoverable	Analysis	6020	DL	25	419485	11/13/18 10:54	DRE	TAL PEN
Dissolved	Prep	7470A			418938	11/09/18 09:03	JAP	TAL PEN
Dissolved	Analysis	7470A		1	419267	11/12/18 15:07	JAP	TAL PEN
Total/NA	Prep	7470A			418848	11/08/18 12:53	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419409	11/13/18 10:12	JAP	TAL PEN
Total/NA	Analysis	SM 2320B		1	417450	10/29/18 13:44	BAB	TAL PEN
Total/NA	Analysis	SM 2540C		1	416940	10/25/18 12:27	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			397276	10/25/18 10:04	JLC	TAL SL
Total/NA	Analysis	9315		1	401802	11/20/18 07:55	CDR	TAL SL
Total/NA	Prep	PrecSep_0			397294	10/25/18 10:33	JLC	TAL SL
Total/NA	Analysis	9320		1	400703	11/13/18 13:42	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: EB-2 Lab Sample ID: 400-160240-50 Date Collected: 10/18/18 15:30 **Matrix: Water**

Date Received: 10/20/18 08:28

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	418361	11/05/18 19:43	BAW	TAL PEN
Total Recoverable	Prep	3005A			418964	11/09/18 11:50	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 19:00	DRE	TAL PEN
Total/NA	Prep	7470A			418848	11/08/18 12:53	JAP	TAL PEN

TestAmerica Pensacola

Page 71 of 115

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: EB-2

Date Collected: 10/18/18 15:30 Date Received: 10/20/18 08:28

Lab Sample ID: 400-160240-50

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	7470A		1	419409	11/13/18 10:14	JAP	TAL PEN
Total/NA	Analysis	SM 2320B		1	417450	10/29/18 14:11	BAB	TAL PEN
Total/NA	Analysis	SM 2540C		1	416940	10/25/18 12:27	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			397279	10/25/18 10:07	JLC	TAL SL
Total/NA	Analysis	9315		1	401874	11/20/18 05:48	CDR	TAL SL
Total/NA	Prep	PrecSep_0			397318	10/25/18 11:56	JLC	TAL SL
Total/NA	Analysis	9320		1	400469	11/12/18 15:00	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Lab Sample ID: 400-160240-51

Matrix: Water

Date Collected: 10/18/18 13:50 Date Received: 10/20/18 08:28

Client Sample ID: PZ-41S

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	418361	11/05/18 20:06	BAW	TAL PEN
Total/NA	Analysis	300.0		20	418663	11/07/18 17:49	BAW	TAL PEN
Dissolved	Prep	3005A			418964	11/09/18 11:50	KWN	TAL PEN
Dissolved	Analysis	6020		5	419210	11/09/18 19:46	DRE	TAL PEN
Total Recoverable	Prep	3005A			418964	11/09/18 11:50	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 19:03	DRE	TAL PEN
Total Recoverable	Prep	3005A	DL		418964	11/09/18 11:50	KWN	TAL PEN
Total Recoverable	Analysis	6020	DL	25	419485	11/13/18 10:58	DRE	TAL PEN
Dissolved	Prep	7470A			418938	11/09/18 09:03	JAP	TAL PEN
Dissolved	Analysis	7470A		1	419267	11/12/18 15:09	JAP	TAL PEN
Total/NA	Prep	7470A			418848	11/08/18 12:53	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419409	11/13/18 10:16	JAP	TAL PEN
Total/NA	Analysis	SM 2320B		1	417450	10/29/18 14:02	BAB	TAL PEN
Total/NA	Analysis	SM 2540C		1	416940	10/25/18 12:27	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			397279	10/25/18 10:07	JLC	TAL SL
Total/NA	Analysis	9315		1	401874	11/20/18 05:49	CDR	TAL SL
Total/NA	Prep	PrecSep_0			397318	10/25/18 11:56	JLC	TAL SL
Total/NA	Analysis	9320		1	400469	11/12/18 15:00	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: PZ-17I Lab Sample ID: 400-160240-52 Date Collected: 10/18/18 09:10 **Matrix: Water**

Date Received: 10/20/18 08:28

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	418296	11/03/18 10:08	BAW	TAL PEN
Total/NA	Analysis	300.0	DL	2	418361	11/05/18 14:46	BAW	TAL PEN
Dissolved	Prep	3005A			418964	11/09/18 11:50	KWN	TAL PEN

TestAmerica Pensacola

11/30/2018

Page 72 of 115

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-17I

Project/Site: CCR - Plant Scherer

Client: Southern Company

Date Collected: 10/18/18 09:10 Date Received: 10/20/18 08:28

Lab Sample ID: 400-160240-52

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Analysis	6020		5	419210	11/09/18 19:49	DRE	TAL PEN
Total Recoverable	Prep	3005A			418964	11/09/18 11:50	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 19:07	DRE	TAL PEN
Dissolved	Prep	7470A			418938	11/09/18 09:03	JAP	TAL PEN
Dissolved	Analysis	7470A		1	419267	11/12/18 15:11	JAP	TAL PEN
Total/NA	Prep	7470A			418848	11/08/18 12:53	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419409	11/13/18 10:32	JAP	TAL PEN
Total/NA	Analysis	SM 2320B		1	417450	10/29/18 14:16	BAB	TAL PEN
Total/NA	Analysis	SM 2540C		1	416940	10/25/18 12:27	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			397279	10/25/18 10:07	JLC	TAL SL
Total/NA	Analysis	9315		1	401874	11/20/18 05:49	CDR	TAL SL
Total/NA	Prep	PrecSep_0			397318	10/25/18 11:56	JLC	TAL SL
Total/NA	Analysis	9320		1	400469	11/12/18 15:00	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Client Sample ID: PZ-43S Lab Sample ID: 400-160240-53

Date Collected: 10/18/18 15:20 **Matrix: Water** Date Received: 10/20/18 08:28

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			418361	11/05/18 20:29	BAW	TAL PEN
Total/NA	Analysis	300.0	DL	5	418474	11/06/18 14:47	BAW	TAL PEN
Dissolved	Prep	3005A			418964	11/09/18 11:50	KWN	TAL PEN
Dissolved	Analysis	6020		5	419210	11/09/18 19:53	DRE	TAL PEN
Total Recoverable	Prep	3005A			418964	11/09/18 11:50	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 19:10	DRE	TAL PEN
Dissolved	Prep	7470A			418938	11/09/18 09:03	JAP	TAL PEN
Dissolved	Analysis	7470A		1	419267	11/12/18 15:13	JAP	TAL PEN
Total/NA	Prep	7470A			418848	11/08/18 12:53	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419409	11/13/18 10:34	JAP	TAL PEN
Total/NA	Analysis	SM 2320B		1	417450	10/29/18 14:21	BAB	TAL PEN
Total/NA	Analysis	SM 2540C		1	416940	10/25/18 12:27	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			397279	10/25/18 10:07	JLC	TAL SL
Total/NA	Analysis	9315		1	401874	11/20/18 05:49	CDR	TAL SL
Total/NA	Prep	PrecSep_0			397318	10/25/18 11:56	JLC	TAL SL
Total/NA	Analysis	9320		1	400469	11/12/18 15:00	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Lab Chronicle

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Client Sample ID: PZ-40I

Date Collected: 10/18/18 14:05 Date Received: 10/20/18 08:28

Lab Sample ID: 400-160240-54

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			418361	11/05/18 21:37	BAW	TAL PEN
Total/NA	Analysis	300.0	DL	20	418589	11/06/18 20:30	BAW	TAL PEN
Dissolved	Prep	3005A			418964	11/09/18 11:50	KWN	TAL PEN
Dissolved	Analysis	6020		5	419210	11/09/18 19:56	DRE	TAL PEN
Total Recoverable	Prep	3005A			418964	11/09/18 11:50	KWN	TAL PEN
Total Recoverable	Analysis	6020		5	419210	11/09/18 19:14	DRE	TAL PEN
Total Recoverable	Prep	3005A	DL		418964	11/09/18 11:50	KWN	TAL PEN
Total Recoverable	Analysis	6020	DL	25	419485	11/13/18 11:03	DRE	TAL PEN
Dissolved	Prep	7470A			418938	11/09/18 09:03	JAP	TAL PEN
Dissolved	Analysis	7470A		1	419267	11/12/18 15:35	JAP	TAL PEN
Total/NA	Prep	7470A			418848	11/08/18 12:53	JAP	TAL PEN
Total/NA	Analysis	7470A		1	419409	11/13/18 10:36	JAP	TAL PEN
Total/NA	Analysis	SM 2320B		1	417450	10/29/18 14:26	BAB	TAL PEN
Total/NA	Analysis	SM 2540C		1	416940	10/25/18 12:27	CLB	TAL PEN
Total/NA	Prep	PrecSep-21			397279	10/25/18 10:07	JLC	TAL SL
Total/NA	Analysis	9315		1	401873	11/20/18 05:52	CDR	TAL SL
Total/NA	Prep	PrecSep_0			397318	10/25/18 11:56	JLC	TAL SL
Total/NA	Analysis	9320		1	400469	11/12/18 15:00	CDR	TAL SL
Total/NA	Analysis	Ra226_Ra228		1	402686	11/26/18 15:23	RTM	TAL SL

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001 TAL SL = TestAmerica St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

TestAmerica Job ID: 400-160240-2 SDG: Ash Pond

HPLC/IC

Analysis Batch: 418094

Client: Southern Company

Project/Site: CCR - Plant Scherer

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-31	SGWC-11	Total/NA	Water	300.0	_
400-160240-32	SGWC-15	Total/NA	Water	300.0	
400-160240-34	PZ-44I	Total/NA	Water	300.0	
400-160240-35	PZ-25S	Total/NA	Water	300.0	
400-160240-36	EB-1	Total/NA	Water	300.0	
400-160240-37	FB-1	Total/NA	Water	300.0	
MB 400-418094/4	Method Blank	Total/NA	Water	300.0	
LCS 400-418094/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-418094/6	Lab Control Sample Dup	Total/NA	Water	300.0	
400-161260-E-1 MS	Matrix Spike	Total/NA	Water	300.0	
400-161260-E-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Analysis Batch: 418296

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-46	SGWC-20	Total/NA	Water	300.0	-
400-160240-47	FD-2	Total/NA	Water	300.0	
400-160240-48	FB-2	Total/NA	Water	300.0	
400-160240-52	PZ-17I	Total/NA	Water	300.0	
MB 400-418296/40	Method Blank	Total/NA	Water	300.0	
LCS 400-418296/46	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-418296/47	Lab Control Sample Dup	Total/NA	Water	300.0	
400-161260-E-3 MS	Matrix Spike	Total/NA	Water	300.0	
400-161260-E-3 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Analysis Batch: 418361

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-33	FD-1	Total/NA	Water	300.0	
400-160240-42	PZ-36S	Total/NA	Water	300.0	
400-160240-43	PZ-25I	Total/NA	Water	300.0	
400-160240-44	PZ-39S	Total/NA	Water	300.0	
400-160240-45	SGWC-18	Total/NA	Water	300.0	
400-160240-46 - DL	SGWC-20	Total/NA	Water	300.0	
400-160240-47 - DL	FD-2	Total/NA	Water	300.0	
400-160240-49	PZ-42I	Total/NA	Water	300.0	
400-160240-50	EB-2	Total/NA	Water	300.0	
400-160240-51	PZ-41S	Total/NA	Water	300.0	
400-160240-52 - DL	PZ-17I	Total/NA	Water	300.0	
400-160240-53	PZ-43S	Total/NA	Water	300.0	
400-160240-54	PZ-40I	Total/NA	Water	300.0	
MB 400-418361/4	Method Blank	Total/NA	Water	300.0	
LCS 400-418361/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-418361/6	Lab Control Sample Dup	Total/NA	Water	300.0	
400-161340-H-3 MS	Matrix Spike	Total/NA	Water	300.0	
400-161340-H-3 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Analysis Batch: 418474

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
400-160240-45 - DL	SGWC-18	Total/NA	Water	300.0
400-160240-49 - DL	PZ-42I	Total/NA	Water	300.0
400-160240-53 - DL	PZ-43S	Total/NA	Water	300.0
MB 400-418474/4	Method Blank	Total/NA	Water	300.0

Page 75 of 115

TestAmerica Pensacola

11/30/2018

-

4

a

1

9

10

11

12

13

| | 4

TestAmerica Job ID: 400-160240-2 SDG: Ash Pond

HPLC/IC (Continued)

Client: Southern Company

Project/Site: CCR - Plant Scherer

Analysis Batch: 418474 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 400-418474/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-418474/6	Lab Control Sample Dup	Total/NA	Water	300.0	
400-161490-V-1 MS	Matrix Spike	Total/NA	Water	300.0	
400-161490-V-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	
400-160240-35 DU	PZ-25S	Total/NA	Water	300.0	

Analysis Batch: 418589

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-54 - DL	PZ-40I	Total/NA	Water	300.0	
MB 400-418589/37	Method Blank	Total/NA	Water	300.0	
LCS 400-418589/38	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-418589/39	Lab Control Sample Dup	Total/NA	Water	300.0	
400-161634-H-1 MS	Matrix Spike	Total/NA	Water	300.0	
400-161634-H-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Analysis Batch: 418663

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-51	PZ-41S	Total/NA	Water	300.0	
MB 400-418663/22	Method Blank	Total/NA	Water	300.0	
LCS 400-418663/23	Lab Control Sample	Total/NA	Water	300.0	
LCSD 400-418663/24	Lab Control Sample Dup	Total/NA	Water	300.0	
660-90567-E-1 MS	Matrix Spike	Total/NA	Water	300.0	
660-90567-E-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Metals

Prep Batch: 418701

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-31	SGWC-11	Total/NA	Water	7470A	
400-160240-32	SGWC-15	Total/NA	Water	7470A	
400-160240-33	FD-1	Total/NA	Water	7470A	
400-160240-34	PZ-44I	Total/NA	Water	7470A	
400-160240-35	PZ-25S	Total/NA	Water	7470A	
400-160240-36	EB-1	Total/NA	Water	7470A	
400-160240-37	FB-1	Total/NA	Water	7470A	
400-160240-38	SGWC-11	Dissolved	Water	7470A	
400-160240-39	SGWC-15	Dissolved	Water	7470A	
MB 400-418701/14-A	Method Blank	Total/NA	Water	7470A	
LCS 400-418701/15-A	Lab Control Sample	Total/NA	Water	7470A	
400-161395-A-3-B MS	Matrix Spike	Total/NA	Water	7470A	
400-161395-A-3-C MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Prep Batch: 418848

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-40	PZ-44I	Dissolved	Water	7470A	-
400-160240-41	PZ-25S	Dissolved	Water	7470A	
400-160240-42	PZ-36S	Dissolved	Water	7470A	
400-160240-42	PZ-36S	Total/NA	Water	7470A	
400-160240-43	PZ-25I	Dissolved	Water	7470A	
400-160240-43	PZ-25I	Total/NA	Water	7470A	

TestAmerica Pensacola

11/30/2018

Page 76 of 115

2

3

4

6

0

9

10

11

14

TestAmerica Job ID: 400-160240-2 SDG: Ash Pond

Metals (Continued)

Client: Southern Company

Prep Batch: 418848 (Continued)

Project/Site: CCR - Plant Scherer

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
400-160240-44	PZ-39S	Dissolved	Water	7470A	_
400-160240-44	PZ-39S	Total/NA	Water	7470A	
400-160240-45	SGWC-18	Total/NA	Water	7470A	
400-160240-46	SGWC-20	Dissolved	Water	7470A	
400-160240-46	SGWC-20	Total/NA	Water	7470A	
400-160240-47	FD-2	Total/NA	Water	7470A	
400-160240-48	FB-2	Total/NA	Water	7470A	
400-160240-49	PZ-42I	Total/NA	Water	7470A	
400-160240-50	EB-2	Total/NA	Water	7470A	
400-160240-51	PZ-41S	Total/NA	Water	7470A	
400-160240-52	PZ-17I	Total/NA	Water	7470A	
400-160240-53	PZ-43S	Total/NA	Water	7470A	
400-160240-54	PZ-40I	Total/NA	Water	7470A	
MB 400-418848/14-A	Method Blank	Total/NA	Water	7470A	
LCS 400-418848/15-A	Lab Control Sample	Total/NA	Water	7470A	
400-160240-42 MS	PZ-36S	Total/NA	Water	7470A	
400-160240-42 MSD	PZ-36S	Total/NA	Water	7470A	

Prep Batch: 418938

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-47	FD-2	Dissolved	Water	7470A	
400-160240-49	PZ-42I	Dissolved	Water	7470A	
400-160240-51	PZ-41S	Dissolved	Water	7470A	
400-160240-52	PZ-17I	Dissolved	Water	7470A	
400-160240-53	PZ-43S	Dissolved	Water	7470A	
400-160240-54	PZ-40I	Dissolved	Water	7470A	
MB 400-418938/14-A	Method Blank	Total/NA	Water	7470A	
LCS 400-418938/15-A	Lab Control Sample	Total/NA	Water	7470A	
400-160240-47 MS	FD-2	Dissolved	Water	7470A	
400-160240-47 MSD	FD-2	Dissolved	Water	7470A	

Prep Batch: 418952

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-31	SGWC-11	Total Recoverable	Water	3005A	
400-160240-32	SGWC-15	Total Recoverable	Water	3005A	
400-160240-33	FD-1	Total Recoverable	Water	3005A	
400-160240-34	PZ-44I	Total Recoverable	Water	3005A	
400-160240-35	PZ-25S	Total Recoverable	Water	3005A	
400-160240-36	EB-1	Total Recoverable	Water	3005A	
400-160240-37	FB-1	Total Recoverable	Water	3005A	
400-160240-38	SGWC-11	Dissolved	Water	3005A	
400-160240-39	SGWC-15	Dissolved	Water	3005A	
400-160240-40	PZ-44I	Dissolved	Water	3005A	
400-160240-41	PZ-25S	Dissolved	Water	3005A	
400-160240-42	PZ-36S	Dissolved	Water	3005A	
400-160240-42	PZ-36S	Total Recoverable	Water	3005A	
400-160240-43	PZ-25I	Dissolved	Water	3005A	
400-160240-43	PZ-25I	Total Recoverable	Water	3005A	
400-160240-44	PZ-39S	Dissolved	Water	3005A	
400-160240-44	PZ-39S	Total Recoverable	Water	3005A	
400-160240-45 - DL	SGWC-18	Total Recoverable	Water	3005A	

Page 77 of 115

TestAmerica Pensacola

11/30/2018

2

3

4

6

8

10

11

12

. .

QC Association Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Metals (Continued)

Prep Batch: 418952 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-45	SGWC-18	Total Recoverable	Water	3005A	
400-160240-48	FB-2	Total Recoverable	Water	3005A	
MB 400-418952/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-418952/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
400-160240-31 MS	SGWC-11	Total Recoverable	Water	3005A	
400-160240-31 MSD	SGWC-11	Total Recoverable	Water	3005A	

Prep Batch: 418964

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
400-160240-46	SGWC-20	Dissolved	Water	3005A	
400-160240-46 - DL	SGWC-20	Total Recoverable	Water	3005A	
400-160240-46	SGWC-20	Total Recoverable	Water	3005A	
400-160240-47	FD-2	Dissolved	Water	3005A	
400-160240-47	FD-2	Total Recoverable	Water	3005A	
400-160240-47 - DL	FD-2	Total Recoverable	Water	3005A	
400-160240-49	PZ-42I	Dissolved	Water	3005A	
400-160240-49	PZ-42I	Total Recoverable	Water	3005A	
400-160240-49 - DL	PZ-42I	Total Recoverable	Water	3005A	
400-160240-50	EB-2	Total Recoverable	Water	3005A	
400-160240-51	PZ-41S	Dissolved	Water	3005A	
400-160240-51	PZ-41S	Total Recoverable	Water	3005A	
400-160240-51 - DL	PZ-41S	Total Recoverable	Water	3005A	
400-160240-52	PZ-17I	Dissolved	Water	3005A	
400-160240-52	PZ-17I	Total Recoverable	Water	3005A	
400-160240-53	PZ-43S	Dissolved	Water	3005A	
400-160240-53	PZ-43S	Total Recoverable	Water	3005A	
400-160240-54	PZ-40I	Dissolved	Water	3005A	
400-160240-54	PZ-40I	Total Recoverable	Water	3005A	
400-160240-54 - DL	PZ-40I	Total Recoverable	Water	3005A	
MB 400-418964/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-418964/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
400-160240-46 MS	SGWC-20	Total Recoverable	Water	3005A	
400-160240-46 MSD	SGWC-20	Total Recoverable	Water	3005A	

Analysis Batch: 419038

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-31	SGWC-11	Total/NA	Water	7470A	418701
400-160240-32	SGWC-15	Total/NA	Water	7470A	418701
400-160240-33	FD-1	Total/NA	Water	7470A	418701
400-160240-34	PZ-44I	Total/NA	Water	7470A	418701
400-160240-35	PZ-25S	Total/NA	Water	7470A	418701
400-160240-36	EB-1	Total/NA	Water	7470A	418701
400-160240-37	FB-1	Total/NA	Water	7470A	418701
400-160240-38	SGWC-11	Dissolved	Water	7470A	418701
400-160240-39	SGWC-15	Dissolved	Water	7470A	418701
MB 400-418701/14-A	Method Blank	Total/NA	Water	7470A	418701
LCS 400-418701/15-A	Lab Control Sample	Total/NA	Water	7470A	418701
400-161395-A-3-B MS	Matrix Spike	Total/NA	Water	7470A	418701
400-161395-A-3-C MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	418701

TestAmerica Pensacola

Page 78 of 115

TestAmerica Job ID: 400-160240-2

Metals (Continued)

Client: Southern Company Project/Site: CCR - Plant Scherer

Analysis Batch: 419210

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-31	SGWC-11	Total Recoverable	Water	6020	418952
400-160240-32	SGWC-15	Total Recoverable	Water	6020	418952
400-160240-33	FD-1	Total Recoverable	Water	6020	418952
400-160240-34	PZ-44I	Total Recoverable	Water	6020	418952
400-160240-35	PZ-25S	Total Recoverable	Water	6020	418952
400-160240-36	EB-1	Total Recoverable	Water	6020	418952
400-160240-37	FB-1	Total Recoverable	Water	6020	418952
400-160240-38	SGWC-11	Dissolved	Water	6020	418952
400-160240-39	SGWC-15	Dissolved	Water	6020	418952
400-160240-40	PZ-44I	Dissolved	Water	6020	418952
400-160240-41	PZ-25S	Dissolved	Water	6020	418952
400-160240-42	PZ-36S	Dissolved	Water	6020	418952
400-160240-42	PZ-36S	Total Recoverable	Water	6020	418952
400-160240-43	PZ-25I	Dissolved	Water	6020	418952
400-160240-43	PZ-25I	Total Recoverable	Water	6020	418952
400-160240-44	PZ-39S	Dissolved	Water	6020	418952
400-160240-44	PZ-39S	Total Recoverable	Water	6020	418952
400-160240-45	SGWC-18	Total Recoverable	Water	6020	418952
400-160240-45 - DL	SGWC-18	Total Recoverable	Water	6020	418952
400-160240-46	SGWC-20	Dissolved	Water	6020	418964
100-160240-46	SGWC-20	Total Recoverable	Water	6020	418964
400-160240-46 - DL	SGWC-20	Total Recoverable	Water	6020	418964
400-160240-47	FD-2	Dissolved	Water	6020	418964
400-160240-47	FD-2	Total Recoverable	Water	6020	418964
400-160240-48	FB-2	Total Recoverable	Water	6020	418952
400-160240-49	PZ-42I	Dissolved	Water	6020	418964
400-160240-49	PZ-42I	Total Recoverable	Water	6020	418964
400-160240-50	EB-2	Total Recoverable	Water	6020	418964
400-160240-51	PZ-41S	Dissolved	Water	6020	418964
400-160240-51	PZ-41S	Total Recoverable	Water	6020	418964
400-160240-52	PZ-17I	Dissolved	Water	6020	418964
400-160240-52	PZ-17I	Total Recoverable	Water	6020	418964
400-160240-53	PZ-43S	Dissolved	Water	6020	418964
400-160240-53	PZ-43S	Total Recoverable	Water	6020	418964
400-160240-54	PZ-40I	Dissolved	Water	6020	418964
400-160240-54	PZ-40I	Total Recoverable	Water	6020	418964
MB 400-418952/1-A ^5	Method Blank	Total Recoverable	Water	6020	418952
MB 400-418964/1-A ^5	Method Blank	Total Recoverable	Water	6020	418964
LCS 400-418952/2-A	Lab Control Sample	Total Recoverable	Water	6020	418952
LCS 400-418964/2-A	Lab Control Sample	Total Recoverable	Water	6020	418964
400-160240-31 MS	SGWC-11	Total Recoverable	Water	6020	418952
400-160240-31 MSD	SGWC-11	Total Recoverable	Water	6020	418952
400-160240-46 MS	SGWC-20	Total Recoverable	Water	6020	418964
100E 10 10 IVIO	SGWC-20	Total Recoverable	Water	6020	418964

Analysis Batch: 419267

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-47	FD-2	Dissolved	Water	7470A	418938
400-160240-49	PZ-42I	Dissolved	Water	7470A	418938
400-160240-51	PZ-41S	Dissolved	Water	7470A	418938
400-160240-52	PZ-17I	Dissolved	Water	7470A	418938

TestAmerica Pensacola

SDG: Ash Pond

2

4

5

4 4

12

Ш

QC Association Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Metals (Continued)

Analysis Batch: 419267 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-53	PZ-43S	Dissolved	Water	7470A	418938
400-160240-54	PZ-40I	Dissolved	Water	7470A	418938
MB 400-418938/14-A	Method Blank	Total/NA	Water	7470A	418938
LCS 400-418938/15-A	Lab Control Sample	Total/NA	Water	7470A	418938
400-160240-47 MS	FD-2	Dissolved	Water	7470A	418938
400-160240-47 MSD	FD-2	Dissolved	Water	7470A	418938

Analysis Batch: 419409

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-40	PZ-44I	Dissolved	Water	7470A	418848
400-160240-41	PZ-25S	Dissolved	Water	7470A	418848
400-160240-42	PZ-36S	Dissolved	Water	7470A	418848
400-160240-42	PZ-36S	Total/NA	Water	7470A	418848
400-160240-43	PZ-25I	Dissolved	Water	7470A	418848
400-160240-43	PZ-25I	Total/NA	Water	7470A	418848
400-160240-44	PZ-39S	Dissolved	Water	7470A	418848
400-160240-44	PZ-39S	Total/NA	Water	7470A	418848
400-160240-45	SGWC-18	Total/NA	Water	7470A	418848
400-160240-46	SGWC-20	Dissolved	Water	7470A	418848
400-160240-46	SGWC-20	Total/NA	Water	7470A	418848
400-160240-47	FD-2	Total/NA	Water	7470A	418848
400-160240-48	FB-2	Total/NA	Water	7470A	418848
400-160240-49	PZ-42I	Total/NA	Water	7470A	418848
400-160240-50	EB-2	Total/NA	Water	7470A	418848
400-160240-51	PZ-41S	Total/NA	Water	7470A	418848
400-160240-52	PZ-17I	Total/NA	Water	7470A	418848
400-160240-53	PZ-43S	Total/NA	Water	7470A	418848
400-160240-54	PZ-40I	Total/NA	Water	7470A	418848
MB 400-418848/14-A	Method Blank	Total/NA	Water	7470A	418848
LCS 400-418848/15-A	Lab Control Sample	Total/NA	Water	7470A	418848
400-160240-42 MS	PZ-36S	Total/NA	Water	7470A	418848
400-160240-42 MSD	PZ-36S	Total/NA	Water	7470A	418848

Analysis Batch: 419485

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-47 - DL	FD-2	Total Recoverable	Water	6020	418964
400-160240-49 - DL	PZ-42I	Total Recoverable	Water	6020	418964
400-160240-51 - DL	PZ-41S	Total Recoverable	Water	6020	418964
400-160240-54 - DL	PZ-40I	Total Recoverable	Water	6020	418964

Prep Batch: 420195

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
400-160240-44	PZ-39S	Dissolved	Water	3005A
MB 400-420195/1-A ^5	Method Blank	Total Recoverable	Water	3005A
LCS 400-420195/2-A	Lab Control Sample	Total Recoverable	Water	3005A
400-160141-G-3-D MS ^5	Matrix Spike	Total Recoverable	Water	3005A
400-160141-G-3-E MSD ^5	Matrix Spike Duplicate	Total Recoverable	Water	3005A

Analysis Batch: 420409

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-44	PZ-39S	Dissolved	Water	6020	420195

TestAmerica Pensacola

Page 80 of 115

QC Association Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Metals (Continued)

Analysis Batch: 420409 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 400-420195/1-A ^5	Method Blank	Total Recoverable	Water	6020	420195
LCS 400-420195/2-A	Lab Control Sample	Total Recoverable	Water	6020	420195
400-160141-G-3-D MS ^5	Matrix Spike	Total Recoverable	Water	6020	420195
400-160141-G-3-E MSD ^5	Matrix Spike Duplicate	Total Recoverable	Water	6020	420195

General Chemistry

Analysis Batch: 416446

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-31	SGWC-11	Total/NA	Water	SM 2540C	_
400-160240-32	SGWC-15	Total/NA	Water	SM 2540C	
400-160240-33	FD-1	Total/NA	Water	SM 2540C	
400-160240-34	PZ-44I	Total/NA	Water	SM 2540C	
400-160240-35	PZ-25S	Total/NA	Water	SM 2540C	
400-160240-36	EB-1	Total/NA	Water	SM 2540C	
400-160240-37	FB-1	Total/NA	Water	SM 2540C	
MB 400-416446/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 400-416446/2	Lab Control Sample	Total/NA	Water	SM 2540C	
400-160742-E-4 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 2540C	
400-160240-32 DU	SGWC-15	Total/NA	Water	SM 2540C	

Analysis Batch: 416581

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-42	PZ-36S	Total/NA	Water	SM 2540C	_
400-160240-43	PZ-25I	Total/NA	Water	SM 2540C	
400-160240-44	PZ-39S	Total/NA	Water	SM 2540C	
400-160240-47	FD-2	Total/NA	Water	SM 2540C	
MB 400-416581/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 400-416581/2	Lab Control Sample	Total/NA	Water	SM 2540C	
400-160738-A-4 DU	Duplicate	Total/NA	Water	SM 2540C	

Analysis Batch: 416940

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-45	SGWC-18	Total/NA	Water	SM 2540C	
400-160240-46	SGWC-20	Total/NA	Water	SM 2540C	
400-160240-48	FB-2	Total/NA	Water	SM 2540C	
400-160240-49	PZ-42I	Total/NA	Water	SM 2540C	
400-160240-50	EB-2	Total/NA	Water	SM 2540C	
400-160240-51	PZ-41S	Total/NA	Water	SM 2540C	
400-160240-52	PZ-17I	Total/NA	Water	SM 2540C	
400-160240-53	PZ-43S	Total/NA	Water	SM 2540C	
400-160240-54	PZ-40I	Total/NA	Water	SM 2540C	
MB 400-416940/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 400-416940/2	Lab Control Sample	Total/NA	Water	SM 2540C	
400-160240-54 DU	PZ-40I	Total/NA	Water	SM 2540C	

Analysis Batch: 417140

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-33	FD-1	Total/NA	Water	SM 2320B	
MB 400-417140/4	Method Blank	Total/NA	Water	SM 2320B	

TestAmerica Pensacola

Page 81 of 115

QC Association Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

General Chemistry (Continued)

Analysis Batch: 417140 (Continued)

Lab Sample	ID Client Samp	le ID Pre	ep Type 🍴 🍴	Vlatrix	Method	Prep Batch
LCS 400-417	140/5 Lab Control S	Sample To	tal/NA \	Water	SM 2320B	
400-160645-	A-4 DU Duplicate	To	tal/NA \	Nater	SM 2320B	

Analysis Batch: 417274

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-31	SGWC-11	Total/NA	Water	SM 2320B	
400-160240-32	SGWC-15	Total/NA	Water	SM 2320B	
400-160240-34	PZ-44I	Total/NA	Water	SM 2320B	
400-160240-35	PZ-25S	Total/NA	Water	SM 2320B	
400-160240-36	EB-1	Total/NA	Water	SM 2320B	
400-160240-37	FB-1	Total/NA	Water	SM 2320B	
MB 400-417274/4	Method Blank	Total/NA	Water	SM 2320B	
LCS 400-417274/5	Lab Control Sample	Total/NA	Water	SM 2320B	
400-160645-A-3 DU	Duplicate	Total/NA	Water	SM 2320B	
400-160944-C-1 DU	Duplicate	Total/NA	Water	SM 2320B	

Analysis Batch: 417450

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-42	PZ-36S	Total/NA	Water	SM 2320B	
400-160240-43	PZ-25I	Total/NA	Water	SM 2320B	
400-160240-44	PZ-39S	Total/NA	Water	SM 2320B	
400-160240-45	SGWC-18	Total/NA	Water	SM 2320B	
400-160240-46	SGWC-20	Total/NA	Water	SM 2320B	
400-160240-47	FD-2	Total/NA	Water	SM 2320B	
400-160240-48	FB-2	Total/NA	Water	SM 2320B	
400-160240-49	PZ-42I	Total/NA	Water	SM 2320B	
400-160240-50	EB-2	Total/NA	Water	SM 2320B	
400-160240-51	PZ-41S	Total/NA	Water	SM 2320B	
400-160240-52	PZ-17I	Total/NA	Water	SM 2320B	
400-160240-53	PZ-43S	Total/NA	Water	SM 2320B	
400-160240-54	PZ-40I	Total/NA	Water	SM 2320B	
MB 400-417450/4	Method Blank	Total/NA	Water	SM 2320B	
LCS 400-417450/5	Lab Control Sample	Total/NA	Water	SM 2320B	
400-160240-51 DU	PZ-41S	Total/NA	Water	SM 2320B	

Rad

Prep Batch: 397276

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-46	SGWC-20	Total/NA	Water	PrecSep-21	
400-160240-47	FD-2	Total/NA	Water	PrecSep-21	
400-160240-48	FB-2	Total/NA	Water	PrecSep-21	
400-160240-49	PZ-42I	Total/NA	Water	PrecSep-21	
MB 160-397276/23-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-397276/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
400-160832-A-8-A DU	Duplicate	Total/NA	Water	PrecSep-21	

Prep Batch: 397279

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-31	SGWC-11	Total/NA	Water	PrecSep-21	

TestAmerica Pensacola

Page 82 of 115

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Rad (Continued)

Client: Southern Company

Prep Batch: 397279 (Continued)

Project/Site: CCR - Plant Scherer

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-32	SGWC-15	Total/NA	Water	PrecSep-21	-
400-160240-33	FD-1	Total/NA	Water	PrecSep-21	
400-160240-34	PZ-44I	Total/NA	Water	PrecSep-21	
400-160240-35	PZ-25S	Total/NA	Water	PrecSep-21	
400-160240-36	EB-1	Total/NA	Water	PrecSep-21	
400-160240-37	FB-1	Total/NA	Water	PrecSep-21	
400-160240-50	EB-2	Total/NA	Water	PrecSep-21	
400-160240-51	PZ-41S	Total/NA	Water	PrecSep-21	
400-160240-52	PZ-17I	Total/NA	Water	PrecSep-21	
400-160240-53	PZ-43S	Total/NA	Water	PrecSep-21	
400-160240-54	PZ-40I	Total/NA	Water	PrecSep-21	
MB 160-397279/24-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-397279/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
400-160240-35 DU	PZ-25S	Total/NA	Water	PrecSep-21	
400-160240-52 DU	PZ-17I	Total/NA	Water	PrecSep-21	

Prep Batch: 397294

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-46	SGWC-20	Total/NA	Water	PrecSep_0	
400-160240-47	FD-2	Total/NA	Water	PrecSep_0	
400-160240-48	FB-2	Total/NA	Water	PrecSep_0	
400-160240-49	PZ-42I	Total/NA	Water	PrecSep_0	
MB 160-397294/23-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-397294/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
400-160832-A-8-B DU	Duplicate	Total/NA	Water	PrecSep_0	

Prep Batch: 397318

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-31	SGWC-11	Total/NA	Water	PrecSep_0	
400-160240-32	SGWC-15	Total/NA	Water	PrecSep_0	
400-160240-33	FD-1	Total/NA	Water	PrecSep_0	
400-160240-34	PZ-44I	Total/NA	Water	PrecSep_0	
400-160240-35	PZ-25S	Total/NA	Water	PrecSep_0	
400-160240-36	EB-1	Total/NA	Water	PrecSep_0	
400-160240-37	FB-1	Total/NA	Water	PrecSep_0	
400-160240-50	EB-2	Total/NA	Water	PrecSep_0	
400-160240-51	PZ-41S	Total/NA	Water	PrecSep_0	
400-160240-52	PZ-17I	Total/NA	Water	PrecSep_0	
400-160240-53	PZ-43S	Total/NA	Water	PrecSep_0	
400-160240-54	PZ-40I	Total/NA	Water	PrecSep_0	
MB 160-397318/24-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-397318/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
400-160240-35 DU	PZ-25S	Total/NA	Water	PrecSep_0	
400-160240-52 DU	PZ-17I	Total/NA	Water	PrecSep 0	

Prep Batch: 397461

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-42	PZ-36S	Total/NA	Water	PrecSep-21	
400-160240-43	PZ-25I	Total/NA	Water	PrecSep-21	
MB 160-397461/24-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-397461/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	

QC Association Summary

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Rad (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160930-A-6-B DU	Duplicate	Total/NA	Water	PrecSep-21	

Prep Batch: 397471

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-42	PZ-36S	Total/NA	Water	PrecSep_0	
400-160240-43	PZ-25I	Total/NA	Water	PrecSep_0	
MB 160-397471/24-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-397471/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
400-160930-A-6-D DU	Duplicate	Total/NA	Water	PrecSep_0	

Prep Batch: 398027

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-44	PZ-39S	Total/NA	Water	PrecSep-21	
400-160240-45	SGWC-18	Total/NA	Water	PrecSep-21	
MB 160-398027/11-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-398027/1-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
LCSD 160-398027/2-A	Lab Control Sample Dup	Total/NA	Water	PrecSep-21	

Prep Batch: 398030

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-44	PZ-39S	Total/NA	Water	PrecSep_0	
400-160240-45	SGWC-18	Total/NA	Water	PrecSep_0	
MB 160-398030/11-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-398030/1-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
LCSD 160-398030/2-A	Lab Control Sample Dup	Total/NA	Water	PrecSep_0	

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 400-418094/4

Matrix: Water

Analysis Batch: 418094

Client Sample ID: Method Blank Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89		1.0	0.89	mg/L			11/02/18 07:05	1
Fluoride	0.0951	J	0.20	0.082	mg/L			11/02/18 07:05	1
Sulfate	<0.70		1.0	0.70	mg/L			11/02/18 07:05	1

Lab Sample ID: LCS 400-418094/5

Matrix: Water

Analysis Batch: 418094

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	9.95		mg/L		100	90 - 110	
Fluoride	10.0	9.95		mg/L		99	90 - 110	
Sulfate	10.0	10.8		mg/L		108	90 - 110	

Lab Sample ID: LCSD 400-418094/6

Matrix: Water

Analysis Batch: 418094

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

110

80 - 120

Client Sample ID: Matrix Spike

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	10.0	9.95		mg/L		99	90 - 110	0	15
Fluoride	10.0	9.96		mg/L		100	90 - 110	0	15
Sulfate	10.0	11.0		mg/L		110	90 - 110	2	15
	Chloride Fluoride	AnalyteAddedChloride10.0Fluoride10.0	Analyte Added Result Chloride 10.0 9.95 Fluoride 10.0 9.96	AnalyteAddedResult 9.95Chloride10.09.95Fluoride10.09.96	Analyte Added Chloride Result 9.95 Unit mg/L mg/L Fluoride 10.0 9.95 mg/L	Analyte Added Chloride Result 10.0 Qualifier mg/L Unit mg/L D mg/L Fluoride 10.0 9.95 mg/L mg/L	Analyte Added Chloride Result 10.0 Qualifier 9.95 Unit mg/L mg/L D mg/L pg %Rec mg/L pg Fluoride 10.0 9.95 mg/L 100	Analyte Added Tesult of Chloride Qualifier of Chloride Unit of Chloride Description %Rec of Chloride Limits of Chloride Fluoride 10.0 9.96 mg/L 10.0 90 - 110	Analyte Added Chloride Result 10.0 Qualifier 10.0 Unit 10.0 D mg/L mg/L Pome of the position of t

Lab Sample ID: 400-161260-E-1 MS

Matrix: Water

Analysis Batch: 418094

,,	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	7.1		10.0	16.8		mg/L		97	80 - 120	
Fluoride	<0.082		10.0	9.67		mg/L		97	80 - 120	
Sulfate	9.6		10.0	20.0		mg/L		104	80 - 120	

Lab Sample ID: 400-161260-E-1 MSD

Sulfate

Matrix: Water									Prep Typ	pe: Tot	al/NA
Analysis Batch: 418094											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	7.1		10.0	17.2		mg/L		100	80 - 120	2	20
Fluoride	< 0.082		10.0	9.97		mg/L		100	80 - 120	3	20

20.7

10.0

Lab Sample ID: MB 400-418296/40

Matrix: Water

Analysis Batch: 418296

Client Sample ID: Method Blank Prep Type: Total/NA

mg/L

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89		1.0	0.89	mg/L			11/02/18 21:57	1
Fluoride	0.0932	J	0.20	0.082	mg/L			11/02/18 21:57	1
Sulfate	<0.70		1.0	0.70	mg/L			11/02/18 21:57	1

TestAmerica Pensacola

11/30/2018

Page 85 of 115

20

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 400-418296/46

Matrix: Water

Analysis Batch: 418296

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Chloride 10.0 9.88 mg/L 99 90 - 110 Fluoride 10.0 9.80 98 90 - 110 mg/L Sulfate 10.0 10.7 90 - 110 mg/L 107

Lab Sample ID: LCSD 400-418296/47

Matrix: Water

Analysis Batch: 418296

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Lab Control Sample

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Type: Total/NA

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	10.0	9.86		mg/L		99	90 - 110	0	15
Fluoride	10.0	9.87		mg/L		99	90 - 110	1	15
Sulfate	10.0	10.7		mg/L		107	90 - 110	0	15

Lab Sample ID: 400-161260-E-3 MS

Matrix: Water

Analysis Batch: 418296

Alialysis Datell. Tio230										
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	2.9		10.0	12.9		mg/L	_	101	80 - 120	
Fluoride	<0.082		10.0	10.1		mg/L		101	80 - 120	
Sulfate	<0.70		10.0	11.3		mg/L		113	80 - 120	

Lab Sample ID: 400-161260-E-3 MSD

Matrix: Water

Analysis Batch: 418296

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	2.9		10.0	12.8		mg/L		100	80 - 120	1	20
Fluoride	<0.082		10.0	10.1		mg/L		101	80 - 120	0	20
Sulfate	< 0.70		10.0	11.2		mg/L		112	80 - 120	1	20

Matrix: Water

Analysis Batch: 418361

Lab Sample ID: MB 400-418361/4 **Client Sample ID: Method Blank Prep Type: Total/NA**

	1410	1410							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89		1.0	0.89	mg/L			11/05/18 12:03	1
Fluoride	<0.082		0.20	0.082	mg/L			11/05/18 12:03	1
Sulfate	< 0.70		1.0	0.70	mg/L			11/05/18 12:03	1

MD MD

Lab Sample ID: LCS 400-418361/5

Matrix: Water

Analysis Batch: 418361

Analysis Buton, 410001								
-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	9.93		mg/L		99	90 - 110	
Fluoride	10.0	9.88		mg/L		99	90 - 110	
Sulfate	10.0	10.7		mg/L		107	90 - 110	

TestAmerica Pensacola

Prep Type: Total/NA

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Prep Type: Total/NA

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCSD 400-418361/6

Matrix: Water

Analysis Batch: 418361

Client Sample ID: Lab Control Sample Dup **Prep Type: Total/NA**

Spike LCSD LCSD %Rec. RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 10.0 2 Chloride 9.76 mg/L 98 90 - 110 15 Fluoride 10.0 10.2 102 90 - 110 15 mg/L 3 Sulfate 10.0 10.6 106 90 - 110 mg/L 0 15

Lab Sample ID: 400-161340-H-3 MS **Client Sample ID: Matrix Spike**

Matrix: Water

Analysis Batch: 418361

Sample Sample Spike MS MS %Rec. Result Qualifier Result Qualifier Analyte Added D %Rec Limits Unit Chloride 100 50.0 150 mg/L 95 80 - 120 Fluoride 50.0 0.45 J 53.9 mg/L 107 80 - 120 Sulfate 140 50.0 190 mg/L 80 - 120 104

Lab Sample ID: 400-161340-H-3 MSD **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 418361

Sample Sample MSD MSD %Rec. **RPD** Spike **Result Qualifier** Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Chloride 100 50.0 152 mg/L 99 80 - 120 20 0.45 J Fluoride 50.0 53.9 mg/L 107 80 - 120 n 20 Sulfate 50.0 193 mg/L 140 111 80 - 120 2 20

Lab Sample ID: MB 400-418474/4

Matrix: Water

Analysis Batch: 418474

Client Sample ID: Method Blank Prep Type: Total/NA

•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89		1.0	0.89	mg/L			11/06/18 04:28	1
Fluoride	<0.082		0.20	0.082	mg/L			11/06/18 04:28	1
Sulfate	<0.70		1.0	0.70	mg/L			11/06/18 04:28	1

Lab Sample ID: LCS 400-418474/5

Matrix: Water

Analysis Batch: 418474

Analysis Buton: 410414								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	10.0	9.87	-	mg/L		99	90 - 110	
Fluoride	10.0	10.0		mg/L		100	90 - 110	
Sulfate	10.0	10.7		ma/L		107	90 - 110	

Lab Sample ID: LCSD 400-418474/6 Client Sample ID: Lab Control Sample Dup

Matrix: Water

Analysis Batch: 418474

7, C.C	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	10.0	9.85		mg/L		98	90 - 110	0	15
Fluoride	10.0	10.1		mg/L		101	90 - 110	1	15
Sulfate	10.0	10.5		mg/L		105	90 - 110	2	15

TestAmerica Pensacola

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 400-161490-V-1 MS

Matrix: Water

Analysis Batch: 418474

Client Sample ID: Matrix Spike

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	22		10.0	31.6		mg/L		92	80 - 120	
Fluoride	<0.082		10.0	10.2		mg/L		102	80 - 120	
Sulfate	4.4		10.0	15.9		mg/L		115	80 - 120	

Lab Sample ID: 400-161490-V-1 MSD

Matrix: Water

Analysis Batch: 418474

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

_	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	22		10.0	31.7		mg/L		93	80 - 120	0	20
Fluoride	<0.082		10.0	10.3		mg/L		103	80 - 120	1	20
Sulfate	4.4		10.0	16.3		mg/L		118	80 - 120	2	20

Lab Sample ID: 400-160240-35 DU

Matrix: Water

Analysis Batch: 418474

Allalyolo Batolli Tioti T								
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Chloride	4.7		4.68		mg/L		 1	20
Fluoride	< 0.082		< 0.082		ma/L		NC	20

Lab Sample ID: MB 400-418589/37

Matrix: Water

Analysis Batch: 418589

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Client Sample ID: PZ-25S

Prep Type: Total/NA

Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<0.89	1.0	0.89	mg/L			11/06/18 18:13	1
Fluoride	<0.082	0.20	0.082	mg/L			11/06/18 18:13	1
Sulfate	< 0.70	1.0	0.70	mg/L			11/06/18 18:13	1

MB MB

Lab Sample ID: LCS 400-418589/38

Matrix: Water

Analysis Ratch: 418589

Analysis Batch. 410303	Spike	LCS	LCS		%Rec.	
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
Chloride	10.0	9.71	mg/L	97	90 - 110	
Fluoride	10.0	9.86	mg/L	99	90 - 110	
Sulfate	10.0	10.6	ma/l	106	90 - 110	

Lab Sample ID: LCSD 400-418589/39

Matrix: Water

Analysis Batch: 418589

Analysis Baton, 410000									
•	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	10.0	9.70		mg/L		97	90 - 110	0	15
Fluoride	10.0	10.0		mg/L		100	90 - 110	2	15
Sulfate	10.0	10.6		mg/L		106	90 - 110	0	15

Page 88 of 115

TestAmerica Job ID: 400-160240-2 SDG: Ash Pond

Method: 300.0 - Anions, Ion Chromatography (Continued)

MB MB Result Qualifier

<0.89

<0.082

< 0.70

Lab Sample ID: 400-161634-H-1 MS

Matrix: Water

Analysis Batch: 418589

Client Sample ID: Matrix Spike

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	1500		1000	2420		mg/L		90	80 - 120		_
Fluoride	<8.2		1000	968		mg/L		97	80 - 120		
Sulfate	<70		1000	1050		mg/L		105	80 - 120		

Lab Sample ID: 400-161634-H-1 MSD

Matrix: Water

Analysis Batch: 418589

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Prepared

Client Sample ID: Lab Control Sample Dup

•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	1500		1000	2450		mg/L		93	80 - 120	1	20
Fluoride	<8.2		1000	989		mg/L		99	80 - 120	2	20
Sulfate	<70		1000	1050		mg/L		105	80 - 120	0	20

Lab Sample ID: MB 400-418663/22

Matrix: Water

Analyte

Chloride

Fluoride

Sulfate

Analysis Batch: 418663

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

11/07/18 12:06

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Dil Fac 11/07/18 12:06 11/07/18 12:06

Analysis Batch: 418663

Lab Sample ID: LCS 400-418663/23	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total/NA

RL

1.0

0.20

1.0

MDL Unit

0.89 mg/L

0.082 mg/L

0.70 mg/L

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 10.0	9.73		mg/L		97	90 - 110	
Fluoride	10.0	9.83		mg/L		98	90 - 110	
Sulfate	10.0	10.6		mg/L		106	90 - 110	

Lab Sample ID: LCSD 400-418663/24

Matrix: Water

Analysis Batch: 418663

7	Spike	LCSD	LCSD				%Rec.		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	10.0	9.74		mg/L		97	90 - 110	0	15	
Fluoride	10.0	10.0		mg/L		100	90 - 110	2	15	
Sulfate	10.0	10.5		mg/L		105	90 - 110	1	15	

Lab Sample ID: 660-90567-E-1 MS

Matrix: Water

Analysis Batch: 418663

Alialysis Datell. +10005										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	12		10.0	23.4		mg/L		116	80 - 120	
Fluoride	0.77	F1	10.0	13.1	F1	mg/L		123	80 - 120	
Sulfate	220	E	10.0	238	E 4	mg/L		159	80 - 120	

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 660-90567-E-1 MSD

Matrix: Water

Analysis Batch: 418663

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	12		10.0	21.3		mg/L		96	80 - 120	9	20
Fluoride	0.77	F1	10.0	11.1		mg/L		103	80 - 120	17	20
Sulfate	220	E	10.0	236	E 4	mg/L		142	80 - 120	1	20

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 400-418952/1-A ^5

Client Sample ID: Method Blank Prep Type: Total Recoverable

Matrix: Water Analysis Batch: 419210 Prep Batch: 418952

Analysis Batch: 419210	МВ	МВ						Prep Batch:	418952
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 15:18	5
Arsenic, Dissolved	<0.00046		0.0013	0.00046	mg/L		11/09/18 11:00	11/09/18 15:18	5
Barium	< 0.00049		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 15:18	5
Barium, Dissolved	<0.00049		0.0025	0.00049	mg/L		11/09/18 11:00	11/09/18 15:18	5
Beryllium	<0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 15:18	5
Beryllium, Dissolved	< 0.00034		0.0025	0.00034	mg/L		11/09/18 11:00	11/09/18 15:18	5
Boron	<0.021		0.050	0.021	mg/L		11/09/18 11:00	11/09/18 15:18	5
Iron, Dissolved	< 0.053		0.13	0.053	mg/L		11/09/18 11:00	11/09/18 15:18	5
Calcium	<0.13		0.25	0.13	mg/L		11/09/18 11:00	11/09/18 15:18	5
Chromium	<0.0011		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 15:18	5
Chromium, Dissolved	< 0.0011		0.0025	0.0011	mg/L		11/09/18 11:00	11/09/18 15:18	5
Cobalt	<0.00040		0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 15:18	5
Cobalt, Dissolved	<0.00040		0.0025	0.00040	mg/L		11/09/18 11:00	11/09/18 15:18	5
Lead	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 15:18	5
Lead, Dissolved	<0.00035		0.0013	0.00035	mg/L		11/09/18 11:00	11/09/18 15:18	5
Lithium	<0.0011		0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 15:18	5
Lithium, Dissolved	<0.0011		0.0050	0.0011	mg/L		11/09/18 11:00	11/09/18 15:18	5
Selenium	<0.00024		0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 15:18	5
Selenium, Dissolved	<0.00024		0.0013	0.00024	mg/L		11/09/18 11:00	11/09/18 15:18	5
Thallium	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 15:18	5
Thallium, Dissolved	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:00	11/09/18 15:18	5
Sodium	<0.17		0.25	0.17	mg/L		11/09/18 11:00	11/09/18 15:18	5
Potassium	<0.11		0.25	0.11	mg/L		11/09/18 11:00	11/09/18 15:18	5
Magnesium	< 0.032		0.13	0.032	mg/L		11/09/18 11:00	11/09/18 15:18	5

Lab Sample ID: LCS 400-418952/2-A

Matrix: Water

Analysis Batch: 419210

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 418952

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	0.0500	0.0484		mg/L		97	80 - 120	
Arsenic, Dissolved	0.0500	0.0484		mg/L		97	80 - 120	
Barium	0.0500	0.0484		mg/L		97	80 - 120	
Barium, Dissolved	0.0500	0.0484		mg/L		97	80 - 120	
Beryllium	0.0500	0.0520		mg/L		104	80 - 120	
Beryllium, Dissolved	0.0500	0.0520		mg/L		104	80 - 120	
Boron	0.100	0.102		mg/L		102	80 - 120	

TestAmerica Pensacola

Page 90 of 115

TestAmerica Job ID: 400-160240-2

Client: Southern Company Project/Site: CCR - Plant Scherer

SDG: Ash Pond

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 400-418952/2-A Matrix: Water				Client Sample ID: Lab Control Samp Prep Type: Total Recoverab					
Analysis Batch: 419210	.					Prep Batch: 418952			
	Spike		LCS			%Rec.			
Analyte	Added		Qualifier	Unit	D %Rec	Limits			
Iron, Dissolved	5.00	4.87		mg/L	97	80 - 120			
Calcium	5.00	4.91		mg/L	98	80 - 120			
Chromium	0.0500	0.0471		mg/L	94	80 - 120			
Chromium, Dissolved	0.0500	0.0471		mg/L	94	80 - 120			
Cobalt	0.0500	0.0493		mg/L	99	80 - 120			
Cobalt, Dissolved	0.0500	0.0493		mg/L	99	80 - 120			
Lead	0.0500	0.0500		mg/L	100	80 - 120			
Lead, Dissolved	0.0500	0.0500		mg/L	100	80 - 120			
Lithium	0.0500	0.0522		mg/L	104	80 - 120			
Lithium, Dissolved	0.0500	0.0522		mg/L	104	80 - 120			
Selenium	0.0500	0.0473		mg/L	95	80 - 120			
Selenium, Dissolved	0.0500	0.0473		mg/L	95	80 - 120			
Thallium	0.0100	0.00975		mg/L	98	80 - 120			
Thallium, Dissolved	0.0100	0.00975		mg/L	98	80 - 120			
Sodium	5.00	4.99		mg/L	100	80 - 120			
Potassium	5.00	4.92		mg/L	98	80 - 120			
Magnesium	5.00	4.97		mg/L	99	80 - 120			

Lab Sample ID: 400-160240-31 MS

Matrix: Water

Client Sample ID: SGWC-11
Prep Type: Total Recoverable
Prep Batch: 418952

Analysis Batch: 419210	Sample	Sample	Spike	MS	MS				Prep Batch: 418952 %Rec.
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
Arsenic	<0.00046		0.0500	0.0484		mg/L		97	75 - 125
Arsenic, Dissolved	<0.00046		0.0500	0.0484		mg/L		97	75 - 125
Barium	0.037		0.0500	0.0850		mg/L		96	75 - 125
Barium, Dissolved	0.037		0.0500	0.0850		mg/L		96	75 - 125
Beryllium	<0.00034		0.0500	0.0513		mg/L		103	75 - 125
Beryllium, Dissolved	<0.00034		0.0500	0.0513		mg/L		103	75 - 125
Boron	0.35		0.100	0.447		mg/L		97	75 - 125
Iron, Dissolved	1.1		5.00	5.97		mg/L		98	75 - 125
Calcium	1.8		5.00	6.67		mg/L		97	75 - 125
Chromium	<0.0011		0.0500	0.0471		mg/L		94	75 - 125
Chromium, Dissolved	<0.0011		0.0500	0.0471		mg/L		94	75 - 125
Cobalt	0.023		0.0500	0.0719		mg/L		99	75 - 125
Cobalt, Dissolved	0.023		0.0500	0.0719		mg/L		99	75 - 125
Lead	<0.00035		0.0500	0.0496		mg/L		99	75 - 125
Lead, Dissolved	<0.00035		0.0500	0.0496		mg/L		99	75 - 125
Lithium	0.0031	J	0.0500	0.0564		mg/L		107	75 - 125
Lithium, Dissolved	0.0031	J	0.0500	0.0564		mg/L		107	75 - 125
Selenium	0.00046	J	0.0500	0.0490		mg/L		97	75 - 125
Selenium, Dissolved	0.00046	J	0.0500	0.0490		mg/L		97	75 - 125
Thallium	<0.000085		0.0100	0.00970		mg/L		97	75 - 125
Thallium, Dissolved	<0.000085		0.0100	0.00970		mg/L		97	75 - 125
Sodium	7.7		5.00	12.5		mg/L		96	75 - 125
Potassium	0.30		5.00	5.20		mg/L		98	75 - 125
Magnesium	1.5		5.00	6.36		mg/L		98	75 - 125

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 400-160240-31 MSD

Matrix: Water

Analysis Batch: 419210

Client: Southern Company

Project/Site: CCR - Plant Scherer

Client Sample ID: SGWC-11 **Prep Type: Total Recoverable Prep Batch: 418952**

Analysis Batch: 419210	Sample	Sample	Spike	MSD	MSD				%Rec.	itcn: 41	RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	<0.00046		0.0500	0.0504		mg/L		101	75 - 125	4	20
Arsenic, Dissolved	<0.00046		0.0500	0.0504		mg/L		101	75 - 125	4	20
Barium	0.037		0.0500	0.0884		mg/L		103	75 - 125	4	20
Barium, Dissolved	0.037		0.0500	0.0884		mg/L		103	75 - 125	4	20
Beryllium	<0.00034		0.0500	0.0529		mg/L		106	75 - 125	3	20
Beryllium, Dissolved	<0.00034		0.0500	0.0529		mg/L		106	75 - 125	3	20
Boron	0.35		0.100	0.467		mg/L		117	75 - 125	4	20
Iron, Dissolved	1.1		5.00	6.17		mg/L		102	75 - 125	3	20
Calcium	1.8		5.00	6.97		mg/L		103	75 - 125	4	20
Chromium	<0.0011		0.0500	0.0492		mg/L		98	75 - 125	4	20
Chromium, Dissolved	<0.0011		0.0500	0.0492		mg/L		98	75 - 125	4	20
Cobalt	0.023		0.0500	0.0751		mg/L		105	75 - 125	4	20
Cobalt, Dissolved	0.023		0.0500	0.0751		mg/L		105	75 - 125	4	20
Lead	<0.00035		0.0500	0.0513		mg/L		103	75 - 125	3	20
Lead, Dissolved	<0.00035		0.0500	0.0513		mg/L		103	75 - 125	3	20
Lithium	0.0031	J	0.0500	0.0582		mg/L		110	75 - 125	3	20
Lithium, Dissolved	0.0031	J	0.0500	0.0582		mg/L		110	75 - 125	3	20
Selenium	0.00046	J	0.0500	0.0503		mg/L		100	75 - 125	3	20
Selenium, Dissolved	0.00046	j	0.0500	0.0503		mg/L		100	75 - 125	3	20
Thallium	<0.000085		0.0100	0.00997		mg/L		100	75 - 125	3	20

0.0100

5.00

5.00

5.00

0.00997

13.1

5.46

6.67

mg/L

mg/L

mg/L

mg/L

Lab Sample ID: MB 400-418964/1-A ^5

<0.000085

7.7

0.30

1.5

MB MB

Matrix: Water

Thallium, Dissolved

Sodium

Potassium

Magnesium

Analysis Batch: 419210

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 418964

75 - 125

75 - 125

75 - 125

75 - 125

100

106

103

104

	IVID	IVID						
Analyte	Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046	0.0013	0.00046	mg/L		11/09/18 11:50	11/09/18 17:59	5
Arsenic, Dissolved	<0.00046	0.0013	0.00046	mg/L		11/09/18 11:50	11/09/18 17:59	5
Barium	< 0.00049	0.0025	0.00049	mg/L		11/09/18 11:50	11/09/18 17:59	5
Barium, Dissolved	<0.00049	0.0025	0.00049	mg/L		11/09/18 11:50	11/09/18 17:59	5
Beryllium	< 0.00034	0.0025	0.00034	mg/L		11/09/18 11:50	11/09/18 17:59	5
Beryllium, Dissolved	< 0.00034	0.0025	0.00034	mg/L		11/09/18 11:50	11/09/18 17:59	5
Boron	<0.021	0.050	0.021	mg/L		11/09/18 11:50	11/09/18 17:59	5
Iron, Dissolved	< 0.053	0.13	0.053	mg/L		11/09/18 11:50	11/09/18 17:59	5
Calcium	<0.13	0.25	0.13	mg/L		11/09/18 11:50	11/09/18 17:59	5
Chromium	<0.0011	0.0025	0.0011	mg/L		11/09/18 11:50	11/09/18 17:59	5
Chromium, Dissolved	<0.0011	0.0025	0.0011	mg/L		11/09/18 11:50	11/09/18 17:59	5
Cobalt	<0.00040	0.0025	0.00040	mg/L		11/09/18 11:50	11/09/18 17:59	5
Cobalt, Dissolved	<0.00040	0.0025	0.00040	mg/L		11/09/18 11:50	11/09/18 17:59	5
Lead	< 0.00035	0.0013	0.00035	mg/L		11/09/18 11:50	11/09/18 17:59	5
Lead, Dissolved	< 0.00035	0.0013	0.00035	mg/L		11/09/18 11:50	11/09/18 17:59	5
Lithium	0.00119	J 0.0050	0.0011	mg/L		11/09/18 11:50	11/09/18 17:59	5
Lithium, Dissolved	0.00119	J 0.0050	0.0011	mg/L		11/09/18 11:50	11/09/18 17:59	5
Selenium	< 0.00024	0.0013	0.00024	mg/L		11/09/18 11:50	11/09/18 17:59	5

TestAmerica Pensacola

11/30/2018

Page 92 of 115

20

20

20

20

TestAmerica Job ID: 400-160240-2 SDG: Ash Pond

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: MB 400-418964/1-A ^5

Matrix: Water

Analysis Batch: 419210

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 418964

	IVID IV	VID							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Selenium, Dissolved	<0.00024		0.0013	0.00024	mg/L		11/09/18 11:50	11/09/18 17:59	5
Thallium	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:50	11/09/18 17:59	5
Thallium, Dissolved	<0.000085		0.00050	0.000085	mg/L		11/09/18 11:50	11/09/18 17:59	5
Sodium	<0.17		0.25	0.17	mg/L		11/09/18 11:50	11/09/18 17:59	5
Potassium	<0.11		0.25	0.11	mg/L		11/09/18 11:50	11/09/18 17:59	5
Magnesium	< 0.032		0.13	0.032	mg/L		11/09/18 11:50	11/09/18 17:59	5

Lab Sample ID: LCS 400-418964/2-A

Matrix: Water

Analysis Batch: 419210

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 418964

Alialysis Batch. 419210	Spike	LCS L	cs		%Rec.
Analyte	Added	Result Q	ualifier Unit	D %Rec	Limits
Arsenic	0.0500	0.0495	mg/L	99	80 - 120
Arsenic, Dissolved	0.0500	0.0495	mg/L	99	80 - 120
Barium	0.0500	0.0491	mg/L	98	80 - 120
Barium, Dissolved	0.0500	0.0491	mg/L	98	80 - 120
Beryllium	0.0500	0.0533	mg/L	107	80 - 120
Beryllium, Dissolved	0.0500	0.0533	mg/L	107	80 - 120
Boron	0.100	0.105	mg/L	105	80 - 120
Iron, Dissolved	5.00	4.98	mg/L	100	80 - 120
Calcium	5.00	5.07	mg/L	101	80 - 120
Chromium	0.0500	0.0485	mg/L	97	80 - 120
Chromium, Dissolved	0.0500	0.0485	mg/L	97	80 - 120
Cobalt	0.0500	0.0506	mg/L	101	80 - 120
Cobalt, Dissolved	0.0500	0.0506	mg/L	101	80 - 120
Lead	0.0500	0.0519	mg/L	104	80 - 120
Lead, Dissolved	0.0500	0.0519	mg/L	104	80 - 120
Lithium	0.0500	0.0524	mg/L	105	80 - 120
Lithium, Dissolved	0.0500	0.0524	mg/L	105	80 - 120
Selenium	0.0500	0.0487	mg/L	97	80 - 120
Selenium, Dissolved	0.0500	0.0487	mg/L	97	80 - 120
Thallium	0.0100	0.0100	mg/L	100	80 - 120
Thallium, Dissolved	0.0100	0.0100	mg/L	100	80 - 120
Sodium	5.00	5.13	mg/L	103	80 - 120
Potassium	5.00	5.07	mg/L	101	80 - 120
Magnesium	5.00	5.11	mg/L	102	80 - 120
					

Lab Sample ID: 400-160240-46 MS

Matrix: Water

Analysis Batch: 419210

Client Sample ID: SGWC-20 Prep Type: Total Recoverable Prep Batch: 418964

	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	<0.00046		0.0500	0.0509		mg/L		102	75 - 125
Arsenic, Dissolved	<0.00046		0.0500	0.0509		mg/L		102	75 - 125
Barium	0.027		0.0500	0.0755		mg/L		97	75 - 125
Barium, Dissolved	0.027		0.0500	0.0755		mg/L		97	75 - 125
Beryllium	0.00079	J	0.0500	0.0546		mg/L		108	75 - 125
Beryllium, Dissolved	0.00079	J	0.0500	0.0546		mg/L		108	75 ₋ 125
Boron	2.3	Ē	0.100	2.23	E 4	mg/L		-52	75 ₋ 125

TestAmerica Pensacola

Page 93 of 115

11/30/2018

TestAmerica Job ID: 400-160240-2 SDG: Ash Pond

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 400-160240-46 MS

Matrix: Water

Client: Southern Company

Project/Site: CCR - Plant Scherer

Client Sample ID: SGWC-20 Prep Type: Total Recoverable

Analysis Batch: 419210	Samnlo	Sample	Spike	MS	MS				Prep Batch: 418964 %Rec.
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
Iron, Dissolved	<0.053		5.00	5.09		mg/L	— <u> </u>	102	75 - 125
Calcium	12		5.00	16.9		mg/L		99	75 - 125
Chromium	<0.0011		0.0500	0.0493		mg/L		99	75 - 125
Chromium, Dissolved	< 0.0011		0.0500	0.0493		mg/L		99	75 - 125
Cobalt	0.16		0.0500	0.212		mg/L		96	75 - 125
Cobalt, Dissolved	0.16		0.0500	0.212		mg/L		96	75 - 125
Lead	< 0.00035		0.0500	0.0510		mg/L		102	75 - 125
Lead, Dissolved	<0.00035		0.0500	0.0510		mg/L		102	75 - 125
Lithium	0.0062	В	0.0500	0.0615		mg/L		110	75 - 125
Lithium, Dissolved	0.0062	В	0.0500	0.0615		mg/L		110	75 - 125
Selenium	0.00049	J	0.0500	0.0503		mg/L		100	75 - 125
Selenium, Dissolved	0.00049	J	0.0500	0.0503		mg/L		100	75 - 125
Thallium	0.00018	J	0.0100	0.00997		mg/L		98	75 - 125
Thallium, Dissolved	0.00018	J	0.0100	0.00997		mg/L		98	75 - 125
Sodium	54		5.00	58.6	4	mg/L		83	75 - 125
Potassium	3.4		5.00	8.36		mg/L		100	75 - 125
Magnesium	17		5.00	22.1		mg/L		95	75 - 125

Lab Sample ID: 400-160240-46 MSD

Matrix: Water

Client Sample ID: SGWC-20 Prep Type: Total Recoverable

tch: 4	18964 RPD
RPD	Limit
2	20
2	20
4	20
4	20
1	20
1	20
1	20
1	20
2	20
1	20
1	20
1	20
1	20
2	20
2	20
1	20
1	20
3	20
3	20
4	20
4	20
0	20
1	20
1	20
	1 1 1 2 2 1 1 3 3 4 4 0

TestAmerica Pensacola

Page 94 of 115

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Method: 6020 - Metals (ICP/MS) (Continued)

MR MR

Lab Sample ID: MB 400-420195/1-A ^5

Matrix: Water

Analysis Batch: 420409

Client Sample ID: Method Blank Prep Type: Total Recoverable Prep Batch: 420195

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic, Dissolved	<0.00046		0.0013	0.00046	mg/L		11/20/18 08:56	11/20/18 14:57	5
Barium, Dissolved	<0.00049		0.0025	0.00049	mg/L		11/20/18 08:56	11/20/18 14:57	5
Beryllium, Dissolved	<0.00034		0.0025	0.00034	mg/L		11/20/18 08:56	11/20/18 14:57	5
Iron, Dissolved	<0.053		0.13	0.053	mg/L		11/20/18 08:56	11/20/18 14:57	5
Chromium, Dissolved	<0.0011		0.0025	0.0011	mg/L		11/20/18 08:56	11/20/18 14:57	5
Cobalt, Dissolved	<0.00040		0.0025	0.00040	mg/L		11/20/18 08:56	11/20/18 14:57	5
Lead, Dissolved	<0.00035		0.0013	0.00035	mg/L		11/20/18 08:56	11/20/18 14:57	5
Lithium, Dissolved	<0.0011		0.0050	0.0011	mg/L		11/20/18 08:56	11/20/18 14:57	5
Selenium, Dissolved	<0.00024		0.0013	0.00024	mg/L		11/20/18 08:56	11/20/18 14:57	5
Thallium, Dissolved	<0.000085		0.00050	0.000085	mg/L		11/20/18 08:56	11/20/18 14:57	5

Lab Sample ID: LCS 400-420195/2-A

Matrix: Water

Analysis Batch: 420409

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

Prep Batch: 420195

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic, Dissolved	0.0500	0.0504		mg/L		101	80 - 120	
Barium, Dissolved	0.0500	0.0532		mg/L		106	80 - 120	
Beryllium, Dissolved	0.0500	0.0514		mg/L		103	80 - 120	
Iron, Dissolved	5.00	5.17		mg/L		103	80 - 120	
Chromium, Dissolved	0.0500	0.0523		mg/L		105	80 - 120	
Cobalt, Dissolved	0.0500	0.0536		mg/L		107	80 - 120	
Lead, Dissolved	0.0500	0.0533		mg/L		107	80 - 120	
Lithium, Dissolved	0.0500	0.0520		mg/L		104	80 - 120	
Selenium, Dissolved	0.0500	0.0492		mg/L		98	80 - 120	
Thallium, Dissolved	0.0100	0.00967		mg/L		97	80 - 120	

Lab Sample ID: 400-160141-G-3-D MS ^5

Matrix: Water

Analysis Batch: 420409

Client Sample ID: Matrix Spike **Prep Type: Total Recoverable Prep Batch: 420195**

Analysis Daten. 420403	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic, Dissolved	<0.00046	-	0.0500	0.0512	-	mg/L		102	75 - 125
Barium, Dissolved	0.069		0.0500	0.116		mg/L		96	75 - 125
Beryllium, Dissolved	< 0.00034		0.0500	0.0506		mg/L		101	75 - 125
Iron, Dissolved	0.27		5.00	5.39		mg/L		102	75 - 125
Chromium, Dissolved	<0.0011		0.0500	0.0503		mg/L		101	75 - 125
Cobalt, Dissolved	<0.00040		0.0500	0.0520		mg/L		104	75 - 125
Lead, Dissolved	<0.00035		0.0500	0.0521		mg/L		104	75 - 125
Lithium, Dissolved	<0.0011		0.0500	0.0514		mg/L		103	75 - 125
Selenium, Dissolved	0.00081	J	0.0500	0.0495		mg/L		97	75 - 125
Thallium, Dissolved	<0.000085		0.0100	0.00961		mg/L		96	75 ₋ 125

Lab Sample ID: 400-160141-G-3-E MSD ^5

Matrix: Water

Matrix: water Analysis Batch: 420409							P	rep ıy	pe: Total i Prep Ba		
•	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic, Dissolved	<0.00046		0.0500	0.0506		mg/L		101	75 - 125	1	20

TestAmerica Pensacola

Client Sample ID: Matrix Spike Duplicate

Page 95 of 115

11/30/2018

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Method: 6020 - Metals (ICP/MS) (Continued)

Client: Southern Company

Project/Site: CCR - Plant Scherer

Lab Sample ID: 400-16014 Matrix: Water Analysis Batch: 420409	1-G-3-E MS	D ^5							latrix Spike Duplicate be: Total Recoverable Prep Batch: 420195			
7 maryolo Batom 420400	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Barium, Dissolved	0.069		0.0500	0.114		mg/L		91	75 - 125	2	20	
Beryllium, Dissolved	<0.00034		0.0500	0.0503		mg/L		101	75 - 125	1	20	
Iron, Dissolved	0.27		5.00	5.33		mg/L		101	75 - 125	1	20	
Chromium, Dissolved	<0.0011		0.0500	0.0501		mg/L		100	75 - 125	0	20	
Cobalt, Dissolved	<0.00040		0.0500	0.0519		mg/L		104	75 - 125	0	20	
Lead, Dissolved	<0.00035		0.0500	0.0527		mg/L		105	75 - 125	1	20	
Lithium, Dissolved	<0.0011		0.0500	0.0527		mg/L		105	75 - 125	3	20	
Selenium, Dissolved	0.00081	J	0.0500	0.0483		mg/L		95	75 - 125	3	20	
Thallium, Dissolved	<0.000085		0.0100	0.00940		mg/L		94	75 - 125	2	20	

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 400-418701/14-A Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA Prep Batch: 418701 Analysis Batch: 419038** MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0000845	J	0.00020	0.000070	mg/L		11/07/18 13:53	11/09/18 14:47	1
Mercury, Dissolved	0.0000845	J	0.00020	0.000070	mg/L		11/07/18 13:53	11/09/18 14:47	1

Lab Sample ID: LCS 400-418701/15-A Matrix: Water Analysis Batch: 419038	Spike	LCS	LCS	Clie	ent Sai	mple ID	Prep Type: Total/NA Prep Batch: 418701 %Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Mercury	0.00101	0.00103		mg/L		103	80 - 120
Mercury, Dissolved	0.00101	0.00103		mg/L		103	80 - 120

Lab Sample ID: 400-16139 Matrix: Water Analysis Batch: 419038					CI	ient Sa	Spike otal/NA 418701			
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.00014	J F1 B	0.00201	0.00153	F1	mg/L		69	80 - 120	
Mercury Dissolved	0.00014	IF1R	0.00201	0.00153	F1	ma/l		60	80 120	

Lab Sample ID: 400-161399 Matrix: Water Analysis Batch: 419038	5-A-3-C MS	D				Client	Samp	le ID: N	latrix Spil Prep Typ Prep Ba	e: Tot	al/NA
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	0.00014	J F1 B	0.00201	0.00149	F1	mg/L		67	80 - 120	3	20
Mercury, Dissolved	0.00014	JF1B	0.00201	0.00149	F1	mg/L		67	80 - 120	3	20

Mercury, Dissolved

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: MB 400-418848/14-A	Client Sample ID: Method Blank
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 419409	Prep Batch: 418848
MB MB	

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Mercury	<0.000070		0.00020	0.000070	mg/L			11/08/18 12:35	11/13/18 09:32	1
Mercury, Dissolved	<0.000070		0.00020	0.000070	mg/L		•	11/08/18 12:35	11/13/18 09:32	1

Lab Sample ID: LCS 400-418848/15-A Matrix: Water Analysis Batch: 419409				Clie	ent Sai	mple ID	: Lab Control Sa Prep Type: Tot Prep Batch: 4'	al/NA
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	0.00101	0.000957		mg/L		95	80 - 120	
Mercury, Dissolved	0.00101	0.000957		mg/L		95	80 - 120	

Lab Sample ID: 400-16024 Matrix: Water Analysis Batch: 419409		Comple	Smiles	MC			Clie	ient Sample ID: PZ-36 Prep Type: Total/N Prep Batch: 41884 %Rec.		
Analyte	•	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	%Rec. Limits	
Mercury	<0.000070	<u> </u>	0.00201	0.00190		mg/L		94	80 - 120	
Mercury, Dissolved	<0.000070		0.00201	0.00190		mg/L		94	80 - 120	

Lab Sample ID: 400-160240-42 MSD									nt Sample	e ID: P	Z-36S
Matrix: Water									Prep Ty	e: Tot	al/NA
Analysis Batch: 419409									Prep Ba	itch: 4	18848
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	<0.000070		0.00201	0.00184		mg/L		92	80 - 120	3	20
Mercury Dissolved	<0.000070		0.00201	0.00184		ma/l		02	80 120	3	20

Lab Sample ID: MB 400-41893	ab Sample ID: MB 400-418938/14-A							Client Sample ID: Method Blan							
Matrix: Water								Prep Type: To	tal/NA						
Analysis Batch: 419267								Prep Batch:	418938						
-	MB	MB													
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac						
Mercury, Dissolved	<0.000070		0.00020	0.000070	mg/L		11/09/18 09:02	11/12/18 14:56	1						

Lab Sample ID: LCS 400-418938/15-A				Clie	nt Sar	nple ID	: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 419267							Prep Batch: 418938
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits

0.00101

0.000899

mg/L

Lab Sample ID: 400-160240)-47 MS							C	lient Sam	ple ID: FD-2
Matrix: Water									Prep Type	e: Dissolved
Analysis Batch: 419267									Prep Ba	atch: 418938
-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury, Dissolved	0.00012	J	0.00201	0.00191		mg/L		89	80 - 120	

80 - 120

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: 400-160240- Matrix: Water	47 MSD								lient Sam Prep Type	•	
Analysis Batch: 419267	Sample	Sample	Spike	MSD	MSD				Prep Ba %Rec.		
Analyte Mercury, Dissolved	Result 0.00012	Qualifier J	Added 0.00201	Result 0.00185	Qualifier	Unit mg/L	D	%Rec 86	Limits 80 - 120	RPD 3	Limit 20

Method: SM 2320B - Alkalinity

Lab Sample ID: MB 400-417140/4 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 417140

	MR MR							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	<0.98	1.0	0.98	mg/L			10/26/18 12:46	1
Bicarbonate Alkalinity as CaCO3	<0.98	1.0	0.98	mg/L			10/26/18 12:46	1
Carbonate Alkalinity as CaCO3	<0.98	1.0	0.98	mg/L			10/26/18 12:46	1

Lab Sample ID: LCS 400-417140/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 417140

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity, Total	100	101		mg/L		101	80 - 120	

Lab Sample ID: 400-160645-A-4 DU **Client Sample ID: Duplicate** Prep Type: Total/NA **Matrix: Water**

Analysis Batch: 417140

_	Sample	Sample	DU	DU					RPD	
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit	
Alkalinity, Total	50		 50.9		mg/L			2	20	
Bicarbonate Alkalinity as CaCO3	50		50.9		mg/L			2	20	
Carbonate Alkalinity as CaCO3	<0.98		<0.98		mg/L			NC	20	

Lab Sample ID: MB 400-417274/4 Client Sample ID: Method Blank Prep Type: Total/NA **Matrix: Water**

Analysis Batch: 417274

	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Alkalinity, Total	<0.98		1.0	0.98	mg/L			10/28/18 08:21	1	
Bicarbonate Alkalinity as CaCO3	<0.98		1.0	0.98	mg/L			10/28/18 08:21	1	
Carbonate Alkalinity as CaCO3	< 0.98		1.0	0.98	ma/L			10/28/18 08:21	1	

Lab Sample ID: LCS 400-417274/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA Analysis Batch: 417274 Spike LCS LCS %Rec.

Added Result Qualifier Unit Analyte D %Rec Limits Alkalinity, Total 100 100 mg/L 100 80 - 120

TestAmerica Job ID: 400-160240-2

Client: Southern Company Project/Site: CCR - Plant Scherer

SDG: Ash Pond

Method: SM 2320B - Alkalinity (Continued)

Lab Sample ID: 400-160645-A-3 DU

Matrix: Water

Analysis Batch: 417274

Client Sample ID: Duplicate

Prep Type: Total/NA

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Alkalinity, Total	52		 40.1	F3	mg/L		 25	20
Bicarbonate Alkalinity as CaCO3	52		40.1	F3	mg/L		25	20
Carbonate Alkalinity as CaCO3	<0.98		<0.98		mg/L		NC	20

Lab Sample ID: 400-160944-C-1 DU

Matrix: Water

Analysis Batch: 417274

Client Sample ID: Duplicate Prep Type: Total/NA

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Alkalinity, Total	21		21.2		mg/L		 0.2	20
Bicarbonate Alkalinity as CaCO3	21		21.2		mg/L		0.2	20
Carbonate Alkalinity as CaCO3	<0.98		<0.98		mg/L		NC	20

Lab Sample ID: MB 400-417450/4

Matrix: Water

Analysis Batch: 417450

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Alkalinity, Total	<0.98		1.0	0.98	mg/L			10/29/18 12:37	1
Bicarbonate Alkalinity as CaCO3	<0.98		1.0	0.98	mg/L			10/29/18 12:37	1
Carbonate Alkalinity as CaCO3	<0.98		1.0	0.98	mg/L			10/29/18 12:37	1

Lab Sample ID: LCS 400-417450/5

Matrix: Water

Analysis Batch: 417450

7 mary 515 Batom 417455								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Alkalinity, Total		100		mg/L		100	80 - 120	

Analysis Batch: 417450

Lab Sample ID: 400-160240-51 DU	Client Sample ID: PZ-41S
Matrix: Water	Prep Type: Total/NA

	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Alkalinity, Total	39		40.5		mg/L			3	20
Bicarbonate Alkalinity as CaCO3	39		40.5		mg/L			3	20
Carbonate Alkalinity as CaCO3	<0.98		<0.98		mg/L			NC	20

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 400-416446/1

Matrix: Water

Analysis Batch: 416446

Client Sample ID: Method Blank	Ĺ
Prep Type: Total/NA	L.

	MB ME	3								
Analyte	Result Qu	ualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	<3.4		5.0	3.4	mg/L		_		10/22/18 14:36	1

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Prep Type: Total/NA

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCS 400-416446/2 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 416446

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits Total Dissolved Solids 293 328 mg/L 112 78 - 122

Lab Sample ID: 400-160240-32 DU Client Sample ID: SGWC-15

Matrix: Water

Analysis Batch: 416446

Sample Sample DU DU **RPD** Result Qualifier Result Qualifier Analyte **RPD** Limit Unit D Total Dissolved Solids 350 348 mg/L 0.6

Lab Sample ID: MB 400-416581/1 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 416581 MB MB

Result Qualifier RL **MDL** Unit Analyte Prepared Analyzed Dil Fac Total Dissolved Solids <3.4 5.0 3.4 mg/L 10/23/18 11:59

Lab Sample ID: LCS 400-416581/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 416581

LCS LCS Spike %Rec. Added Result Qualifier Unit %Rec Limits Total Dissolved Solids 293 276 mg/L 78 - 122

Lab Sample ID: 400-160738-A-4 DU **Client Sample ID: Duplicate Matrix: Water** Prep Type: Total/NA

Analysis Batch: 416581

DU DU RPD Sample Sample Analyte Result Qualifier Result Qualifier Unit RPD Limit Total Dissolved Solids 250 248 mg/L

Lab Sample ID: MB 400-416940/1 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 416940

MB MB Analyte Result Qualifier RL MDL Unit Dil Fac D Prepared Analyzed **Total Dissolved Solids** 5.0 10/25/18 12:27 3.4 mg/L <34

Lab Sample ID: LCS 400-416940/2 **Client Sample ID: Lab Control Sample**

Matrix: Water

Analysis Batch: 416940

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit %Rec **Total Dissolved Solids** 293 234 mg/L 80 78 - 122

Lab Sample ID: 400-160240-54 DU Client Sample ID: PZ-40I Prep Type: Total/NA

Matrix: Water

Analysis Batch: 416940

DU DU Sample Sample **RPD** Result Qualifier Result Qualifier RPD Limit Analyte Unit D Total Dissolved Solids 840 0.2 842 mg/L

TestAmerica Pensacola

Prep Type: Total/NA

TestAmerica Job ID: 400-160240-2 SDG: Ash Pond

Client: Southern Company Project/Site: CCR - Plant Scherer

Method: 9315 - Radium-226 (GFPC)

Lab Sample ID: MB 160-397276/23-A

Lab Sample ID: LCS 160-397276/1-A

Matrix: Water Analysis Batch: 401802

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 397276

			Count	i Otai						
	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.1769		0.0810	0.0826	1.00	0.0796	pCi/L	10/25/18 10:04	11/20/18 07:55	1

MB MB

Carrier %Yield Qualifier Limits Ba Carrier 94.1 40 - 110

10/25/18 10:04 11/20/18 07:55

Prepared

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 397276**

Dil Fac

Analyzed

				Total				•	
	Spike	LCS	LCS	Uncert.				%Rec.	
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	
Radium-226	11.4	12.62	-	1.31	1.00	0.127 pCi/L	111	68 - 137	

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 99.7 40 - 110

Lab Sample ID: 400-160832-A-8-A DU **Client Sample ID: Duplicate**

Matrix: Water

Matrix: Water

Analysis Batch: 401873

Analysis Batch: 401803

Prep Type: Total/NA

Prep Batch: 397276

					Total						
	Sample	Sample	DU	DU	Uncert.						RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit		RER	Limit
Radium-226	0.207		0.2120		0.0952	1.00	0.0985	pCi/L	 	0.03	1

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 95.0 40 - 110

Lab Sample ID: MB 160-397279/24-A **Client Sample ID: Method Blank**

Total

Count

40 - 110

Matrix: Water

Ba Carrier

Analysis Batch: 401873

Prep Type: Total/NA

10/26/18 08:34 11/20/18 07:43

Prep Batch: 397279

			Oddiit	. Otal						
	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.1764		0.0941	0.0955	1.00	0.115	pCi/L	10/26/18 08:34	11/20/18 07:43	1
	MB	МВ								
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac

Lab Sample ID: LCS 160-397279/1-A

97.3

Matrix: Water

Analysis Batch: 401802

Client Sample ID: Lab Control Sample Prep Type: Total/NA **Prep Batch: 397279**

			Total				•
	Spike	LCS LCS	Uncert.				%Rec.
Analyte	Added	Result Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits
Radium-226	11.4	10.06	1.06	1.00	0.0998 pCi/L	89	68 - 137

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Method: 9315 - Radium-226 (GFPC) (Continued)

Lab Sample ID: LCS 160-397279/1-A

Matrix: Water

Analysis Batch: 401802

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 40 - 110 979

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 397279

Lab Sample ID: 400-160240-35 DU

Matrix: Water

Analysis Batch: 401874

Client Sample ID: PZ-25S Prep Type: Total/NA

Prep Batch: 397279

Total

Sample Sample DU DU RER Uncert. Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit 0.143 Radium-226 0.1438 0.0776 1.00 0.0879 pCi/L 0.01

DU DU

%Yield Qualifier Carrier Ba Carrier 101

Lab Sample ID: 400-160240-52 DU

Client Sample ID: PZ-17I

Matrix: Water

Analysis Batch: 401874

Prep Type: Total/NA

Prep Batch: 397279

DU DU Uncert.

Count

Limits

40 - 110

RER Sample Sample Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-226 0.0789 0.08 0.144 0.1575 1.00 0.0813 pCi/L

Total

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 96.5 40 - 110

Lab Sample ID: MB 160-397461/24-A

Total

Matrix: Water

Analysis Batch: 401802

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 397461

	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.2816		0.127	0.129	1.00	0.136	pCi/L	10/26/18 10:06	11/20/18 05:38	1
	МВ	МВ								

Carrier **%Yield Qualifier** Limits Prepared Analyzed Dil Fac Ba Carrier 95.9 40 - 110 10/26/18 10:06 11/20/18 05:38

Lab Sample ID: LCS 160-397461/1-A **Client Sample ID: Lab Control Sample**

Total

Matrix: Water

Analysis Batch: 401803

Prep Type: Total/NA

Prep Batch: 397461

	Spike	LCS	LCS	Uncert.				%Rec.	
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	
Radium-226	15.1	14.30	-	1.52	1.00	0.155 pCi/L	94	68 - 137	

LCS LCS %Yield Qualifier

Carrier Limits 40 - 110 Ba Carrier 89.4

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Method: 9315 - Radium-226 (GFPC) (Continued)

Lab Sample ID: 400-160930-A-6-B DU

Matrix: Water

Analysis Batch: 401803

Client Sample ID: Duplicate

Prep Type: Total/NA

Prep Batch: 397461

;	Sample	Sample	DU	DU	Uncert.				RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC Unit	RER	Limit
Radium-226	0.229		0.3474		0.147	1.00	0.151 pCi/L	 0.42	1

Total

DU DU

Carrier %Yield Qualifier I imits Ba Carrier 97.1 40 - 110

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 398027

Lab Sample ID: MB 160-398027/11-A

Matrix: Water

Matrix: Water

Analysis Batch: 401803

			Count	i Otai					
	MB	MB	Uncert.	Uncert.					
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC Unit	Prepared	Analyzed	Dil Fac
Radium-226	0.2707		0.172	0.174	1.00	0.234 pCi/L	10/29/18 11:40	11/20/18 11:18	1

MB MB Carrier %Yield Qualifier Ba Carrier 95.9

Lab Sample ID: LCS 160-398027/1-A

Limits 40 - 110

10/29/18 11:40 11/20/18 11:18

Prepared

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 398027

Analyzed

Analysis Batch: 401803 Total

Spike LCS LCS

Uncert. %Rec. Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-226 22.7 21.18 2.22 1.00 0.203 pCi/L 93 68 - 137

LCS LCS

Carrier %Yield Qualifier Limits Ba Carrier 90.9 40 - 110

Lab Sample ID: LCSD 160-398027/2-A

Matrix: Water

Analysis Batch: 401803

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 398027

Total Spike LCSD LCSD Uncert. %Rec. **RER** Analyte Added $(2\sigma + / -)$ RL Result Qual **MDC** Unit %Rec Limits Limit RER Radium-226 22.7 22.04 2.32 1.00 0.216 pCi/L 97 68 - 137 0.19

LCSD LCSD

Carrier %Yield Qualifier Limits 90.6 40 - 110 Ba Carrier

TestAmerica Pensacola

Dil Fac

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Method: 9320 - Radium-228 (GFPC)

Lab Sample ID: MB 160-397294/23-A

Matrix: Water

Analysis Batch: 400703

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 397294

MB MB Uncert. Uncert. **Analyte** Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-228 0.1355 U 0.230 0.230 1.00 0.389 pCi/L 10/25/18 10:33 11/13/18 13:43

Total

Count

0.0000 U

MB MB %Yield Carrier Qualifier Limits Prepared Analyzed Dil Fac 40 - 110 10/25/18 10:33 11/13/18 13:43 Ba Carrier 94.1 Y Carrier 83.7 40 - 110 10/25/18 10:33 11/13/18 13:43

Lab Sample ID: LCS 160-397294/1-A

Matrix: Water

Analysis Batch: 400703

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 397294

Total **Spike** LCS LCS Uncert. %Rec. Analyte Added Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits Radium-228 9.22 9.166 1.08 1.00 0.399 pCi/L 99 56 - 140

LCS LCS Carrier %Yield Qualifier Limits Ba Carrier 99.7 40 - 110 Y Carrier 77.4 40 - 110

Lab Sample ID: 400-160832-A-8-B DU

Matrix: Water

Analyte

Radium-228

Analysis Batch: 400703

Client Sample ID: Duplicate Prep Type: Total/NA

Prep Batch: 397294

0.82

Total DU DU Sample Sample **RER** Uncert. **MDC** Unit Result Qual Result Qual $(2\sigma + / -)$ RL RER Limit 1.00

0.414 pCi/L

DU DU Carrier %Yield Qualifier Limits Ba Carrier 95.0 40 - 110 Y Carrier 81.5 40 - 110

0.413 U

Lab Sample ID: MB 160-397318/24-A

Matrix: Water

Analysis Batch: 400469

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 397318

Count Total MR MR Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-228 10/26/18 08:49 11/12/18 14:58 0.8277 0.403 0.410 1.00 0.586 pCi/L

0.231

ΜB MΒ Carrier Qualifier Limits Dil Fac %Yield Prepared Analyzed Ba Carrier 97.3 40 - 110 10/26/18 08:49 11/12/18 14:58 Y Carrier 56.4 40 - 110 10/26/18 08:49 11/12/18 14:58

TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCS 160-397318/1-A

Matrix: Water

Analyte

Radium-228

Analysis Batch: 400469

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 397318

Total Spike LCS LCS

Uncert. %Rec. Added Result Qual $(2\sigma + / -)$ RL MDC Unit %Rec Limits 9.22 8.223 0.987 1.00 0.386 pCi/L 89 56 - 140

LCS LCS

Carrier %Yield Qualifier I imits Ba Carrier 97.9 40 - 110 Y Carrier 89.3 40 - 110

Client Sample ID: PZ-25S

Lab Sample ID: 400-160240-35 DU **Matrix: Water** Prep Type: Total/NA

Prep Batch: 397318

Analysis Batch: 400469

Total Sample Sample DU DU Uncert. **RER** Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit RER Limit Radium-228 0.497 0.6104 0.299 1.00 0.430 pCi/L 0.19

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 101 40 - 110 Y Carrier 80.4 40 - 110

Lab Sample ID: 400-160240-52 DU

Matrix: Water

Analysis Batch: 400469

Client Sample ID: PZ-17I Prep Type: Total/NA

Prep Batch: 397318

Total DU DU **RER** Sample Sample Uncert. **MDC** Unit Analyte Result Qual Result Qual $(2\sigma + / -)$ RL RER Limit 0.2920 U Radium-228 0.738 0.325 1.00 0.531 pCi/L 0.56

DU DU

Carrier %Yield Qualifier Limits Ba Carrier 96.5 40 - 110 Y Carrier 79.3 40 - 110

Lab Sample ID: MB 160-397471/24-A

Matrix: Water

Analysis Batch: 400864

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 397471

Count Total MB MB Uncert. Uncert. Analyte Result Qualifier $(2\sigma + / -)$ $(2\sigma + / -)$ RL **MDC** Unit Prepared Analyzed Dil Fac Radium-228 10/26/18 10:46 11/14/18 16:14 0.3213 Ū 0.337 0.338 1.00 0.549 pCi/L

> ΜB MΒ

Carrier Qualifier Limits Dil Fac %Yield Prepared Analyzed Ba Carrier 95.9 40 - 110 10/26/18 10:46 11/14/18 16:14 Y Carrier 80.0 40 - 110 10/26/18 10:46 11/14/18 16:14

Client: Southern Company TestAmerica Job ID: 400-160240-2 Project/Site: CCR - Plant Scherer

SDG: Ash Pond

Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCS 160-397471/1-A	Client Sample ID: Lab Control Sample
Matrix: Water	Prep Type: Total/NA
Analysis Batch: 400864	Prep Batch: 397471

				rotai					
	Spike	LCS	LCS	Uncert.				%Rec.	
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC Unit	%Rec	Limits	
Radium-228	12.3	12.62		1.54	1.00	0.643 pCi/L	103	56 - 140	

	LCS	LCS	
Carrier	%Yield	Qualifier	Limits
Ba Carrier	89.4		40 - 110
Y Carrier	75.5		40 - 110

Lab Sample ID: 400-160930-A-6-D DU **Client Sample ID: Duplicate** Matrix: Water **Prep Type: Total/NA**

Prep Batch: 397471 Analysis Batch: 400864

					i otai						
	Sample	Sample	DU	DU	Uncert.						RER
Analyte	Result	Qual	Result	Qual	(2σ+/-)	RL	MDC	Unit		RER	Limit
Radium-228	0.0843	U	0.7933		0.402	1.00	0.584	pCi/L	 	0.95	1

	DU	DU	
Carrier	%Yield	Qualifier	Limits
Ba Carrier	97.1		40 - 110
Y Carrier	79.6		40 - 110

Lab Sample ID: MB 160-398030/11-A **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 400470 Prep Batch: 398030

			Count	IOLAI						
	MB	MB	Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Radium-228	0.3114	U	0.522	0.523	1.00	0.883	pCi/L	10/29/18 11:58	11/12/18 16:29	1
	МВ	МВ								
Carrier	%Yield	Qualifier	Limits					Prepared	Analyzed	Dil Fac

Ba Carrier 95.9 40 - 110 <u>10/29/18 11:58</u> <u>11/12/18 16:29</u> Y Carrier 40 - 110 10/29/18 11:58 11/12/18 16:29 74.0

Lab Sample ID: LCS 160-398030/1-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA** Analysis Batch: 400470 **Prep Batch: 398030**

				Total						
	Spike	LCS	LCS	Uncert.					%Rec.	
Analyte	Added	Result	Qual	(2σ+/-)	RL	MDC	Unit	%Rec	Limits	
Radium-228	18.4	19.82		2.34	1.00	0.710	pCi/L	107	56 - 140	

	LCS	LCS	
Carrier	%Yield	Qualifier	Limits
Ba Carrier	90.9		40 - 110
Y Carrier	77.0		40 - 110

QC Sample Results

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-2

SDG: Ash Pond

Method: 9320 - Radium-228 (GFPC) (Continued)

Lab Sample ID: LCSD 160-398030/2-A

Matrix: Water

Analysis Batch: 400470

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Prep Batch: 398030

Total

Spike LCSD LCSD Uncert. %Rec. **RER** Added **Analyte** Result Qual $(2\sigma + / -)$ RL **MDC** Unit %Rec Limits RER Limit Radium-228 18.4 19.28 2.31 1.00 0.844 pCi/L 105 0.12

LCSD LCSD

Carrier %Yield Qualifier Limits Ba Carrier 90.6 40 - 110 Y Carrier 77.8 40 - 110

0.640

0.882

Method: Ra226 Ra228 - Combined Radium-226 and Radium-228

Lab Sample ID: 400-160240-35 DU Client Sample ID: PZ-25S Prep Type: Total/NA

Matrix: Water

Analysis Batch: 402686

Total DU DU Sample Sample Uncert. Analyte Result Qual Result Qual $(2\sigma + / -)$ RL **MDC** Unit

0.7542

0.4495 U

Combined Radium 226 +

228

Lab Sample ID: 400-160240-52 DU Client Sample ID: PZ-17I Prep Type: Total/NA

0.309

0.334

5.00

5.00

0.430 pCi/L

0.531 pCi/L

Matrix: Water

Analysis Batch: 402686

Total Sample Sample DU DU Uncert. **RER** Analyte Result Qual $(2\sigma + / -)$ RL **MDC** Unit Result Qual RER Limit

Combined Radium 226 +

228

RER

Limit

RER

0.18

0.53

M - Hexane
N - None
O - AsNaCO2
P - Na2O4S
Q - Na2O5S
Q - Na2SC3
R - Na2SC3
S - H2SC4
T - TSP Dodecahydrate
U - Acetone
V - MCAA
W - ph 4-5
Z - other (specify) Return To Client Disposal By Lab Archive For Months
Special Instructions/QC Requirements: Equ Golder_Rad UDS and Equ Golder UDS Equis EDDs/Please Special Instructions/Note: O > S Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) COC No: 400-57303-24790 Page: 1 of 1 Preservation Codes 0) (9) G - Amchlor H - Ascorbic Acid C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH Extra Radium I - toe J - DI Water K - EDTA L - EDA Date/Time | It& Total Number of containers e m en 4 က m -_ -60 400-160240 COC Method of Shipment Carrier Tracking No(s) **Analysis Requested** 200 Cooler Temperature 1-10 and Other Re Lab PM:
Whitmire, Cheyenne R
E-Mail:
cheyenne.whitmire@testamericainc.com 105 Oissolved Fe(II)Fe(III) N DAID REZZEMBZZEM'REZZEM OZE6 '9ZZEM GLEG BH-A0747, 'AT, Se, Th, 7470A-Hg Received by: -00_ORGFM_28D-Fluoride, 2540C TDS, B, Ca, CL erform MS/MSD (Yes or No) z z (of to sett) elemble (Yes or No) z z z Preservation Code: Water Company Golder Company Company Radiological (C=comp, G=grab) Sample Type Ø O O Ø G Ø Q G O O Ø O 0750 04540 Sample Time 1515 1650 0935 1050 1345 1040 1330 1230 1500 1350 0920 ı Unknown TAT Requested (days): Due Date Requested: (0/18/17 Sample Date 10/17/18 10/17/18 Sampler: Ben Hodges 10/16/18 10/16/18 10/16/18 10/16/18 10/17/18 10/16/18 10/16/18 10/17/18 10/16/18 10/17/18 Project #: 40007041 SSOW#: Date/Time: ¥ Q Poison B Skin Imitant Deliverable Requested: I, II, III, IV, Other (specify) 8/10 Custody Seal No. B10185 Non-Hazard T Flammable Possible Hazard Identification JAbraham@southernco.com Address: 241 Ralph McGill Blvd SE Empty Kit Relinquished by: Custody Seals Intact: Δ Yes Δ No Client Information Sample Identification Southern Company Client Contact: Joju Abraham CCR - Scherer linguished by: Relinquished by: State, Zip: GA, 30308 SGWC-11 SGWC-15 SGWC-11 SGWC-15 Ash Pond PZ-25S PZ-25S PZ-36S Atfanta PZ-441 PZ-441

THE LEADER IN ENVIRONMENTAL TERTING **TestAmerico**

Chain of Custody Record

Phone (850) 474-1001 Fax (850) 478-2671

Pensacola, FL 32514 3355 McLemore Drive

TestAmerica Pensacola

ë

EB-1 뮨

	Sampler:		Lab PM:	Lab PM:		١.			Carrier	Carrier Tracking No(s):	No(s):		COC No:			Γ
Client Contact:	Dell Houges		Whiteh	e, cle	Senne	,			_				400-57303-24790	3-24790		\neg
Joju Abraham			cheyen	cheyenne.whitmire@testamericainc.com	mire@(estame	nicaino	.com					2 of 2			
Company: Southern Company						`	Analy	Analysis Requested	duest	<u>ي</u>			Job #:			
Address: 241 Ralph McGill Blvd SE B10185	Due Date Requested:			0			_			F			Preservat	18		Т
City: Atlanta	TAT Requested (days):				7		,gH-A0						A - HCL B - NaOH C - Zn Acetete		M - Hexane N - None O - AsNaO2	
State, Zip: GA, 30308					າວ ' ຍວ '	_							D - Nitric A E - NaHSO		- Na2O4S - Na2SO3	
Phone:	PO#:		1		'8 'SO	_							F - MeOH G - Amchio		- Na2S2O3 - H2SO4	
themco.com	WO#:		N JO S		S240C J	_									I - 1 SP Dodecarydrate U - Acetone V - MCAA	ė.
Project Name. CCR - Scherer	Project #: 40007041		()		, abino	_	117						_		·- ph 4-5 - other (specify)	
	SSOW#:		dms2	A) ası		_	68,8A(I						or con			
Sample Identification	Sample Sample	Sample Type (C=comp, G=grab)	Matrix (W=water, S=solid, O=waste/oll, difference, A=ALI)	Perform MS/N	300 OKCEW S	.ee, assan_are, .ee, assan_are	bevlossi(D)-0208 Dissolved Fe(II)	70 \$					Total Number	eclai instr	Special instructions/Note:	
	X	Preservat	Preservation Code:	Ž	٥	0 0	٥	z						1	V	460
PZ-25I	10/17/18 1115	Ø	Water		-	-	-	-					4			Г
PZ-39S	10/17/18 1315	O	Water		1 1	+	-	7-					4			T
																Г
										F						T
						1				\dashv						
				1	\perp				#	4						
										-						
Possible Hazard Identification Non-Hezard	Unknown	Radiological		Samp	le Disp Retum	ole Disposal (A t Return To Cilent	4 fee r	nay be	be assessed if san Disposal By Lab	d If sar By Lab	nples a	e retali	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	than 1 mo	nth) Months	
, III, IV, Other (specify)				Specia	al Instru	ctions/	ac Re	Special Instructions/QC Requirements:	nts:							П
inquished by:	Date:			Time:			Н		ν	officed of	Method of Shipment:					П
Kelinquished by: Regiment had her	DeterTime: 18 075	0	Company	2	Received by	de:	2	Cor	7		Date/Time	18	-	S.O.J. S. Company	mpany	
3/18/18) X	Date/Time:		Company	2 7 2	Received by:		100		2/	0/18	Date/Time:	0	0,000	2	Company Company	
Custody Seals Intact: Custody Seal No.: A Yes A No				8	oler Tem	perature	(s) C ar	Cooler Temperature(s) °C and Other Remarks:	emarks:]	1	-				7
				1	ı				١			ı				٦

TestAmerica

Chain of Custody Record

3355 McLemore Drive Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671

TestAmerica Pensacola

THE LEADER IN ENVIRONMENTAL TESTING

estAmerica Pensacola													ToctAmorio	Conoc
SSSS MicLenton Drive Pensacola, Ft 32514	ਠ	nain o	f Cust	Chain of Custody Record	€ CO	Ţ								2 2
3474-1001 Fax (850) 478-2671													HANDEN METERSH.	PONTE LT TESTING
ormation	Sampler: Ben Hodges			Lab PN Whitn	Lab PM: Whitmire, Cheyenne R	eyenne	œ			0	Carrier Tracking No(s):		COC No: 400-57303-24790	
Client Contact: Joju Abraham	Phone:			E-Mail: cheye	E-Mail: cheyenne.whiltmire@testamericainc.com	itmire(ptestar	nericai	JC.CO	E			Page: 1 of 1	
Сотрапу: Southern Company								Ana	lysis	Requ	Analysis Requested		100 H 400	4-0-2
sss: Ralph McGill Blvd SE B10185	Due Date Requested:					-			_				18	
City: Atlanta	TAT Requested (days):	: <u>;</u>			T.	7;		6Η•Α07					B - MCL N B - NaOH N C - Zn Acetate	M - Hexane N - None O - AsNaO2
State, Zip: GA, 30308					8	. Ca. C			_					P - Na2045 Q - Na2503
Phone:	PO#:				(0	8 .201			_					8 - Na2S203 5 - H2S04 7 - TSD Dodershudges
thernco.com	WO #:					. 30756							I - Ice J - Di Water	J - Acetone
sct Name: 3 - Scherer	Project #: 40007041								_			pulot	K-EDTA L-EDA	W - ph 4-5 Z - other (specify)
	SSOW#:					_			(H)				O Speri	
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (Wewster, Secolid, Dewasterold, BT=Thsum, ArAk)	bereiliq blalq MISM amona9	309 OKGEM S MB, K, Na, HCO	,98,58,2A-0508	9315_Razze, 93 6020-(Dissolved	304 Bissolved Fe(ii)			and mild layer	Total Mumber No.	Special Instructions/Note:
	V	X	4 (11		X	z	t		-					V
SGWC-18	10/18/18	9060	O	Water	z	-	-	-	Ļ				4	
SGWC-20	10/18/18	1035	ဖ	Water	Z	-	-	-	-				4	
FD-2	10/18/18	ı	Ø	Water	z	-	-	-	-	-			4	
FB-2	10/18/18	1030	၅	Water	z	-	-	-	-	<u> </u>	WANT OF THE PERSON NAMED IN COLUMN TWO IN CO		8	
PZ-421	10/18/18	1215	ຶ່ນ	Water	z	-	1	-	-		300 000		4	
EB-2	10/18/18	1530	ပ	Water	z	-	-	-		-	400-160240 000		е	
PZ-41S	10/18/18	1350	O	Water	z	-	-	Ŧ	-	-			4	
PZ-17)	10/18/18	0910	g	Water	z	-	-	2	-	-			5 Extra Radium	
PZ-43S	10/18/18	1520	ຶ່ນ	Water	Z	-	-	-	-	-			4	
PZ-40!	10/18/18	1405	U	Water	z	-	-	-	-	-			4	
										-				
Possible Hazard Identification Non-Hazard — Flammable — Skin Irrilant — Poison B	ison B Unknown	-	Radiological		S		Vispos	mple Disposal (A t	ee mg		Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Anning For Month	as refi	re retained longer than 1 i	nonth)
sted: I, It, III, IV, Other (specify)		1			S.	ecial Ir	structi	Special Instructions/QC Requirements:	Regi	ireme	nts: Equ Golder Rad	UDS ar	nd Equ Golder UDS E	Equ Golder_Rad UDS and Equ Golder UDS Equis EDDs/Please rep
Empty Kit Relinquished by:		Date			Time:			1	٦		Memod of Shipment			
Relinquished by: Kazz, Muller	Date/Time: /0 - 19 -	1 /.91-	1048	Company Golder		Riccol dd by	ed by:	0	M		16/19 Parientame	ië.	25:01	Сотрану
Keingushed by:	Date/Time:	19		Company		Received by	De De	M	1		Date/Time	16.7. July	8.03 9 M	Company
Custody Seals Inlate: Custody Seal No.:						Coole	源	ature(s)	S and	Other F	Cooler Tehnderature(s) "C and Other Remarks:	1	21118	
							1	-	1			1	1001	

TestAmerica

Client: Southern Company

Job Number: 400-160240-2 SDG Number: Ash Pond

Login Number: 160240 List Source: TestAmerica Pensacola

List Number: 1

Creator: Conrady, Hank W

Creator. Comady, mank w		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	4.2°C 4.3°C IR-7, 2.6°C, 1.5°C IR-7, 5.7°C, IR-8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Southern Company

Job Number: 400-160240-2 SDG Number: Ash Pond

Login Number: 160240
List Source: TestAmerica St. Louis
List Number: 2
List Creation: 10/08/18 06:17 PM

Creator: McKinney, Gerrod E

Creator: McKinney, Gerrod E		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	20.0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Client: Southern Company

Job Number: 400-160240-2 SDG Number: Ash Pond

Login Number: 160240
List Source: TestAmerica St. Louis
List Number: 3
List Creation: 10/10/18 05:29 PM

Creator: McKinney, Gerrod E

oreator. McKilliney, Gerrou L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey neter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	21.0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Job ID: 400-160240-2 SDG: Ash Pond

Laboratory: TestAmerica Pensacola

Client: Southern Company

Project/Site: CCR - Plant Scherer

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-19
ANAB	ISO/IEC 17025		L2471	02-22-20
Arizona	State Program	9	AZ0710	01-12-19
Arkansas DEQ	State Program	6	88-0689	09-01-19
California	State Program	9	2510	06-30-19
Florida	NELAP	4	E81010	06-30-19
Georgia	State Program	4	E81010 (FL)	06-30-19
Illinois	NELAP	5	200041	10-09-19
Iowa	State Program	7	367	08-01-20
Kansas	NELAP	7	E-10253	10-31-18 *
Kentucky (UST)	State Program	4	53	06-30-19
Kentucky (WW)	State Program	4	98030	12-31-18
Louisiana	NELAP	6	30976	06-30-19
Louisiana (DW)	NELAP	6	LA180023	12-31-18
Maryland	State Program	3	233	09-30-19
Massachusetts	State Program	1	M-FL094	06-30-19
Michigan	State Program	5	9912	06-30-19
New Jersey	NELAP	2	FL006	06-30-19
North Carolina (WW/SW)	State Program	4	314	12-31-18
Oklahoma	State Program	6	9810	08-31-19
Pennsylvania	NELAP	3	68-00467	01-31-19
Rhode Island	State Program	1	LAO00307	12-30-18
South Carolina	State Program	4	96026	06-30-19
Tennessee	State Program	4	TN02907	06-30-19
Texas	NELAP	6	T104704286-18-15	09-30-19
US Fish & Wildlife	Federal		LE058448-0	07-31-19
USDA	Federal		P330-18-00148	05-17-21
Virginia	NELAP	3	460166	06-14-19
Washington	State Program	10	C915	05-15-19
West Virginia DEP	State Program	3	136	06-30-19

Laboratory: TestAmerica St. Louis

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alaska	State Program	10	MO00054	06-30-19
ANAB	DoD ELAP		L2305	04-06-19
Arizona	State Program	9	AZ0813	12-08-18 *
California	State Program	9	2886	06-30-19
Connecticut	State Program	1	PH-0241	03-31-19
Florida	NELAP	4	E87689	06-30-19
Illinois	NELAP	5	200023	11-30-18 *
Iowa	State Program	7	373	12-01-18 *
Kansas	NELAP	7	E-10236	10-31-18 *
Kentucky (DW)	State Program	4	90125	12-31-18
Louisiana	NELAP	6	04080	06-30-19
Louisiana (DW)	NELAP	6	LA180017	12-31-18 *
Maryland	State Program	3	310	09-30-19
Michigan	State Program	5	9005	06-30-18 *
Missouri	State Program	7	780	06-30-19

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Accreditation/Certification Summary

Client: Southern Company
Project/Site: CCR - Plant Scherer
TestAmerica Job ID: 400-160240-2
SDG: Ash Pond

Laboratory: TestAmerica St. Louis (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Nevada	State Program	9	MO000542018-1	07-31-19
New Jersey	NELAP	2	MO002	06-30-19
New York	NELAP	2	11616	03-31-19
North Dakota	State Program	8	R207	06-30-19
NRC	NRC		24-24817-01	12-31-22
Oklahoma	State Program	6	9997	08-31-19
Pennsylvania	NELAP	3	68-00540	02-28-19
South Carolina	State Program	4	85002001	06-30-19
Texas	NELAP	6	T104704193-18-12	07-31-19
US Fish & Wildlife	Federal		058448	07-31-19
USDA	Federal		P330-17-0028	02-02-20
Utah	NELAP	8	MO000542018-10	07-31-19
Virginia	NELAP	3	460230	06-14-19
Washington	State Program	10	C592	08-30-19
West Virginia DEP	State Program	3	381	08-31-19

- 5

4

5

7

9

10

13

14

3

5

7

9

12

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-160240-3

TestAmerica Sample Delivery Group: Ash Pond

Client Project/Site: CCR - Plant Scherer

For:

Southern Company 241 Ralph McGill Blvd SE B10185 Atlanta, Georgia 30308

Attn: Joju Abraham

Mark Swepford

Authorized for release by: 11/23/2018 8:55:28 AM Mark Swafford, Project Manager I (850)471-6207 mark.swafford@testamericainc.com

Designee for

Cheyenne Whitmire, Project Manager II (850)471-6222

cheyenne.whitmire@testamericainc.com

·····LINKS ······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	8
Sample Summary	9
Client Sample Results	10
Definitions	43
Chronicle	44
QC Association	50
QC Sample Results	53
Chain of Custody	56
Receipt Checklists	61
Certification Summary	62

3

4

5

۶ R

9

10

12

Case Narrative

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Job ID: 400-160240-3

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-160240-3

Metals

Method(s) 7470A: Reanalysis of the following samples were performed outside of the analytical holding time due to client request for re-analysis: SGWC-11 (400-160240-31), SGWC-15 (400-160240-32), SGWC-11 (400-160240-38), SGWC-15 (400-160240-39), SGWC-18 (400-160240-45) and FD-2 (400-160240-47).

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWA-1						Lab	Sample ID:	400-160240-1
No Detections.								
Client Sample ID: EB-1(AP)						Lab	Sample ID:	400-160240-4
No Detections.								
Client Sample ID: SGWA-3						Lab	Sample ID:	400-160240-5
No Detections.								
Client Sample ID: SGWC-22						Lab	Sample ID:	400-160240-7
No Detections.								
Client Sample ID: SGWC-23						Lab	Sample ID:	400-160240-8
No Detections.								
Client Sample ID: EB-2(AP)						Lab	Sample ID:	400-160240-9
No Detections.								
Client Sample ID: SGWC-21						Lab S	Sample ID:	400-160240-10
No Detections.								
Client Sample ID: SGWC-7						Lab S	Sample ID:	400-160240-11
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac [O Method	Prep Type
Arsenic	0.00057	J	0.0013	0.00046	mg/L	5	6020	Total Recoverable

Client Sample ID: SGWC-8	Lab Sample ID: 4	400-160240-12			
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type

4	Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Ā	Arsenic	0.00053	J	0.0013	0.00046	mg/L	5	_	6020	Total Recoverable

Client Sample ID: SGWC-9	Lab Sample ID: 400-160240-13

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.00068	J	0.0013	0.00046	mg/L	5	_	6020	Total
									Recoverable
Olient Comple ID: COMO 40						1 - 1-	_	In ID.	100 400040

Client Sample ID: SGWC-10	Lab Sample ID: 400-160240-14

No Detections.

Lab Sample ID: 400-160240-15

Analyte	Result	Qualifier	RL	MDL	Unit	Di	l Fac	D	Method	Prep Type
Arsenic	0.00058	J	0.0013	0.00046	mg/L		5	_	6020	Total
										Recoverable

This Detection Summary does not include radiochemical test results.

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3 SDG: Ash Pond

Client Sample ID: FD-3(AP) Lab Sample ID: 400-160240-16

No Detections.

Client Sample ID: FB-3(AP) Lab Sample ID: 400-160240-17

No Detections.

Client Sample ID: EB-3(AP) Lab Sample ID: 400-160240-18

No Detections.

Client Sample ID: SGWA-25 Lab Sample ID: 400-160240-19

No Detections.

Client Sample ID: SGWA-4 Lab Sample ID: 400-160240-20

No Detections.

Client Sample ID: SGWA-5 Lab Sample ID: 400-160240-21

No Detections.

Client Sample ID: SGWC-6 Lab Sample ID: 400-160240-22

No Detections.

Client Sample ID: SGWC-12 Lab Sample ID: 400-160240-23

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.00070	J	0.0013	0.00046	mg/L	5	_	6020	 Total
									Recoverable

Client Sample ID: SGWC-13 Lab Sample ID: 400-160240-25

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	P	rep Type
Arsenic	0.00069	J	0.0013	0.00046	mg/L	5	_	6020		otal
									F	Recoverable

Client Sample ID: SGWC-14 Lab Sample ID: 400-160240-26

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.00070	J	0.0013	0.00046	mg/L	 5	_	6020	Total
									Recoverable

Client Sample ID: SGWC-16 Lab Sample ID: 400-160240-27

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.00054	J	0.0013	0.00046	mg/L	5	_	6020	Total
									Recoverable

Client Sample ID: SGWC-17 Lab Sample ID: 400-160240-28

This Detection Summary does not include radiochemical test results.

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-17 (C	ontinued)					Lab	Sa	mple ID:	400-160240-
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.00075	J	0.0013	0.00046	mg/L	5	_	6020	Total
-									Recoverabl
Client Sample ID: FD-1(AP)						Lab	Sa	mple ID:	400-160240-
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.00078	J	0.0013	0.00046	mg/L	5	_	6020	Total
-									Recoverable
Client Sample ID: FD-2(AP)						Lab	Sa	mple ID:	400-160240-
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.00091	J	0.0013	0.00046	mg/L	5	_	6020	Total
_									Recoverab
Client Sample ID: SGWC-11						Lab	Sa	mple ID:	400-160240-
No Detections.									
Client Sample ID: SGWC-15						Lab	Sa	mple ID:	400-160240-
No Detections.									
Client Sample ID: SGWC-11						Lab	Sa	mple ID:	400-160240
No Detections.									
Client Sample ID: SGWC-15						Lab	Sa	mple ID:	400-160240-
No Detections.									
Client Sample ID: PZ-39S						Lab	Sa	mple ID:	400-160240-
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0019		0.0013	0.00046	mg/L	5	_	6020	Total
-									Recoverab
Client Sample ID: SGWC-18						Lab	Sa	mple ID:	400-160240-
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.0031		0.0013	0.00046	mg/L	5	-	6020	Total
Arania Dissahuad	0.0004		0.0040	0.00040	ma/l	-		6020	Recoverab
Arsenic, Dissolved	0.0024	ш	0.0013	0.00046		5		6020	Dissolved
Mercury Dissolved	0.00021		0.00020	0.000070		1		7470A	Total/NA
Mercury, Dissolved Mercury, Dissolved	0.00014 0.000080		0.00020 0.00020	0.000070 0.000070	_	1		7470A 7470A	Dissolved Dissolved
Client Sample ID: FD-2						Lah	Sa	mple ID:	400-160240-
-								•	
	Docult	Qualifier			Linit				
Analyte Arsenic	0.0027		RL 0.0013	MDL 0.00046		Dil Fac 5	_	Method 6020	Prep Type Total

This Detection Summary does not include radiochemical test results.

Arsenic, Dissolved

0.0023

TestAmerica Pensacola

Recoverable

Dissolved

0.0013

0.00046 mg/L

5

Detection Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: FD-2 (Continued)

Lab Samp	le ID: 400-1	60240-47
----------	--------------	----------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Mercury	0.00020	H	0.00020	0.000070	mg/L	1	_	7470A	Total/NA
Mercury, Dissolved	0.00024	Н	0.00020	0.000070	mg/L	1		7470A	Dissolved

Method Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Method	Method Description	Protocol	Laboratory
6020	Metals (ICP/MS)	SW846	TAL PEN
7470A	Mercury (CVAA)	SW846	TAL PEN
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PEN
7470A	Preparation, Mercury	SW846	TAL PEN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

3

4

5

6

ŏ

3

10

12

13

Sample Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

400-160240-4 EB-1(AP) Water 10/05/18 11:15 10/06/18 08:31 400-160240-5 SGWA-3 Water 10/06/18 09:45 10/06/18 08:31 400-160240-7 SGWC-22 Water 10/08/18 16:20 10/10/18 08:58 400-160240-8 SGWC-23 Water 10/08/18 16:30 10/10/18 08:58 400-160240-9 EB-2(AP) Water 10/08/18 16:30 10/10/18 08:58 400-160240-10 SGWC-21 Water 10/08/18 16:30 10/10/18 08:58 400-160240-11 SGWC-7 Water 10/09/18 10:25 10/10/18 08:58 400-160240-12 SGWC-8 Water 10/09/18 10:25 10/10/18 08:58 400-160240-12 SGWC-9 Water 10/09/18 10:25 10/10/18 08:58 400-160240-14 SGWC-9 Water 10/09/18 10:20 10/10/18 08:58 400-160240-15 SGWC-9 Water 10/09/18 00:20 10/10/18 08:58 400-160240-15 SGWC-19 Water 10/09/18 00:20 10/10/18 08:58 400-160240-16 FD-3(AP) Water 10/09/18 00:00 10/10/18 08:58 400-160240-17 FB-3(AP) Water 10/09/18 00:00 10/10/18 08:58 400-160240-17 FB-3(AP) Water 10/09/18 00:00 10/10/18 08:58 400-160240-18 EB-3(AP) Water 10/09/18 10:20 10/10/18 08:58 400-160240-19 SGWA-25 Water 10/09/18 11:30 10/10/18 08:58 400-160240-21 SGWC-3 SGWA-4 Water 10/09/18 11:30 10/10/18 08:58 400-160240-22 SGWC-6 Water 10/09/18 11:30 10/10/18 08:58 400-160240-22 SGWC-14 Water 10/09/18 10:45 10/10/18 08:58 400-160240-23 SGWC-14 Water 10/09/18 10:30 10/10/18 08:58 400-160240-23 SGWC-14 Water 10/09/18 10:30 10/10/18 08:58 400-160240-29 SGWC-15 Water 10/09/18 10:30 10/10/18 08:58 400-160240-29 SGWC-15 Water 10/09/18 10:30 10/10/18 08:58 400-160240-29 SGWC-15	Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-160240-5 SGWA-3 Water 1005/18 09:45 1006/18 08:31 400-160240-7 SGWC-22 Water 1006/18 14:20 1010/18 08:58 400-160240-8 SGWC-23 Water 1006/18 14:20 1010/18 08:58 400-160240-9 EB-2(AP) Water 1006/18 16:30 1010/18 08:58 400-160240-10 SGWC-21 Water 1006/18 12:05 1010/18 08:58 400-160240-11 SGWC-21 Water 1009/18 10:25 1010/18 08:58 400-160240-11 SGWC-3 Water 1009/18 10:25 1010/18 08:58 400-160240-12 SGWC-8 Water 1009/18 10:25 1010/18 08:58 400-160240-13 SGWC-9 Water 1009/18 10:25 1010/18 08:58 400-160240-13 SGWC-9 Water 1009/18 10:20 1010/18 08:58 400-160240-14 SGWC-19 Water 1009/18 00:00 1010/18 08:58 400-160240-15 SGWC-19 Water 1009/18 00:00 1010/18 08:58 400-160240-15 SGWC-19 Water 1009/18 00:00 1010/18 08:58 400-160240-16 FD-3(AP) Water 1009/18 08:00 1010/18 08:58 400-160240-18 EB-3(AP) Water 1009/18 08:01 1010/18 08:58 400-160240-18 EB-3(AP) Water 1009/18 10:20 1010/18 08:58 400-160240-19 SGWA-25 Water 1009/18 11:30 1010/18 08:58 400-160240-20 SGWA-4 Water 1009/18 11:30 1010/18 08:58 400-160240-21 SGWA-5 Water 1009/18 11:30 1010/18 08:58 400-160240-22 SGWC-6 Water 1009/18 11:30 1010/18 08:58 400-160240-22 SGWC-6 Water 1009/18 11:30 1010/18 08:58 400-160240-23 SGWC-12 Water 1009/18 11:30 1010/18 08:58 400-160240-23 SGWC-13 Water 1009/18 11:30 1010/18 08:58 400-160240-23 SGWC-14 Water 1009/18 11:30 1010/18 08:58 400-160240-25 SGWC-15 Water 1009/18 11:30 1010/18 08:58 400-160240-26 SGWC-15 Water 1009/18 11:30 1010/18 08:58 400-160240-28 SGWC-15 Water 1009/18 11:30 1010/18 08:58 400-160240-29 SGWC-15 Water 1009/18 11:	400-160240-1	SGWA-1	Water	10/05/18 09:00	10/06/18 08:31
400-160240-7 SGWC-22 Water 10/08/18 14:20 10/10/18 08:58 400-160240-8 SGWC-23 Water 10/08/18 15:50 10/10/18 08:58 400-160240-9 EB-2(AP) Water 10/08/18 15:50 10/10/18 08:58 400-160240-10 SGWC-21 Water 10/08/18 10:20 10/10/18 08:58 400-160240-11 SGWC-7 Water 10/09/18 09:25 10/10/18 08:58 400-160240-11 SGWC-7 Water 10/09/18 09:25 10/10/18 08:58 400-160240-12 SGWC-8 Water 10/09/18 09:25 10/10/18 08:58 400-160240-13 SGWC-9 Water 10/09/18 09:20 10/10/18 08:58 400-160240-13 SGWC-9 Water 10/09/18 09:10 10/10/18 08:58 400-160240-14 SGWC-10 Water 10/09/18 09:10 10/10/18 08:58 400-160240-15 SGWC-19 Water 10/09/18 08:50 10/10/18 08:58 400-160240-16 FD-3(AP) Water 10/09/18 08:50 10/10/18 08:58 400-160240-16 FD-3(AP) Water 10/09/18 08:50 10/10/18 08:58 400-160240-16 FD-3(AP) Water 10/09/18 08:50 10/10/18 08:58 400-160240-17 FB-3(AP) Water 10/09/18 08:50 10/10/18 08:58 400-160240-18 EB-3(AP) Water 10/09/18 08:50 10/10/18 08:58 400-160240-18 EB-3(AP) Water 10/09/18 11:20 10/10/18 08:58 400-160240-19 SGWA-25 Water 10/09/18 11:20 10/10/18 08:58 400-160240-21 SGWC-4 Water 10/09/18 11:20 10/10/18 08:58 400-160240-22 SGWC-6 Water 10/09/18 11:20 10/10/18 08:58 400-160240-22 SGWC-6 Water 10/09/18 11:25 10/10/18 08:58 400-160240-23 SGWC-14 Water 10/09/18 11:25 10/10/18 08:58 400-160240-23 SGWC-14 Water 10/09/18 13:51 10/10/18 08:58 400-160240-25 SGWC-14 Water 10/09/18 13:50 10/10/18 08:58 400-160240-25 SGWC-14 Water 10/09/18 13:00 10/10/18 08:58 400-160240-25 SGWC-14 Water 10/09/18 13:00 10/10/18 08:58 400-160240-25 SGWC-17 Water 10/09/18 13:00 10/10/18 08:58 400-160240-25 SGWC-14 Water 10/09/18 13:00 10/10/18 08:58 400-160240-25 SGWC-17 Water 10/09/18 13:00 10/10/18 08:58 400-160240-25 SGWC-15 Water 10/09/18 13:00 10/10/18 08:58 400-160240-25 SGWC-15 Water 10/09/18 13:00 10/10/18 08:58 400-160240-29 FD-1(AP) Water 10/09/18 10:00 10/10/18 08:58 400-160240-29 SGWC-15 Water 10/09/18 10:00 10/10/18 08:58 400-160240-39 SGWC-15 Water 10/10/18 10:00 10/10/18 08:58 400-160240-39 SGWC-15 Water 10/10/18 10:00 10/10/18 08:58 400-160240-39 SGWC-	400-160240-4	EB-1(AP)	Water	10/05/18 11:15	10/06/18 08:31
400-160240-8	400-160240-5	SGWA-3	Water	10/05/18 09:45	10/06/18 08:31
400-160240-9 EB-2(AP) Water 10/08/18 16:30 10/10/18 08:58 400-160240-10 SGWC-21 Water 10/08/18 12:05 10/10/18 08:58 400-160240-11 SGWC-7 Water 10/09/18 09:25 10/10/18 08:58 400-160240-12 SGWC-8 Water 10/09/18 10:20 10/10/18 08:58 400-160240-13 SGWC-9 Water 10/09/18 00:10 10/10/18 08:58 400-160240-14 SGWC-19 Water 10/09/18 00:10 10/10/18 08:58 400-160240-15 SGWC-19 Water 10/09/18 08:50 10/10/18 08:58 400-160240-16 FD-3(AP) Water 10/09/18 08:50 10/10/18 08:58 400-160240-17 FB-3(AP) Water 10/09/18 08:45 10/10/18 08:58 400-160240-19 SGWA-25 Water 10/09/18 08:45 10/10/18 08:58 400-160240-21 SGWA-25 Water 10/09/18 08:45 10/10/18 08:58 400-160240-22 SGWA-3 Water 10/08/18 13:01 10/10/18 08:58 400-160240-23 SGWC-13 Water 10	400-160240-7	SGWC-22	Water	10/08/18 14:20	10/10/18 08:58
400-160240-10 SGWC-21 Water 10/08/18 12:05 10/10/18 08:58 400-160240-11 SGWC-7 Water 10/09/18 09:25 10/10/18 08:58 400-160240-12 SGWC-8 Water 10/09/18 10:35 10/10/18 08:58 400-160240-13 SGWC-9 Water 10/09/18 09:10 10/10/18 08:58 400-160240-14 SGWC-10 Water 10/09/18 09:10 10/10/18 08:58 400-160240-15 SGWC-19 Water 10/09/18 08:00 10/10/18 08:58 400-160240-16 FD-3(AP) Water 10/09/18 08:00 10/10/18 08:58 400-160240-17 FB-3(AP) Water 10/09/18 08:45 10/10/18 08:58 400-160240-18 EB-3(AP) Water 10/09/18 08:45 10/10/18 08:58 400-160240-19 SGWA-25 Water 10/08/18 11:30 10/10/18 08:58 400-160240-21 SGWA-5 Water 10/08/18 13:15 10/10/18 08:58 400-160240-22 SGWC-6 Water 10/08/18 13:35 10/10/18 08:58 400-160240-23 SGWC-13 Water 10	400-160240-8	SGWC-23	Water	10/08/18 15:50	10/10/18 08:58
400-160240-11 SGWC-7 Water 10/09/18 09-25 10/10/18 08:58 400-160240-13 SGWC-8 Water 10/09/18 10:35 10/10/18 08:58 400-160240-13 SGWC-9 Water 10/09/18 10:20 10/10/18 08:58 400-160240-14 SGWC-10 Water 10/09/18 09-10 10/10/18 08:58 400-160240-15 SGWC-19 Water 10/09/18 09-10 10/10/18 08:58 400-160240-15 SGWC-19 Water 10/09/18 09-00 10/10/18 08:58 400-160240-16 FD-3(AP) Water 10/09/18 00-00 10/10/18 08:58 400-160240-17 FB-3(AP) Water 10/09/18 00-00 10/10/18 08:58 400-160240-17 FB-3(AP) Water 10/09/18 10-00 10/10/18 08:58 400-160240-19 SGWA-25 Water 10/09/18 11-30 10/10/18 08:58 400-160240-19 SGWA-25 Water 10/09/18 11-30 10/10/18 08:58 400-160240-20 SGWA-4 Water 10/09/18 11-30 10/10/18 08:58 400-160240-21 SGWC-5 Water 10/09/18 11-30 10/10/18 08:58 400-160240-22 SGWC-6 Water 10/09/18 11-30 10/10/18 08:58 400-160240-22 SGWC-6 Water 10/09/18 11-30 10/10/18 08:58 400-160240-25 SGWC-6 Water 10/09/18 11-30 10/10/18 08:58 400-160240-25 SGWC-13 Water 10/09/18 13-30 10/10/18 08:58 400-160240-26 SGWC-13 Water 10/09/18 13-30 10/10/18 08:58 400-160240-28 SGWC-13 Water 10/09/18 08:58 400-160240-29 FD-1(AP) Water 10/09/18 08:58 400-160240-29 FD-1(AP) Water 10/09/18 08:58 400-160240-29 FD-1(AP) Water 10/09/18 08:58 400-160240-29 SGWC-15 Water 10/19/18 08:58 400-160240-39 SGWC-15 Water 10/19/18 08:58 400-160240-39 SGWC-15 Water 10/19/18 08:58 400-160240-39 SGWC-15 Water 10/19/18 09:04 400-160240-34 SGWC-15 SGWC-15 Water 10/19/18 09:04 400-160240-34 SGWC-15 SGWC-15	400-160240-9	EB-2(AP)	Water	10/08/18 16:30	10/10/18 08:58
400-160240-12 SGWC-8 Water 10/09/18 10.35 10/10/18 08:58 400-160240-13 SGWC-9 Water 10/09/18 01.20 10/10/18 08:58 400-160240-14 SGWC-10 Water 10/09/18 09:10 10/10/18 08:58 400-160240-15 SGWC-19 Water 10/09/18 09:00 10/10/18 08:58 400-160240-16 FD-3(AP) Water 10/09/18 08:00 10/10/18 08:58 400-160240-16 FD-3(AP) Water 10/09/18 08:00 10/10/18 08:58 400-160240-17 FB-3(AP) Water 10/09/18 08:45 10/10/18 08:58 400-160240-18 EB-3(AP) Water 10/09/18 11:30 10/10/18 08:58 400-160240-19 SGWA-25 Water 10/09/18 11:30 10/10/18 08:58 400-160240-20 SGWA-4 Water 10/09/18 11:35 10/10/18 08:58 400-160240-21 SGWA-5 Water 10/09/18 11:35 10/10/18 08:58 400-160240-22 SGWC-6 Water 10/09/18 11:35 10/10/18 08:58 400-160240-23 SGWC-12 Water 10/09/18 11:35 10/10/18 08:58 400-160240-25 SGWC-13 Water 10/09/18 11:30 10/10/18 08:58 400-160240-26 SGWC-14 Water 10/09/18 11:30 10/10/18 08:58 400-160240-26 SGWC-17 Water 10/09/18 11:30 10/10/18 08:58 400-160240-26 SGWC-17 Water 10/09/18 11:30 10/10/18 08:58 400-160240-28 SGWC-17 Water 10/09/18 00:50 10/10/18 08:58 400-160240-29 FD-1(AP) Water 10/09/18 00:50 10/10/18 08:58 400-160240-30 FD-2(AP) Water 10/09/18 00:50 10/10/18 08:58 400-160240-30 SGWC-15 Water 10/10/	400-160240-10	SGWC-21	Water	10/08/18 12:05	10/10/18 08:58
400-160240-13 SGWC-9 Water 10/09/18 10:20 10/10/18 08:58 400-160240-14 SGWC-10 Water 10/09/18 09:10 10/10/18 08:58 400-160240-15 SGWC-19 Water 10/09/18 08:50 10/10/18 08:58 400-160240-16 FD-3(AP) Water 10/09/18 00:00 10/10/18 08:58 400-160240-17 FB-3(AP) Water 10/09/18 08:45 10/10/18 08:58 400-160240-18 EB-3(AP) Water 10/09/18 11:30 10/10/18 08:58 400-160240-19 SGWA-25 Water 10/08/18 11:45 10/10/18 08:58 400-160240-20 SGWA-4 Water 10/08/18 10:45 10/10/18 08:58 400-160240-21 SGWC-5 Water 10/08/18 10:45 10/10/18 08:58 400-160240-23 SGWC-6 Water 10/08/18 10:45 10/10/18 08:58 400-160240-23 SGWC-13 Water 10/08/18 10:40 10/10/18 08:58 400-160240-25 SGWC-13 Water 10/08/18 10:30 10/10/18 08:58 400-160240-26 SGWC-13 Water 1	400-160240-11	SGWC-7	Water	10/09/18 09:25	10/10/18 08:58
400-160240-14 SGWC-10 Water 10/09/18 09:10 10/10/18 08:58 400-160240-15 SGWC-19 Water 10/09/18 08:50 10/10/18 08:58 400-160240-16 FD-3(AP) Water 10/09/18 00:00 10/10/18 08:58 400-160240-17 FB-3(AP) Water 10/09/18 01:30 10/10/18 08:58 400-160240-18 EB-3(AP) Water 10/09/18 11:30 10/10/18 08:58 400-160240-19 SGWA-25 Water 10/08/18 13:15 10/10/18 08:58 400-160240-20 SGWA-4 Water 10/08/18 10:45 10/10/18 08:58 400-160240-21 SGWA-5 Water 10/08/18 10:45 10/10/18 08:58 400-160240-22 SGWC-6 Water 10/08/18 10:40 10/10/18 08:58 400-160240-23 SGWC-13 Water 10/08/18 10:20 10/10/18 08:58 400-160240-25 SGWC-13 Water 10/08/18 10:20 10/10/18 08:58 400-160240-26 SGWC-16 Water 10/08/18 11:30 10/10/18 08:58 400-160240-27 SGWC-16 Water	400-160240-12	SGWC-8	Water	10/09/18 10:35	10/10/18 08:58
400-160240-15 SGWC-19 Water 10/09/18 08:50 10/10/18 08:58 400-160240-16 FD-3(AP) Water 10/09/18 00:00 10/10/18 08:58 400-160240-17 FB-3(AP) Water 10/09/18 08:45 10/10/18 08:58 400-160240-18 EB-3(AP) Water 10/09/18 11:30 10/10/18 08:58 400-160240-19 SGWA-25 Water 10/08/18 13:15 10/10/18 08:58 400-160240-20 SGWA-4 Water 10/08/18 13:15 10/10/18 08:58 400-160240-21 SGWA-5 Water 10/08/18 10:45 10/10/18 08:58 400-160240-22 SGWC-6 Water 10/08/18 10:40 10/10/18 08:58 400-160240-23 SGWC-12 Water 10/08/18 10:40 10/10/18 08:58 400-160240-25 SGWC-13 Water 10/08/18 13:30 10/10/18 08:58 400-160240-26 SGWC-14 Water 10/08/18 13:30 10/10/18 08:58 400-160240-27 SGWC-16 Water 10/08/18 13:30 10/10/18 08:58 400-160240-28 SGWC-15 Water 10/08/18 10:30 10/10/18 08:58 400-160240-29 FD-1(AP) </td <td>400-160240-13</td> <td>SGWC-9</td> <td>Water</td> <td>10/09/18 10:20</td> <td>10/10/18 08:58</td>	400-160240-13	SGWC-9	Water	10/09/18 10:20	10/10/18 08:58
400-160240-16 FD-3(AP) Water 10/09/18 00:00 10/10/18 08:58 400-160240-17 FB-3(AP) Water 10/09/18 08:45 10/10/18 08:58 400-160240-18 EB-3(AP) Water 10/09/18 11:30 10/10/18 08:58 400-160240-29 SGWA-25 Water 10/08/18 13:15 10/10/18 08:58 400-160240-20 SGWA-4 Water 10/08/18 10:45 10/10/18 08:58 400-160240-21 SGWG-5 Water 10/08/18 10:45 10/10/18 08:58 400-160240-22 SGWC-6 Water 10/08/18 10:45 10/10/18 08:58 400-160240-23 SGWC-12 Water 10/08/18 10:40 10/10/18 08:58 400-160240-23 SGWC-13 Water 10/08/18 10:40 10/10/18 08:58 400-160240-25 SGWC-13 Water 10/08/18 10:40 10/10/18 08:58 400-160240-26 SGWC-14 Water 10/08/18 10:30 10/10/18 08:58 400-160240-27 SGWC-16 Water 10/08/18 10:30 10/10/18 08:58 400-160240-28 SGWC-17 Water 10/08/18 00:00 10/10/18 08:58 400-160240-29 FD-1(AP) </td <td>400-160240-14</td> <td>SGWC-10</td> <td>Water</td> <td>10/09/18 09:10</td> <td>10/10/18 08:58</td>	400-160240-14	SGWC-10	Water	10/09/18 09:10	10/10/18 08:58
400-160240-17 FB-3(AP) Water 10/09/18 08:45 10/10/18 08:58 400-160240-18 EB-3(AP) Water 10/09/18 11:30 10/10/18 08:58 400-160240-19 SGWA-25 Water 10/08/18 13:15 10/10/18 08:58 400-160240-20 SGWA-4 Water 10/08/18 13:15 10/10/18 08:58 400-160240-21 SGWA-5 Water 10/08/18 15:25 10/10/18 08:58 400-160240-22 SGWC-6 Water 10/08/18 10:40 10/10/18 08:58 400-160240-23 SGWC-12 Water 10/08/18 10:40 10/10/18 08:58 400-160240-25 SGWC-13 Water 10/08/18 12:25 10/10/18 08:58 400-160240-26 SGWC-14 Water 10/08/18 13:30 10/10/18 08:58 400-160240-27 SGWC-16 Water 10/08/18 10:30 10/10/18 08:58 400-160240-28 SGWC-17 Water 10/08/18 10:30 10/10/18 08:58 400-160240-29 FD-1(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-30 FD-2(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-31 SGWC-15 </td <td>400-160240-15</td> <td>SGWC-19</td> <td>Water</td> <td>10/09/18 08:50</td> <td>10/10/18 08:58</td>	400-160240-15	SGWC-19	Water	10/09/18 08:50	10/10/18 08:58
400-160240-18 EB-3(AP) Water 10/09/18 11:30 10/10/18 08:58 400-160240-19 SGWA-25 Water 10/08/18 14:20 10/10/18 08:58 400-160240-20 SGWA-4 Water 10/08/18 13:15 10/10/18 08:58 400-160240-21 SGWA-5 Water 10/08/18 15:25 10/10/18 08:58 400-160240-22 SGWC-6 Water 10/08/18 10:40 10/10/18 08:58 400-160240-23 SGWC-12 Water 10/08/18 10:40 10/10/18 08:58 400-160240-25 SGWC-13 Water 10/08/18 13:30 10/10/18 08:58 400-160240-26 SGWC-14 Water 10/08/18 13:30 10/10/18 08:58 400-160240-27 SGWC-16 Water 10/08/18 10:30 10/10/18 08:58 400-160240-28 SGWC-17 Water 10/08/18 10:30 10/10/18 08:58 400-160240-29 FD-1(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-30 FD-2(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-31 SGWC-15 Water 10/16/18 15:15 10/19/18 09:04 400-160240-32 SGWC-15 <td>400-160240-16</td> <td>FD-3(AP)</td> <td>Water</td> <td>10/09/18 00:00</td> <td>10/10/18 08:58</td>	400-160240-16	FD-3(AP)	Water	10/09/18 00:00	10/10/18 08:58
400-160240-19 SGWA-25 Water 10/08/18 14:20 10/10/18 08:58 400-160240-20 SGWA-4 Water 10/08/18 13:15 10/10/18 08:58 400-160240-21 SGWA-5 Water 10/08/18 10:45 10/10/18 08:58 400-160240-22 SGWC-6 Water 10/08/18 15:25 10/10/18 08:58 400-160240-23 SGWC-12 Water 10/08/18 12:25 10/10/18 08:58 400-160240-25 SGWC-13 Water 10/08/18 13:30 10/10/18 08:58 400-160240-26 SGWC-14 Water 10/08/18 13:30 10/10/18 08:58 400-160240-27 SGWC-16 Water 10/08/18 13:30 10/10/18 08:58 400-160240-28 SGWC-17 Water 10/08/18 10:30 10/10/18 08:58 400-160240-29 FD-1(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-30 FD-2(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-31 SGWC-11 Water 10/16/18 15:15 10/19/18 09:04 400-160240-32 SGWC-15 Water 10/16/18 15:15 10/19/18 09:04 400-160240-39 SGWC-15 <td>400-160240-17</td> <td>FB-3(AP)</td> <td>Water</td> <td>10/09/18 08:45</td> <td>10/10/18 08:58</td>	400-160240-17	FB-3(AP)	Water	10/09/18 08:45	10/10/18 08:58
400-160240-20 SGWA-4 Water 10/08/18 13:15 10/10/18 08:58 400-160240-21 SGWA-5 Water 10/08/18 10:45 10/10/18 08:58 400-160240-22 SGWC-6 Water 10/08/18 15:25 10/10/18 08:58 400-160240-23 SGWC-12 Water 10/08/18 10:40 10/10/18 08:58 400-160240-25 SGWC-13 Water 10/08/18 13:30 10/10/18 08:58 400-160240-26 SGWC-14 Water 10/08/18 13:30 10/10/18 08:58 400-160240-27 SGWC-16 Water 10/08/18 10:30 10/10/18 08:58 400-160240-28 SGWC-17 Water 10/08/18 10:30 10/10/18 08:58 400-160240-29 FD-1(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-30 FD-2(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-32 SGWC-15 Water 10/16/18 15:15 10/19/18 09:04 400-160240-38 SGWC-15 Water 10/17/18 13:15 10/19/18 09:04 400-160240-44 PZ-39S Water 10/17/18 13:15 10/19/18 09:04 400-160240-45 SGWC-18	400-160240-18	EB-3(AP)	Water	10/09/18 11:30	10/10/18 08:58
400-160240-21 SGWA-5 Water 10/08/18 10:45 10/10/18 08:58 400-160240-22 SGWC-6 Water 10/08/18 15:25 10/10/18 08:58 400-160240-23 SGWC-12 Water 10/08/18 10:40 10/10/18 08:58 400-160240-25 SGWC-13 Water 10/08/18 13:30 10/10/18 08:58 400-160240-26 SGWC-14 Water 10/08/18 14:40 10/10/18 08:58 400-160240-27 SGWC-16 Water 10/08/18 10:30 10/10/18 08:58 400-160240-28 SGWC-17 Water 10/08/18 10:30 10/10/18 08:58 400-160240-29 FD-1(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-30 FD-2(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-31 SGWC-11 Water 10/16/18 10:50 10/19/18 09:04 400-160240-32 SGWC-15 Water 10/17/18 12:30 10/19/18 09:04 400-160240-39 SGWC-15 Water 10/17/18 13:15 10/19/18 09:04 400-160240-44 PZ-39S Water 10/17/18 13:15 10/19/18 09:04 400-160240-45 SGWC-18 <td>400-160240-19</td> <td>SGWA-25</td> <td>Water</td> <td>10/08/18 14:20</td> <td>10/10/18 08:58</td>	400-160240-19	SGWA-25	Water	10/08/18 14:20	10/10/18 08:58
400-160240-22 SGWC-6 Water 10/08/18 15:25 10/10/18 08:58 400-160240-23 SGWC-12 Water 10/08/18 10:40 10/10/18 08:58 400-160240-25 SGWC-13 Water 10/08/18 12:25 10/10/18 08:58 400-160240-26 SGWC-14 Water 10/08/18 13:30 10/10/18 08:58 400-160240-27 SGWC-16 Water 10/08/18 10:30 10/10/18 08:58 400-160240-28 SGWC-17 Water 10/08/18 10:30 10/10/18 08:58 400-160240-29 FD-1(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-30 FD-2(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-31 SGWC-11 Water 10/08/18 00:00 10/10/18 08:58 400-160240-32 SGWC-15 Water 10/16/18 15:15 10/19/18 09:04 400-160240-39 SGWC-15 Water 10/17/18 15:00 10/19/18 09:04 400-160240-44 PZ-39S Water 10/17/18 13:15 10/19/18 09:04 400-160240-45 SGWC-18 Water 10/18/18 09:05 10/20/18 08:28	400-160240-20	SGWA-4	Water	10/08/18 13:15	10/10/18 08:58
400-160240-23 SGWC-12 Water 10/08/18 10:40 10/10/18 08:58 400-160240-25 SGWC-13 Water 10/08/18 12:25 10/10/18 08:58 400-160240-26 SGWC-14 Water 10/08/18 13:30 10/10/18 08:58 400-160240-27 SGWC-16 Water 10/08/18 10:30 10/10/18 08:58 400-160240-28 SGWC-17 Water 10/08/18 00:00 10/10/18 08:58 400-160240-29 FD-1(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-30 FD-2(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-31 SGWC-11 Water 10/16/18 10:50 10/19/18 09:04 400-160240-32 SGWC-15 Water 10/16/18 15:15 10/19/18 09:04 400-160240-38 SGWC-11 Water 10/17/18 12:30 10/19/18 09:04 400-160240-39 SGWC-15 Water 10/17/18 13:15 10/19/18 09:04 400-160240-44 PZ-39S Water 10/17/18 13:15 10/19/18 09:04 400-160240-45 SGWC-18 Water 10/18/18 09:05 10/20/18 08:28	400-160240-21	SGWA-5	Water	10/08/18 10:45	10/10/18 08:58
400-160240-25 SGWC-13 Water 10/08/18 12:25 10/10/18 08:58 400-160240-26 SGWC-14 Water 10/08/18 13:30 10/10/18 08:58 400-160240-27 SGWC-16 Water 10/08/18 14:40 10/10/18 08:58 400-160240-28 SGWC-17 Water 10/08/18 10:30 10/10/18 08:58 400-160240-29 FD-1(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-30 FD-2(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-31 SGWC-11 Water 10/16/18 10:50 10/19/18 09:04 400-160240-32 SGWC-15 Water 10/16/18 15:15 10/19/18 09:04 400-160240-39 SGWC-15 Water 10/17/18 12:30 10/19/18 09:04 400-160240-44 PZ-39S Water 10/17/18 13:15 10/19/18 09:04 400-160240-45 SGWC-18 Water 10/18/18 09:05 10/20/18 08:28	400-160240-22	SGWC-6	Water	10/08/18 15:25	10/10/18 08:58
400-160240-26 SGWC-14 Water 10/08/18 13:30 10/10/18 08:58 400-160240-27 SGWC-16 Water 10/08/18 14:40 10/10/18 08:58 400-160240-28 SGWC-17 Water 10/08/18 10:30 10/10/18 08:58 400-160240-29 FD-1(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-30 FD-2(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-31 SGWC-11 Water 10/16/18 10:50 10/19/18 09:04 400-160240-32 SGWC-15 Water 10/16/18 15:15 10/19/18 09:04 400-160240-38 SGWC-11 Water 10/17/18 12:30 10/19/18 09:04 400-160240-39 SGWC-15 Water 10/17/18 15:00 10/19/18 09:04 400-160240-44 PZ-39S Water 10/17/18 13:15 10/19/18 09:04 400-160240-45 SGWC-18 Water 10/18/18 09:05 10/20/18 08:28	400-160240-23	SGWC-12	Water	10/08/18 10:40	10/10/18 08:58
400-160240-27 SGWC-16 Water 10/08/18 14:40 10/10/18 08:58 400-160240-28 SGWC-17 Water 10/08/18 10:30 10/10/18 08:58 400-160240-29 FD-1(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-30 FD-2(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-31 SGWC-11 Water 10/16/18 10:50 10/19/18 09:04 400-160240-32 SGWC-15 Water 10/16/18 15:15 10/19/18 09:04 400-160240-38 SGWC-11 Water 10/17/18 12:30 10/19/18 09:04 400-160240-39 SGWC-15 Water 10/17/18 15:00 10/19/18 09:04 400-160240-44 PZ-39S Water 10/17/18 13:15 10/19/18 09:04 400-160240-45 SGWC-18 Water 10/18/18 09:05 10/20/18 08:28	400-160240-25	SGWC-13	Water	10/08/18 12:25	10/10/18 08:58
400-160240-28 SGWC-17 Water 10/08/18 10:30 10/10/18 08:58 400-160240-29 FD-1(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-30 FD-2(AP) Water 10/08/18 10:50 10/10/18 08:58 400-160240-31 SGWC-11 Water 10/16/18 10:50 10/19/18 09:04 400-160240-32 SGWC-15 Water 10/16/18 15:15 10/19/18 09:04 400-160240-38 SGWC-11 Water 10/17/18 12:30 10/19/18 09:04 400-160240-39 SGWC-15 Water 10/17/18 15:00 10/19/18 09:04 400-160240-44 PZ-39S Water 10/17/18 13:15 10/19/18 09:04 400-160240-45 SGWC-18 Water 10/18/18 09:05 10/20/18 08:28	400-160240-26	SGWC-14	Water	10/08/18 13:30	10/10/18 08:58
400-160240-29 FD-1(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-30 FD-2(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-31 SGWC-11 Water 10/16/18 10:50 10/19/18 09:04 400-160240-32 SGWC-15 Water 10/16/18 15:15 10/19/18 09:04 400-160240-38 SGWC-11 Water 10/17/18 12:30 10/19/18 09:04 400-160240-39 SGWC-15 Water 10/17/18 15:00 10/19/18 09:04 400-160240-44 PZ-39S Water 10/17/18 13:15 10/19/18 09:04 400-160240-45 SGWC-18 Water 10/18/18 09:05 10/20/18 08:28	400-160240-27	SGWC-16	Water	10/08/18 14:40	10/10/18 08:58
400-160240-30 FD-2(AP) Water 10/08/18 00:00 10/10/18 08:58 400-160240-31 SGWC-11 Water 10/16/18 10:50 10/19/18 09:04 400-160240-32 SGWC-15 Water 10/16/18 15:15 10/19/18 09:04 400-160240-38 SGWC-11 Water 10/17/18 12:30 10/19/18 09:04 400-160240-39 SGWC-15 Water 10/17/18 15:00 10/19/18 09:04 400-160240-44 PZ-39S Water 10/17/18 13:15 10/19/18 09:04 400-160240-45 SGWC-18 Water 10/18/18 09:05 10/20/18 08:28	400-160240-28	SGWC-17	Water	10/08/18 10:30	10/10/18 08:58
400-160240-31 SGWC-11 Water 10/16/18 10:50 10/19/18 09:04 400-160240-32 SGWC-15 Water 10/16/18 15:15 10/19/18 09:04 400-160240-38 SGWC-11 Water 10/17/18 12:30 10/19/18 09:04 400-160240-39 SGWC-15 Water 10/17/18 15:00 10/19/18 09:04 400-160240-44 PZ-39S Water 10/17/18 13:15 10/19/18 09:04 400-160240-45 SGWC-18 Water 10/18/18 09:05 10/20/18 08:28	400-160240-29	FD-1(AP)	Water	10/08/18 00:00	10/10/18 08:58
400-160240-32 SGWC-15 Water 10/16/18 15:15 10/19/18 09:04 400-160240-38 SGWC-11 Water 10/17/18 12:30 10/19/18 09:04 400-160240-39 SGWC-15 Water 10/17/18 15:00 10/19/18 09:04 400-160240-44 PZ-39S Water 10/17/18 13:15 10/19/18 09:04 400-160240-45 SGWC-18 Water 10/18/18 09:05 10/20/18 08:28	400-160240-30	FD-2(AP)	Water	10/08/18 00:00	10/10/18 08:58
400-160240-38 SGWC-11 Water 10/17/18 12:30 10/19/18 09:04 400-160240-39 SGWC-15 Water 10/17/18 15:00 10/19/18 09:04 400-160240-44 PZ-39S Water 10/17/18 13:15 10/19/18 09:04 400-160240-45 SGWC-18 Water 10/18/18 09:05 10/20/18 08:28	400-160240-31	SGWC-11	Water	10/16/18 10:50	10/19/18 09:04
400-160240-39 SGWC-15 Water 10/17/18 15:00 10/19/18 09:04 400-160240-44 PZ-39S Water 10/17/18 13:15 10/19/18 09:04 400-160240-45 SGWC-18 Water 10/18/18 09:05 10/20/18 08:28	400-160240-32	SGWC-15	Water	10/16/18 15:15	10/19/18 09:04
400-160240-44 PZ-39S Water 10/17/18 13:15 10/19/18 09:04 400-160240-45 SGWC-18 Water 10/18/18 09:05 10/20/18 08:28	400-160240-38	SGWC-11	Water	10/17/18 12:30	10/19/18 09:04
400-160240-45 SGWC-18 Water 10/18/18 09:05 10/20/18 08:28	400-160240-39	SGWC-15	Water	10/17/18 15:00	10/19/18 09:04
	400-160240-44	PZ-39S	Water	10/17/18 13:15	10/19/18 09:04
400-160240-47 FD-2 Water 10/18/18 00:00 10/20/18 08:28	400-160240-45	SGWC-18	Water	10/18/18 09:05	10/20/18 08:28
	400-160240-47	FD-2	Water	10/18/18 00:00	10/20/18 08:28

Client: Southern Company
Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWA-1 Lab Sample ID: 400-160240-1

Date Collected: 10/05/18 09:00 Matrix: Water

Date Received: 10/06/18 08:31

Method: 6020 - Metals (ICP/MS) - Total Recoverable									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		11/20/18 08:56	11/20/18 16:04	5

5

7

0

10

13

Client: Southern Company

Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: EB-1(AP)

Date Collected: 10/05/18 11:15 Date Received: 10/06/18 08:31 Lab Sample ID: 400-160240-4

Matrix: Water

Method: 6020 - Metals (ICP/MS) - Total Recoverable

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed

 Arsenic
 <0.00046</td>
 0.0013
 0.00046
 mg/L
 11/20/18 08:56
 11/20/18 16:10

Dil Fac

5

7

8

4.6

11

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWA-3 Date Collected: 10/05/18 09:45 Lab Sample ID: 400-160240-5

Matrix: Water

Date Received: 10/06/18 08:31

Method: 6020 - Metals (ICP/MS) - Total Recoverable
Analysis Decult Overlife

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046	0.0013	0.00046	mg/L		11/20/18 08:56	11/20/18 16:31	5

5

J

7

10

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-22

Lab Sample ID: 400-160240-7

Matrix: Water

Date Collected: 10/08/18 14:20 Date Received: 10/10/18 08:58

Method: 6020 - Metals (ICP/MS) - Total Recoverable

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Arsenic
 <0.00046</td>
 0.0013
 0.00046
 mg/L
 11/20/18 08:56
 11/20/18 16:35
 5

5

7

Q

9

11

12

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-23

Lab Sample ID: 400-160240-8

Matrix: Water

Date Collected: 10/08/18 15:50 Date Received: 10/10/18 08:58

Method: 6020 - Metals (ICP/MS) - Total Recoverable

Analyte Result Qualifier RLMDL Unit Analyzed Dil Fac Prepared Arsenic <0.00046 0.0013 0.00046 mg/L 11/20/18 08:56 5

11/20/18 16:39

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: EB-2(AP)

Lab Sample ID: 400-160240-9

Matrix: Water

Date Collected: 10/08/18 16:30 Date Received: 10/10/18 08:58

Method: 6020 - Metals (ICP/MS) - I	otal Recoverable						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil F
Arsenic	<0.00046	0.0013	0.00046 mg/l		11/20/18 08:56	11/20/18 16:44	

5

9

10

12

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-21

Lab Sample ID: 400-160240-10

Matrix: Water

Date Collected: 10/08/18 12:05 Date Received: 10/10/18 08:58

Method: 6020 - Metals (ICP/MS) - Total Recoverable

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046	0.0013	0.00046	mg/L		11/20/18 08:56	11/20/18 16:47	5

Ę

7

9

10

12

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-7

Lab Sample ID: 400-160240-11

Matrix: Water

Date Collected: 10/09/18 09:25 Date Received: 10/10/18 08:58

Method: 6020 - Metals (ICP/MS) - Total Recoverable

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

 Arsenic
 0.00057
 J
 0.0013
 0.00046
 mg/L
 11/20/18 08:56
 11/20/18 16:51

•

7

8

10

11

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-8 Lab Sample ID: 400-160240-12 Date Collected: 10/09/18 10:35

Matrix: Water

Date Received: 10/10/18 08:58

Method: 6020 - Metals (ICP/MS) - Total Recoverable Result Qualifier Analyte RLMDL Unit Analyzed Dil Fac Prepared Arsenic 0.00053 J 0.0013 0.00046 mg/L 11/20/18 08:56 11/20/18 16:54 5

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-9 Lab Sample ID: 400-160240-13 Date Collected: 10/09/18 10:20

Matrix: Water

Date Received: 10/10/18 08:58

Method: 6020 - Metals (ICP/MS) - Total Recoverable Analyte Result Qualifier RLMDL Unit Analyzed Dil Fac Prepared Arsenic 0.00068 J 0.0013 0.00046 mg/L 11/20/18 08:56 11/20/18 17:00

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-10

Lab Sample ID: 400-160240-14

Matrix: Water

Date Collected: 10/09/18 09:10 Date Received: 10/10/18 08:58

Method: 6020 - Metals (ICP/MS) - Total Recoverable										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Arsenic	<0.00046		0.0013	0.00046	mg/L		11/20/18 08:56	11/20/18 17:03	5

5

5

7

10

19

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-19

Lab Sample ID: 400-160240-15

Date Collected: 10/09/18 08:50 Date Received: 10/10/18 08:58 Matrix: Water

Method: 6020 - Metals (ICP/MS) - Total Recoverable										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Arsenic	0.00058	J	0.0013	0.00046	mg/L		11/20/18 08:56	11/20/18 17:07	5

5

7

9

10

12

13

Client: Southern Company Project/Site: CCR - Plant Scherer

Date Received: 10/10/18 08:58

TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: FD-3(AP) Lab Sample ID: 400-160240-16 Date Collected: 10/09/18 00:00

Matrix: Water

Method: 6020 - Metals (ICP/MS) - Total Recoverable										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Arsenic	<0.00046		0.0013	0.00046	mg/L		11/20/18 09:05	11/20/18 17:35	5

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: FB-3(AP)

Date Collected: 10/09/18 08:45 Date Received: 10/10/18 08:58 Lab Sample ID: 400-160240-17

Matrix: Water

 Analyte
 Result
 Qualifier
 RL
 MDL Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Arsenic
 <0.00046</td>
 0.0013
 0.00046
 mg/L
 11/20/18 09:05
 11/20/18 17:39
 5

5

6

7

0

10

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: EB-3(AP)

Lab Sample ID: 400-160240-18

Analyzed

11/20/18 17:57

Matrix: Water

Dil Fac

5

Date Collected: 10/09/18 11:30 Date Received: 10/10/18 08:58

Method: 6020 - Metals (ICP/MS) - Total Recoverable									
Analyte	Result	Qualifier	RL	MDL	Unit	0)	Prepared	
Arsenic	<0.00046		0.0013	0.00046	mg/L			11/20/18 09:05	

Ę

7

8

10

11

13

Client: Southern Company
Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWA-25

Lab Sample ID: 400-160240-19

Matrix: Water

Date Collected: 10/08/18 14:20 Date Received: 10/10/18 08:58

Method: 6020 - Metals	(ICP/MS) -	Total	Recover	able
Δnalvte			Result	Qualifier

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Arsenic
 <0.00046</td>
 0.0013
 0.00046
 mg/L
 11/20/18 09:05
 11/20/18 18:00
 5

5

7

10

19

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWA-4

Lab Sample ID: 400-160240-20

Matrix: Water

Date Collected: 10/08/18 13:15 Date Received: 10/10/18 08:58

Method: 6020 - Metals (ICP/MS) - Total Recoverable										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Arsenic	<0.00046		0.0013	0.00046	mg/L		11/20/18 09:05	11/20/18 18:21	5

5

6

7

0

10

10

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWA-5 Date Collected: 10/08/18 10:45 Lab Sample ID: 400-160240-21

Matrix: Water

Date Received: 10/10/18 08:58

Method: 6020 - Metals (ICP/MS) - Total Recoverable

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Arsenic
 <0.00046</td>
 0.0013
 0.00046
 mg/L
 11/20/18 09:05
 11/20/18 18:25
 5

5

6

7

0

10

12

13

Client: Southern Company Project/Site: CCR - Plant Scherer

ny TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-6 Date Collected: 10/08/18 15:25 Lab Sample ID: 400-160240-22

Matrix: Water

Date Received: 10/10/18 08:58

Method: 6020 - Metals (ICP/MS) - Total Recoverable

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

Arsenic <0.00046 0.0013 0.00046 mg/L 11/20/18 09:05 11/20/18 18:28 5

8

9

4 4

12

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-12 Lab Sample ID: 400-160240-23 Date Collected: 10/08/18 10:40

Matrix: Water

Date Received: 10/10/18 08:58

Method: 6020 - Metals (ICP/MS) - Total Recoverable Result Qualifier Analyte RLMDL Unit Analyzed Dil Fac Prepared Arsenic 0.00070 J 0.0013 0.00046 mg/L 11/20/18 09:05 11/20/18 18:32

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-13

Lab Sample ID: 400-160240-25

Matrix: Water

Date Collected: 10/08/18 12:25 Date Received: 10/10/18 08:58

Method: 6020 - Metals (ICP/MS) - Total Recoverable

Analyte Result Qualifier RLMDL Unit Analyzed Dil Fac Prepared 5

Arsenic 0.00069 J 0.0013 0.00046 mg/L 11/20/18 09:05 11/20/18 18:35

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-14

Lab Sample ID: 400-160240-26

Matrix: Water

Date Collected: 10/08/18 13:30 Date Received: 10/10/18 08:58

Method: 6020 - Metals (ICP/MS) - Total Recoverable

Result Qualifier Analyte RLMDL Unit Analyzed Dil Fac Prepared 5

Arsenic 0.00070 J 0.0013 0.00046 mg/L 11/20/18 09:05 11/20/18 18:39

Client: Southern Company

Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-16

Date Collected: 10/08/18 14:40 Date Received: 10/10/18 08:58 Lab Sample ID: 400-160240-27

Matrix: Water

Method: 6020 - Metals (ICP/MS) - Total Recoverable

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

 Arsenic
 0.00054
 J
 0.0013
 0.00046
 mg/L
 11/20/18 09:05
 11/20/18 18:43

7

8

9

11

12

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-17

Lab Sample ID: 400-160240-28 Date Collected: 10/08/18 10:30

Matrix: Water

Date Received: 10/10/18 08:58

Method: 6020 - Metals (ICP/MS) - Total Recoverable										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Arsenic	0.00075	J	0.0013	0.00046	mg/L		11/20/18 09:05	11/20/18 18:46	5

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: FD-1(AP)

Lab Sample ID: 400-160240-29

Matrix: Water

Date Collected: 10/08/18 00:00 Date Received: 10/10/18 08:58

Method: 6020 - Metals (ICP/MS) - Total Recoverable

Result Qualifier Analyte RLMDL Unit Analyzed Dil Fac Prepared 5

Arsenic 0.00078 J 0.0013 0.00046 mg/L 11/20/18 09:05 11/20/18 18:50

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: FD-2(AP) Lab Sample ID: 400-160240-30 Date Collected: 10/08/18 00:00

Matrix: Water

Date Received: 10/10/18 08:58

Method: 6020 - Metals (ICP/MS) - Total Recoverable Analyte Result Qualifier RLMDL Unit Analyzed Dil Fac Prepared Arsenic 0.00091 J 0.0013 0.00046 mg/L 11/20/18 09:05 11/20/18 18:53 5

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-11

Lab Sample ID: 400-160240-31

Matrix: Water

Date Collected: 10/16/18 10:50 Date Received: 10/19/18 09:04

Method: 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000070	Н	0.00020	0.000070	mg/L		11/19/18 10:59	11/21/18 16:14	1

5

7

0

9

11

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-15

Date Received: 10/19/18 09:04

Mercury

Lab Sample ID: 400-160240-32

11/21/18 16:16

11/19/18 10:59

Date Collected: 10/16/18 15:15 Matri

0.000070 mg/L

Matrix: Water

Method: 6020 - Metals (ICP/MS) - To	tal Recover	able							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.00046		0.0013	0.00046	mg/L		11/20/18 09:05	11/20/18 19:18	5
Method: 7470A - Mercury (CVAA)	Pacult	Qualifier	RI	MDI	Unit	n	Prenared	Analyzed	Dil Fac

0.00020

<0.000070 H

0

7

8

9

11

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-11

Lab Sample ID: 400-160240-38

Matrix: Water

Date Collected: 10/17/18 12:30 Date Received: 10/19/18 09:04

Method: 7470A - Mercury (CVAA) - Dissolved

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Mercury, Dissolved
 <0.000070</td>
 H
 0.00020
 0.000070
 mg/L
 11/19/18 10:59
 11/21/18 16:00
 1

Ę

6

7

9

10

46

13

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-15

Lab Sample ID: 400-160240-39

Matrix: Water

Date Collected: 10/17/18 15:00 Date Received: 10/19/18 09:04

Method: 7470A - Mercury (CVAA) - Dissolved

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Mercury, Dissolved
 <0.000070</td>
 H
 0.00020
 0.000070
 mg/L
 11/19/18 10:59
 11/21/18 15:58
 1

5

_

7

10

46

13

0.0013

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: PZ-39S

Lab Sample ID: 400-160240-44

11/20/18 09:05

Matrix: Water

Date Collected: 10/17/18 13:15 Date Received: 10/19/18 09:04

Arsenic

0.00046 mg/L

Method: 6020 - Metals (ICP/MS	S) - Total Recoverable				
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared

0.0019

Analyzed Dil Fac

11/20/18 19:21 5

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-18

Lab Sample ID: 400-160240-45

11/21/18 16:20

11/19/18 10:59

Matrix: Water

Date Collected: 10/18/18 09:05 Date Received: 10/20/18 08:28

Mercury, Dissolved

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0031		0.0013	0.00046	mg/L		11/20/18 09:05	11/20/18 19:25	5
- Method: 6020 - Metals (ICP/I	MS) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic, Dissolved	0.0024		0.0013	0.00046	mg/L		11/14/18 10:20	11/14/18 21:59	5
_ Method: 7470A - Mercury (C	VAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00021	Н	0.00020	0.000070	mg/L		11/19/18 10:59	11/21/18 16:02	1
- Method: 7470A - Mercury (C	VAA) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury, Dissolved	0.00014		0.00020	0.000070	mg/L		11/08/18 13:02	11/13/18 10:38	

0.00020

0.000070 mg/L

0.000080 JH

7

ŏ

9

10

12

13

4 /

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: FD-2

Lab Sample ID: 400-160240-47

Matrix: Water

Date Collected: 10/18/18 00:00 Date Received: 10/20/18 08:28

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0027		0.0013	0.00046	mg/L		11/20/18 09:05	11/20/18 19:29	5
- Method: 6020 - Metals (ICP/	MS) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic, Dissolved	0.0023		0.0013	0.00046	mg/L		11/14/18 10:20	11/14/18 22:02	5
Method: 7470A - Mercury (C	•					_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00020	Н	0.00020	0.000070	mg/L		11/19/18 10:59	11/21/18 16:18	1
- Method: 7470A - Mercury (C	VAA) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury, Dissolved	0.00024	11	0.00020	0.000070	ma/L		11/19/18 10:59	11/21/18 16:21	

6

7

8

9

10

11

14

Definitions/Glossary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Qualifiers

Metals

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Н	Sample was prepped or analyzed beyond the specified holding time

RPD

TEF

TEQ

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin)

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWA-1

Lab Sample ID: 400-160240-1

Matrix: Water

Date Collected: 10/05/18 09:00 Date Received: 10/06/18 08:31

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420195	11/20/18 08:56	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 16:04	DRE	TAL PEN

Client Sample ID: EB-1(AP) Lab Sample ID: 400-160240-4

Matrix: Water

Date Collected: 10/05/18 11:15 Date Received: 10/06/18 08:31

Batch Batch Dilution Batch Prepared Method Prep Type Туре Run Factor Number or Analyzed Analyst 3005A 420195 11/20/18 08:56 DRE TAL PEN Total Recoverable Prep TAL PEN Total Recoverable Analysis 6020 5 420409 11/20/18 16:10 DRE

Client Sample ID: SGWA-3 Lab Sample ID: 400-160240-5

Matrix: Water

Date Collected: 10/05/18 09:45 Date Received: 10/06/18 08:31

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total Recoverable Prep 3005A 420195 11/20/18 08:56 DRE TAL PEN 6020 TAL PEN Total Recoverable Analysis 5 420409 11/20/18 16:31 DRE

Client Sample ID: SGWC-22 Lab Sample ID: 400-160240-7

Date Collected: 10/08/18 14:20 **Matrix: Water**

Date Received: 10/10/18 08:58

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420195	11/20/18 08:56	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 16:35	DRE	TAL PEN

Client Sample ID: SGWC-23 Lab Sample ID: 400-160240-8

Date Collected: 10/08/18 15:50 Matrix: Water

Date Received: 10/10/18 08:58

ı		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total Recoverable	Prep	3005A			420195	11/20/18 08:56	DRE	TAL PEN
	Total Recoverable	Analysis	6020		5	420409	11/20/18 16:39	DRE	TAL PEN

Client Sample ID: EB-2(AP) Lab Sample ID: 400-160240-9

Date Collected: 10/08/18 16:30 Matrix: Water

Date Received: 10/10/18 08:58

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420195	11/20/18 08:56	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 16:44	DRE	TAL PEN

TestAmerica Pensacola

2

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-21

Date Collected: 10/08/18 12:05 Date Received: 10/10/18 08:58 Lab Sample ID: 400-160240-10

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420195	11/20/18 08:56	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 16:47	DRE	TAL PEN

Client Sample ID: SGWC-7

Date Collected: 10/09/18 09:25 Date Received: 10/10/18 08:58 Lab Sample ID: 400-160240-11

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420195	11/20/18 08:56	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 16:51	DRE	TAL PEN

Client Sample ID: SGWC-8

Date Collected: 10/09/18 10:35

Date Received: 10/10/18 08:58

Lab Sample ID: 400-160240-12

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420195	11/20/18 08:56	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 16:54	DRE	TAL PEN

Client Sample ID: SGWC-9

Date Collected: 10/09/18 10:20

Date Received: 10/10/18 08:58

Lab Sample	ID: 4	00-1	6	02	240-	13

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420195	11/20/18 08:56	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 17:00	DRE	TAL PEN

Client Sample ID: SGWC-10

Date Collected: 10/09/18 09:10

Date Received: 10/10/18 08:58

Lab Sample ID	: 400-160240-14
---------------	-----------------

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420195	11/20/18 08:56	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 17:03	DRE	TAL PEN

Client Sample ID: SGWC-19

Date Collected: 10/09/18 08:50

Date Received: 10/10/18 08:58

Lab Sample	ID: 400-	160240-15
------------	----------	-----------

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420195	11/20/18 08:56	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 17:07	DRE	TAL PEN

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: FD-3(AP)

Date Received: 10/10/18 08:58

Date Collected: 10/09/18 00:00

Lab Sample ID: 400-160240-16

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420196	11/20/18 09:05	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 17:35	DRE	TAL PEN

Client Sample ID: FB-3(AP)

Date Collected: 10/09/18 08:45 Date Received: 10/10/18 08:58 Lab Sample ID: 400-160240-17

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420196	11/20/18 09:05	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 17:39	DRE	TAL PEN

Client Sample ID: EB-3(AP)

Date Collected: 10/09/18 11:30

Date Received: 10/10/18 08:58

Lab Sample ID: 400-160240-18

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420196	11/20/18 09:05	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 17:57	DRE	TAL PEN

Client Sample ID: SGWA-25

Date Collected: 10/08/18 14:20

Date Received: 10/10/18 08:58

Lab Sample	ID:	400-1	602	240-19	

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420196	11/20/18 09:05	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 18:00	DRE	TAL PEN

Client Sample ID: SGWA-4

Date Collected: 10/08/18 13:15

Date Received: 10/10/18 08:58

Lab	Sampl	e ID: 400	-160240-20

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420196	11/20/18 09:05	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 18:21	DRE	TAL PEN

Client Sample ID: SGWA-5

Date Collected: 10/08/18 10:45

Date Received: 10/10/18 08:58

Lab	Sample	9 ID: 4	400-16	50240-	21

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420196	11/20/18 09:05	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 18:25	DRE	TAL PEN

_

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-6

Date Collected: 10/08/18 15:25 Date Received: 10/10/18 08:58 Lab Sample ID: 400-160240-22

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420196	11/20/18 09:05	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 18:28	DRE	TAL PEN

Client Sample ID: SGWC-12

Date Collected: 10/08/18 10:40 Date Received: 10/10/18 08:58 Lab Sample ID: 400-160240-23

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420196	11/20/18 09:05	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 18:32	DRE	TAL PEN

Client Sample ID: SGWC-13

Date Collected: 10/08/18 12:25

Date Received: 10/10/18 08:58

Lab Sample ID: 400-160240-25

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab 3005A 420196 11/20/18 09:05 TAL PEN Total Recoverable Prep DRE 6020 420409 11/20/18 18:35 DRE TAL PEN Total Recoverable Analysis 5

Client Sample ID: SGWC-14

Date Collected: 10/08/18 13:30

Date Received: 10/10/18 08:58

Lab Sample ID: 400-160240-26

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420196	11/20/18 09:05	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 18:39	DRE	TAL PEN

Client Sample ID: SGWC-16

Date Collected: 10/08/18 14:40

Date Received: 10/10/18 08:58

Lab Sample ID: 400-160240-27

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420196	11/20/18 09:05	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 18:43	DRE	TAL PEN

Client Sample ID: SGWC-17

Date Collected: 10/08/18 10:30

Lab Sample ID: 400-160240-28

Matrix: Water

Date Received: 10/10/18 08:58

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420196	11/20/18 09:05	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 18:46	DRE	TAL PEN

TestAmerica Pensacola

2

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: FD-1(AP)

Date Collected: 10/08/18 00:00 Date Received: 10/10/18 08:58 Lab Sample ID: 400-160240-29

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420196	11/20/18 09:05	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 18:50	DRE	TAL PEN

Client Sample ID: FD-2(AP)

Date Collected: 10/08/18 00:00

Date Received: 10/10/18 08:58

Lab Sample ID: 400-160240-30

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420196	11/20/18 09:05	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 18:53	DRE	TAL PEN

Client Sample ID: SGWC-11

Date Collected: 10/16/18 10:50

Date Received: 10/19/18 09:04

Lab Sample ID: 400-160240-31

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab 3005A 420196 11/20/18 09:05 DRE TAL PEN Total Recoverable Prep Total Recoverable 6020 420409 11/20/18 19:14 Analysis 5 DRE TAL PEN TAL PEN Total/NA Prep 7470A 420037 11/19/18 10:59 JAP Total/NA 7470A 420492 11/21/18 16:14 TAL PEN Analysis 1 JAP

Client Sample ID: SGWC-15

Date Collected: 10/16/18 15:15

Date Received: 10/19/18 09:04

Lab Sample ID: 400-160240-32

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			420196	11/20/18 09:05	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 19:18	DRE	TAL PEN
Total/NA	Prep	7470A			420037	11/19/18 10:59	JAP	TAL PEN
Total/NA	Analysis	7470A		1	420492	11/21/18 16:16	JAP	TAL PEN

Client Sample ID: SGWC-11

Date Collected: 10/17/18 12:30

Date Received: 10/19/18 09:04

Lab Sample ID: 400-160240-38

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	7470A			420037	11/19/18 10:59	JAP	TAL PEN
Dissolved	Analysis	7470A		1	420492	11/21/18 16:00	JAP	TAL PEN

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: SGWC-15

Date Collected: 10/17/18 15:00 Date Received: 10/19/18 09:04 Lab Sample ID: 400-160240-39

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	7470A			420037	11/19/18 10:59	JAP	TAL PEN
Dissolved	Analysis	7470A		1	420492	11/21/18 15:58	JAP	TAL PEN

Client Sample ID: PZ-39S

Date Collected: 10/17/18 13:15 Date Received: 10/19/18 09:04 Lab Sample ID: 400-160240-44

Matrix: Water

	Batch	Batch	tch		Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A	· <u></u> -		420196	11/20/18 09:05	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 19:21	DRE	TAL PEN

Client Sample ID: SGWC-18

Date Collected: 10/18/18 09:05

Lab Sample ID: 400-160240-45

Matrix: Water

Date Received: 10/20/18 08:28

watrix: water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			419476	11/14/18 10:20	KWN	TAL PEN
Dissolved	Analysis	6020		5	419700	11/14/18 21:59	DRE	TAL PEN
Total Recoverable	Prep	3005A			420196	11/20/18 09:05	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 19:25	DRE	TAL PEN
Dissolved	Prep	7470A			418848	11/08/18 13:02	JAP	TAL PEN
Dissolved	Analysis	7470A		1	419409	11/13/18 10:38	JAP	TAL PEN
Dissolved	Prep	7470A			420037	11/19/18 10:59	JAP	TAL PEN
Dissolved	Analysis	7470A		1	420492	11/21/18 16:20	JAP	TAL PEN
Total/NA	Prep	7470A			420037	11/19/18 10:59	JAP	TAL PEN
Total/NA	Analysis	7470A		1	420492	11/21/18 16:02	JAP	TAL PEN

Client Sample ID: FD-2

Date Collected: 10/18/18 00:00

Date Received: 10/20/18 08:28

Lab Sample ID: 400-160240-47

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3005A			419476	11/14/18 10:20	KWN	TAL PEN
Dissolved	Analysis	6020		5	419700	11/14/18 22:02	DRE	TAL PEN
Total Recoverable	Prep	3005A			420196	11/20/18 09:05	DRE	TAL PEN
Total Recoverable	Analysis	6020		5	420409	11/20/18 19:29	DRE	TAL PEN
Dissolved	Prep	7470A			420037	11/19/18 10:59	JAP	TAL PEN
Dissolved	Analysis	7470A		1	420492	11/21/18 16:21	JAP	TAL PEN
Total/NA	Prep	7470A			420037	11/19/18 10:59	JAP	TAL PEN
Total/NA	Analysis	7470A		1	420492	11/21/18 16:18	JAP	TAL PEN

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

QC Association Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Metals

Prep Batch: 418848

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-45	SGWC-18	Dissolved	Water	7470A	
MB 400-418848/14-A	Method Blank	Total/NA	Water	7470A	
LCS 400-418848/15-A	Lab Control Sample	Total/NA	Water	7470A	
400-160240-B-42-B MS	400-160240-B-42-B MS	Total/NA	Water	7470A	
400-160240-B-42-C MSD	400-160240-B-42-C MSD	Total/NA	Water	7470A	

Analysis Batch: 419409

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-45	SGWC-18	Dissolved	Water	7470A	418848
MB 400-418848/14-A	Method Blank	Total/NA	Water	7470A	418848
LCS 400-418848/15-A	Lab Control Sample	Total/NA	Water	7470A	418848
400-160240-B-42-B MS	400-160240-B-42-B MS	Total/NA	Water	7470A	418848
400-160240-B-42-C MSD	400-160240-B-42-C MSD	Total/NA	Water	7470A	418848

Prep Batch: 419476

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-45	SGWC-18	Dissolved	Water	3005A	
400-160240-47	FD-2	Dissolved	Water	3005A	
MB 400-419476/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-419476/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
400-161935-I-10-B MS ^5	Matrix Spike	Dissolved	Water	3005A	
400-161935-I-10-C MSD ^5	Matrix Spike Duplicate	Dissolved	Water	3005A	

Analysis Batch: 419700

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-45	SGWC-18	Dissolved	Water	6020	419476
400-160240-47	FD-2	Dissolved	Water	6020	419476
MB 400-419476/1-A ^5	Method Blank	Total Recoverable	Water	6020	419476
LCS 400-419476/2-A	Lab Control Sample	Total Recoverable	Water	6020	419476
400-161935-I-10-B MS ^5	Matrix Spike	Dissolved	Water	6020	419476
400-161935-I-10-C MSD ^5	Matrix Spike Duplicate	Dissolved	Water	6020	419476

Prep Batch: 420037

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
400-160240-31	SGWC-11	Total/NA	Water	7470A	<u> </u>
400-160240-32	SGWC-15	Total/NA	Water	7470A	
400-160240-38	SGWC-11	Dissolved	Water	7470A	
400-160240-39	SGWC-15	Dissolved	Water	7470A	
400-160240-45	SGWC-18	Dissolved	Water	7470A	
400-160240-45	SGWC-18	Total/NA	Water	7470A	
400-160240-47	FD-2	Dissolved	Water	7470A	
400-160240-47	FD-2	Total/NA	Water	7470A	
MB 400-420037/14-A	Method Blank	Total/NA	Water	7470A	
LCS 400-420037/15-A	Lab Control Sample	Total/NA	Water	7470A	
400-161490-AA-1-B MS	Matrix Spike	Total/NA	Water	7470A	
400-161490-AA-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Prep Batch: 420195

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-1	SGWA-1	Total Recoverable	Water	3005A	
400-160240-4	EB-1(AP)	Total Recoverable	Water	3005A	

TestAmerica Pensacola

Page 50 of 62

QC Association Summary

Client: Southern Company
Project/Site: CCR - Plant Scherer
SDG: Ash Pond

Metals (Continued)

Prep Batch: 420195 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-5	SGWA-3	Total Recoverable	Water	3005A	
400-160240-7	SGWC-22	Total Recoverable	Water	3005A	
400-160240-8	SGWC-23	Total Recoverable	Water	3005A	
400-160240-9	EB-2(AP)	Total Recoverable	Water	3005A	
400-160240-10	SGWC-21	Total Recoverable	Water	3005A	
400-160240-11	SGWC-7	Total Recoverable	Water	3005A	
400-160240-12	SGWC-8	Total Recoverable	Water	3005A	
400-160240-13	SGWC-9	Total Recoverable	Water	3005A	
400-160240-14	SGWC-10	Total Recoverable	Water	3005A	
400-160240-15	SGWC-19	Total Recoverable	Water	3005A	
MB 400-420195/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-420195/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
400-160141-G-3-D MS ^5	Matrix Spike	Total Recoverable	Water	3005A	
400-160141-G-3-E MSD ^5	Matrix Spike Duplicate	Total Recoverable	Water	3005A	

Prep Batch: 420196

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-16	FD-3(AP)	Total Recoverable	Water	3005A	_
400-160240-17	FB-3(AP)	Total Recoverable	Water	3005A	
400-160240-18	EB-3(AP)	Total Recoverable	Water	3005A	
400-160240-19	SGWA-25	Total Recoverable	Water	3005A	
400-160240-20	SGWA-4	Total Recoverable	Water	3005A	
400-160240-21	SGWA-5	Total Recoverable	Water	3005A	
400-160240-22	SGWC-6	Total Recoverable	Water	3005A	
400-160240-23	SGWC-12	Total Recoverable	Water	3005A	
400-160240-25	SGWC-13	Total Recoverable	Water	3005A	
400-160240-26	SGWC-14	Total Recoverable	Water	3005A	
400-160240-27	SGWC-16	Total Recoverable	Water	3005A	
400-160240-28	SGWC-17	Total Recoverable	Water	3005A	
400-160240-29	FD-1(AP)	Total Recoverable	Water	3005A	
400-160240-30	FD-2(AP)	Total Recoverable	Water	3005A	
400-160240-31	SGWC-11	Total Recoverable	Water	3005A	
400-160240-32	SGWC-15	Total Recoverable	Water	3005A	
400-160240-44	PZ-39S	Total Recoverable	Water	3005A	
400-160240-45	SGWC-18	Total Recoverable	Water	3005A	
400-160240-47	FD-2	Total Recoverable	Water	3005A	
MB 400-420196/1-A ^5	Method Blank	Total Recoverable	Water	3005A	
LCS 400-420196/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
400-160240-17 MS	FB-3(AP)	Total Recoverable	Water	3005A	
400-160240-17 MSD	FB-3(AP)	Total Recoverable	Water	3005A	

Analysis Batch: 420409

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-1	SGWA-1	Total Recoverable	Water	6020	420195
400-160240-4	EB-1(AP)	Total Recoverable	Water	6020	420195
400-160240-5	SGWA-3	Total Recoverable	Water	6020	420195
400-160240-7	SGWC-22	Total Recoverable	Water	6020	420195
400-160240-8	SGWC-23	Total Recoverable	Water	6020	420195
400-160240-9	EB-2(AP)	Total Recoverable	Water	6020	420195
400-160240-10	SGWC-21	Total Recoverable	Water	6020	420195
400-160240-11	SGWC-7	Total Recoverable	Water	6020	420195

TestAmerica Pensacola

020.7611 6114

4

O

9

10

12

IJ

QC Association Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Metals (Continued)

Analysis Batch: 420409 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-12	SGWC-8	Total Recoverable	Water	6020	420195
400-160240-13	SGWC-9	Total Recoverable	Water	6020	420195
400-160240-14	SGWC-10	Total Recoverable	Water	6020	420195
400-160240-15	SGWC-19	Total Recoverable	Water	6020	420195
400-160240-16	FD-3(AP)	Total Recoverable	Water	6020	420196
400-160240-17	FB-3(AP)	Total Recoverable	Water	6020	420196
400-160240-18	EB-3(AP)	Total Recoverable	Water	6020	420196
400-160240-19	SGWA-25	Total Recoverable	Water	6020	420196
400-160240-20	SGWA-4	Total Recoverable	Water	6020	420196
400-160240-21	SGWA-5	Total Recoverable	Water	6020	420196
400-160240-22	SGWC-6	Total Recoverable	Water	6020	420196
400-160240-23	SGWC-12	Total Recoverable	Water	6020	420196
400-160240-25	SGWC-13	Total Recoverable	Water	6020	420196
400-160240-26	SGWC-14	Total Recoverable	Water	6020	420196
400-160240-27	SGWC-16	Total Recoverable	Water	6020	420196
400-160240-28	SGWC-17	Total Recoverable	Water	6020	420196
400-160240-29	FD-1(AP)	Total Recoverable	Water	6020	420196
400-160240-30	FD-2(AP)	Total Recoverable	Water	6020	420196
400-160240-31	SGWC-11	Total Recoverable	Water	6020	420196
400-160240-32	SGWC-15	Total Recoverable	Water	6020	420196
400-160240-44	PZ-39S	Total Recoverable	Water	6020	420196
400-160240-45	SGWC-18	Total Recoverable	Water	6020	420196
400-160240-47	FD-2	Total Recoverable	Water	6020	420196
MB 400-420195/1-A ^5	Method Blank	Total Recoverable	Water	6020	420195
MB 400-420196/1-A ^5	Method Blank	Total Recoverable	Water	6020	420196
LCS 400-420195/2-A	Lab Control Sample	Total Recoverable	Water	6020	420195
LCS 400-420196/2-A	Lab Control Sample	Total Recoverable	Water	6020	420196
400-160141-G-3-D MS ^5	Matrix Spike	Total Recoverable	Water	6020	420195
400-160141-G-3-E MSD ^5	Matrix Spike Duplicate	Total Recoverable	Water	6020	420195
400-160240-17 MS	FB-3(AP)	Total Recoverable	Water	6020	420196
400-160240-17 MSD	FB-3(AP)	Total Recoverable	Water	6020	420196

Analysis Batch: 420492

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-160240-31	SGWC-11	Total/NA	Water	7470A	420037
400-160240-32	SGWC-15	Total/NA	Water	7470A	420037
400-160240-38	SGWC-11	Dissolved	Water	7470A	420037
400-160240-39	SGWC-15	Dissolved	Water	7470A	420037
400-160240-45	SGWC-18	Dissolved	Water	7470A	420037
400-160240-45	SGWC-18	Total/NA	Water	7470A	420037
400-160240-47	FD-2	Dissolved	Water	7470A	420037
400-160240-47	FD-2	Total/NA	Water	7470A	420037
MB 400-420037/14-A	Method Blank	Total/NA	Water	7470A	420037
LCS 400-420037/15-A	Lab Control Sample	Total/NA	Water	7470A	420037
400-161490-AA-1-B MS	Matrix Spike	Total/NA	Water	7470A	420037
400-161490-AA-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	420037

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 400-419476/1-A ^5

Matrix: Water

Analysis Batch: 419700

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 419476

мв мв

Result Qualifier RLMDL Unit D Dil Fac Analyte Prepared Analyzed 0.0013 11/14/18 10:20 Arsenic, Dissolved <0.00046 0.00046 mg/L 11/14/18 18:26

Lab Sample ID: LCS 400-419476/2-A Client Sample ID: Lab Control Sample **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 419700 Prep Batch: 419476

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits Arsenic, Dissolved 0.0500 0.0486 mg/L 97 80 - 120

Lab Sample ID: MB 400-420195/1-A ^5

Matrix: Water

Analysis Batch: 420409

мв мв

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac <0.00046 0.0013 11/20/18 08:56 11/20/18 14:57 Arsenic 0.00046 mg/L

Client Sample ID: Lab Control Sample Lab Sample ID: LCS 400-420195/2-A **Prep Type: Total Recoverable**

Matrix: Water

Analysis Batch: 420409

LCS LCS Spike %Rec. Added Analyte Result Qualifier Unit %Rec Limits 0.0500 0.0504 Arsenic ma/L 101 80 120

Lab Sample ID: 400-160141-G-3-D MS ^5

Matrix: Water

Analysis Batch: 420409 Sample Sample Spike MS MS

мв мв

Client Sample ID: Matrix Spike **Prep Type: Total Recoverable** Prep Batch: 420195 %Rec.

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Method Blank

Prep Type: Total Recoverable

Prep Batch: 420195

Prep Batch: 420195

Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits <0.00046 0.0500 102 Arsenic 0.0512 75 - 125 mg/L

Lab Sample ID: 400-160141-G-3-E MSD ^5

Matrix: Water

Prep Type: Total Recoverable Analysis Batch: 420409 Spike MSD MSD Sample Sample

%Rec. **RPD** Result Qualifier Result Qualifier Added Analyte Unit D %Rec Limits RPD Limit 0.0500 0.0506 Arsenic < 0.00046 mg/L 101 75 - 125

Lab Sample ID: MB 400-420196/1-A ^5

Matrix: Water

Analysis Batch: 420409

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 420196

Prep Batch: 420195

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Arsenic <0.00046 0.0013 0.00046 mg/L 11/20/18 09:05 11/20/18 17:28

Lab Sample ID: LCS 400-420196/2-A

Matrix: Water

Analysis Batch: 420409

Client Sample ID: Lab Control Sample **Prep Type: Total Recoverable** Prep Batch: 420196 LCS LCS %Rec.

Spike Analyte Added Result Qualifier Unit D %Rec Limits 0.0500 Arsenic 0.0483 mg/L 97 80 - 120

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Client Sample ID: FB-3(AP)

Lab Sample ID: 400-160240-17 MS **Matrix: Water**

Analysis Batch: 420409

Prep Type: Total Recoverable Prep Batch: 420196 Sample Sample Spike MS MS

%Rec.

Result Qualifier Added Result Qualifier %Rec Limits Analyte Unit 0.0500 <0.00046 98 75 - 125 Arsenic 0.0488 mg/L

Lab Sample ID: 400-160240-17 MSD Client Sample ID: FB-3(AP) **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 420409 **Prep Batch: 420196** Sample Sample Spike MSD MSD RPD %Rec. Result Qualifier Added Result Qualifier %Rec Limits RPD Limit Analyte Unit D Arsenic <0.00046 0.0500 0.0488 mg/L 75 - 125 0 20

Lab Sample ID: 400-161935-I-10-B MS ^5 Client Sample ID: Matrix Spike **Matrix: Water Prep Type: Dissolved** Analysis Batch: 419700 **Prep Batch: 419476** MS MS Sample Sample Spike %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Arsenic, Dissolved 0.0031 0.0500 0.0545 103 75 - 125 mg/L

Lab Sample ID: 400-161935-I-10-C MSD ^5 Client Sample ID: Matrix Spike Duplicate **Matrix: Water Prep Type: Dissolved** Analysis Batch: 419700 Prep Batch: 419476

Sample Sample Spike MSD MSD %Rec. RPD Result Qualifier Added Result Qualifier Unit %Rec Limits Limit Arsenic, Dissolved 0.0031 0.0500 0.0530 mg/L 100 75 - 125 20

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 400-418848/14-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 419409

MR MR

RL MDL Unit Dil Fac Analyte Result Qualifier D Prepared Analyzed <0.000070 0.00020 11/08/18 12:35 11/13/18 09:32 Mercury, Dissolved 0.000070 mg/L

Lab Sample ID: LCS 400-418848/15-A Client Sample ID: Lab Control Sample

Matrix: Water

Analysis Batch: 419409

Prep Type: Total/NA **Prep Batch: 418848** Spike LCS LCS %Rec.

Added Result Qualifier Analyte Unit %Rec Limits 0.00101 Mercury, Dissolved 0.000957 mg/L 95 80 - 120

Lab Sample ID: 400-160240-B-42-B MS Client Sample ID: 400-160240-B-42-B MS

Matrix: Water

Prep Type: Total/NA Analysis Batch: 419409 Prep Batch: 418848 Spike MS MS Sample Sample %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Mercury, Dissolved <0.000070 0.00201 0.00190 mg/L 94 80 - 120

Prep Type: Total/NA

Prep Batch: 418848

QC Sample Results

Client: Southern Company TestAmerica Job ID: 400-160240-3 Project/Site: CCR - Plant Scherer

Method: 7470A - Mercury (CVAA) (Continued)

Mercury

Mercury, Dissolved

Matrix: Water

Mercury, Dissolved

Lab Sample ID: 400-161490-AA-1-B MS

Lab Sample ID: 400-161490-AA-1-C MSD

<0.000070

SDG: Ash Pond

Lab Sample ID: 400-160240-B-42	-C MSD							Clien	t Sai	mple ID:	400-160240)-B-42-(C MSD
Matrix: Water											Prep Ty	ype: To	tal/NA
Analysis Batch: 419409											Prep E	Batch: 4	118848
	Sample	Sample	Spike	•	MSD	MSD					%Rec.		RPD
Analyte	Result	Qualifier	Added	l	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Mercury, Dissolved	<0.000070		0.00201		0.00184		mg/L			92	80 - 120	3	20
Lab Sample ID: MB 400-420037/1	4-A									Client S	ample ID: N	Nethod	Blank
Matrix: Water											Prep Ty	pe: To	tal/NA
Analysis Batch: 420492											Prep B	Batch: 4	20037
		MB MB											
Analyte	Re	esult Quali	fier	RL	ı	MDL Unit		D	F	repared	Analyze	ed	Dil Fac
Mercury	<0.000	0070		0.00020	0.000	070 mg/l	_		11/1	19/18 10:23	11/21/18 1	5:23	1
Mercury, Dissolved	<0.000	0070	(0.00020	0.000	070 mg/l	_		11/1	19/18 10:23	11/21/18 1	5:23	•
Lab Sample ID: LCS 400-420037/	15-A							C	Clien	t Sample	ID: Lab Co	ntrol S	ample
Matrix: Water											Prep Ty	pe: To	tal/NA
Analysis Batch: 420492											Prep E	Batch: 4	20037
_			Spike)	LCS	LCS					%Rec.		
Analyte			Added	I	Result	Qualifier	Unit		D	%Rec	Limits		

Analysis Batch: 420492									Prep l	Batch: 420037
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury	<0.000070		0.00201	0.00192		mg/L		95	80 - 120	

0.00105

0.00105

0.00192

mg/L

mg/L

mg/L

104

104

80 - 120

80 - 120

80 - 120

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Matrix Spike

Prep Type: Total/NA

0.00101

0.00101

0.00201

Matrix: Water									Prep T	ype: To	tal/NA
Analysis Batch: 420492									Prep l	Batch: 4	20037
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Mercury	<0.000070		0.00201	0.00204		mg/L		101	80 - 120	6	20
Mercury, Dissolved	<0.000070		0.00201	0.00204		mg/L		101	80 - 120	6	20

Chain of Custody Record

3355 McLemore Drive Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671

TestAmerica Pensacola

lient Information	Ben Hodges			Whitn	Whitmire, Cheyenne R	eyenn	е В			,	:		400-57303-24790	
ient Contact: oju Abraham	Phone:			E-Mail: cheye	nne.wh	itmire	@testa	E-Mail: cheyenne.whitmire@testamericainc.com	сош				Page: 1 of 1	
ompany: outhern Company								Analy	Analysis Requested	nested			Job #:	
ddress: 44 Beinh McGill Blyd SE 840485	Due Date Requested:	Ü				H								:88
	TAT Requested (da	(days):				MH	R						A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
late, Zip: 3A, 30308					P	VULFZ								P - Na2O4S Q - Na2SO3
hone:	PO #				- (11.02.								R - NaZSZU3 S - H2SO4 T - TSP Dodecahvdrate
mail: Abraham@southernco.com	, MO#:					788 : 1 90				**				U - Acetone V - MCAA
roject Name: :CR - Scherer	Project #: 40007041								-	4			L-EDA	vv - pri 4-5 Z - other (specify)
ite: sh Pond	SSOW#:						_		400.1			of con	Other:	
ample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (Wewater, Sepolid, Oewaste/oil, BT=Tissue, AnAlr)	Field Filtered MCM mrohe9	300_ORGFM_2	6020-58,88,1 56,355,43,3156			000 0570 COC		19dmuN lstoT	Special In	Special Instructions/Note:
	X	X	Preservation Code:		X	Z	۵					X		V
GWA-1	10/5/18	0060	O	Water	z	-						ო		
B-1(AP)	10/5/18	0840	O	Water	2	-	-					n		
GWA-2	10/5/18	1015	O	Water	z	-	-					n		
:B-1(AP)	10/5/18	1115	O	Water	z	-	-					က		
:GWA-3	10/5/18	0945	O	Water	z	-	-					က		
6GWA-24	10/5/18	1115	ŋ	Water	z	-	1 2					4	Extra Radium	
					_		-							
ossible Hazard Identification					San	- Dela	ispos	Il (A fee	may be as	sessed if san	ples are r	etaine	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	month)
ant	Poison B Unkn	known	Radiological			Ret	Return To Client	Client		Disposal By Lab		Archi	Return To Client Disposal By Lab Archive For Months	Months
denverable Requested: 1, 11, 111, 1V. Other (specify)					200		struction	A DD/SU	adniremen	s: Edu Golde	- Kad UDS	and	edu Golder UDS	equis EDDs
mpty Kit Relinquished by:		Date:			Time:			7		Method of Shipment	hipment:			
(elinquished by:	4 · * 1/19	18/ 19	Trud	Company Golder		Received by	d by:	A		8/15/01	Date/Time:		25.44	Company
Selinquished 60	16 Serrine:	18	9	Company	i l	Received	Received by:		0	-/ 1	Date/Time:			Company
Custody Seals Intact: Custody Seal No.:	,					Cooler	Fempera	ture(s) °C a	Cooler Temperature(s) °C and Other Remarks:	117		39 Z	0631	TA-PEN
Δ Tes Δ NO					1			ŀ	1	;	-	3	2	,

Chain of Custody Record

Check Chec	3355 McLemore Drive Pensacola, FL 32514 Phone (R50) 474-1011 Fax (R50) 478-2671	ပ	hain o	Chain of Custody Record	ody Re	00	Ģ						THE LEADER IN	TestAmerico THE LEADER IN ENVIRONMENTAL TESTING
Standard S	Client Information	Sampler: Ben Hodges			Lab PM: Whitm	ප් වේ	eyenn	0°		Camer Tracki	ng Na(s):		COC No: 400-57303-247	790
EBN SE BIOTOS Dea bias faces metals Control	Cilent Contact: Joju Abraham	Phone:			E-Mail: cheyer	ne.wh	itmire(@test	mericainc.com	1			Page: 2 of 2	
The Control of Sample	Company: Southern Company								Analysis R	equested) () () () ()	0500
The control of the	Address: 241 Ralph McGill Blvd SE B10185	Due Date Requested											Preservation Co	odes:
Colored Seal No. Colored Sea	City: Atlanta	TAT Requested (day	ä			ų,	»H-/	R					A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - AsNaO2
100016 1	State, Zip: GA, 30308						AUTAT						D - Nitric Acid E - NaHSO4	P - Na2048 Q - Na2SO3
Contraction	Рћапе:	# Od #					IT a2		=2				F - MeOH G - Amchlor H - Assorbic Acid	
Sample Date	Email: JAbraham@southernco.com	.WO#:					-m : 1 9	_	2	30		S.	J - DI Water	
Sample Date Sample Core Sample Webfit	Project Name: CCR - Scherer	Project #: 40007041							-37	4		19Uisti		vv - pn 4-5 Z - ather (specify)
Sample Date Sample Date Sample Control Contro	Site: Ash Pond	SSOW#:							U	1		nos 10		
106/18 1420 G Waler N 1 1 1 1 1 1 1 1 1	Sample identification	Sample Date							400-1	80240 COC		19dmuM istoT		Instructions/Note:
108/18 1420 G Water N 1 1 1 1 1 1 1 1 1		\backslash	1			X	一	H				X		V
108/18 1550 G Water N 1 1 1 1 1 1 1 1 1	SGWC-22	10/8/18	1420	σ			-	\vdash				n		
108/18 1530 G Water N 1 1 1 1 1 1 1 1 1	SGWC-23	10/8/18	1550	O			-	-				n		
100/16 1	EB-2(AP)	10/8/18	1630	O		_	-					6		
109/18 1026 G Water N 1 1 1 1 1 1 1 1 1	SGWC-21	10/8/18	1205	Ø		_	-	-				e		
108/18 1035 G Water N 1 1 1 1 1 1 1 1 1	SGWC-7	10/9/18	0925	Ø		_		-				4		
10/9/18 1020 G Water N 1 1 1 1 1 1 1 1 1	SGWC-8	10/9/18	1035	O		_						3	-	
1009/18 0850 G Water N 1 1 1 1 1 1 1 1 1	SGWC-9	10/9/18	1020	υ		-						က		
108/18 Company Compa	SGWC-10	10/9/18	0910	Ø		_						e		
10/9/18 G Water N 1 1 1 1 1 1 3 3 4 4 4 4 4 4 4 4	SGWC-19	10/9/18	0820	ტ		_	-	-				က		
10/9/18 0845 G Water N 1 1 1 1 3 3 3 3 3 3	FD-3(AP)	10/9/18	ı	g		_	_	-				8		
10/9/18 1130 G Water N 1 1 1 1 1 1 1 1 1	FB-3(AP)	10/9/18	0845	ŋ		_	-	-				3		
ant Date: Date: Date: Company Received by Company Continue: Company Continue: Conti	EB-3(AP)	10/9/18	1130	ŋ		-	-					e		
Date: Time: Date: Time:	Chin Imfant		╻凸	fection		San	De D	ispos	al (A fee may b	assessed if	samples are	e retain	ed longer than	1 month) Months
Time: Date: Time: Date: Time: Date: Time: Method of Shipment: Date: Time: Company Received by Date: Time: Company Date: Time: Company Date: Time: Company Date: Time: Company Date: Time: Contingency Date: Time: Contingency Date: Time: Date: Da			1	inginging		Spe	cial In	structik	ons/QC Requirer	nents:				
Type Date/Time: 6:/0 Company Received by the death of the Remarks: Date/Time: Company Received by the death of the Remarks: Date/Time: Company Company Received by the Remarks: Company A No. A No. A No. Cooler Tamperature(s) °C and Other Remarks: 1,20C, 1,50C, 0,00C, 1R-7 R-7	Empty Kit Relinquished by:		ate:			ĕ	\	((Method	or Shipment:			2
Date/Time: Date/Time: Company Received by Management Date/Time: Date/Time: Company Received by Date/Time: Date/Time: Company Cooler Temperature(s) °C and Other Remarks: 1,200, 1,500, 0,000, 18-7 A No.	Relinquished by: Ymyr (1997)	1~	/	4	ompany		Receive	No.		1	DateTige	9	(4.2i	Company
Sals Intact: Custody Seal No.: A No.	d			ŎŢŎ	ompany	1		R	STATE OF THE PARTY	Mass	Date/Time:		0	Company
Consider the state of the state	sals Intact:						Cooler	Ampers	O C and Other	- [-		- Io		a constitution of
	\neg					٦	1000	od libe	atuleta) cana cum	<u> </u>		3	0	18-7

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671

Chain of Custody Record

TestAmerica

	Sampler			II ah Dh	I.	l	l	l	l	5	T adjunct	Comion Translation Made		ſ	17000		
Client Information	Ben Hodges			Whith	Whitmire, Cheyenne R	eyenr	e R				9	S S	ń		400-57303-24790	290	
	Phone:			E-Mail: cheye	nne.wh	itmire	@test;	america	E-Mail: cheyenne.whitmire@testamericainc.com						Page: 1 of 1		
Company: Southern Company								Å	Analysis Requested	Segn	ested				Job #:		
S B B B B B B B B B B B B B B B B B B B	Due Date Requested:	ä				H	L		F	\vdash	_				Preservation Codes	odes:	
Chy. Adanta	TAT Requested (days):	/s):					fiu fiu				_				A-HCL B-NaOH		9
State, Zip: GA, 30308					W.	70272	_								C - Zn Acetate D - Nitric Acid E - NaHSO4		O - AsnaO2 P - Na2O4S Q - Na2SO3
Phone:	₩ ₩					12-0	_				_				F - MeOH G - Amchlor H - Assorbio Acid		203
uthernco.com	WO #:														I - Ice J - D! Water		ne ne
: erer	Project #: 40007041													nənist	K - EDTA L - EDA	W - ph 4- Z - other	5 (specify)
	SSOW#:													nos fo	Other:		
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp,	Matrix (Wavater, Sasolid, Oawasteloil, BT=Tissue, A=Air)	Field Filtered	300_ORGFM_2	6020-Sb,As,Ba,I							Total Mumber	Special	Special instructions/Note:	ns/Note:
	\bigvee	X	Preservation Code:		X	O Z				La				X	$\backslash \backslash$	X	
SGWA-25	10/8/18	1420	Ø	Water	z	-	-							ო			
SGWA-4	10/8/18	1315	Ø	Water	z	-	-							e			
SGWA-5	10/8/18	1045	Ø	Water	z	-	2							4	Extra Radium		
SGWC-6	10/8/18	1525	O	Water	z	-	-							n			
SGWC-12	10/8/18	1040	ŋ	Water	z	-								6			
FB-2(AP)	10/8/18	1015	O	Water	z	τ-	-							3			
SGWC-13	10/8/18	1225	9	Water	z	-	-							က			
SGWC-14	10/8/18	1330	O	Water	Z	-	-							m			
SGWC-16	10/8/18	1440	တ	Water	z	-	-							က			
SGWC-17	10/8/18	1030	o	Water	z	-	-					-		8			
FD-1(AP)	10/8/18	ı	ŋ	Water	z	-	-							ო			
FD-2(AP)	10/8/18	ı	o	Water	z	-	-							6			
Possible Hazard Identification Non-Hazard — Flammable — Skin Imfant — Poison B	on B 🔲 Unknown		Radiological		Sam	Ple D	Ne Disposal (A f	ul (A fe Client	e may	be ass □Dis	assessed if sam Disposal By Lab	if samp y Lab	les are r	etained long Archive For	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive For Mon	1 month) Months	S
Deliverable Requested: I, II, III, Vther (specify)					Spe	ial ii	structic	ns/QC	Require	ments	: Edn	3older_	Rad UDS	andE	Special Instructions/QC Requirements: Equ Golder_Rad UDS and Equ Golder UDS Equis EDDs	S Equis ED	Ds
inquished by:	П	Date:		П	Time:	П	П	П		Ш	Meth	Method of Shipment:	ment:	Ш			
my my	J-6	h1/8	P P	Company Golder		Received by	d by:	1	7		Ì	G.	Date/Time: //	V	64.2	Company	X
Relinquished by:	Date/Time:	01:9/		Company		Received My		3	33	13	1		Date/Time:	0	5800 KI	Company	Pen
Custody Seals fittact: Custody Seal No A Yes A No					Ť	Sooler	empera	fure(s) °C	Cooler Temperature(s) °C and Other Remarks:	er Rema	ırks:	1					
					1		l										

Chain of Custody Record

TestAmerica Pensacola

TestAmerica

restrainence rensacola			,												U	ALV	DOTATION OF	
Pensacola, FL 32514	O	hain o	of Cus	Chain of Custody Record	<u> </u>	5									21		2	
Phone (850) 474-1001 Fax (850) 478-2671															黑	EALDER IN	ENVIRONMEN	THE LEADER IN ENVIRONMENTAL TESTING
Client Information	Sampler: Ben Hodges			Lab Ph Whitn	Lab PM: Whitmire, Cheyenne R	eyen	Б			<u>u</u>	arrier Tr	Carrier Tracking No(s)	0(8):		COC No:	40: 57303-247	06,	
Client Contact Join Abraham	Phone:			E-Mall:	w.e.w	itmire	@testa	E-Malt: chevenne whitmire@testamericainc.com	00.00						Page.	Page: 1 of 1		
Company: Southern Company								Ana	Analysis Requested	Reg	estec	"			# qor			
Address: 241 Ralph McGill Blvd SE B10185	Due Date Requested;	÷i				\vdash					L		-		Prese	Preservation Codes:	pdes:	
City: Atfanta	TAT Requested (da	(days):					В								Z Z Ż	Acetate	N - None O - AsNaC	æ 8
State, Zip: GA, 30308															2 2 2	D - Nitric Acid E - NaHSO4	P - Na2O	P - Na2O4S Q - Na2SO3
Phone:	PO #:				(0	_							-		I O I	aCH mchlor scorbic Acid	S-H2SO- T-TSP D	tO3 t odecahydrate
Email: JAbraham@southemco.com	WO#:					-	_									Water	U - Acetone V - MCAA	9
erer	Project #: 40007041					_										¥ ×	W - pn 4-: Z - other (specify)
	SSOW#:					_							_		of co			
Sample Identification	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (Wowater, Secold, Owestelol, BT=TIscue, A-Ar)	Field Filtered	300_ORGFM_2	6020-As,Ba,Be,0								TedmuM listoT	Special	Special Instructions/Note:	s/Note:
	X	X	ere.		X	Ω Z	-								X	$/\!\!\!/$	X	
SGWC-11	10/16/18	1050	Ø	Water	Z	-	-				\vdash				60			
SGWC-15	10/16/18	1515	o	Water	z	-	+				<u> </u>				n			
						\vdash			-		-							
															on the			
											Н							
					\dashv		\dashv		_		\dashv		-					
							-		-		\dashv		\dashv					
					\dashv	T	+		_		+	4	+	-				
					\dashv	1	+	1	+		+		+	-				
					-	\top	-		+		+	4	+					
Possible Hazard Identification	- B acc		Radiological		San		ile Disposal (A f	Silent	e may		988888	be assessed if sam	- bles		etalned long	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Rehim To Client Chieft Annie For Mon	1 month)	
sted: I, II, III, IV, Other (specify)					S.	cial In	structic	JO/Su	Requir	ement	Eg	Golde	Rad	UDSa	nd Equ G	older UDS	Special Instructions/QC Requirements: Equ Golder_Rad UDS and Equ Golder UDS Equis EDDs)sc
Empty Kit Relinquished by:		Date:			ime:				ı	l	Me	Method of Shipment	nipment		١,			
Relinquished by: J. Th.	Date/Time:	0750		Company Golder		Regived by:	. 3	. 3	ای	8	7	۰	Date/Time	8	2	051,20		
Relinquished by: 10 8	-	4:40	0	Company		Received by:	in the second	1	N	V		10	Date	m C	700	16:10	Company	101
Custody Seals Intact: Qustody Seal No.:						Cooler	Tempert	Cooler Temperature(s) °C and Other Remarks:	and Ot	her Ren	arks:		3		3			1
									1					1				

14

	Sampler:			II ab PM:	l				Car	Carrier Tranking Model	John J.	ľ	COC No.		Г
Client Information	Ben Hodges			Whitmire, Cheyenne R	ē,	еуепп	ā R		5	6			400-57303-24790	790	
Cifent Contact: Joju Abraham	Phone:			E-Mail: cheyer	ne.wh	itmire(@testa	E-Mail: cheyenne.whitmire@testamericainc.com	mos				Page: 1 of 1		T
Company: Southern Company								Analys	Analysis Requested	sted		T	Job #:	1-Uneu	T
Address: 241 Raiph McGill Blvd SE B10185	Due Date Requested:	÷				\vdash		E	F	E	E	F	Preservation Codes:	18	Т
City: Atlanta	TAT Requested (days)	ys):					6						A - HCL B - NaOH C - Zn Acetate	M - Hexane N - None O - Achaoo	
State, Zip. GA, 30308					18						_		D - Nitric Acid E - NaHSO4	P - Na204S O - Na2SO3	
Phone:	PO#:					_	_						F - MeOH G - Amchlor H - Accomic Acid	S - H2SO4	
gsouthernco.com	WO#:				(oN		_					8.	1- ice J - Di Water	U - Acetone V - MCAA	
tt Name: { - Scherer	Project #: 40007041				10 \$8								K-EDTA L-EDA	W - ph 4-5 Z - other (specify)	
Site: Ash Pond	SSOW#:				A) QS							nos to	Other:		
Sample Identification	Sample Date	Sample	Sample Type (C=comp, G=grab)	Matrix (www.eter, S=solid, O=westeich,	benetii'i blei'i M\2M mrohe9	300_00RGFM_2i	0,98,88,2A-050 6,955,93 7,955,93					TedmuM listo?	N. Joseph	Special Income flagor	
	\bigvee	X		1	X	+=	-		-			×			Т
SGWC-18	10/18/18	9060	9	Water	z	-	-				F	m			T
SGWC-20	10/16/18	1035	v	Water	Z	-	-					60			T
					F		+		F			-			
					F							+			
					-		-				E	-			
							-								
					+		+					+			
					+							+			- 1
Possible Hazard Identification Non-Hazard Planmable Skin Irriant Polson B	ison B Unknown		Radiological		Sa		Dispos	ample Disposal (A fee	may be as:	be assessed if sam	amples are	retain	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	n 1 month)	1
sted: I, II, III, IV, Other (specify)					Ŝ	ecial I	nstruct	ons/QC R	equirements	: Equ Gold	er_Rad UD	S and	Equ Golder UI	Special Instructions/QC Requirements: Equ Golder_Rad UDS and Equ Golder UDS Equis EDDs	1
Empty Kit Relinquished by:		Date:			Time:					Method of	Method of Shipment:				1
Relinquished by Karin Mysel	Date/Time:	\$401/		Company Golder		Rece	Received	1	1	12	Sate/	1	16:45	Company	1
Reinquisy by: (0/15/18	Date/Time:	0%9		Company		Recei	Received W:	1	1	,	Eate/Time	100	148	Company	1
	Date/Time:		J	Compally		Recei	Received by:	D			Date/Time.		888	Сотралу	1
Custody Seals Integr. Custody Seal No.: A Yes A No						Coole	я Темре	rature(s) °C a	Cooler Temperature(s) °C and Other Remarks:	arks:		5	705	I'US	
					ı							١			ı

TestAmerica

Chain of Custody Record

3355 McLemore Drive Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671

TestAmerica Pensacola

Client: Southern Company

Job Number: 400-160240-3

SDG Number: Ash Pond

Login Number: 160240 List Source: TestAmerica Pensacola

List Number: 1

Creator: Conrady, Hank W

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	4.2°C 4.3°C IR-7, 2.6°C, 1.5°C IR-7, 5.7°C, IR-8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Accreditation/Certification Summary

Client: Southern Company

TestAmerica Job ID: 400-160240-3

SDG: Ash Pond

Laboratory: TestAmerica Pensacola

Project/Site: CCR - Plant Scherer

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date	
Alabama	State Program	4	40150	06-30-19	
ANAB	ISO/IEC 17025		L2471	02-22-20	
Arizona	State Program	9	AZ0710	01-12-19	
Arkansas DEQ	State Program	6	88-0689	09-01-19	
California	State Program	9	2510	06-30-19	
Florida	NELAP	4	E81010	06-30-19	
Georgia	State Program	4	E81010 (FL)	06-30-19	
Illinois	NELAP	5	200041	10-09-19	
lowa	State Program	7	367	08-01-20	
Kansas	NELAP	7	E-10253	10-31-18 *	
Kentucky (UST)	State Program	4	53	06-30-19	
Kentucky (WW)	State Program	4	98030	12-31-18	
Louisiana	NELAP	6	30976	06-30-19	
Louisiana (DW)	NELAP	6	LA180023	12-31-18	
Maryland	State Program	3	233	09-30-19	
Massachusetts	State Program	1	M-FL094	06-30-19	
Michigan	State Program	5	9912	06-30-19	
New Jersey	NELAP	2	FL006	06-30-19	
North Carolina (WW/SW)	State Program	4	314	12-31-18	
Oklahoma	State Program	6	9810	08-31-19	
Pennsylvania	NELAP	3	68-00467	01-31-19	
Rhode Island	State Program	1	LAO00307	12-30-18	
South Carolina	State Program	4	96026	06-30-19	
Tennessee	State Program	4	TN02907	06-30-19	
Texas	NELAP	6	T104704286-18-15	09-30-19	
US Fish & Wildlife	Federal		LE058448-0	07-31-19	
USDA	Federal		P330-18-00148	05-17-21	
Virginia	NELAP	3	460166	06-14-19	
Washington	State Program	10	C915	05-15-19	
West Virginia DEP	State Program	3	136	06-30-19	

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

TestAmerica Job ID: 180-85444-1

Client Project/Site: CCR - Plant Scherer

For:

Southern Company 241 Ralph McGill Blvd SE B10185 Atlanta, Georgia 30308

Attn: Joju Abraham

Authorized for release by:

1/11/2019 5:11:33 PM
Veronica Bortot, Senior Project Manager (412)963-2435
veronica.bortot@testamericainc.com

Designee for

Cheyenne Whitmire, Project Manager II (850)471-6222

cheyenne.whitmire@testamericainc.com

Review your project

results through
Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 180-85444-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	7
Method Summary	8
Lab Chronicle	9
Client Sample Results	10
QC Sample Results	11
QC Association Summary	13
Chain of Custody	14
Receipt Checklists	16

5

7

8

10

11

Case Narrative

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 180-85444-1

Job ID: 180-85444-1

Laboratory: TestAmerica Pittsburgh

Narrative

Job Narrative 180-85444-1

Comments

No additional comments.

Receipt

The samples were received on 1/5/2019 9:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 1.0° C and 3.1° C.

Anions

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

G

3

Δ

_

_

R

9

10

12

Definitions/Glossary

Client: Southern Company Project/Site: CCR - Plant Scherer

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

TestAmerica Job ID: 180-85444-1

Glossary

QC

RER

RPD

TEF

TEQ

RL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
a	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit

Accreditation/Certification Summary

Client: Southern Company TestAmerica Job ID: 180-85444-1

Project/Site: CCR - Plant Scherer

Laboratory: TestAmerica Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Arkansas DEQ	State Program	6	88-0690	06-27-19
California	State Program	9	2891	04-30-19
Connecticut	State Program	1	PH-0688	09-30-20
Florida	NELAP	4	E871008	06-30-19
Illinois	NELAP	5	200005	06-30-19
Kansas	NELAP	7	E-10350	01-31-19
Louisiana	NELAP	6	04041	06-30-19
Nevada	State Program	9	PA00164	07-31-19
New Hampshire	NELAP	1	2030	04-04-19
New Jersey	NELAP	2	PA005	06-30-19
New York	NELAP	2	11182	03-31-19
North Carolina (WW/SW)	State Program	4	434	12-31-19
Oregon	NELAP	10	PA-2151	01-28-19
Pennsylvania	NELAP	3	02-00416	04-30-19
South Carolina	State Program	4	89014	04-30-19
Texas	NELAP	6	T104704528-15-2	03-31-19
US Fish & Wildlife	Federal		LE94312A-1	07-31-19
USDA	Federal		P330-16-00211	06-26-19
Utah	NELAP	8	PA001462015-4	05-31-19
Virginia	NELAP	3	460189	09-14-19
West Virginia DEP	State Program	3	142	01-31-19
Wisconsin	State Program	5	998027800	08-31-19

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-19
ANAB	ISO/IEC 17025		L2471	02-22-20
Arizona	State Program	9	AZ0710	01-12-20
Arkansas DEQ	State Program	6	88-0689	09-01-19
California	State Program	9	2510	06-30-19
Florida	NELAP	4	E81010	06-30-19
Georgia	State Program	4	E81010 (FL)	06-30-19
Illinois	NELAP	5	200041	10-09-19
Iowa	State Program	7	367	08-01-20
Kansas	NELAP	7	E-10253	10-31-19
Kentucky (UST)	State Program	4	53	06-30-19
Kentucky (WW)	State Program	4	98030	12-31-19
Louisiana	NELAP	6	30976	06-30-19
Louisiana (DW)	NELAP	6	LA017	12-31-19
Maryland	State Program	3	233	09-30-19
Massachusetts	State Program	1	M-FL094	06-30-19
Michigan	State Program	5	9912	06-30-19
New Jersey	NELAP	2	FL006	06-30-19
North Carolina (WW/SW)	State Program	4	314	12-31-19
Oklahoma	State Program	6	9810	08-31-19
Pennsylvania	NELAP	3	68-00467	01-31-19
Rhode Island	State Program	1	LAO00307	12-30-19
South Carolina	State Program	4	96026	06-30-19

Page 5 of 16

Accreditation/Certification Summary

Client: Southern Company

TestAmerica Job ID: 180-85444-1

Project/Site: CCR - Plant Scherer

Laboratory: TestAmerica Pensacola (Continued)

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Tennessee	State Program	4	TN02907	06-30-19
Texas	NELAP	6	T104704286-18-15	09-30-19
US Fish & Wildlife	Federal		LE058448-0	07-31-19
USDA	Federal		P330-18-00148	05-17-21
Virginia	NELAP	3	460166	06-14-19
Washington	State Program	10	C915	05-15-19
West Virginia DEP	State Program	3	136	06-30-19

3

4

5

7

8

10

11

12

Sample Summary

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 180-85444-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-85444-1	SGWC-18	Water	01/02/19 12:25	01/05/19 09:30

3

C

Q

9

10

19

Method Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 180-85444-1

Method	Method Description	Protocol	Laboratory
EPA 300.0 R2.1	Anions, Ion Chromatography	EPA	TAL PIT
EPA 6020	Metals (ICP/MS)	SW846	TAL PIT
EPA 7470A	Mercury (CVAA)	SW846	TAL PIT
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL PIT
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PIT
7470A	Preparation, Mercury	SW846	TAL PIT

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

3

4

7

8

10

11

Lab Chronicle

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 180-85444-1

Lab Sample ID: 180-85444-1

Matrix: Water

Client Sample ID: SGWC-18 Date Collected: 01/02/19 12:25 Date Received: 01/05/19 09:30

Prep Type Total/NA	Batch Type Analysis Instrumen	Batch Method EPA 300.0 R2.1 t ID: CHICS2100B	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 267251	Prepared or Analyzed 01/08/19 13:11	Analyst MJH	Lab TAL PIT
Total/NA	Analysis Instrumen	EPA 300.0 R2.1 t ID: CHICS2100B		10			267251	01/08/19 13:27	MJH	TAL PIT
Total Recoverable Total Recoverable	Prep Analysis Instrumen	3005A EPA 6020 t ID: X		1	50 mL	50 mL	267302 267572	01/08/19 11:42 01/10/19 00:20		TAL PIT
Total/NA Total/NA	Prep Analysis Instrumen	7470A EPA 7470A t ID: HGY		1	50 mL	50 mL	267213 267249	01/07/19 11:26 01/07/19 18:45		TAL PIT
Total/NA	Analysis Instrumen	SM 2540C t ID: NOEQUIP		1	100 mL	100 mL	267240	01/07/19 14:47	JAS	TAL PIT

Laboratory References:

TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Analyst References:

Lab: TAL PIT

Batch Type: Prep

KA = Kayla Kalamasz

NAM = Nicole Marfisi

Batch Type: Analysis

JAS = Joshua Schmidt

KA = Kayla Kalamasz

MJH = Matthew Hartman

WTR = Bill Reinheimer

TestAmerica Pittsburgh

1/11/2019

3

5

0

ŏ

10

45

1:

Client: Southern Company Project/Site: CCR - Plant Scherer

Client Sample ID: SGWC-18 Date Collected: 01/02/19 12:25 Date Received: 01/05/19 09:30

TestAmerica Job ID: 180-85444-1

Lab Sample ID: 180-85444-1

Gampio	 .00	00		•
	Matı	rix:	Wate	er

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<u></u>	1.0	mg/L			01/08/19 13:11	1
Fluoride	ND	0.20	mg/L			01/08/19 13:11	1
Sulfate	1100	10	mg/L			01/08/19 13:27	10

Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND	0.0013		mg/L		01/08/19 11:42	01/10/19 00:20	1
Barium	0.027	0.0025		mg/L		01/08/19 11:42	01/10/19 00:20	1
Beryllium	ND	0.0025		mg/L		01/08/19 11:42	01/10/19 00:20	1
Boron	4.1	0.050		mg/L		01/08/19 11:42	01/10/19 00:20	1
Chromium	0.0078	0.0025		mg/L		01/08/19 11:42	01/10/19 00:20	1
Calcium	98	0.25		mg/L		01/08/19 11:42	01/10/19 00:20	1
Cobalt	0.11	0.0025		mg/L		01/08/19 11:42	01/10/19 00:20	1
Lead	ND	0.0010		mg/L		01/08/19 11:42	01/10/19 00:20	1
Selenium	0.0034	0.0013		mg/L		01/08/19 11:42	01/10/19 00:20	1
Thallium	ND	0.00050		mg/L		01/08/19 11:42	01/10/19 00:20	1
Molybdenum	ND	0.015		mg/L		01/08/19 11:42	01/10/19 00:20	1
Lithium	0.0055	0.0020		mg/L		01/08/19 11:42	01/10/19 00:20	1

Method: EPA 7470A - Mercu Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.00024	0.00020	mg/L		01/07/19 11:26	01/07/19 18:45	1

General Chemistry								
Analyte	Result Qualifier	RL	MDL Un	it D)	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1600	10	mg	/L			01/07/19 14:47	1

TestAmerica Job ID: 180-85444-1

Client: Southern Company Project/Site: CCR - Plant Scherer

Method: EPA 300.0 R2.1 - Anions, Ion Chromatography

Lab Sample ID: MB 180-267251/6

Matrix: Water

Analysis Batch: 267251

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Chloride	ND		1.0		mg/L				01/08/19 06:09	1
Fluoride	ND		0.20		mg/L				01/08/19 06:09	1
Sulfate	ND		1.0		mg/L				01/08/19 06:09	1

Lab Sample ID: LCS 180-267251/5

Matrix: Water

Analyte Chloride Fluoride Sulfate

Analysis Batch: 267251

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Si	oike	LCS	LCS				%Rec.	
Ad	ded	Result	Qualifier	Unit	D	%Rec	Limits	
 	25.0	24.9	-	mg/L		99	90 - 110	
	1.25	1.25		mg/L		100	90 - 110	
	25.0	24.5		mg/L		98	90 - 110	

Method: EPA 6020 - Metals (ICP/MS)

Lab Sample ID: MB 180-267302/1-A

Matrix: Water

Analysis Batch: 267572

Client Sample ID: Method Blank **Prep Type: Total Recoverable**

Prep Batch: 267302

Analysis balch: 20/5/2								Prep batch:	20/302
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	ND		0.0013		mg/L		01/08/19 11:42	01/09/19 23:19	1
Barium	ND		0.0025		mg/L		01/08/19 11:42	01/09/19 23:19	1
Beryllium	ND		0.0025		mg/L		01/08/19 11:42	01/09/19 23:19	1
Boron	ND		0.050		mg/L		01/08/19 11:42	01/09/19 23:19	1
Chromium	ND		0.0025		mg/L		01/08/19 11:42	01/09/19 23:19	1
Calcium	ND		0.25		mg/L		01/08/19 11:42	01/09/19 23:19	1
Cobalt	ND		0.0025		mg/L		01/08/19 11:42	01/09/19 23:19	1
Lead	ND		0.0010		mg/L		01/08/19 11:42	01/09/19 23:19	1
Selenium	ND		0.0013		mg/L		01/08/19 11:42	01/09/19 23:19	1
Thallium	ND		0.00050		mg/L		01/08/19 11:42	01/09/19 23:19	1
Molybdenum	ND		0.015		mg/L		01/08/19 11:42	01/09/19 23:19	1
Lithium	ND		0.0020		mg/L		01/08/19 11:42	01/09/19 23:19	1

Lab Sample ID: LCS 180-267302/2-A

Matrix: Water

Analysis Batch: 267572

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable Prep Batch: 267302

Analysis Batch. 201312	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	0.0400	0.0404		mg/L		101	80 - 120
Barium	2.00	1.83		mg/L		92	80 - 120
Beryllium	0.0500	0.0493		mg/L		99	80 - 120
Boron	1.00	0.937		mg/L		94	80 - 120
Chromium	0.200	0.190		mg/L		95	80 - 120
Calcium	50.0	48.2		mg/L		96	80 - 120
Cobalt	0.500	0.453		mg/L		91	80 - 120
Lead	0.0200	0.0214		mg/L		107	80 - 120
Selenium	0.0100	0.00820		mg/L		82	80 - 120
Thallium	0.0500	0.0519		mg/L		104	80 - 120

TestAmerica Pittsburgh

Page 11 of 16

TestAmerica Job ID: 180-85444-1

Client: Southern Company Project/Site: CCR - Plant Scherer

Client Sample ID: Method Blank

Method: EPA 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: LCS 180-267302/2-A Matrix: Water				Clie		•		trol Sample Recoverable
Analysis Batch: 267572	Spike	LCS	LCS					itch: 267302
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Molybdenum	1.00	1.15		mg/L		115	80 - 120	
Lithium	0.0500	0.0536		mg/L		107	80 - 120	

Method: EPA 7470A - Mercury (CVAA)

Lab Sample ID: MB 180-267213/1 Matrix: Water Analysis Batch: 267249	I-A MB	MD					•	le ID: Method Prep Type: To Prep Batch: 2	tal/NA
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	ND		0.00020		ma/L	— <u> </u>	01/07/19 11:26	01/07/19 18:19	1

Lab Sample ID: LCS 180-2672 Matrix: Water Analysis Batch: 267249	213/2-A	Spike	LCS	LCS	Clie	ent Sai	mple ID	Prep Ty	ntrol Sample pe: Total/NA atch: 267213
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Mercury		0.00250	0.00266		mg/L		106	80 - 120	

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 180-267240/2

Matrix: Water Analysis Batch: 267240								Prep Type: To	otal/NA
-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	ND		10		mg/L			01/07/19 14:46	1

Lab Sample ID: LCS 180-267240/1 Matrix: Water				Clie	nt Sai	mple ID): Lab Contr Prep Type	•
Analysis Batch: 267240	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Total Dissolved Solids	204	230		mg/L		113	80 - 120	

1/11/2019

QC Association Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 180-85444-1

HPLC/IC

Analysis Batch: 267251

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-85444-1	SGWC-18	Total/NA	Water	EPA 300.0 R2.1	
180-85444-1	SGWC-18	Total/NA	Water	EPA 300.0 R2.1	
MB 180-267251/6	Method Blank	Total/NA	Water	EPA 300.0 R2.1	
LCS 180-267251/5	Lab Control Sample	Total/NA	Water	EPA 300.0 R2.1	

Metals

Prep Batch: 267213

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-85444-1	SGWC-18	Total/NA	Water	7470A	<u> </u>
MB 180-267213/1-A	Method Blank	Total/NA	Water	7470A	
LCS 180-267213/2-A	Lab Control Sample	Total/NA	Water	7470A	

Analysis Batch: 267249

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-85444-1	SGWC-18	Total/NA	Water	EPA 7470A	267213
MB 180-267213/1-A	Method Blank	Total/NA	Water	EPA 7470A	267213
LCS 180-267213/2-A	Lab Control Sample	Total/NA	Water	EPA 7470A	267213

Prep Batch: 267302

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-85444-1	SGWC-18	Total Recoverable	Water	3005A	
MB 180-267302/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-267302/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Analysis Batch: 267572

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-85444-1	SGWC-18	Total Recoverable	Water	EPA 6020	267302
MB 180-267302/1-A	Method Blank	Total Recoverable	Water	EPA 6020	267302
LCS 180-267302/2-A	Lab Control Sample	Total Recoverable	Water	EPA 6020	267302

General Chemistry

Analysis Batch: 267240

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-85444-1	SGWC-18	Total/NA	Water	SM 2540C	<u> </u>
MB 180-267240/2	Method Blank	Total/NA	Water	SM 2540C	
LCS 180-267240/1	Lab Control Sample	Total/NA	Water	SM 2540C	

TestAmerica Pittsburgh

-

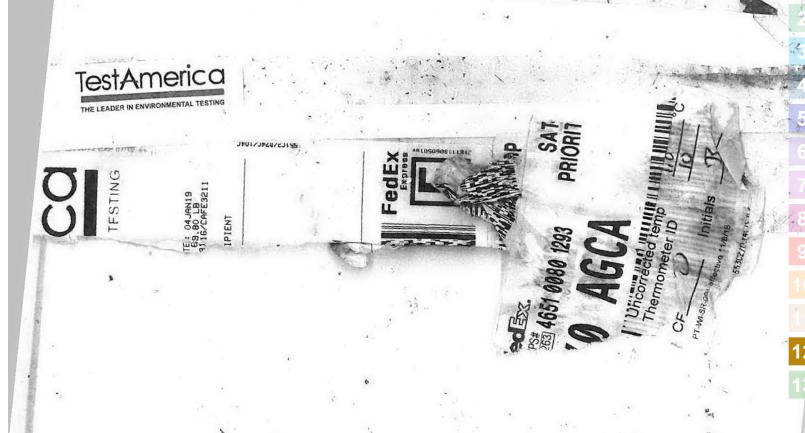
4

6

7

9

46


12

1.

1/11/2019

Chain of Custody Record

SUD Park Pluc Park													THE LEADE	THE LEADER IN ENVIRONMENTAL TESTING
Pritsburgn, PA 15236-2507 phone 412.963.7058 fax 412.963.2468	Regula	Regulatory Program:		□bw □NPDES		□RCRA		Dther:					TestAm	TestAmerica Laboratories, Inc.
Client Contact	Project Manager: Dawn Prell	er: Dawn	Prell		Site	Contact	: Karim	Site Contact: Karim Minkara		Date: 1	Date: 1/4/2019		COC No:	
Southern Company	Tel/Fax: 248-536-5445	36-5445			Lab	Contact	: Veroni	Lab Contact: Veronica Bortot		Carrier	7.		1	of_1_ COCs
241 Raiph McGill Blvd SE B10185	Ana	lysis Turn	Analysis Turnaround Time	me		1							Sampler	
808	CALENDAR DAYS	1YS	✓ WORKING DAYS	NG DAYS									For Lab Use Only:	Ise Only:
(404) 506-7239 Phone	TAT If dif	TAT if different from Below	elow 3-5 days	days		24137					_		Walk-in Client:	lient:
FAX		2 weeks				775.00							Lab Sampling:	ling:
Project Name: GPC Plant Scherer		1 week					H-0	ete P_0:F						
Site: Ash Pond		2 days					182	Sulfa 932					Job / SDG No.	No.:
*		1 0ay	Sample	-),9B,6	- Tota NGEN	8 ,9t 32265						
Sample Identification	Sample Date	Sample Time	Type (C=Comp, G=Grab)	# of Matrix Cont.	Filtered	- 0508 - 60209 - A0147	300 OE S240C	6315_R					Sar	Sample Specific Notes:
SGWC-18	1/2/2019	1225	9	GW 3	z	×	×	×						
				-			+	-						1
				-										
					F									, in the second
														Sn2
				1	+									o nis
					7									CP
														ÞÞÞ9
				1	7									8-09
					\exists									
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	03; 5=NaOH; 6= Oth	er			Ť	4	-	4						
Possible Hazard identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.	lease List any EPA W	aste Code	s for the sa	ample in th		ample [Disposal	(A fee m	ay be asses	sed if sar	nples are	etained long	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	uth)
Non-Hazard Flammable Special Instructions/QC Requirements & Comments:	Poison B		Jirknown	_		Return	Return to Client			Disposal by Lab	dp	Archive for	Mo	Months
Custody Seals Intact: TYPES No	Custody Seal No.	o.						voler Temp	Cooler Temp. (°C): Obs'd		Corr'd:		Therm ID No.:	-
Relinquished by:	Company (d/	17		Date/Time/	1300	Received by	DY.	V	1		Company	10.	Date/Time:	1200
Relinquished by	61-Reduios	6	14	Date/Time	u.	Received by	all	o U	Takon	-	Company	140	Date/Time.	8.600
Relingished hv	Company			Data/Time	-	Received in Laboratory by	ode I of	atory by		-	Company		Date/Time	111

TestAm...a

Client: Southern Company Job Number: 180-85444-1

Login Number: 85444 List Source: TestAmerica Pittsburgh

List Number: 1

Creator: Watson, Debbie

Creator. Watson, Debbie		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Pittsburgh

ANALYTICAL DATA REPORTS PIEZOMETER

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-162919-1

Client Project/Site: CCR - Plant Scherer

For:

Southern Company 241 Ralph McGill Blvd SE B10185 Atlanta, Georgia 30308

Attn: Joju Abraham

Authorized for release by: 12/12/2018 5:15:42 PM

Cheyenne Whitmire, Project Manager II (850)471-6222

cheyenne.whitmire@testamericainc.com

----- LINKS -----

Review your project results through **Total Access**

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	6
Sample Summary	7
Client Sample Results	8
Definitions	11
Chronicle	12
QC Association	16
QC Sample Results	19
Chain of Custody	22
Receipt Checklists	23
	24

Case Narrative

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-162919-1

Job ID: 400-162919-1

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-162919-1

Metals

Method(s) 6020: The following sample was diluted to bring the concentration of target analytes within the calibration range: PZ-44I (29.5') (400-162919-6). Elevated reporting limits (RLs) are provided.

Method(s) 6020: The continuing calibration verification (CCV) associated with batch 422726 recovered above the upper control limit for Cobalt. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: (LB 400-422409/1-B ^5).

-

3

4

5

6

7

8

10

11

12

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-162919-1

3

Client Sample ID: PZ-36S (31.5')

Lab Sample ID: 400-162919-1

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	24	0.49	0.075	mg/Kg	10	₩	6020	Total/NA
Iron	14000	25	3.9	mg/Kg	10	₩	6020	Total/NA
Manganese	330	2.5	0.62	mg/Kg	10	₩	6020	Total/NA
Iron	0.056 J	0.13	0.053	mg/L	5		6020	SPLP East

5

Client Sample ID: PZ-9I (67.3')

Lab Sample ID: 400-162919-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	9.8		0.48	0.073	mg/Kg	10	₩	6020	Total/NA
Iron	9900		24	3.8	mg/Kg	10	₩	6020	Total/NA
Manganese	100		2.4	0.60	mg/Kg	10	₩	6020	Total/NA
Cobalt	0.0058		0.0025	0.00040	mg/L	5		6020	SPLP East
Iron - RA	7.6		0.13	0.053	mg/L	5		6020	SPLP East
Manganese - RA	0.052		0.013	0.0054	mg/L	5		6020	SPLP East

9

Client Sample ID: PZ-40I (43.5')

Lab Sample ID: 400-162919-3

Analyte	Result C	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	36		0.49	0.075	mg/Kg	10	₩	6020	Total/NA
Iron	29000		25	3.9	mg/Kg	10	₩	6020	Total/NA
Manganese	1300		2.5	0.62	mg/Kg	10	₩	6020	Total/NA
Cobalt	0.0052		0.0025	0.00040	mg/L	5		6020	SPLP East
Manganese - RA	0.036		0.013	0.0054	mg/L	5		6020	SPLP East

13

Client Sample ID: PZ-42I (37.5')

Client Sample ID: PZ-42I (92.0')

Lab Sample ID: 400-162919-4

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	42	0.53	0.081	mg/Kg	10	₩	6020	Total/NA
Iron	45000	27	4.2	mg/Kg	10	₽	6020	Total/NA
Manganese	1100	2.7	0.67	mg/Kg	10	₩	6020	Total/NA
Cobalt	0.0011 J	0.0025	0.00040	mg/L	5		6020	SPLP East

Lab Sample ID: 400-162919-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	3.5		0.49	0.074	mg/Kg	10	₩	6020	Total/NA
Iron	12000		24	3.9	mg/Kg	10	₩	6020	Total/NA
Manganese	220		2.4	0.61	mg/Kg	10	₩	6020	Total/NA
Cobalt	0.0018	J	0.0025	0.00040	mg/L	5		6020	SPLP East
Iron - RA	5.2		0.13	0.053	mg/L	5		6020	SPLP East
Manganese - RA	0.097		0.013	0.0054	mg/L	5		6020	SPLP East

Client Sample ID: PZ-44I (29.5')

Lab Sample ID: 400-162919-6

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	94	0.54	0.081	mg/Kg	10	₩	6020	Total/NA
Iron - DL	44000	130	21	mg/Kg	50	₩	6020	Total/NA
Manganese - DL	2800	13	3.4	mg/Kg	50	₩	6020	Total/NA

Client Sample ID: PZ-44I (51.5')

Lab Sample ID: 400-162919-7

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

Detection Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-162919-1

2

Client Sample ID: PZ-44I (51.5') (Continued)

Lab Sample ID: 400-162919-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	21		0.50	0.076	mg/Kg	10	₩	6020	Total/NA
Iron	25000		25	4.0	mg/Kg	10	₩	6020	Total/NA
Manganese	640		2.5	0.63	mg/Kg	10	₩	6020	Total/NA
Cobalt	0.00082	J	0.0025	0.00040	mg/L	5		6020	SPLP East
Iron - RA	1.8		0.13	0.053	mg/L	5		6020	SPLP East
Manganese - RA	0.035		0.013	0.0054	mg/L	5		6020	SPLP East

4

Client Sample ID: PZ-44I (106')

Lab Sample ID: 400-162919-8

Analyte	Result Q	ualifier R	_ MDL	Unit	Dil Fac	D	Method	Prep Type
Cobalt	2.3	0.4	0.071	mg/Kg	10	₩	6020	Total/NA
Iron	4000	2	3 3.7	mg/Kg	10	₩	6020	Total/NA
Manganese	80	2.	3 0.59	mg/Kg	10	₩	6020	Total/NA
Cobalt	0.00090 J	0.002	0.00040	mg/L	5		6020	SPLP East
Iron - RA	1.6	0.1	3 0.053	mg/L	5		6020	SPLP East
Manganese - RA	0.025	0.01	3 0.0054	mg/L	5		6020	SPLP East

Method Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-162919-1

Method	Method Description	Protocol	Laboratory
6020	Metals (ICP/MS)	SW846	TAL PEN
Moisture	Percent Moisture	EPA	TAL PEN
1312	SPLP Extraction	SW846	TAL PEN
3010A	Preparation, Total Metals	SW846	TAL PEN
3050B	Preparation, Metals	SW846	TAL PEN

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

4

5

b

8

9

11

12

Sample Summary

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 400-162919-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-162919-1	PZ-36S (31.5')	Solid	11/29/18 09:00	12/04/18 09:16
400-162919-2	PZ-9I (67.3')	Solid	11/29/18 09:00	12/04/18 09:16
400-162919-3	PZ-40I (43.5')	Solid	11/29/18 09:00	12/04/18 09:16
400-162919-4	PZ-42I (37.5')	Solid	11/29/18 09:00	12/04/18 09:16
400-162919-5	PZ-42I (92.0')	Solid	11/29/18 09:00	12/04/18 09:16
400-162919-6	PZ-44I (29.5')	Solid	11/29/18 09:00	12/04/18 09:16
400-162919-7	PZ-44I (51.5')	Solid	11/29/18 09:00	12/04/18 09:16
400-162919-8	PZ-44I (106')	Solid	11/29/18 09:00	12/04/18 09:16

2

4

5

0

9

10

12

13

Client: Southern Company Project/Site: CCR - Plant Scherer

Client Sample ID: PZ-36S (31.5')

Lab Sample ID: 400-162919-1 Date Collected: 11/29/18 09:00 **Matrix: Solid**

Percent Solids: 98.7

Date Received: 12/04/18 09:16

Manganese

Method: 6020 - Metals (ICP/M	S)							
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	24	0.49	0.075	mg/Kg	₩	12/06/18 10:47	12/07/18 04:25	10
Iron	14000	25	3.9	mg/Kg	≎	12/06/18 10:47	12/07/18 04:25	10
Manganese	330	2.5	0.62	mg/Kg	₩	12/06/18 10:47	12/07/18 04:25	10
Method: 6020 - Metals (ICP/M	S) - SPLP East							
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.056 J	0.13	0.053	mg/L		12/10/18 08:59	12/10/18 16:57	5

Method: 6020 - Metals (ICP/MS) - SPLP East - RA Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Cobalt <0.00040 0.0025 0.00040 mg/L 12/10/18 08:59 12/11/18 10:39

0.013

0.0054 mg/L

<0.0054

Client Sample ID: PZ-9I (67.3')

Date Collected: 11/29/18 09:00

Date Received: 12/04/18 09:16

Lab Sample ID: 400-162919-2 **Matrix: Solid**

12/10/18 08:59 12/10/18 16:57

Percent Solids: 99.3

Method: 6020 - Metals (ICP/MS) Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	9.8	0.48	0.073	mg/Kg	<u>₩</u>	12/06/18 10:47	12/07/18 04:43	10
Iron	9900	24	3.8	mg/Kg	₩	12/06/18 10:47	12/07/18 04:43	10
Manganese	100	2.4	0.60	mg/Kg	₩	12/06/18 10:47	12/07/18 04:43	10

Method: 6020 - Metals (ICP/MS) Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	0.0058	0.0025	0.00040 mg/L		12/10/18 08:59	12/10/18 19:09	5
Г., .,							

Method: 6020 - Metals (10	CP/MS) - SPLP East - RA							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	7.6	0.13	0.053	mg/L		12/10/18 08:59	12/11/18 10:43	5
Manganese	0.052	0.013	0.0054	mg/L		12/10/18 08:59	12/11/18 10:43	5

Client Sample ID: PZ-40I (43.5')

Lab Sample ID: 400-162919-3 Date Collected: 11/29/18 09:00 **Matrix: Solid** Date Received: 12/04/18 09:16 Percent Solids: 97.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	36		0.49	0.075	mg/Kg	<u> </u>	12/06/18 10:47	12/07/18 05:05	10
Iron	29000		25	3.9	mg/Kg	₩	12/06/18 10:47	12/07/18 05:05	10
Manganese	1300		2.5	0.62	mg/Kg	₩	12/06/18 10:47	12/07/18 05:05	10
	•		D.	MDI	l lm!4	_	Drawarad	Amalumad	Dil Es
Method: 6020 - Metals Analyte	•	St Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	•		RL 0.0025			D	Prepared 12/10/18 08:59	Analyzed 12/10/18 19:12	
Analyte Cobalt	Result 0.0052	Qualifier				D			
Analyte Cobalt Method: 6020 - Metals	Result 0.0052 (ICP/MS) - SPLP Ea	Qualifier			mg/L	D_			
	Result 0.0052 (ICP/MS) - SPLP Ea	Qualifier	0.0025	0.00040 MDL	mg/L Unit	_ =	12/10/18 08:59	12/10/18 19:12	Dil Fac

Page 8 of 24

0

12/12/2018

Client: Southern Company Project/Site: CCR - Plant Scherer

Manganese

Analyte

Iron

Client Sample ID: PZ-42I (37.5') Lab Sample ID: 400-162919-4 Date Collected: 11/29/18 09:00

Matrix: Solid

12/10/18 08:59 12/11/18 10:50

Date Received: 12/04/18 09:16 Percent Solids: 93.8

Method: 6020 - Metals Analyte	,	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	42		0.53	0.081	mg/Kg	<u> </u>	12/06/18 10:47	12/07/18 05:08	10
Iron	45000		27	4.2	mg/Kg	₩	12/06/18 10:47	12/07/18 05:08	10
Manganese	1100		2.7	0.67	mg/Kg	₩	12/06/18 10:47	12/07/18 05:08	10
Method: 6020 - Metals	•					_			
Method: 6020 - Metals Analyte	•	ast Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	•	Qualifier	RL 0.0025	MDL 0.00040		<u>D</u>	Prepared 12/10/18 08:59	•	
Analyte Cobalt	Result 0.0011	Qualifier J				<u>D</u>	•	•	
Analyte	Result 0.0011 (ICP/MS) - SPLP Ea	Qualifier J			mg/L	<u>D</u> D	•	•	Dil Fac

Client Sample ID: PZ-42I (92.0') Lab Sample ID: 400-162919-5 Date Collected: 11/29/18 09:00 Matrix: Solid

0.013

0.0054 mg/L

< 0.0054

Date Received: 12/04/18 09:16 Percent Solids: 99.6

Method: 6020 - Metals (ICF	•				_	_		
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	3.5	0.49	0.074	mg/Kg	₩	12/06/18 10:47	12/07/18 05:12	10
Iron	12000	24	3.9	mg/Kg	☼	12/06/18 10:47	12/07/18 05:12	10
Manganese	220	2.4	0.61	mg/Kg	☼	12/06/18 10:47	12/07/18 05:12	10
- Method: 6020 - Metals (ICF	P/MS) - SPLP East							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	0.0018 J	0.0025	0.00040	mg/L		12/10/18 08:59	12/10/18 19:19	5

Method: 6020 - Metals (ICP/MS)	- SPLP East - RA	A						
Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	5.2	0.13	0.053	mg/L		12/10/18 08:59	12/11/18 10:53	5
Manganese	0.097	0.013	0.0054	mg/L		12/10/18 08:59	12/11/18 10:53	5

Client Sample ID: PZ-44I (29.5') Lab Sample ID: 400-162919-6 Date Collected: 11/29/18 09:00 **Matrix: Solid** Date Received: 12/04/18 09:16 Percent Solids: 93.3

Analyte	(ICP/MS) Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Cobalt	94		0.54	0.081	mg/Kg	\	12/06/18 10:47	12/07/18 05:16	10
Method: 6020 - Metals	(ICP/MS) - DL								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	44000	·	130	21	mg/Kg	₩	12/06/18 10:47	12/07/18 12:38	50
Manganese	2800		13	3.4	mg/Kg	₩	12/06/18 10:47	12/07/18 12:38	50
Method: 6020 - Metals	(ICP/MS) - SPLP E	ast							
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	<0.00040		0.0025	0.00040	ma/L		12/10/18 08:59	12/10/18 19:23	F

RL

0.13

MDL Unit

0.053 mg/L

Result Qualifier

<0.053

TestAmerica Pensacola

Analyzed

12/10/18 08:59 12/11/18 10:57

Page 9 of 24 12/12/2018

Prepared

Client: Southern Company Project/Site: CCR - Plant Scherer

Client Sample ID: PZ-44I (29.5')

Date Collected: 11/29/18 09:00 Date Received: 12/04/18 09:16 Lab Sample ID: 400-162919-6

Matrix: Solid

Percent Solids: 93.3

Method: 6020 - Metals	(ICP/MS) - SPLP East - RA	(Continued)
Analyte	Result Qualifier	RL

MDL Unit Prepared Analyzed Dil Fac <0.0054 0.0054 mg/L 12/10/18 08:59 12/11/18 10:57 Manganese

Client Sample ID: PZ-44I (51.5') Lab Sample ID: 400-162919-7

Date Collected: 11/29/18 09:00 **Matrix: Solid** Date Received: 12/04/18 09:16 Percent Solids: 97.5

Method: 6020 - Metals (ICP/MS Analyte) Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	21	0.50	0.076	mg/Kg	₩	12/06/18 10:47	12/07/18 05:19	10
Iron	25000	25	4.0	mg/Kg	₩	12/06/18 10:47	12/07/18 05:19	10
Manganese	640	2.5	0.63	mg/Kg	₩	12/06/18 10:47	12/07/18 05:19	10

Method: 6020 - Metals (ICP/MS	S) - SPLP East						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	0.00082 J	0.0025	0.00040 mg/L		12/10/18 08:59	12/10/18 19:26	5

Method: 6020 - Metals (ICP/M	S) - SPLP East - RA							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	1.8	0.13	0.053	mg/L		12/10/18 08:59	12/11/18 11:01	5
Manganese	0.035	0.013	0.0054	mg/L		12/10/18 08:59	12/11/18 11:01	5

Client Sample ID: PZ-44I (106')

Lab Sample ID: 400-162919-8 Date Collected: 11/29/18 09:00 **Matrix: Solid** Date Received: 12/04/18 09:16 Percent Solids: 99.3

Method: 6020 - Metals (ICP/MS)	D 14	0	ъ.	MDI	1114	_	D	A I	DU E
Analyte	Result	Qualifier	RL	MDL	Unit	ט	Prepared	Analyzed	Dil Fac
Cobalt	2.3		0.46	0.071	mg/Kg	₩	12/06/18 10:47	12/07/18 05:23	10
Iron	4000		23	3.7	mg/Kg	₽	12/06/18 10:47	12/07/18 05:23	10
Manganese	80		2.3	0.59	mg/Kg	₩	12/06/18 10:47	12/07/18 05:23	10

Method: 6020 - Metals (ICP/MS	S) - SPLP East							
Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	0.00090 J	0.0025	0.00040	mg/L		12/10/18 08:59	12/10/18 19:30	5

Method: 6020 - Metals (ICP/MS)) - SPLP East - RA	A						
Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	1.6	0.13	0.053	mg/L		12/10/18 08:59	12/11/18 11:04	5
Manganese	0.025	0.013	0.0054	mg/L		12/10/18 08:59	12/11/18 11:04	5

Definitions/Glossary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-162919-1

Qualifiers

Metals

Qualifier	Qualifier Description
٨	ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC is outside acceptance limits.
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

RER

RPD

TEF

TEQ

RL

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
NF	Contains No Free Liquid
ĒR	Duplicate Error Ratio (normalized absolute difference)
l Fac	Dilution Factor
L	Detection Limit (DoD/DOE)
L, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
_C	Decision Level Concentration (Radiochemistry)
DL	Estimated Detection Limit (Dioxin)
DD	Limit of Detection (DoD/DOE)
Q	Limit of Quantitation (DoD/DOE)
DA	Minimum Detectable Activity (Radiochemistry)
DC	Minimum Detectable Concentration (Radiochemistry)
DL	Method Detection Limit
L	Minimum Level (Dioxin)
	Not Calculated
D	Not Detected at the reporting limit (or MDL or EDL if shown)
QL	Practical Quantitation Limit
	Quality Control

TestAmerica Pensacola

Page 11 of 24

2

4

4

5

6

8

40

11

13

1 /

Client: Southern Company Project/Site: CCR - Plant Scherer

Client Sample ID: PZ-36S (31.5')

Lab Sample ID: 400-162919-1

Date Collected: 11/29/18 09:00 Matrix: Solid
Date Received: 12/04/18 09:16

Batch Dilution Batch Batch **Prepared** Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab **SPLP East** Leach 1312 422409 12/07/18 17:51 SLB TAL PEN SPLP East 3010A 422517 12/10/18 08:59 DRE TAL PEN Prep SPLP East Analysis 6020 5 422726 12/10/18 16:57 DRE TAL PEN SPLP East 1312 TAL PEN Leach RA 422409 12/07/18 17:51 SLB SPLP East Prep 3010A RA 422517 12/10/18 08:59 DRE TAL PEN SPLP East 6020 RA 5 422857 12/11/18 10:39 DRE TAL PEN Analysis Total/NA Analysis Moisture 422240 12/06/18 16:52 KRA TAL PEN

Client Sample ID: PZ-36S (31.5')

Lab Sample ID: 400-162919-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			422148	12/06/18 10:47	DRE	TAL PEN
Total/NA	Analysis	6020		10	422290	12/07/18 04:25	DRE	TAL PEN

Client Sample ID: PZ-9I (67.3')

Lab Sample ID: 400-162919-2

Date Collected: 11/29/18 09:00 Matrix: Solid
Date Received: 12/04/18 09:16

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			422453	12/08/18 12:34	SLB	TAL PEN
SPLP East	Prep	3010A			422517	12/10/18 08:59	DRE	TAL PEN
SPLP East	Analysis	6020		5	422726	12/10/18 19:09	DRE	TAL PEN
SPLP East	Leach	1312	RA		422453	12/08/18 12:34	SLB	TAL PEN
SPLP East	Prep	3010A	RA		422517	12/10/18 08:59	DRE	TAL PEN
SPLP East	Analysis	6020	RA	5	422857	12/11/18 10:43	DRE	TAL PEN
Total/NA	Analysis	Moisture		1	422240	12/06/18 16:52	KRA	TAL PEN

Client Sample ID: PZ-9I (67.3')

Lab Sample ID: 400-162919-2

Date Collected: 11/29/18 09:00 Matrix: Solid
Date Received: 12/04/18 09:16 Percent Solids: 99.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			422148	12/06/18 10:47	DRE	TAL PEN
Total/NA	Analysis	6020		10	422290	12/07/18 04:43	DRE	TAL PEN

Client Sample ID: PZ-40I (43.5')

Lab Sample ID: 400-162919-3

Date Collected: 11/29/18 09:00 Matrix: Solid
Date Received: 12/04/18 09:16

Batch Batch Dilution Batch **Prepared** Method **Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab **SPLP East** 1312 422453 12/08/18 12:34 SLB TAL PEN Leach

TestAmerica Pensacola

12/12/2018

3

5

0

10

Client: Southern Company Project/Site: CCR - Plant Scherer

Client Sample ID: PZ-40I (43.5')

Date Collected: 11/29/18 09:00 Date Received: 12/04/18 09:16 Lab Sample ID: 400-162919-3

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Prep	3010A			422517	12/10/18 08:59	DRE	TAL PEN
SPLP East	Analysis	6020		5	422726	12/10/18 19:12	DRE	TAL PEN
SPLP East	Leach	1312	RA		422453	12/08/18 12:34	SLB	TAL PEN
SPLP East	Prep	3010A	RA		422517	12/10/18 08:59	DRE	TAL PEN
SPLP East	Analysis	6020	RA	5	422857	12/11/18 10:46	DRE	TAL PEN
Total/NA	Analysis	Moisture		1	422240	12/06/18 16:52	KRA	TAL PEN

Client Sample ID: PZ-40I (43.5')

Lab Sample ID: 400-162919-3

Date Collected: 11/29/18 09:00

Date Received: 12/04/18 09:16

Lab Sample ID: 400-162919-3

Matrix: Solid

Percent Solids: 97.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			422148	12/06/18 10:47	DRE	TAL PEN
Total/NA	Analysis	6020		10	422290	12/07/18 05:05	DRE	TAL PEN

Client Sample ID: PZ-42I (37.5')

Lab Sample ID: 400-162919-4

Date Collected: 11/29/18 09:00

Date Received: 12/04/18 09:16

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			422453	12/08/18 12:34	SLB	TAL PEN
SPLP East	Prep	3010A			422517	12/10/18 08:59	DRE	TAL PEN
SPLP East	Analysis	6020		5	422726	12/10/18 19:16	DRE	TAL PEN
SPLP East	Leach	1312	RA		422453	12/08/18 12:34	SLB	TAL PEN
SPLP East	Prep	3010A	RA		422517	12/10/18 08:59	DRE	TAL PEN
SPLP East	Analysis	6020	RA	5	422857	12/11/18 10:50	DRE	TAL PEN
Total/NA	Analysis	Moisture		1	422240	12/06/18 16:52	KRA	TAL PEN

Client Sample ID: PZ-42I (37.5')

Date Collected: 11/29/18 09:00

Date Received: 12/04/18 09:16

Lab Sample ID: 400-162919-4

Lab Sample ID: 400-162919-5

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 93.8

		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Prep	3050B			422148	12/06/18 10:47	DRE	TAL PEN
ı	Total/NA	Analysis	6020		10	422290	12/07/18 05:08	DRE	TAL PEN

Client Sample ID: PZ-42I (92.0')

Date Collected: 11/29/18 09:00

Date Received: 12/04/18 09:16											
	Batch	Batch		Dilution	Batch	Prepared					
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab			

 Prep Type
 Type
 Method
 Run
 Factor
 Number
 or Analyzed
 Analyst
 Lab

 SPLP East
 Leach
 1312
 422453
 12/08/18 12:34
 SLB
 TAL PEN

 SPLP East
 Prep
 3010A
 422517
 12/10/18 08:59
 DRE
 TAL PEN

TestAmerica Pensacola

5

6

8

1 0

11

13

Client: Southern Company Project/Site: CCR - Plant Scherer

Client Sample ID: PZ-42I (92.0')

Date Collected: 11/29/18 09:00 Date Received: 12/04/18 09:16 Lab Sample ID: 400-162919-5

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Analysis	6020		5	422726	12/10/18 19:19	DRE	TAL PEN
SPLP East	Leach	1312	RA		422453	12/08/18 12:34	SLB	TAL PEN
SPLP East	Prep	3010A	RA		422517	12/10/18 08:59	DRE	TAL PEN
SPLP East	Analysis	6020	RA	5	422857	12/11/18 10:53	DRE	TAL PEN
Total/NA	Analysis	Moisture		1	422240	12/06/18 16:52	KRA	TAL PEN

Client Sample ID: PZ-42I (92.0')

Date Collected: 11/29/18 09:00 Date Received: 12/04/18 09:16 Lab Sample ID: 400-162919-5 Matrix: Solid

Percent Solids: 99.6

Batch Batch Dilution Batch **Prepared** Prep Type Method Type Run Factor Number or Analyzed Analyst Lab Total/NA 3050B 422148 12/06/18 10:47 DRE TAL PEN Prep Total/NA Analysis 6020 10 422290 12/07/18 05:12 DRE TAL PEN

Client Sample ID: PZ-44I (29.5')

Date Collected: 11/29/18 09:00

Date Received: 12/04/18 09:16

Lab Sample ID: 400-162919-6

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			422453	12/08/18 12:34	SLB	TAL PEN
SPLP East	Prep	3010A			422517	12/10/18 08:59	DRE	TAL PEN
SPLP East	Analysis	6020		5	422726	12/10/18 19:23	DRE	TAL PEN
SPLP East	Leach	1312	RA		422453	12/08/18 12:34	SLB	TAL PEN
SPLP East	Prep	3010A	RA		422517	12/10/18 08:59	DRE	TAL PEN
SPLP East	Analysis	6020	RA	5	422857	12/11/18 10:57	DRE	TAL PEN
Total/NA	Analysis	Moisture		1	422240	12/06/18 16:52	KRA	TAL PEN

Client Sample ID: PZ-44I (29.5')

Date Collected: 11/29/18 09:00

Date Received: 12/04/18 09:16

Lab Sample ID: 400-162919-6 Matrix: Solid

Percent Solids: 93.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			422148	12/06/18 10:47	DRE	TAL PEN
Total/NA	Analysis	6020		10	422290	12/07/18 05:16	DRE	TAL PEN
Total/NA	Prep	3050B	DL		422148	12/06/18 10:47	DRE	TAL PEN
Total/NA	Analysis	6020	DL	50	422382	12/07/18 12:38	DRE	TAL PEN

Client Sample ID: PZ-44I (51.5')

Date Collected: 11/29/18 09:00

Date Received: 12/04/18 09:16

Lab Sample ID: 400-162919-7

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			422453	12/08/18 12:34	SLB	TAL PEN

TestAmerica Pensacola

Page 14 of 24

2

3

5

7

11

13

1 /

2

Client: Southern Company Project/Site: CCR - Plant Scherer

Lab Sample ID: 400-162919-7

Matrix: Solid

Client Sample ID: PZ-44I (51.5')

Date Collected: 11/29/18 09:00 Date Received: 12/04/18 09:16

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Prep	3010A			422517	12/10/18 08:59	DRE	TAL PEN
SPLP East	Analysis	6020		5	422726	12/10/18 19:26	DRE	TAL PEN
SPLP East	Leach	1312	RA		422453	12/08/18 12:34	SLB	TAL PEN
SPLP East	Prep	3010A	RA		422517	12/10/18 08:59	DRE	TAL PEN
SPLP East	Analysis	6020	RA	5	422857	12/11/18 11:01	DRE	TAL PEN
Total/NA	Analysis	Moisture		1	422240	12/06/18 16:52	KRA	TAL PEN

Client Sample ID: PZ-44I (51.5')

Lab Sample ID: 400-162919-7

Date Collected: 11/29/18 09:00

Matrix: Solid

Date Received: 12/04/18 09:16 Percent Solids: 97.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			422148	12/06/18 10:47	DRE	TAL PEN
Total/NA	Analysis	6020		10	422290	12/07/18 05:19	DRE	TAL PEN

Client Sample ID: PZ-44I (106')

Lab Sample ID: 400-162919-8

Date Collected: 11/29/18 09:00 Matrix: Solid

Date Received: 12/04/18 09:16

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
SPLP East	Leach	1312			422453	12/08/18 12:34	SLB	TAL PEN
SPLP East	Prep	3010A			422517	12/10/18 08:59	DRE	TAL PEN
SPLP East	Analysis	6020		5	422726	12/10/18 19:30	DRE	TAL PEN
SPLP East	Leach	1312	RA		422453	12/08/18 12:34	SLB	TAL PEN
SPLP East	Prep	3010A	RA		422517	12/10/18 08:59	DRE	TAL PEN
SPLP East	Analysis	6020	RA	5	422857	12/11/18 11:04	DRE	TAL PEN
Total/NA	Analysis	Moisture		1	422240	12/06/18 16:52	KRA	TAL PEN

Client Sample ID: PZ-44I (106')

Lab Sample ID: 400-162919-8

Date Collected: 11/29/18 09:00 Matrix: Solid
Date Received: 12/04/18 09:16 Percent Solids: 99.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			422148	12/06/18 10:47	DRE	TAL PEN
Total/NA	Analysis	6020		10	422290	12/07/18 05:23	DRE	TAL PEN

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Client: Southern Company Project/Site: CCR - Plant Scherer

Metals

Prep Batch: 422148

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-162919-1	PZ-36S (31.5')	Total/NA	Solid	3050B	_
400-162919-2	PZ-9I (67.3')	Total/NA	Solid	3050B	
400-162919-3	PZ-40I (43.5')	Total/NA	Solid	3050B	
400-162919-4	PZ-42I (37.5')	Total/NA	Solid	3050B	
400-162919-5	PZ-42I (92.0')	Total/NA	Solid	3050B	
400-162919-6	PZ-44I (29.5')	Total/NA	Solid	3050B	
400-162919-6 - DL	PZ-44I (29.5')	Total/NA	Solid	3050B	
400-162919-7	PZ-44I (51.5')	Total/NA	Solid	3050B	
400-162919-8	PZ-44I (106')	Total/NA	Solid	3050B	
MB 400-422148/1-A ^10	Method Blank	Total/NA	Solid	3050B	
LCS 400-422148/2-A ^10	Lab Control Sample	Total/NA	Solid	3050B	
400-162919-1 MS	PZ-36S (31.5')	Total/NA	Solid	3050B	
400-162919-1 MSD	PZ-36S (31.5')	Total/NA	Solid	3050B	

Analysis Batch: 422290

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-162919-1	PZ-36S (31.5')	Total/NA	Solid	6020	422148
400-162919-2	PZ-9I (67.3')	Total/NA	Solid	6020	422148
400-162919-3	PZ-40I (43.5')	Total/NA	Solid	6020	422148
400-162919-4	PZ-42I (37.5')	Total/NA	Solid	6020	422148
400-162919-5	PZ-42I (92.0')	Total/NA	Solid	6020	422148
400-162919-6	PZ-44I (29.5')	Total/NA	Solid	6020	422148
400-162919-7	PZ-44I (51.5')	Total/NA	Solid	6020	422148
400-162919-8	PZ-44I (106')	Total/NA	Solid	6020	422148
MB 400-422148/1-A ^10	Method Blank	Total/NA	Solid	6020	422148
LCS 400-422148/2-A ^10	Lab Control Sample	Total/NA	Solid	6020	422148
400-162919-1 MS	PZ-36S (31.5')	Total/NA	Solid	6020	422148
400-162919-1 MSD	PZ-36S (31.5')	Total/NA	Solid	6020	422148

Analysis Batch: 422382

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-162919-6 - DL	PZ-44I (29.5')	Total/NA	Solid	6020	422148

Leach Batch: 422409

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-162919-1	PZ-36S (31.5')	SPLP East	Solid	1312	
400-162919-1 - RA	PZ-36S (31.5')	SPLP East	Solid	1312	
LB 400-422409/1-B ^5	Method Blank	SPLP East	Solid	1312	
LB 400-422409/1-B ^5 - RA	Method Blank	SPLP East	Solid	1312	
400-160641-E-5-C MS ^5	Matrix Spike	SPLP East	Solid	1312	
400-160641-E-5-D MSD ^5	Matrix Spike Duplicate	SPLP East	Solid	1312	

Leach Batch: 422452

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LB 400-422452/1-C ^5	Method Blank	SPLP East	Solid	1311	
400-163121-I-3-D MS ^5	Matrix Spike	TCLP	Solid	1311	
400-163121-I-3-E MSD ^5	Matrix Spike Duplicate	TCLP	Solid	1311	

Leach Batch: 422453

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-162919-2	PZ-9I (67.3')	SPLP East	Solid	1312	

TestAmerica Pensacola

Page 16 of 24

9

3

4

6

8

10

11

13

Client: Southern Company Project/Site: CCR - Plant Scherer

Metals (Continued)

Leach Batch: 422453 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-162919-2 - RA	PZ-9I (67.3')	SPLP East	Solid	1312	
400-162919-3 - RA	PZ-40I (43.5')	SPLP East	Solid	1312	
400-162919-3	PZ-40I (43.5')	SPLP East	Solid	1312	
400-162919-4	PZ-42I (37.5')	SPLP East	Solid	1312	
400-162919-4 - RA	PZ-42I (37.5')	SPLP East	Solid	1312	
400-162919-5	PZ-42I (92.0')	SPLP East	Solid	1312	
400-162919-5 - RA	PZ-42I (92.0')	SPLP East	Solid	1312	
400-162919-6	PZ-44I (29.5')	SPLP East	Solid	1312	
400-162919-6 - RA	PZ-44I (29.5')	SPLP East	Solid	1312	
400-162919-7 - RA	PZ-44I (51.5')	SPLP East	Solid	1312	
400-162919-7	PZ-44I (51.5')	SPLP East	Solid	1312	
400-162919-8	PZ-44I (106')	SPLP East	Solid	1312	
400-162919-8 - RA	PZ-44I (106')	SPLP East	Solid	1312	
LB 400-422453/1-B ^5 - RA	Method Blank	SPLP East	Solid	1312	
LB 400-422453/1-B ^5	Method Blank	SPLP East	Solid	1312	

Prep Batch: 422517

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-162919-1	PZ-36S (31.5')	SPLP East	Solid	3010A	422409
400-162919-1 - RA	PZ-36S (31.5')	SPLP East	Solid	3010A	422409
400-162919-2	PZ-9I (67.3')	SPLP East	Solid	3010A	422453
400-162919-2 - RA	PZ-9I (67.3')	SPLP East	Solid	3010A	422453
400-162919-3	PZ-40I (43.5')	SPLP East	Solid	3010A	422453
400-162919-3 - RA	PZ-40I (43.5')	SPLP East	Solid	3010A	422453
400-162919-4	PZ-42I (37.5')	SPLP East	Solid	3010A	422453
400-162919-4 - RA	PZ-42I (37.5')	SPLP East	Solid	3010A	422453
400-162919-5	PZ-42I (92.0')	SPLP East	Solid	3010A	422453
400-162919-5 - RA	PZ-42I (92.0')	SPLP East	Solid	3010A	422453
400-162919-6 - RA	PZ-44I (29.5')	SPLP East	Solid	3010A	422453
400-162919-6	PZ-44I (29.5')	SPLP East	Solid	3010A	422453
400-162919-7	PZ-44I (51.5')	SPLP East	Solid	3010A	422453
400-162919-7 - RA	PZ-44I (51.5')	SPLP East	Solid	3010A	422453
400-162919-8	PZ-44I (106')	SPLP East	Solid	3010A	422453
400-162919-8 - RA	PZ-44I (106')	SPLP East	Solid	3010A	422453
LB 400-422409/1-B ^5	Method Blank	SPLP East	Solid	3010A	422409
LB 400-422409/1-B ^5 - RA	Method Blank	SPLP East	Solid	3010A	422409
LB 400-422452/1-C ^5	Method Blank	SPLP East	Solid	3010A	422452
LB 400-422453/1-B ^5 - RA	Method Blank	SPLP East	Solid	3010A	422453
LB 400-422453/1-B ^5	Method Blank	SPLP East	Solid	3010A	422453
LCS 400-422517/20-A ^5	Lab Control Sample	Total/NA	Solid	3010A	
LCS 400-422517/2-A ^5 - RA	Lab Control Sample	Total/NA	Solid	3010A	
LCS 400-422517/2-A ^5	Lab Control Sample	Total/NA	Solid	3010A	
400-160641-E-5-C MS ^5	Matrix Spike	SPLP East	Solid	3010A	422409
400-160641-E-5-D MSD ^5	Matrix Spike Duplicate	SPLP East	Solid	3010A	422409
400-163121-I-3-D MS ^5	Matrix Spike	TCLP	Solid	3010A	422452
400-163121-I-3-E MSD ^5	Matrix Spike Duplicate	TCLP	Solid	3010A	422452

Analysis Batch: 422726

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-162919-1	PZ-36S (31.5')	SPLP East	Solid	6020	422517
400-162919-2	PZ-9I (67.3')	SPLP East	Solid	6020	422517

TestAmerica Pensacola

Client: Southern Company Project/Site: CCR - Plant Scherer

Metals (Continued)

Analysis Batch: 422726 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-162919-3	PZ-40I (43.5')	SPLP East	Solid	6020	422517
400-162919-4	PZ-42I (37.5')	SPLP East	Solid	6020	422517
400-162919-5	PZ-42I (92.0')	SPLP East	Solid	6020	422517
400-162919-6	PZ-44I (29.5')	SPLP East	Solid	6020	422517
400-162919-7	PZ-44I (51.5')	SPLP East	Solid	6020	422517
400-162919-8	PZ-44I (106')	SPLP East	Solid	6020	422517
LB 400-422409/1-B ^5	Method Blank	SPLP East	Solid	6020	422517
LB 400-422452/1-C ^5	Method Blank	SPLP East	Solid	6020	422517
LB 400-422453/1-B ^5	Method Blank	SPLP East	Solid	6020	422517
LCS 400-422517/20-A ^5	Lab Control Sample	Total/NA	Solid	6020	422517
LCS 400-422517/2-A ^5	Lab Control Sample	Total/NA	Solid	6020	422517
400-160641-E-5-C MS ^5	Matrix Spike	SPLP East	Solid	6020	422517
400-160641-E-5-D MSD ^5	Matrix Spike Duplicate	SPLP East	Solid	6020	422517
400-163121-I-3-D MS ^5	Matrix Spike	TCLP	Solid	6020	422517
400-163121-I-3-E MSD ^5	Matrix Spike Duplicate	TCLP	Solid	6020	422517

Analysis Batch: 422857

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-162919-1 - RA	PZ-36S (31.5')	SPLP East	Solid	6020	422517
400-162919-2 - RA	PZ-9I (67.3')	SPLP East	Solid	6020	422517
400-162919-3 - RA	PZ-40I (43.5')	SPLP East	Solid	6020	422517
400-162919-4 - RA	PZ-42I (37.5')	SPLP East	Solid	6020	422517
400-162919-5 - RA	PZ-42I (92.0')	SPLP East	Solid	6020	422517
400-162919-6 - RA	PZ-44I (29.5')	SPLP East	Solid	6020	422517
400-162919-7 - RA	PZ-44I (51.5')	SPLP East	Solid	6020	422517
400-162919-8 - RA	PZ-44I (106')	SPLP East	Solid	6020	422517
LB 400-422409/1-B ^5 - RA	Method Blank	SPLP East	Solid	6020	422517
LB 400-422453/1-B ^5 - RA	Method Blank	SPLP East	Solid	6020	422517
LCS 400-422517/2-A ^5 - RA	Lab Control Sample	Total/NA	Solid	6020	422517

General Chemistry

Analysis Batch: 422240

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-162919-1	PZ-36S (31.5')	Total/NA	Solid	Moisture	
400-162919-2	PZ-9I (67.3')	Total/NA	Solid	Moisture	
400-162919-3	PZ-40I (43.5')	Total/NA	Solid	Moisture	
400-162919-4	PZ-42I (37.5')	Total/NA	Solid	Moisture	
400-162919-5	PZ-42I (92.0')	Total/NA	Solid	Moisture	
400-162919-6	PZ-44I (29.5')	Total/NA	Solid	Moisture	
400-162919-7	PZ-44I (51.5')	Total/NA	Solid	Moisture	
400-162919-8	PZ-44I (106')	Total/NA	Solid	Moisture	
400-162919-8 DU	PZ-44I (106')	Total/NA	Solid	Moisture	

Page 18 of 24

Client: Southern Company Project/Site: CCR - Plant Scherer

Method: 6020 - Metals (ICP/MS)

Lab Sample ID: MB 400-422148/1-A ^10

Lab Sample ID: LCS 400-422148/2-A ^10

Matrix: Solid

Matrix: Solid

Analysis Batch: 422290

Analysis Batch: 422290

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 422148

	1410	1410							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt	<0.074		0.49	0.074	mg/Kg		12/06/18 10:47	12/07/18 04:18	10
Iron	<3.9		24	3.9	mg/Kg		12/06/18 10:47	12/07/18 04:18	10
Manganese	<0.61		2.4	0.61	mg/Kg		12/06/18 10:47	12/07/18 04:18	10

MD MD

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 422148

	Spike	LCS LCS				%Rec.	
Analyte	Added Re	sult Qualifier	Unit	D	%Rec	Limits	
Cobalt	9.45	10.6	mg/Kg		113	80 - 120	
Iron	945	965	mg/Kg		102	80 - 120	
Manganese	94.5	106	mg/Kg		112	80 - 120	

Lab Sample ID: 400-162919-1 MS Client Sample ID: PZ-36S (31.5')

Matrix: Solid

Analysis Batch: 422290

Prep Type: Total/NA Prep Batch: 422148

Alluly 313 Dutoll. 422200									i icp batci	
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cobalt	24		4.96	28.2	4	mg/Kg	₩	76	75 - 125	
Iron	14000		496	14900	4	mg/Kg	₩	110	75 - 125	
Manganese	330		49.6	350	4	mg/Kg	₩	49	75 - 125	

Lab Sample ID: 400-162919-1 MSD Client Sample ID: PZ-36S (31.5')

Matrix: Solid

Analysis Batch: 422290

Prep Type: Total/NA **Prep Batch: 422148**

MSD MSD Sample Sample Spike %Rec. **RPD** Result Qualifier Result Qualifier Analyte Added Unit D %Rec Limits RPD Limit Cobalt 24 5.01 32.2 4 mg/Kg ₩ 156 75 - 125 13 20 Iron 14000 501 16000 4 mg/Kg ₩ 320 75 - 125 7 20 Manganese 330 50.1 406 4 mg/Kg 160 75 - 125

Lab Sample ID: LCS 400-422517/20-A ^5 **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Analysis Batch: 422726** Prep Batch: 422517 Spike LCS LCS %Rec. Added Result Qualifier **Analyte** Unit D %Rec Limits Manganese 2.50 2.61 mg/L 104 80 - 120

Lab Sample ID: LCS 400-422517/2-A ^5 **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 422726

Prep Batch: 422517 Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Iron 5.00 5.35 mg/L 107 80 - 120 0.500 0.535 mg/L 107 Manganese 80 - 120

Client: Southern Company Project/Site: CCR - Plant Scherer

Matrix: Solid

Matrix: Solid

Analysis Batch: 422726

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 400-163121-I-3-D MS ^5

Lab Sample ID: 400-163121-I-3-E MSD ^5

Client Sample ID: Matrix Spike

Prep Type: TCLP

Prep Batch: 422517

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cobalt	0.044	٨	0.250	0.333	٨	mg/L		116	75 - 125	
Iron	7.1		25.0	32.1		mg/L		100	75 - 125	
Manganese	1.4		2.50	3.97		mg/L		104	75 - 125	

Client Sample ID: Matrix Spike Duplicate

Prep Type: TCLP

Prep Batch: 422517 %Rec. **RPD** Limits RPD Limit

Analysis Batch: 422726 Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier Unit D %Rec 0.044 ^ 0.340 ^ Cobalt 0.250 mg/L 75 - 125 2 20 119 Iron 7.1 25.0 31.8 mg/L 99 75 - 125 20 2.50 3.94 mg/L 103 75 - 125 Manganese 1.4

RL

0.0025

0.13

0.013

MDL Unit

0.053 mg/L

0.0054 mg/L

MDL Unit

0.00040 mg/L

0.00040 mg/L

Lab Sample ID: LB 400-422409/1-B ^5

Matrix: Solid Analysis Batch: 422726

Client Sample ID: Method Blank **Prep Type: SPLP East**

12/10/18 08:59 12/10/18 16:50

12/10/18 08:59 12/10/18 16:50

Prep Batch: 422517

Prepared Analyzed Dil Fac 12/10/18 08:59 12/10/18 16:50 5

Prep Type: SPLP East

Prep Batch: 422517

Lab Sample ID: LB 400-422452/1-C ^5

Matrix: Solid

Analyte

Manganese

Cobalt

Iron

Analysis Batch: 422726

LB LB

LB LB

< 0.00040

Result Qualifier

LB LB Result Qualifier

<0.00040 ^

< 0.053

<0.0054

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Cobalt <0.0020 ^ 0.013 0.0020 mg/L <u>12/10/18 08:59</u> <u>12/10/18 18:04</u>

RL

0.0025

Lab Sample ID: LB 400-422453/1-B ^5

Matrix: Solid

Analyte

Cobalt

Analysis Batch: 422726

Client Sample ID: Method Blank Prep Type: SPLP East

Client Sample ID: Method Blank

Prep Batch: 422517

Prepared Analyzed <u>12/10/18 08:59</u> <u>12/10/18 19:05</u>

Lab Sample ID: 400-160641-E-5-C MS ^5

Matrix: Solid

Analysis Batch: 422726

Client Sample ID: Matrix Spike Prep Type: SPLP East

Prep Batch: 422517

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Cobalt	0.010	٨	0.0500	0.0689	٨	mg/L		117	75 - 125	
Iron	3.5		5.00	8.92		mg/L		109	75 - 125	
Manganese	8.5		0.500	8.97	4	mg/L		96	75 - 125	

Client: Southern Company Project/Site: CCR - Plant Scherer

3

Method: 6020 - Metals (ICP/MS) (Continued)

Lab Sample ID: 400-160641-E-5-D MSD ^5

Matrix: Solid

Analysis Batch: 422726

Client Sample ID: Matrix Spike Duplicate
Prep Type: SPLP East

Prep Batch: 422517

Alla	19313 Datcii. 422120									Lieb Do	21CH. 42	22311
		Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analy	yte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Coba	It	0.010	٨	0.0500	0.0674	٨	mg/L		114	75 - 125	2	20
Iron		3.5		5.00	8.41		mg/L		99	75 - 125	6	20
Mang	ganese	8.5		0.500	8.73	4	mg/L		49	75 - 125	3	20

Method: 6020 - Metals (ICP/MS) - RA

Lab Sample ID: LCS 400-422517/2-A ^5

Matrix: Solid

Analysis Batch: 422857

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 422517

LCS LCS %Rec. Spike **Analyte** Added Result Qualifier Unit D %Rec Limits Cobalt - RA 0.0500 0.0494 mg/L 99 80 - 120 Iron - RA 5.00 5.29 mg/L 106 80 - 120 0.500 Manganese - RA 0.504 mg/L 101 80 - 120

Lab Sample ID: LB 400-422409/1-B ^5

Matrix: Solid

Analysis Batch: 422857

Client Sample ID: Method Blank
Prep Type: SPLP East

Prep Batch: 422517

LB LB Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac Prepared Cobalt - RA < 0.00040 0.0025 0.00040 mg/L <u>12/10/18 08:59</u> <u>12/11/18 13:36</u> 12/10/18 08:59 12/11/18 13:36 Iron - RA 5 < 0.053 0.13 0.053 mg/L Manganese - RA <0.0054 0.013 0.0054 mg/L 12/10/18 08:59 12/11/18 13:36 5

Lab Sample ID: LB 400-422453/1-B ^5

Matrix: Solid

Analysis Batch: 422857

Client Sample ID: Method Blank

Prep Type: SPLP East

Prep Batch: 422517

	LB	LD							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cobalt - RA	<0.00040		0.0025	0.00040	mg/L		12/10/18 08:59	12/11/18 10:32	5
Iron - RA	< 0.053		0.13	0.053	mg/L		12/10/18 08:59	12/11/18 10:32	5
Manganese - RA	< 0.0054		0.013	0.0054	mg/L		12/10/18 08:59	12/11/18 10:32	5

...

Chain of Custody Record

273637

THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc. **TestAmerica**

before disposa TAL-8210 (0713) Sample Specific Notes: COCs +hen inquire Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) 19/2/2018 19/06 Date/Time: For Lab Use Only: Job / SDG No.: Walk-in Client: .ab Sampling: 123/18 Therm ID No TI o Date/Time: COC No: Archive for Company THE 400-162919 COC Golder Company: Company: Disposal by Lab Carrier Date: Cooler Temp. (°C): Obs'd: Received in Laboratory by: Received by: Lab Contact: () Mayenn Other: Return to Client Received by: White Site Contact: RCRA Perform MS/MSD (Y/ N) Filtered Sample (Y / N) 12 22018 20 Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the 12/3/2018 Date/Time: 02/19 950 DW NPDES # of Cont. WORKING DAYS Matrix 5 5 5 5 **Analysis Turnaround Time** S Project Manager: Cheyenny Type (C=Comp, G=Grab) Sample Golder Associales Regulatory Program: TAT if different from Below 0 0 0 0 0 0 0 0 2 weeks 2 days 1 week 1 day gan gown Sample gam 9 am gan Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other 9 11/24/18 gan 1/29/18 gans Tel/Fax: 850 H CALENDAR DAYS Custody Seal No. Company: Poison B Solder 11/62/11 Company: Company: 199119 1/29/18 Sample Sule 812 Special Instructions/QC Requirements & Comments: Comments Section if the lab is to dispose of the sample. Company Name: Codder ASSOCIOTES Project Name: GRC. Plant Schara Sample Identification Flammable Address: 27200 Haggarty City/State/Zip: Fal/ming fon Hill Client Contact in 901 Possible Hazard Identification: 248,214,697 29 (31.5') 5 3 5 6 43 10 2 Custody Seals Intact 丁丁一 DF-47 して Relinquished by: any 10h-td Relinquished by: Non-Hazard PZ-365 P7.42 16-20 6 Phone: # O d Site: 12/12/2018

Client: Southern Company

Job Number: 400-162919-1

Login Number: 162919 List Source: TestAmerica Pensacola

List Number: 1

Creator: Perez, Trina M

Creator. Perez, Trilla Wi		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.0°C IR-8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Pensacola

Accreditation/Certification Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 400-162919-1

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-19
ANAB	ISO/IEC 17025		L2471	02-22-20
Arizona	State Program	9	AZ0710	01-12-20
Arkansas DEQ	State Program	6	88-0689	09-01-19
California	State Program	9	2510	06-30-19
Florida	NELAP	4	E81010	06-30-19
Georgia	State Program	4	E81010 (FL)	06-30-19
Illinois	NELAP	5	200041	10-09-19
lowa	State Program	7	367	08-01-20
Kansas	NELAP	7	E-10253	12-31-18
Kentucky (UST)	State Program	4	53	06-30-19
Kentucky (WW)	State Program	4	98030	12-31-18
Louisiana	NELAP	6	30976	06-30-19
Louisiana (DW)	NELAP	6	LA180023	12-31-18
Maryland	State Program	3	233	09-30-19
Massachusetts	State Program	1	M-FL094	06-30-19
Michigan	State Program	5	9912	06-30-19
New Jersey	NELAP	2	FL006	06-30-19
North Carolina (WW/SW)	State Program	4	314	12-31-18
Oklahoma	State Program	6	9810	08-31-19
Pennsylvania	NELAP	3	68-00467	01-31-19
Rhode Island	State Program	1	LAO00307	12-30-18
South Carolina	State Program	4	96026	06-30-19
Tennessee	State Program	4	TN02907	06-30-19
Texas	NELAP	6	T104704286-18-15	09-30-19
US Fish & Wildlife	Federal		LE058448-0	07-31-19
USDA	Federal		P330-18-00148	05-17-21
Virginia	NELAP	3	460166	06-14-19
Washington	State Program	10	C915	05-15-19
West Virginia DEP	State Program	3	136	06-30-19

4

5

9

10

12

13

Statistical Analyses

APPENDIX III PREDICTION LIMIT ANALYSES JUNE 2018

Prediction Limit Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR Printed 1/11/2019, 1:01 PM

		Scrierer Cilei	it. Golder Assoc	iales Dala.	Schelel Ash	ronu_c	JUIN	riiileu i/	11/2019, 1.01 FW		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	_	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)	SGWC-10	0.0109	n/a	6/6/2018	0.07	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-11	0.0109	n/a	6/6/2018	0.37	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-13	0.0109	n/a	6/7/2018	0.45	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-14	0.0109	n/a	6/7/2018	1.6	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-15	0.0109	n/a	6/7/2018	1.7	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-16	0.0109	n/a	6/7/2018	0.59	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-17	0.0109	n/a	6/7/2018	0.35	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-18	0.0109	n/a	6/8/2018	4.3	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-19	0.0109	n/a	6/8/2018	1.8	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-20	0.0109	n/a	6/7/2018	2.1	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-21	0.0109	n/a	6/7/2018	1.4	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-22	0.0109	n/a	6/7/2018	0.41	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-23	0.0109	n/a	6/7/2018	0.71	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-8	0.0109	n/a	6/6/2018	0.059	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-9	0.0109	n/a	6/6/2018	1.8	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Calcium (mg/L)	SGWC-12	19	n/a	6/6/2018	22	Yes	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-14	19	n/a	6/7/2018	44	Yes	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-17	19	n/a	6/7/2018	49	Yes	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-18	19	n/a	6/8/2018	90	Yes	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-19	19	n/a	6/8/2018	37	Yes	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-21	19	n/a	6/7/2018	29	Yes	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-22	19	n/a	6/7/2018	26	Yes	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-23	19	n/a	6/7/2018	25	Yes	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-8	19	n/a	6/6/2018	51	Yes	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-9	19	n/a	6/6/2018	54	Yes	67	0	n/a	0.000	NP Inter (normality)
Chloride (mg/L)	SGWC-10	3.186	n/a	6/6/2018	8.6	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-11	3.186	n/a	6/6/2018	7.5	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-12	3.186	n/a	6/6/2018	8.8	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-13	3.186	n/a	6/7/2018	6.2	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-14	3.186	n/a	6/7/2018	10	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-15	3.186	n/a	6/7/2018	9.3	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-16	3.186	n/a	6/7/2018	7.7	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-17	3.186	n/a	6/7/2018	8	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-18	3.186	n/a	6/8/2018	9	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-19	3.186	n/a	6/8/2018	7.2	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-20	3.186	n/a	6/7/2018	9.9	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-21	3.186	n/a	6/7/2018	8.6	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-22	3.186	n/a	6/7/2018	10	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-23	3.186	n/a	6/7/2018	10	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-7	3.186	n/a	6/6/2018	4.6	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-8	3.186	n/a	6/6/2018	11	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-9	3.186	n/a	6/6/2018	12	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Fluoride (mg/L)	SGWC-20	0.108	n/a	6/7/2018	0.21	Yes	77	83.12	n/a	0.000	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	SGWC-7	0.108	n/a	6/6/2018	0.2	Yes	77	83.12	n/a	0.000	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	SGWC-8	0.108	n/a	6/6/2018	0.4	Yes	77	83.12	n/a	0.000	NP Inter (NDs) 1 of 2
pH (S.U.)	SGWC-15	7.096	4.978	6/7/2018	4.62	Yes	68	0	No	0.000209	Param Inter 1 of 2
pH (S.U.)	SGWC-18	7.096	4.978	6/8/2018	4.69	Yes	68	0	No	0.000209	Param Inter 1 of 2
pH (S.U.)	SGWC-20	7.096	4.978	6/7/2018	4.26	Yes	68	0	No	0.000209	Param Inter 1 of 2
Sulfate (mg/L)	SGWC-12	3.75	n/a	6/6/2018	41	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-13	3.75	n/a	6/7/2018	69	Yes	70	50	n/a	0.000	NP Inter (normality)

Prediction Limit

	S	cherer Client:	Golder Associat	tes Data: S	cherer Ash Po	ond_C	CR F	Printed 1/11	/2019, 1:01 PM		
Constituent	Well	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Sulfate (mg/L)	SGWC-14	3.75	n/a	6/7/2018	190	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-15	3.75	n/a	6/7/2018	190	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-16	3.75	n/a	6/7/2018	25	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-17	3.75	n/a	6/7/2018	170	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-18	3.75	n/a	6/8/2018	870	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-19	3.75	n/a	6/8/2018	220	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-20	3.75	n/a	6/7/2018	210	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-21	3.75	n/a	6/7/2018	79	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-22	3.75	n/a	6/7/2018	94	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-23	3.75	n/a	6/7/2018	100	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-7	3.75	n/a	6/6/2018	14	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-8	3.75	n/a	6/6/2018	74	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-9	3.75	n/a	6/6/2018	320	Yes	70	50	n/a	0.000	NP Inter (normality)
Total Dissolved Solids (mg/L)	SGWC-12	141.6	n/a	6/6/2018	260	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-13	141.6	n/a	6/7/2018	190	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-14	141.6	n/a	6/7/2018	340	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-15	141.6	n/a	6/7/2018	310	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-17	141.6	n/a	6/7/2018	360	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-18	141.6	n/a	6/8/2018	820	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-19	141.6	n/a	6/8/2018	320	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-20	141.6	n/a	6/7/2018	320	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-21	141.6	n/a	6/7/2018	260	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-22	141.6	n/a	6/7/2018	210	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-23	141.6	n/a	6/7/2018	220	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-7	141.6	n/a	6/6/2018	210	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-8	141.6	n/a	6/6/2018	410	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-9	141.6	n/a	6/6/2018	590	Yes	70	2.857	No	0.000418	Param Inter 1 of 2

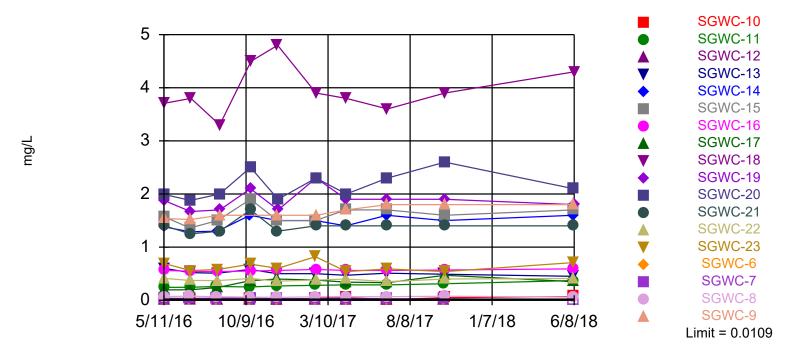
Prediction Limit Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR Printed 1/11/2019, 1:01 PM

		Control Cito	ii. Goldol 710000	natoo Bata.	Conordi Alam	ona_c	,,,,	i iiitoa ii	1 1/2010, 1.011 W		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>		<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)	SGWC-10	0.0109	n/a	6/6/2018	0.07	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-11	0.0109	n/a	6/6/2018	0.37	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-12	0.0109	n/a	6/6/2018	0.0105ND	No	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-13	0.0109	n/a	6/7/2018	0.45	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-14	0.0109	n/a	6/7/2018	1.6	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-15	0.0109	n/a	6/7/2018	1.7	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-16	0.0109	n/a	6/7/2018	0.59	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-17	0.0109	n/a	6/7/2018	0.35	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-18	0.0109	n/a	6/8/2018	4.3	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-19	0.0109	n/a	6/8/2018	1.8	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-20	0.0109	n/a	6/7/2018	2.1	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-21	0.0109	n/a	6/7/2018	1.4	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-22	0.0109	n/a	6/7/2018	0.41	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-23	0.0109	n/a	6/7/2018	0.71	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-6	0.0109	n/a	6/6/2018	0.0105ND	No	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-7	0.0109	n/a	6/6/2018	0.0105ND	No	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-8	0.0109	n/a	6/6/2018	0.059	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-9	0.0109	n/a	6/6/2018	1.8	Yes	70	95.71	n/a	0.000	NP Inter (NDs) 1 of 2
Calcium (mg/L)	SGWC-10	19	n/a	6/6/2018	1.2	No	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-11	19	n/a	6/6/2018	1.8	No	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-12	19	n/a	6/6/2018	22	Yes	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-13	19	n/a	6/7/2018	15	No	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-14	19	n/a	6/7/2018	44	Yes	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-15	19	n/a	6/7/2018	16	No	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-16	19	n/a	6/7/2018	0.84	No	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-17	19	n/a	6/7/2018	49	Yes	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-18	19	n/a	6/8/2018	90	Yes	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-19	19	n/a	6/8/2018	37	Yes	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-20	19	n/a	6/7/2018	11	No	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-21	19	n/a	6/7/2018	29	Yes	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-22	19	n/a	6/7/2018	26	Yes	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-23	19	n/a	6/7/2018	25	Yes	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-6	19	n/a	6/6/2018	4.2	No	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-7	19	n/a	6/6/2018	19	No	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-8	19	n/a	6/6/2018	51	Yes	67	0	n/a	0.000	NP Inter (normality)
Calcium (mg/L)	SGWC-9	19	n/a	6/6/2018	54	Yes	67	0	n/a	0.000	NP Inter (normality)
Chloride (mg/L)	SGWC-10	3.186	n/a	6/6/2018	8.6	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-11	3.186	n/a	6/6/2018	7.5	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-12	3.186	n/a	6/6/2018	8.8	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-13	3.186	n/a	6/7/2018	6.2	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-14	3.186	n/a	6/7/2018	10	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-15	3.186	n/a	6/7/2018	9.3	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-16	3.186	n/a	6/7/2018	7.7	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-17	3.186	n/a	6/7/2018	8	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-18	3.186	n/a	6/8/2018	9	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-19	3.186	n/a	6/8/2018	7.2	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-20	3.186	n/a	6/7/2018	9.9	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-21	3.186	n/a	6/7/2018	8.6	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-22	3.186	n/a	6/7/2018	10	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-23	3.186	n/a	6/7/2018	10	Yes	68	0	x^(1/3)	0.000418	Param Inter 1 of 2

Prediction Limit

		Scherer Clier	nt: Golder Assoc	iates Data:	Scherer Ash	Pond_0	CCR	Printed 1/	11/2019, 1:01 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Ba N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Chloride (mg/L)	SGWC-6	3.186	n/a	6/6/2018	1.3	No	68	0	x^(1/3)		Param Inter 1 of 2
Chloride (mg/L)	SGWC-7	3.186	n/a	6/6/2018	4.6	Yes	68	0	x^(1/3)		Param Inter 1 of 2
Chloride (mg/L)	SGWC-8	3.186	n/a	6/6/2018	11	Yes	68	0	x^(1/3)		Param Inter 1 of 2
Chloride (mg/L)	SGWC-9	3.186	n/a	6/6/2018	12	Yes	68	0	x^(1/3)		Param Inter 1 of 2
Fluoride (mg/L)	SGWC-10	0.108	n/a	6/6/2018	0.041ND	No	77	83.12	n/a	0.000	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	SGWC-11	0.108	n/a	6/6/2018	0.041ND	No	77	83.12	n/a	0.000	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	SGWC-12	0.108	n/a	6/6/2018	0.041ND	No	77	83.12	n/a	0.000	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	SGWC-13	0.108	n/a	6/7/2018	0.041ND	No	77	83.12	n/a	0.000	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	SGWC-13	0.108	n/a	6/7/2018	0.041ND	No	77	83.12	n/a	0.000	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	SGWC-15	0.108	n/a	6/7/2018	0.041110	No	77	83.12	n/a	0.000	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	SGWC-15	0.108	n/a n/a	6/7/2018	0.14 0.041ND	No	77	83.12	n/a	0.000	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	SGWC-17	0.108	n/a n/a	6/7/2018	0.041ND	No	77	83.12	n/a	0.000	NP Inter (NDs) 1 of 2
, ,	SGWC-17	0.108		6/8/2018	0.041ND	No	77	83.12	n/a	0.000	NP Inter (NDs) 1 of 2
Fluoride (mg/L) Fluoride (mg/L)	SGWC-10	0.108	n/a	6/8/2018	0.041ND		77	83.12		0.000	
			n/a			No Voc	77	83.12	n/a		NP Inter (NDs) 1 of 2
Fluoride (mg/L)	SGWC-20 SGWC-21	0.108	n/a	6/7/2018 6/7/2018	0.21 0.041ND	Yes	77	83.12	n/a	0.000	NP Inter (NDs) 1 of 2
Fluoride (mg/L)		0.108	n/a			No			n/a	0.000	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	SGWC-22	0.108	n/a	6/7/2018	0.041ND	No	77 77	83.12	n/a	0.000	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	SGWC-23	0.108	n/a	6/7/2018	0.041ND	No	77	83.12	n/a	0.000	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	SGWC-6	0.108	n/a	6/6/2018	0.041ND	No	77 	83.12	n/a	0.000	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	SGWC-7	0.108	n/a	6/6/2018	0.2	Yes	77	83.12	n/a	0.000	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	SGWC-8	0.108	n/a	6/6/2018	0.4	Yes	77	83.12	n/a	0.000	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	SGWC-9	0.108	n/a	6/6/2018	0.041ND	No	77	83.12	n/a	0.000	NP Inter (NDs) 1 of 2
pH (S.U.)	SGWC-10	7.096	4.978	6/6/2018	5.43	No	68	0	No		Param Inter 1 of 2
pH (S.U.)	SGWC-11	7.096	4.978	6/6/2018	5.32	No	68	0	No		Param Inter 1 of 2
pH (S.U.)	SGWC-12	7.096	4.978	6/6/2018	6.1	No	68	0	No		Param Inter 1 of 2
pH (S.U.)	SGWC-13	7.096	4.978	6/7/2018	5.93	No	68	0	No		Param Inter 1 of 2
pH (S.U.)	SGWC-14	7.096	4.978	6/7/2018	5.81	No	68	0	No		Param Inter 1 of 2
pH (S.U.)	SGWC-15	7.096	4.978	6/7/2018	4.62	Yes	68	0	No		Param Inter 1 of 2
pH (S.U.)	SGWC-16	7.096	4.978	6/7/2018	5.26	No	68	0	No		Param Inter 1 of 2
pH (S.U.)	SGWC-17	7.096	4.978	6/7/2018	6.21	No	68	0	No	0.000209	Param Inter 1 of 2
pH (S.U.)	SGWC-18	7.096	4.978	6/8/2018	4.69	Yes	68	0	No		Param Inter 1 of 2
pH (S.U.)	SGWC-19	7.096	4.978	6/8/2018	5.52	No	68	0	No		Param Inter 1 of 2
pH (S.U.)	SGWC-20	7.096	4.978	6/7/2018	4.26	Yes	68	0	No		Param Inter 1 of 2
pH (S.U.)	SGWC-21	7.096	4.978	6/7/2018	6.1	No	68	0	No		Param Inter 1 of 2
pH (S.U.)	SGWC-22	7.096	4.978	6/7/2018	5.66	No	68	0	No		Param Inter 1 of 2
pH (S.U.)	SGWC-23	7.096	4.978	6/7/2018	5.97	No	68	0	No		Param Inter 1 of 2
pH (S.U.)	SGWC-6	7.096	4.978	6/6/2018	5.99	No	68	0	No	0.000209	Param Inter 1 of 2
pH (S.U.)	SGWC-7	7.096	4.978	6/6/2018	6.56	No	68	0	No		Param Inter 1 of 2
pH (S.U.)	SGWC-8	7.096	4.978	6/6/2018	6.42	No	68	0	No		Param Inter 1 of 2
pH (S.U.)	SGWC-9	7.096	4.978	6/6/2018	6.12	No	68	0	No	0.000209	Param Inter 1 of 2
Sulfate (mg/L)	SGWC-10	3.75	n/a	6/6/2018	2.9	No	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-11	3.75	n/a	6/6/2018	0.89	No	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-12	3.75	n/a	6/6/2018	41	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-13	3.75	n/a	6/7/2018	69	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-14	3.75	n/a	6/7/2018	190	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-15	3.75	n/a	6/7/2018	190	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-16	3.75	n/a	6/7/2018	25	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-17	3.75	n/a	6/7/2018	170	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-18	3.75	n/a	6/8/2018	870	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-19	3.75	n/a	6/8/2018	220	Yes	70	50	n/a	0.000	NP Inter (normality)

Prediction Limit

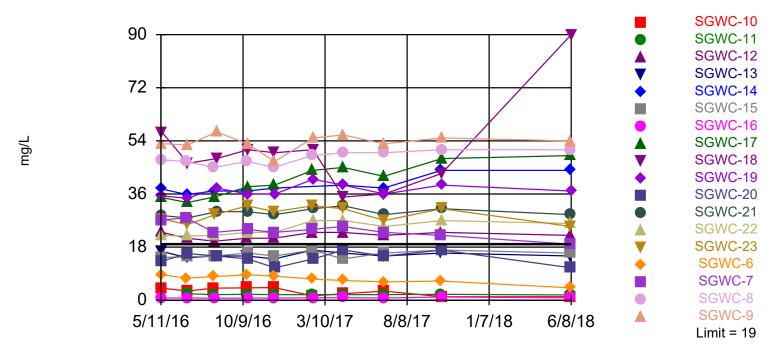

		Scherer Clier	nt: Golder Assoc	iates Data:	Scherer Ash	Pond_0	CCR	Printed 1/	11/2019, 1:01 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Sulfate (mg/L)	SGWC-20	3.75	n/a	6/7/2018	210	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-21	3.75	n/a	6/7/2018	79	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-22	3.75	n/a	6/7/2018	94	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-23	3.75	n/a	6/7/2018	100	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-6	3.75	n/a	6/6/2018	0.35ND	No	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-7	3.75	n/a	6/6/2018	14	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-8	3.75	n/a	6/6/2018	74	Yes	70	50	n/a	0.000	NP Inter (normality)
Sulfate (mg/L)	SGWC-9	3.75	n/a	6/6/2018	320	Yes	70	50	n/a	0.000	NP Inter (normality)
Total Dissolved Solids (mg/L)	SGWC-10	141.6	n/a	6/6/2018	50ND	No	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-11	141.6	n/a	6/6/2018	50ND	No	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-12	141.6	n/a	6/6/2018	260	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-13	141.6	n/a	6/7/2018	190	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-14	141.6	n/a	6/7/2018	340	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-15	141.6	n/a	6/7/2018	310	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-16	141.6	n/a	6/7/2018	74	No	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-17	141.6	n/a	6/7/2018	360	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-18	141.6	n/a	6/8/2018	820	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-19	141.6	n/a	6/8/2018	320	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-20	141.6	n/a	6/7/2018	320	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-21	141.6	n/a	6/7/2018	260	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-22	141.6	n/a	6/7/2018	210	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-23	141.6	n/a	6/7/2018	220	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-6	141.6	n/a	6/6/2018	50ND	No	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-7	141.6	n/a	6/6/2018	210	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-8	141.6	n/a	6/6/2018	410	Yes	70	2.857	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-9	141.6	n/a	6/6/2018	590	Yes	70	2.857	No	0.000418	Param Inter 1 of 2

Sanitas™ v.9.6.11 For the statistical analyses of ground water by Golder Associates only. UG Hollow symbols indicate censored values.

Exceeds Limit: SGWC-10, SGWC-11, SGWC-13, SGWC-14, SGWC-15, SGWC-16

Prediction Limit

Interwell Non-parametric

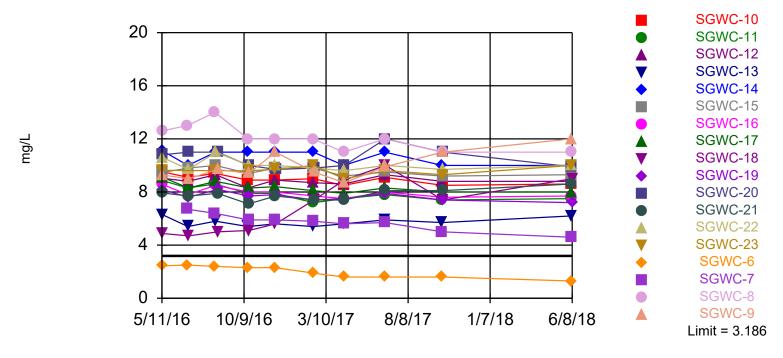


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 70 background values. 95.71% NDs. Annual per-constituent alpha = 0.01356. Individual comparison alpha = 0.0003792 (1 of 2). Comparing 18 points to limit.

Constituent: Boron Analysis Run 1/11/2019 1:00 PM View: App III

Exceeds Limit: SGWC-12, SGWC-14, SGWC-17, SGWC-18, SGWC-19, SGWC-21

Prediction Limit Interwell Non-parametric



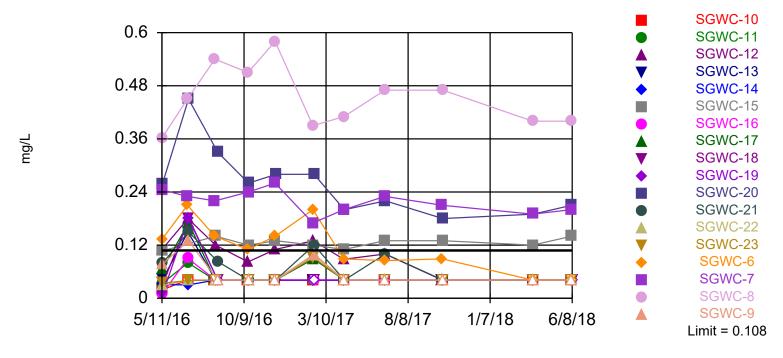
Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 67 background values. Annual per-constituent alpha = 0.01493. Individual comparison alpha = 0.0004177 (1 of 2). Comparing 18 points to limit.

Constituent: Calcium Analysis Run 1/11/2019 1:00 PM View: App III

Exceeds Limit: SGWC-10, SGWC-11, SGWC-12, SGWC-13, SGWC-14, SGWC-15

Prediction Limit Interwell Parametric

Background Data Summary (based on cube root transformation): Mean=1.23, Std. Dev.=0.1127, n=68. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9529, critical = 0.95. Kappa = 2.142 (c=7, w=18, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.000418. Comparing 18 points to limit.

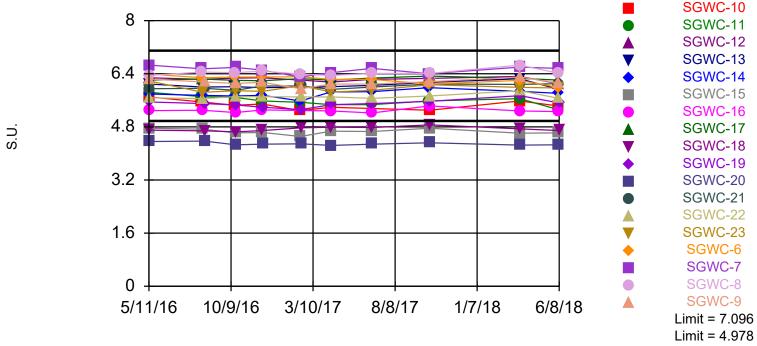

Constituent: Chloride Analysis Run 1/11/2019 1:00 PM View: App III Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

Sanitas™ v.9.6.11 For the statistical analyses of ground water by Golder Associates only. UG Hollow symbols indicate censored values.

Exceeds Limit: SGWC-20, SGWC-7, SGWC -8

Prediction Limit

Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 77 background values. 83.12% NDs. Annual per-constituent alpha = 0.01144. Individual comparison alpha = 0.0003194 (1 of 2). Comparing 18 points to limit.

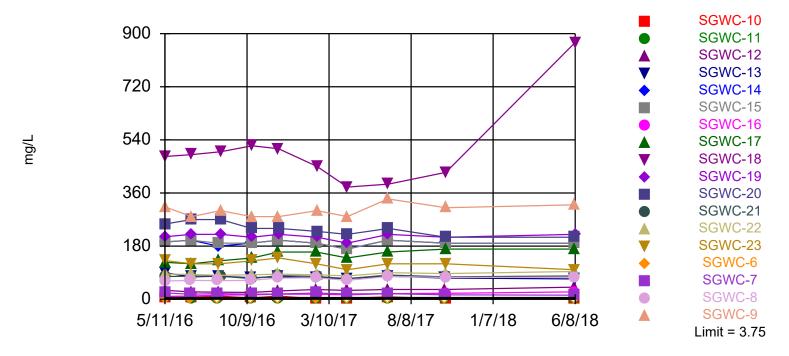
Constituent: Fluoride Analysis Run 1/11/2019 1:00 PM View: App III

Exceeds Limits: SGWC-15, SGWC-18, SGWC-20

Prediction Limit

Interwell Parametric

Background Data Summary: Mean=6.037, Std. Dev.=0.4944, n=68. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9509, critical = 0.95. Kappa = 2.142 (c=7, w=18, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.000209. Comparing 18 points to limit.

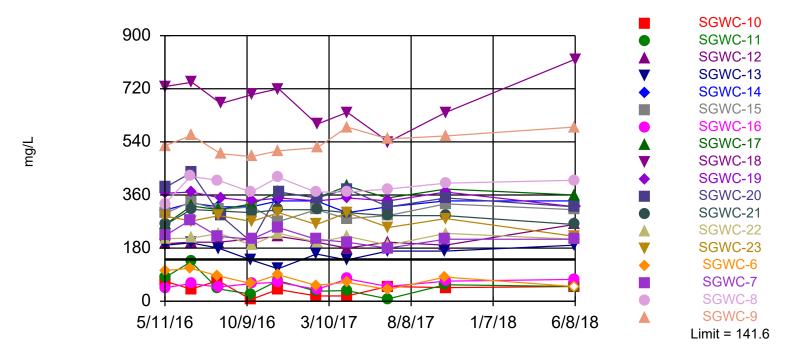

Constituent: pH Analysis Run 1/11/2019 1:00 PM View: App III

Sanitas™ v.9.6.11 For the statistical analyses of ground water by Golder Associates only. UG Hollow symbols indicate censored values.

Exceeds Limit: SGWC-12, SGWC-13, SGWC-14, SGWC-15, SGWC-16, SGWC-17

Prediction Limit

Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 70 background values. 50% NDs. Annual perconstituent alpha = 0.01356. Individual comparison alpha = 0.0003792 (1 of 2). Comparing 18 points to limit.

Constituent: Sulfate Analysis Run 1/11/2019 1:00 PM View: App III

Sanitas™ v.9.6.11 For the statistical analyses of ground water by Golder Associates only. UG Hollow symbols indicate censored values.

Exceeds Limit: SGWC-12, SGWC-13, SGWC-14, SGWC-15, SGWC-17, SGWC-18

Prediction Limit Interwell Parametric

Background Data Summary: Mean=76.7, Std. Dev.=30.34, n=70, 2.857% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9721, critical = 0.952. Kappa = 2.139 (c=7, w=18, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.000418. Comparing 18 points to limit.

Constituent: Total Dissolved Solids Analysis Run 1/11/2019 1:00 PM View: App III Scherer Client: Golder Associates Data: Scherer Ash Pond CCR

UPPER TOLERANCE LIMITS JUNE 2018

Tolerance Limit

		Scherer	Client: Golder A	ssociates Data	Data: Scherer Ash Pond_CCF		nd_CCR			
Constituent	<u>Well</u>	Upper Lim.	<u>Date</u>	Observ.	Sig.	Bg N	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	n/a	0.0021	n/a	n/a	n/a	55	89.09	n/a	0.05954	NP Inter(NDs)
Arsenic (mg/L)	n/a	0.0025	n/a	n/a	n/a	56	67.86	n/a	0.05656	NP Inter(normal
Barium (mg/L)	n/a	0.06308	n/a	n/a	n/a	56	0	No	0.05	Inter
Beryllium (mg/L)	n/a	0.0015	n/a	n/a	n/a	56	98.21	n/a	0.05656	NP Inter(NDs)
Cadmium (mg/L)	n/a	0.00125	n/a	n/a	n/a	56	96.43	n/a	0.05656	NP Inter(NDs)
Chromium (mg/L)	n/a	0.0142	n/a	n/a	n/a	56	39.29	n/a	0.05656	NP Inter(Cohens
Cobalt (mg/L)	n/a	0.02	n/a	n/a	n/a	55	61.82	n/a	0.05954	NP Inter(normal
Combined Radium 226 + 228 (pCi/L)	n/a	1.2	n/a	n/a	n/a	55	0	n/a	0.05954	NP Inter(normal
Fluoride (mg/L)	n/a	0.15	n/a	n/a	n/a	56	76.79	n/a	0.05656	NP Inter(NDs)
Lead (mg/L)	n/a	0.0025	n/a	n/a	n/a	56	98.21	n/a	0.05656	NP Inter(NDs)
Lithium (mg/L)	n/a	0.0125	n/a	n/a	n/a	56	98.21	n/a	0.05656	NP Inter(NDs)
Mercury (mg/L)	n/a	0.00025	n/a	n/a	n/a	56	85.71	n/a	0.05656	NP Inter(NDs)
Molybdenum (mg/L)	n/a	0.0075	n/a	n/a	n/a	56	85.71	n/a	0.05656	NP Inter(NDs)
Selenium (mg/L)	n/a	0.005	n/a	n/a	n/a	56	96.43	n/a	0.05656	NP Inter(NDs)
Thallium (mg/L)	n/a	0.0005	n/a	n/a	n/a	56	94.64	n/a	0.05656	NP Inter(NDs)

CONFIDENCE INTERVALS JUNE 2018

		Scherer Client: 0	Golder Associates	Data: Scherer	Ash Po	nd_CCR	Printed 1/1	8/2019, 10:31 AM		
Constituent	Well	Upper Lim.	Lower Lim.	<u>Compliance</u>	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Cobalt (mg/L)	SGWC-11	0.03203	0.02757	0.02	Yes	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-15	0.2805	0.2599	0.02	Yes	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-18	0.143	0.1064	0.02	Yes	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-20	0.2445	0.2077	0.02	Yes	10	0	No	0.05	Param.

		Scherer Client:	Golder Associates	Data: Scherer Ash Pond_CCR		Printed 1/18/2019, 10:31 AM				
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	SGWA-1 (bg)	0.0012	0.0004	0.006	No	9	77.78	No	0.002	NP (NDs)
Antimony (mg/L)	SGWA-2 (bg)	0.0005	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWA-24 (bg)	0.0005	0.0003	0.006	No	9	88.89	No	0.002	NP (NDs)
Antimony (mg/L)	SGWA-25 (bg)	0.0005	0.0003	0.006	No	9	88.89	No	0.002	NP (NDs)
Antimony (mg/L)	SGWA-3 (bg)	0.0021	0.0005	0.006	No	9	88.89	No	0.002	NP (NDs)
Antimony (mg/L)	SGWA-4 (bg)	0.0007	0.0005	0.006	No	9	88.89	No	0.002	NP (NDs)
Antimony (mg/L)	SGWA-5 (bg)	0.0005	0.0005	0.006	No	8	100	No	0.004	NP (NDs)
Antimony (mg/L)	SGWC-10	0.0014	0.0005	0.006	No	9	88.89	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-11	0.0005	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-12	0.0005	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-13	0.0005	0.0004	0.006	No	9	88.89	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-14	0.0005	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-15	0.0005	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-16	0.0005	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-17	0.0005	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-18	0.0012	0.0005	0.006	No	9	88.89	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-19	0.0005	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-20	0.0005	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-21	0.0005	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-22	0.0005	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-23	0.0005	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-6	0.0005	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-7	0.0005	0.0004	0.006	No	9	88.89	No	0.002	NP (NDs)
Antimony (mg/L) Antimony (mg/L)	SGWC-8	0.0005	0.0004	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L) Antimony (mg/L)	SGWC-9	0.0005	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
		0.0005	0.0003	0.000	No	10	70	No	0.002	NP (normality)
Arsenic (mg/L)	SGWA-1 (bg)	0.0005	0.00023	0.01	No	10	70 70	No	0.011	
Arsenic (mg/L)	SGWA-2 (bg)	0.0005	0.00023	0.01	No	10	80	No	0.011	NP (normality) NP (NDs)
Arsenic (mg/L)	SGWA-24 (bg)								0.011	
Arsenic (mg/L)	SGWA-25 (bg)	0.0009539	0.0004171	0.01	No	10	30	No		Param.
Arsenic (mg/L)	SGWA-3 (bg)	0.00023	0.00023	0.01	No	10	90	No No	0.011	NP (NDs)
Arsenic (mg/L)	SGWA-4 (bg)	0.00055	0.00023	0.01	No	10	80	No No	0.011	NP (NDs)
Arsenic (mg/L)	SGWA-5 (bg)	0.00023	0.00023	0.01	No	10	90	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-10	0.0005	0.00023	0.01	No	10	80	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-11	0.0011	0.00023	0.01	No	10	20	No No	0.011	NP (normality)
Arsenic (mg/L)	SGWC-12	0.001	0.00023	0.01	No	10	50	No	0.011	NP (normality)
Arsenic (mg/L)	SGWC-13	0.00047	0.00023	0.01	No	10	80	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-14	0.00057	0.00023	0.01	No	10	80	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-15	0.001452	0.0003631	0.01	No	10	30	No	0.05	Param.
Arsenic (mg/L)	SGWC-16	0.00023	0.00023	0.01	No	10	90	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-17	0.00075	0.00023	0.01	No	10	60	No	0.011	NP (normality)
Arsenic (mg/L)	SGWC-18	0.002009	0.001051	0.01	No	10	0	sqrt(x)	0.05	Param.
Arsenic (mg/L)	SGWC-19	0.00023	0.00023	0.01	No	10	90	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-20	0.001	0.00023	0.01	No	10	60	No	0.011	NP (normality)
Arsenic (mg/L)	SGWC-21	0.00023	0.00023	0.01	No	10	90	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-22	0.0006	0.00023	0.01	No	10	80	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-23	0.00061	0.00023	0.01	No	10	80	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-6	0.00046	0.00023	0.01	No	10	80	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-7	0.0006	0.00023	0.01	No	10	60	No	0.011	NP (normality)
Arsenic (mg/L)	SGWC-8	0.0005	0.00023	0.01	No	10	80	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-9	0.0007759	0.0003833	0.01	No	10	40	No	0.05	Param.

		Scherer Client: 0	Golder Associates	Data: Scherer Ash Pond_CCR		R Printed 1/18/2019, 10:31 AM				
Constituent	Well	Upper Lim.	Lower Lim.	<u>Compliance</u>	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Barium (mg/L)	SGWA-1 (bg)	0.05742	0.04954	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWA-2 (bg)	0.0392	0.03582	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWA-24 (bg)	0.02207	0.02049	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWA-25 (bg)	0.02398	0.02114	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWA-3 (bg)	0.03511	0.03255	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWA-4 (bg)	0.05489	0.04861	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWA-5 (bg)	0.01074	0.009881	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWC-10	0.03041	0.02753	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWC-11	0.03896	0.0357	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWC-12	0.03993	0.03297	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWC-13	0.02834	0.02338	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWC-14	0.06338	0.05908	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWC-15	0.04154	0.03796	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWC-16	0.022	0.0163	2	No	9	0	No	0.002	NP (normality)
Barium (mg/L)	SGWC-17	0.0196	0.01736	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWC-18	0.029	0.012	2	No	10	0	No	0.011	NP (normality)
Barium (mg/L)	SGWC-19	0.04483	0.03841	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWC-20	0.03926	0.03138	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWC-21	0.09317	0.08977	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWC-22	0.09663	0.08969	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWC-23	0.09211	0.08421	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWC-6	0.09138	0.04968	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWC-7	0.3213	0.2803	2	No	10	0	No	0.05	Param.
Barium (mg/L)	SGWC-8	0.205	0.16	2	No	10	0	No	0.011	NP (normality)
Barium (mg/L)	SGWC-9	0.06192	0.0519	2	No	10	0	ln(x)	0.05	Param.
Beryllium (mg/L)	SGWA-1 (bg)	0.00017	0.00017	0.004	No	10	90	No	0.011	NP (NDs)
Beryllium (mg/L)	SGWA-2 (bg)	0.00017	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	SGWA-24 (bg)	0.00017	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	SGWA-25 (bg)	0.00017	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	SGWA-3 (bg)	0.00017	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	SGWA-4 (bg)	0.00017	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	SGWA-5 (bg)	0.00017	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	SGWC-10	0.00017	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	SGWC-10	0.00017	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	SGWC-11	0.00017	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
	SGWC-12	0.00017	0.00017		No	10	100			NP (NDs)
Beryllium (mg/L)	SGWC-13	0.00017	0.00017	0.004 0.004	No	10		No No	0.011	NP (NDs)
Beryllium (mg/L)							100	No	0.011	
Beryllium (mg/L)	SGWC-15	0.0004	0.00017	0.004	No	10	30	No	0.011	NP (Cohens/xfrm)
Beryllium (mg/L)	SGWC-16	0.00017	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	SGWC-17	0.00017	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	SGWC-18	0.00035	0.00017	0.004	No	10	70	No	0.011	NP (normality)
Beryllium (mg/L)	SGWC-19	0.00017	0.00017	0.004	No	10	90	No	0.011	NP (NDs)
Beryllium (mg/L)	SGWC-20	0.0008333	0.0007271	0.004	No	10	0	No	0.05	Param.
Beryllium (mg/L)	SGWC-21	0.00017	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	SGWC-22	0.00017	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	SGWC-23	0.00017	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	SGWC-6	0.00017	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	SGWC-7	0.00017	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	SGWC-8	0.00017	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	SGWC-9	0.00017	0.00017	0.004	No	10	100	No	0.011	NP (NDs)

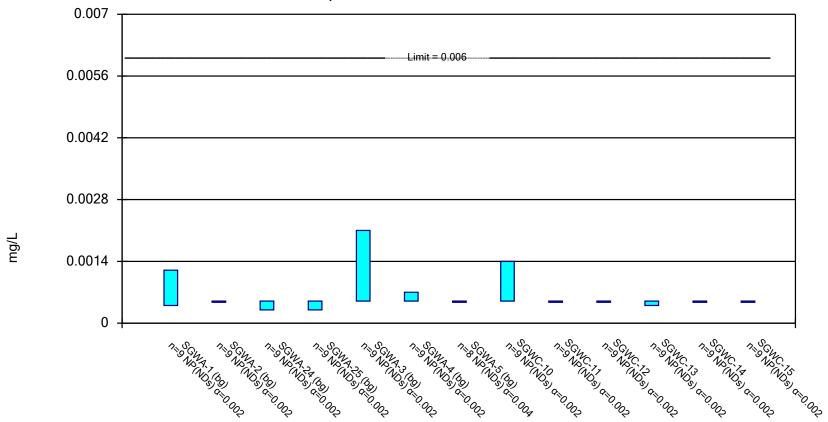
		Scherer Client:	Golder Associates	Data: Scherer Ash Pond_CCR		Printed 1/	18/2019, 10:31 AM			
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Cadmium (mg/L)	SGWA-1 (bg)	0.00017	0.000156	0.005	No	9	88.89	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWA-2 (bg)	0.00017	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWA-24 (bg)	0.00017	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWA-25 (bg)	0.00017	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWA-3 (bg)	0.00017	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWA-4 (bg)	0.00017	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWA-5 (bg)	0.0011	0.00017	0.005	No	9	88.89	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-10	0.00017	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-11	0.00017	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-12	0.00017	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-13	0.00017	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-14	0.00017	0.000136	0.005	No	9	88.89	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-15	0.00044	0.00017	0.005	No	9	66.67	No	0.002	NP (normality)
Cadmium (mg/L)	SGWC-16	0.00017	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-17	0.00017	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-18	0.0002	0.00016	0.005	No	9	77.78	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-19	0.00036	0.00017	0.005	No	9	88.89	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-20	0.00017	0.0001	0.005	No	9	77.78	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-21	0.00039	0.00017	0.005	No	9	88.89	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-22	0.00017	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-23	0.00017	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-6	0.00017	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-7	0.00017	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-8	0.00017	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-9	0.00017	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Chromium (mg/L)	SGWA-1 (bg)	0.00055	0.00055	0.1	No	10	90	No	0.011	NP (NDs)
Chromium (mg/L)	SGWA-2 (bg)	0.014	0.0043	0.1	No	10	0	No	0.011	NP (normality)
Chromium (mg/L)	SGWA-24 (bg)	0.004122	0.003304	0.1	No	10	0	No	0.05	Param.
Chromium (mg/L)	SGWA-25 (bg)	0.00055	0.00055	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	SGWA-3 (bg)	0.01068	0.006948	0.1	No	10	0	No	0.05	Param.
Chromium (mg/L)	SGWA-4 (bg)	0.004745	0.002669	0.1	No	10	0	No	0.05	Param.
Chromium (mg/L)	SGWA-5 (bg)	0.0012	0.00055	0.1	No	10	80	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-10	0.00055	0.00055	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-11	0.00055	0.00055	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-12	0.00055	0.00055	0.1	No	10	90	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-13	0.00055	0.00055	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-14	0.0012	0.00055	0.1	No	10	70	No	0.011	NP (normality)
Chromium (mg/L)	SGWC-15	0.03391	0.03197	0.1	No	10	0	No	0.05	Param.
Chromium (mg/L)	SGWC-16	0.009674	0.008892	0.1	No	10	0	No	0.05	Param.
Chromium (mg/L)	SGWC-17	0.005437	0.003313	0.1	No	10	0	sqrt(x)	0.05	Param.
Chromium (mg/L)	SGWC-18	0.007546	0.006496	0.1	No	10	0	No	0.05	Param.
Chromium (mg/L)	SGWC-19	0.01524	0.014	0.1	No	10	0	No	0.05	Param.
Chromium (mg/L)	SGWC-20	0.00055	0.00055	0.1	No	10	90	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-21	0.00055	0.00055	0.1	No	10	90	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-22	0.00055	0.00055	0.1	No	10	90	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-23	0.0025	0.00055	0.1	No	9	55.56	No	0.002	NP (normality)
Chromium (mg/L)	SGWC-6	0.00055	0.00055	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-7	0.00055	0.00055	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-8	0.0012	0.00055	0.1	No	10	70	No	0.011	NP (normality)
Chromium (mg/L)	SGWC-9	0.00055	0.00055	0.1	No	10	100	No	0.011	NP (NDs)

		Scherer Client: 0	Golder Associates	Data: Scherer Ash Pond_CCR		Printed 1/18/2019, 10:31 AM				
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Cobalt (mg/L)	SGWA-1 (bg)	0.01595	0.009457	0.02	No	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWA-2 (bg)	0.0002	0.0002	0.02	No	10	90	No	0.011	NP (NDs)
Cobalt (mg/L)	SGWA-24 (bg)	0.0004	0.0002	0.02	No	10	80	No	0.011	NP (NDs)
Cobalt (mg/L)	SGWA-25 (bg)	0.01454	0.01094	0.02	No	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWA-3 (bg)	0.00051	0.0002	0.02	No	9	88.89	No	0.002	NP (NDs)
Cobalt (mg/L)	SGWA-4 (bg)	0.0002	0.0002	0.02	No	10	90	No	0.011	NP (NDs)
Cobalt (mg/L)	SGWA-5 (bg)	0.0002	0.0002	0.02	No	10	100	No	0.011	NP (NDs)
Cobalt (mg/L)	SGWC-10	0.03339	0.01947	0.02	No	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-11	0.03203	0.02757	0.02	Yes	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-12	0.004619	0.003536	0.02	No	10	0	sqrt(x)	0.05	Param.
Cobalt (mg/L)	SGWC-13	0.01017	0.006355	0.02	No	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-14	0.01261	0.006705	0.02	No	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-15	0.2805	0.2599	0.02	Yes	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-16	0.003495	0.003111	0.02	No	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-17	0.0006892	0.0004288	0.02	No	9	22.22	No	0.05	Param.
Cobalt (mg/L)	SGWC-18	0.143	0.1064	0.02	Yes	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-19	0.00078	0.0002	0.02	No	10	50	No	0.011	NP (normality)
Cobalt (mg/L)	SGWC-20	0.2445	0.2077	0.02	Yes	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-21	0.0002	0.0002	0.02	No	10	100	No	0.011	NP (NDs)
Cobalt (mg/L)	SGWC-22	0.004449	0.002939	0.02	No	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-23	0.0002	0.0002	0.02	No	9	100	No	0.002	NP (NDs)
Cobalt (mg/L)	SGWC-6	0.002916	0.001464	0.02	No	10	10	No	0.05	Param.
Cobalt (mg/L)	SGWC-7	0.01331	0.007511	0.02	No	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-8	0.0012	0.0002	0.02	No	10	70	No	0.011	NP (normality)
Cobalt (mg/L)	SGWC-9	0.01542	0.01146	0.02	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWA-1 (bg)	0.3546	0.1956	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWA-2 (bg)	0.4268	0.143	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWA-24 (bg)	0.2907	0.06359	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWA-25 (bg)	0.3657	0.06644	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWA-3 (bg)	0.345	-0.026	5	No	10	0	No	0.011	NP (normality)
Combined Radium 226 + 228 (pCi/L)	SGWA-4 (bg)	0.2418	0.0521	5	No	9	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWA-5 (bg)	0.3948	0.2169	5	No	10	0	ln(x)	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-10	0.548	-0.0725	5	No	10	0	No	0.011	NP (normality)
Combined Radium 226 + 228 (pCi/L)	SGWC-11	0.4835	0.1865	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-12	0.3209	0.1068	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-13	0.4395	0.08482	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-14	0.4345	0.1203	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-15	0.3963	0.1794	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-16	0.3112	0.1309	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-17	0.3778	0.1572	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-18	0.4267	0.192	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-19	0.2756	0.05208	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-20	0.6679	0.3185	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-21	0.498	0.208	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-22	0.297	0.1666	5	No	9	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-23	0.7208	0.4908	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-6	0.3675	0.1195	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-7	0.518	0.3068	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-8	2.468	1.992	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-9	0.4219	0.1804	5	No	10	0	No	0.05	Param.
	2000	3.12.10	3.1001	•			•		3.00	. aram.

Personate might			Scherer Client:	Golder Associates	Data: Scherer	Data: Scherer Ash Pond_CCR		CR Printed 1/18/2019, 10:31 AM			
Funding (mg) SGWA-2 (mg)	Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Compliance</u>	Sig.	<u>N</u>	<u>%NDs</u>	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Funds (mpil.) SGWA-2 (mpil.) SGWA-2 (mpil.) SGWA-2 (mpil.) SGWA-3 (mpil.) SGWA-	Fluoride (mg/L)	SGWA-1 (bg)	0.041	0.041	4	No	11	100	No	0.006	NP (NDs)
Flooring (mg/L)	Fluoride (mg/L)	SGWA-2 (bg)	0.041	0.03	4	No	11	81.82	No	0.006	NP (NDs)
Function (mpl.) Function (Fluoride (mg/L)	SGWA-24 (bg)	0.05	0.041	4	No	11	81.82	No	0.006	NP (NDs)
Function (mpL) Func	Fluoride (mg/L)	SGWA-25 (bg)	0.041	0.03	4	No	11	81.82	No	0.006	NP (NDs)
Fluendic (mg/L)	Fluoride (mg/L)	SGWA-3 (bg)	0.041	0.0192	4	No	11	81.82	No	0.006	NP (NDs)
Fluendic (mg/L)	Fluoride (mg/L)	SGWA-4 (bg)	0.1	0.041	4	No	11	63.64	No	0.006	NP (normality)
Fluorisin (mg/L)	Fluoride (mg/L)	SGWA-5 (bg)	0.041	0.0188	4	No	11	90.91	No	0.006	NP (NDs)
Fluoride (mg/L)	Fluoride (mg/L)	SGWC-10	0.041	0.019	4	No	11	90.91	No	0.006	NP (NDs)
Fluentic (mg/L)	Fluoride (mg/L)	SGWC-11	0.041	0.033	4	No	11	81.82	No	0.006	NP (NDs)
Fluorisia (mgl.) SOWC-14 O.941 O.93 V. No V. V. No O.90 No O.90 No No No O.90 No No No O.90 No No No No No No No N	Fluoride (mg/L)	SGWC-12	0.12	0.07825	4	No	11	27.27	No	0.05	Param.
Fluorisis (mglt) SGWC-15	Fluoride (mg/L)	SGWC-13	0.042	0.041	4	No	11	81.82	No	0.006	NP (NDs)
Fluoride (mglt.) SGWC-16 O.041 O.014 4 No 11 S1.82 No O.006 NP (NDS)	Fluoride (mg/L)	SGWC-14	0.041	0.03	4	No	11	81.82	No	0.006	NP (NDs)
Fluoride (mg/L) SGWC-18 O.948 O.941 4 No 11 Z-73 No 0.068 NP (nomilaty) Fluoride (mg/L) SGWC-18 O.041 O.0334 4 No 11 81.82 No 0.066 NP (NDS) Coloride (mg/L) SGWC-29 O.3025 O.2173 4 No 11 81.82 No 0.066 NP (NDS) NE (NDG) NE (NDG	Fluoride (mg/L)	SGWC-15	0.1312	0.1182	4	No	10	0	No	0.05	Param.
Fluoride (mg/L)	Fluoride (mg/L)	SGWC-16	0.041	0.011	4	No	11	81.82	No	0.006	NP (NDs)
Fluoride (mg/L)	Fluoride (mg/L)	SGWC-17	0.089	0.041	4	No	11	72.73	No	0.006	NP (normality)
Fluoride (mg/L)	Fluoride (mg/L)	SGWC-18	0.041	0.0343	4	No	11	81.82	No	0.006	NP (NDs)
Fluoride (mg/L)	Fluoride (mg/L)	SGWC-19	0.041	0.0126	4	No	11	81.82	No	0.006	NP (NDs)
Fluoride (mg/L)	Fluoride (mg/L)	SGWC-20	0.3025	0.2173	4	No	11	0	No	0.05	Param.
Fluoride (mg/L) SGWC-23 0.041 0.0341 4 No 11 72.73 No 0.006 NP (normality) Fluoride (mg/L) SGWC-6 0.1473 0.08814 4 No 11 18.18 No 0.05 Param. Fluoride (mg/L) SGWC-7 0.2323 0.2032 4 No 11 0 No 0.05 Param. Fluoride (mg/L) SGWC-8 0.4905 0.4153 4 No 11 0 No 0.05 Param. Fluoride (mg/L) SGWC-9 0.097 0.041 4 No 11 0 No 0.00 0.00 No 0.005 Param. Fluoride (mg/L) SGWC-9 0.0907 0.00175 0.015 No 10 10 No 0.00 0.00 No 0.011 NP (NDs) NE NE NE NE NE NE NE N	Fluoride (mg/L)	SGWC-21	0.12	0.041	4	No	11	54.55	No	0.006	NP (normality)
Fluoride (mg/L) SGWC-6 0.4473 0.08814 4 No 11 18.18 No 0.06 0.05 Param. Fluoride (mg/L) SGWC-7 0.2323 0.2032 4 No 11 0 No No 0.05 Param. Fluoride (mg/L) SGWC-8 0.495 0.4153 4 No 11 0 No 0.05 Param. Fluoride (mg/L) SGWC-9 0.097 0.041 4 No 11 0 No 0.00 0.006 No Fluoride (mg/L) SGWC-9 0.00075 0.00075 0.0015 No 0.015 No 10 100 No 0.011 NP (NDs) Nead (mg/L) SGWA-2 (bg) 0.000175 0.000175 0.0015 No 10 100 No 0.011 NP (NDs) Nead (mg/L) SGWA-2 (bg) 0.000175 0.00017 0.0015 No 10 100 No 0.011 NP (NDs) Nead (mg/L) SGWA-2 (bg) 0.000175 0.00017 0.0015 No 10 100 No 0.011 NP (NDs) Nead (mg/L) SGWA-3 (bg) 0.000175 0.000175 0.0015 No 10 100 No 0.011 NP (NDs) Nead (mg/L) SGWA-3 (bg) 0.000175 0.000175 0.00175 No 10 100 No 0.001 0.011 NP (NDs) N	Fluoride (mg/L)	SGWC-22	0.041	0.029	4	No	11	72.73	No	0.006	NP (normality)
Fluoride (mg/L)	Fluoride (mg/L)	SGWC-23	0.041	0.0341	4	No	11	72.73	No	0.006	NP (normality)
Fluoride (mg/L) SGWC-8 0.4905 0.4153 4 No 11 1 1 No 10 0.05 Param. Fluoride (mg/L) SGWC-9 0.097 0.041 4 No 11 72.73 No 0.008 NP (normality) 1 NP (NDS) NP (NDS) 1 NP (NDS) NP (NDS) 1 NP (NDS)	Fluoride (mg/L)	SGWC-6	0.1473	0.08814	4	No	11	18.18	No	0.05	Param.
Fluoride (mg/L)	Fluoride (mg/L)	SGWC-7	0.2323	0.2032	4	No	11	0	No	0.05	Param.
Lead (mg/L) SGWA-1 (bg) 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWA-2 (bg) 0.000175 0.00175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWA-24 (bg) 0.000175 0.00017 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWA-35 (bg) 0.000175 0.00175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWA-3 (bg) 0.000175 0.00175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWA-4 (bg) 0.000175 0.00175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-10 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-11 0.	Fluoride (mg/L)	SGWC-8	0.4905	0.4153	4	No	11	0	No	0.05	Param.
Lead (mg/L) SGWA-2 (bg) 0.000175 0.000175 0.0015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWA-26 (bg) 0.000175 0.000175 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWA-26 (bg) 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWA-3 (bg) 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWA-4 (bg) 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-10 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-11 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-13 0	Fluoride (mg/L)	SGWC-9	0.097	0.041	4	No	11	72.73	No	0.006	NP (normality)
Lead (mg/L) SGWA-24 (kg) 0.000175 0.00017 0.0015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWA-25 (kg) 0.000175 0.0015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWA-3 (kg) 0.000175 0.00175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWA-4 (kg) 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-10 0.000175 0.00175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-11 0.000175 0.0015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-12 0.000175 0.00175 0.015 No 10 10 No 0.011 NP (NDs) Lead (mg/L) SGWC-12 0.000175 0.000175 0.015 <td>Lead (mg/L)</td> <td>SGWA-1 (bg)</td> <td>0.000175</td> <td>0.000175</td> <td>0.015</td> <td>No</td> <td>10</td> <td>100</td> <td>No</td> <td>0.011</td> <td>NP (NDs)</td>	Lead (mg/L)	SGWA-1 (bg)	0.000175	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L) SGWA-25 (bg) 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWA-3 (bg) 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWA-4 (bg) 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWA-5 (bg) 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-10 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-11 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-13 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-14 0.0001	Lead (mg/L)	SGWA-2 (bg)	0.000175	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L) SGWA-3 (bg) 0.000175 0.00175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWA-4 (bg) 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWA-5 (bg) 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-10 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-12 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-13 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-13 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-13 0.000175 <td>Lead (mg/L)</td> <td>SGWA-24 (bg)</td> <td>0.000175</td> <td>0.0001</td> <td>0.015</td> <td>No</td> <td>10</td> <td>90</td> <td>No</td> <td>0.011</td> <td>NP (NDs)</td>	Lead (mg/L)	SGWA-24 (bg)	0.000175	0.0001	0.015	No	10	90	No	0.011	NP (NDs)
Lead (mg/L) SGWA-4 (bg) 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWA-5 (bg) 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-10 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-11 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-12 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-13 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-13 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-13 0.000175	Lead (mg/L)	SGWA-25 (bg)	0.000175	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L) SGWA-5 (bg) 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-10 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-11 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-12 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-13 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-14 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-16 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-18 0.000175	Lead (mg/L)	SGWA-3 (bg)	0.000175	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L) SGWC-10 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-11 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-12 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-13 0.000175 0.000175 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-14 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-15 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-16 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-17 0.000175 <t< td=""><td>Lead (mg/L)</td><td>SGWA-4 (bg)</td><td>0.000175</td><td>0.000175</td><td>0.015</td><td>No</td><td>10</td><td>100</td><td>No</td><td>0.011</td><td>NP (NDs)</td></t<>	Lead (mg/L)	SGWA-4 (bg)	0.000175	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L) SGWC-11 0.000175 0.00175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-12 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-13 0.000175 0.000175 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-14 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-15 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-16 0.000175 0.00175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-16 0.000175 0.00175 0.015 No 10 100 No 0.001 NP (NDs) Lead (mg/L) SGWC-18 0.000175 0	Lead (mg/L)	SGWA-5 (bg)	0.000175	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L) SGWC-12 0.000175 0.00175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-13 0.000175 0.000175 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-14 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-15 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-16 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-16 0.000175 0.000175 0.015 No 10 100 No 0.001 NP (NDs) Lead (mg/L) SGWC-18 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-29 0.000175 <td< td=""><td>Lead (mg/L)</td><td>SGWC-10</td><td>0.000175</td><td>0.000175</td><td>0.015</td><td>No</td><td>10</td><td>100</td><td>No</td><td>0.011</td><td>NP (NDs)</td></td<>	Lead (mg/L)	SGWC-10	0.000175	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L) SGWC-13 0.000175 0.000175 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-14 0.000175 0.00175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-15 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-16 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-17 0.000175 0.000175 0.015 No 10 100 No 0.001 NP (NDs) Lead (mg/L) SGWC-18 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-18 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-20 0.00041	Lead (mg/L)	SGWC-11	0.000175	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L) SGWC-14 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-15 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-16 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-17 0.000175 0.000175 0.015 No 10 100 No 0.001 NP (NDs) Lead (mg/L) SGWC-18 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-18 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-29 0.00041 0.000175 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-22 0.000175 <td< td=""><td>Lead (mg/L)</td><td>SGWC-12</td><td>0.000175</td><td>0.000175</td><td>0.015</td><td>No</td><td>10</td><td>100</td><td>No</td><td>0.011</td><td>NP (NDs)</td></td<>	Lead (mg/L)	SGWC-12	0.000175	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L) SGWC-15 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-16 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-17 0.000175 0.000175 0.015 No 9 100 No 0.002 NP (NDs) Lead (mg/L) SGWC-18 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-19 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-20 0.000175 0.000175 0.015 No 10 70 No 0.011 NP (NDs) Lead (mg/L) SGWC-21 0.000175 0.000175 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-23 0.000175	Lead (mg/L)	SGWC-13	0.000175	0.000175	0.015	No	10	90	No	0.011	NP (NDs)
Lead (mg/L) SGWC-16 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-17 0.000175 0.000175 0.015 No 9 100 No 0.002 NP (NDs) Lead (mg/L) SGWC-18 0.000175 0.00175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-19 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-20 0.00041 0.000175 0.015 No 10 70 No 0.011 NP (NDs) Lead (mg/L) SGWC-21 0.000175 0.00009 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-22 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-3 0.000175 0.00	Lead (mg/L)	SGWC-14	0.000175	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L) SGWC-17 0.000175 0.000175 0.015 No 9 100 No 0.002 NP (NDs) Lead (mg/L) SGWC-18 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-19 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-20 0.00041 0.000175 0.015 No 10 70 No 0.011 NP (NDs) Lead (mg/L) SGWC-21 0.000175 0.000195 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-22 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-23 0.000175 0.000175 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-3 0.000175 0.0		SGWC-15	0.000175	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L) SGWC-18 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-19 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-20 0.00041 0.000175 0.015 No 10 70 No 0.011 NP (normality) Lead (mg/L) SGWC-21 0.000175 0.00009 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-22 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-23 0.000175 0.000195 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-6 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-7 0.000175 0.000175	Lead (mg/L)	SGWC-16	0.000175	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L) SGWC-19 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-20 0.00041 0.000175 0.015 No 10 70 No 0.011 NP (normality) Lead (mg/L) SGWC-21 0.000175 0.00009 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-22 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-23 0.000175 0.000175 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-6 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-7 0.000175 0.000175 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-8 0.000175	Lead (mg/L)	SGWC-17	0.000175	0.000175	0.015	No	9	100	No	0.002	NP (NDs)
Lead (mg/L) SGWC-20 0.00041 0.000175 0.015 No 10 70 No 0.011 NP (normality) Lead (mg/L) SGWC-21 0.000175 0.00009 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-22 0.000175 0.000175 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-23 0.000175 0.000175 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-6 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-7 0.000175 0.000175 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-8 0.000175 0.000175 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-8 0.000175 0.000175 0.015	Lead (mg/L)	SGWC-18	0.000175	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L) SGWC-21 0.000175 0.00009 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-22 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-23 0.000175 0.000175 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-6 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-7 0.000175 0.000175 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-8 0.000175 0.000175 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-8 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs)	Lead (mg/L)	SGWC-19	0.000175	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L) SGWC-22 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-23 0.000175 0.00009 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-6 0.000175 0.00175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-7 0.000175 0.000175 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-8 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs)	Lead (mg/L)	SGWC-20	0.00041	0.000175	0.015	No	10	70	No	0.011	NP (normality)
Lead (mg/L) SGWC-23 0.000175 0.00009 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-6 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-7 0.000175 0.000175 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-8 0.000175 0.000175 No 10 100 No 0.011 NP (NDs)	Lead (mg/L)	SGWC-21	0.000175	0.00009	0.015	No	10	90	No	0.011	NP (NDs)
Lead (mg/L) SGWC-6 0.000175 0.000175 0.015 No 10 100 No 0.011 NP (NDs) Lead (mg/L) SGWC-7 0.000175 0.000175 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-8 0.000175 0.00175 No 10 100 No 0.011 NP (NDs)	Lead (mg/L)	SGWC-22	0.000175	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L) SGWC-7 0.000175 0.000175 0.015 No 10 90 No 0.011 NP (NDs) Lead (mg/L) SGWC-8 0.000175 0.000175 No 10 100 No 0.011 NP (NDs)	Lead (mg/L)	SGWC-23	0.000175	0.00009	0.015	No	10	90	No	0.011	NP (NDs)
Lead (mg/L) SGWC-8 0.000175 0.000175 No 10 100 No 0.011 NP (NDs)	Lead (mg/L)	SGWC-6	0.000175	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
	Lead (mg/L)	SGWC-7	0.000175	0.000175	0.015	No	10	90	No	0.011	NP (NDs)
Lead (mg/L) SGWC-9 0.000175 0.000175 No 10 100 No 0.011 NP (NDs)	Lead (mg/L)		0.000175	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
	Lead (mg/L)	SGWC-9	0.000175	0.000175	0.015	No	10	100	No	0.011	NP (NDs)

		Scherer Client	: Golder Associates	Data: Scherer Ash Pond_CCR		Printed 1/18/2019, 10:31 AM				
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Lithium (mg/L)	SGWA-1 (bg)	0.0018	0.00055	0.04	No	10	70	No	0.011	NP (normality)
Lithium (mg/L)	SGWA-2 (bg)	0.00055	0.00055	0.04	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	SGWA-24 (bg)	0.00055	0.00055	0.04	No	10	90	No	0.011	NP (NDs)
Lithium (mg/L)	SGWA-25 (bg)	0.00055	0.00055	0.04	No	10	90	No	0.011	NP (NDs)
Lithium (mg/L)	SGWA-3 (bg)	0.00055	0.00055	0.04	No	10	90	No	0.011	NP (NDs)
Lithium (mg/L)	SGWA-4 (bg)	0.00055	0.00055	0.04	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	SGWA-5 (bg)	0.00055	0.00055	0.04	No	10	90	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-10	0.00055	0.00055	0.04	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-11	0.0017	0.00055	0.04	No	10	70	No	0.011	NP (normality)
Lithium (mg/L)	SGWC-12	0.00055	0.00055	0.04	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-13	0.00055	0.00055	0.04	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-14	0.000925	0.00055	0.04	No	9	88.89	No	0.002	NP (NDs)
Lithium (mg/L)	SGWC-15	0.003	0.00055	0.04	No	10	70	No	0.011	NP (normality)
Lithium (mg/L)	SGWC-16	0.00055	0.00055	0.04	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-17	0.00055	0.00055	0.04	No	10	90	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-18	0.0042	0.00055	0.04	No	10	60	No	0.011	NP (normality)
Lithium (mg/L)	SGWC-19	0.00055	0.00055	0.04	No	10	90	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-20	0.004491	0.003324	0.04	No	9	11.11	x^2	0.05	Param.
Lithium (mg/L)	SGWC-21	0.00055	0.00055	0.04	No	10	90	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-22	0.00055	0.00055	0.04	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-23	0.003784	0.001835	0.04	No	9	22.22	No	0.05	Param.
Lithium (mg/L)	SGWC-6	0.00055	0.00055	0.04	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-7	0.004846	0.003688	0.04	No	9	0	No	0.05	Param.
Lithium (mg/L)	SGWC-8	0.0018	0.00055	0.04	No	10	70	No	0.011	NP (normality)
Lithium (mg/L)	SGWC-9	0.00055	0.00055	0.04	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	SGWA-1 (bg)	0.000035	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWA-2 (bg)	0.000035	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWA-24 (bg)	0.000035	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWA-25 (bg)	0.000075	0.000035	0.002	No	10	80	No	0.011	NP (NDs)
Mercury (mg/L)	SGWA-3 (bg)	0.000035	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWA-4 (bg)	0.000035	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWA-5 (bg)	0.000072	0.000035	0.002	No	10	80	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-10	0.000035	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-11	0.000035	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-12	0.000035	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-13	0.000035	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-14	0.000089	0.000035	0.002	No	10	80	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-15	0.0001178	0.00006635	0.002	No	10	30	No	0.05	Param.
Mercury (mg/L)	SGWC-16	0.000035	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-17	0.00011	0.000035	0.002	No	10	80	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-18	0.00014	0.000035	0.002	No	10	50	No	0.011	NP (normality)
Mercury (mg/L)	SGWC-19	0.000035	0.000035	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-20	0.000073	0.000035	0.002	No	10	80	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-21	0.000035	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-22	0.000035	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-23	0.00011	0.000035	0.002	No	10	70	No	0.011	NP (normality)
Mercury (mg/L)	SGWC-6	0.000035	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-7	0.000035	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-8	0.000035	0.000035	0.002		10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-9	0.000035	0.000035	0.002	No	10	90	No	0.011	NP (NDs)

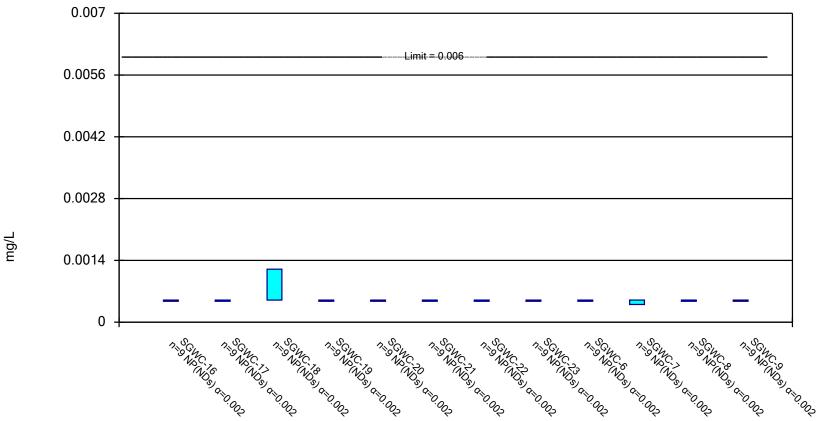
		Scherer Client:	Golder Associates	Data: Scherer Ash Pond_0		ond_CCR	CR Printed 1/18/2019, 10:31 AM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	Transform	<u>Alpha</u>	Method
Molybdenum (mg/L)	SGWA-1 (bg)	0.000425	0.000425	0.0075	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWA-2 (bg)	0.000425	0.000425	0.0075	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWA-24 (bg)	0.000425	0.000425	0.0075	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWA-25 (bg)	0.000425	0.000425	0.0075	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWA-3 (bg)	0.0011	0.000425	0.0075	No	9	88.89	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWA-4 (bg)	0.001897	0.0008935	0.0075	No	9	22.22	No	0.05	Param.
Molybdenum (mg/L)	SGWA-5 (bg)	0.000425	0.000425	0.0075	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-10	0.000425	0.000425	0.0075	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-11	0.000425	0.000425	0.0075	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-12	0.0012	0.000425	0.0075	No	9	77.78	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-13	0.000425	0.000425	0.0075	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-14	0.003	0.000425	0.0075	No	9	88.89	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-15	0.000425	0.000425	0.0075	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-16	0.000425	0.000425	0.0075	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-17	0.000425	0.000425	0.0075	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-18	0.000425	0.000425	0.0075	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-19	0.000425	0.000425	0.0075	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-20	0.000425	0.000425	0.0075	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-21	0.000425	0.000425	0.0075	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-22	0.000425	0.000425	0.0075	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-23	0.000425	0.000425	0.0075	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-6	0.00099	0.000425	0.0075	No	9	77.78	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-7	0.002752	0.001191	0.0075	No	9	22.22	No	0.05	Param.
Molybdenum (mg/L)	SGWC-8	0.0008	0.000425	0.0075	No	9	88.89	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-9	0.0021	0.000425	0.0075	No	9	44.44	No	0.002	NP (normality)
Selenium (mg/L)	SGWA-1 (bg)	0.00065	0.00065	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWA-2 (bg)	0.00065	0.00065	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWA-24 (bg)	0.00065	0.00065	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWA-25 (bg)	0.00065	0.00065	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWA-3 (bg)	0.00065	0.00029	0.05	No	10	90	No	0.011	NP (NDs)
Selenium (mg/L)	SGWA-4 (bg)	0.00065	0.00041	0.05	No	10	90	No	0.011	NP (NDs)
Selenium (mg/L)	SGWA-5 (bg)	0.00065	0.00065	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-10	0.00065	0.00065	0.05	No	9	100	No	0.002	NP (NDs)
Selenium (mg/L)	SGWC-11	0.00065	0.00065	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-12	0.00065	0.00031	0.05	No	10	90	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-13	0.00065	0.0003	0.05	No	10	90	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-14	0.00065	0.00065	0.05	No	10	90	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-15	0.00965	0.00065	0.05	No	10	20	No	0.011	NP (normality)
Selenium (mg/L)	SGWC-16	0.001	0.00053	0.05	No	10	70	No	0.011	NP (normality)
Selenium (mg/L)	SGWC-17	0.00065	0.00024	0.05	No	9	88.89	No	0.002	NP (NDs)
Selenium (mg/L)	SGWC-18	0.023	0.0047	0.05	No	10	0	No	0.011	NP (normality)
Selenium (mg/L)	SGWC-19	0.00065	0.00065	0.05	No	10	90	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-20	0.00396	0.00064	0.05	No	10	60	No	0.011	NP (normality)
Selenium (mg/L)	SGWC-21	0.00065	0.00065	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-22	0.00065	0.00065	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-23	0.00065	0.00033	0.05	No	10	90	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-6	0.00065	0.00034	0.05	No	10	80	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-7	0.00065	0.00065	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-8	0.00065	0.00065	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-9	0.00065	0.00065	0.05	No	10	100	No	0.011	NP (NDs)


Constituent
Thallium (mg/L)

Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)

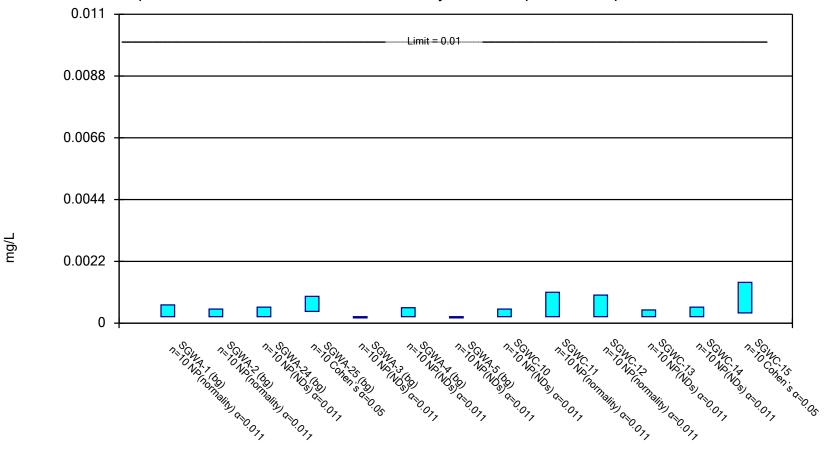
	Scherer	Client: Golder Associates	Data: Schere	r Ash Po	nd_CCR	Printed 1	/18/2019, 10:31 AM		
Well	<u>Upper Li</u>	m. Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
SGWA-1 (bg)	0.00008	0.0000425	0.002	No	10	80	No	0.011	NP (NDs)
SGWA-2 (bg)	0.000042	25 0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWA-24 (bg)	0.000042	25 0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWA-25 (bg)	0.000042	25 0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWA-3 (bg)	0.000042	25 0.0000425	0.002	No	10	90	No	0.011	NP (NDs)
SGWA-4 (bg)	0.000042	25 0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWA-5 (bg)	0.000042	25 0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-10	0.000042	25 0.0000425	0.002	No	10	90	No	0.011	NP (NDs)
SGWC-11	0.000042	25 0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-12	0.000042	25 0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-13	0.000042	25 0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-14	0.000042	25 0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-15	0.00009	5 0.0000425	0.002	No	10	60	No	0.011	NP (normality)
SGWC-16	0.000042	25 0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-17	0.000042	25 0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-18	0.000160	0.0001163	0.002	No	9	0	No	0.05	Param.
SGWC-19	0.000042	25 0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-20	0.00018	15 0.0001296	0.002	No	9	0	No	0.05	Param.
SGWC-21	0.000042	25 0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-22	0.000042	25 0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-23	0.000042	25 0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-6	0.000042	25 0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-7	0.000042	25 0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-8	0.000042	25 0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-9	0.000042	25 0.0000425	0.002	No	10	100	No	0.011	NP (NDs)

Non-Parametric Confidence Interval


Compliance Limit is not exceeded.

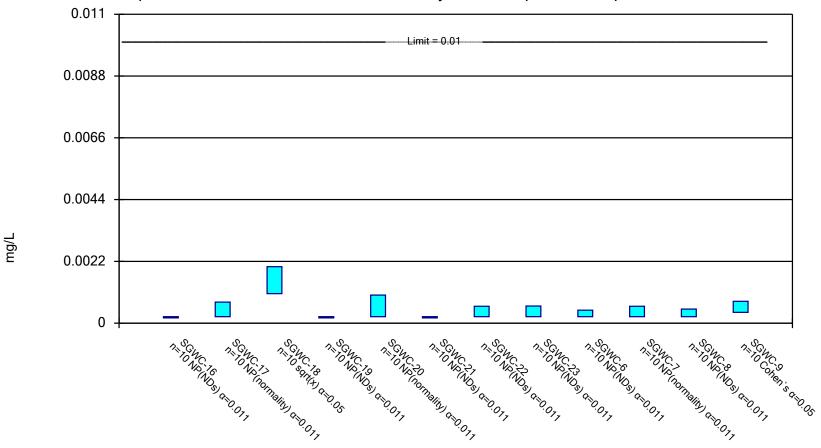
Constituent: Antimony Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

Non-Parametric Confidence Interval


Compliance Limit is not exceeded.

Constituent: Antimony Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

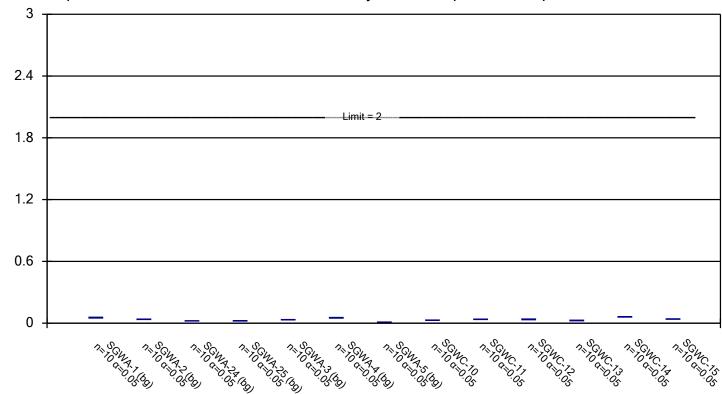
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence Interval

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

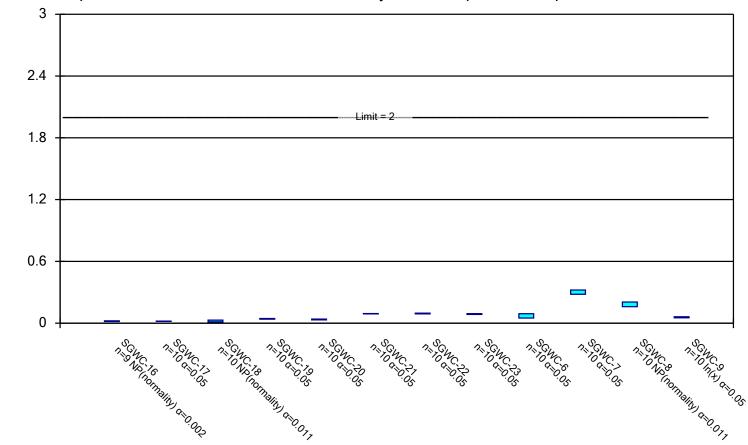


Constituent: Arsenic Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence Interval

mg/L

Parametric Confidence Interval

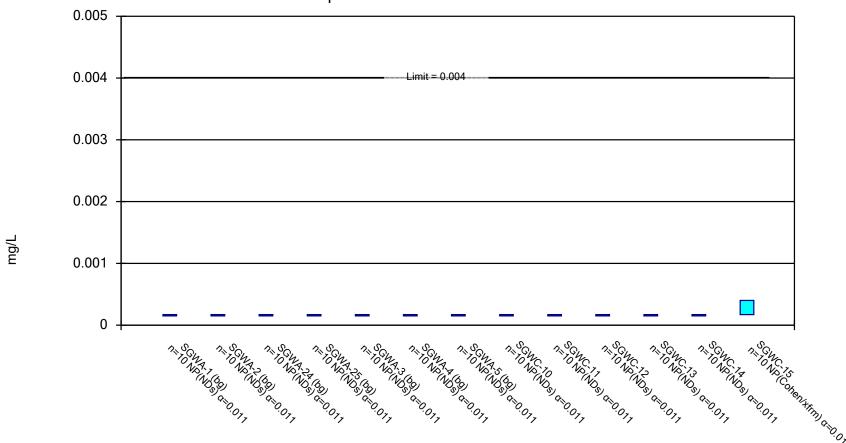
Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Barium Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence Interval

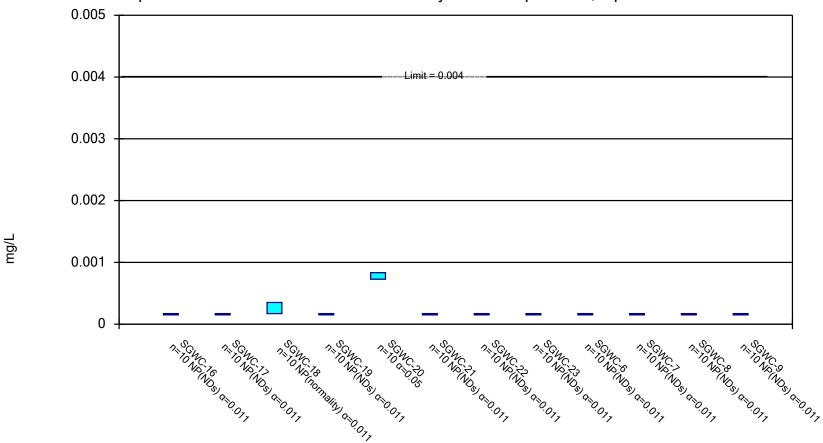
mg/L

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

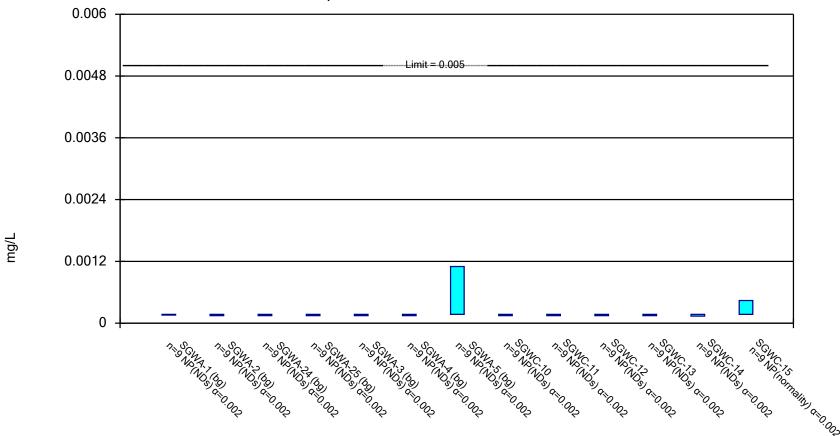
Constituent: Barium Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence Interval

Non-Parametric Confidence Interval


Compliance Limit is not exceeded.

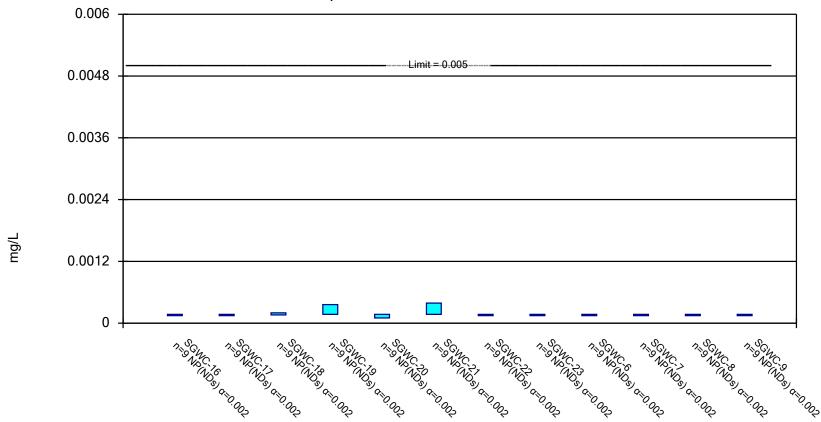
Constituent: Beryllium Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Beryllium Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

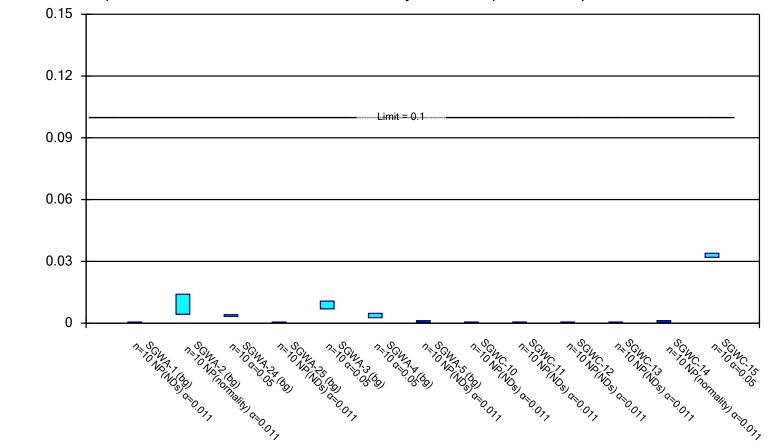
Non-Parametric Confidence Interval


Compliance Limit is not exceeded.

Constituent: Cadmium Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence Interval

Non-Parametric Confidence Interval

Compliance Limit is not exceeded.

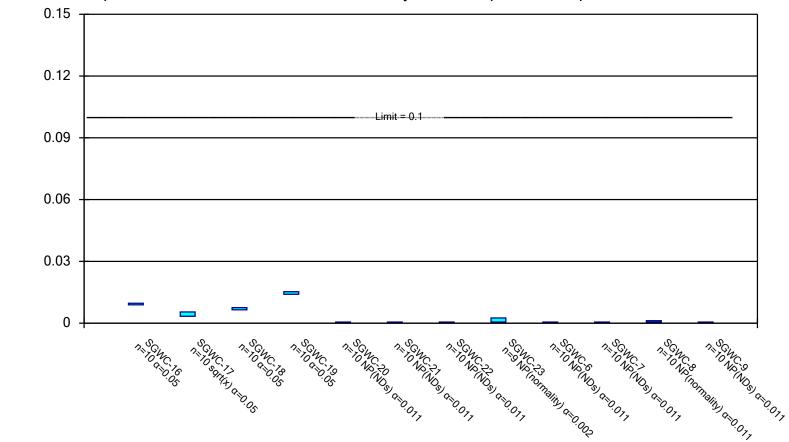


Constituent: Cadmium Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

mg/L

Parametric and Non-Parametric (NP) Confidence Interval

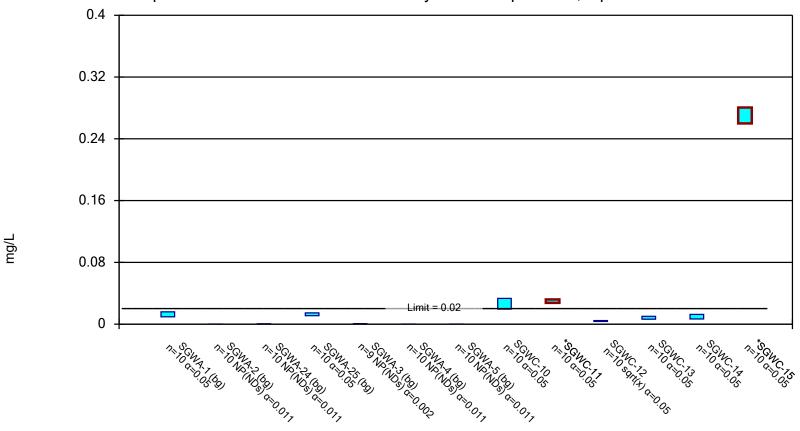
Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Chromium Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

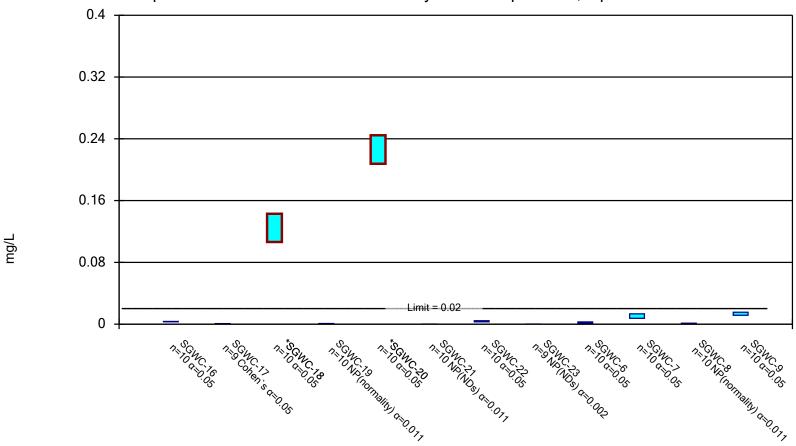
mg/L

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Chromium Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

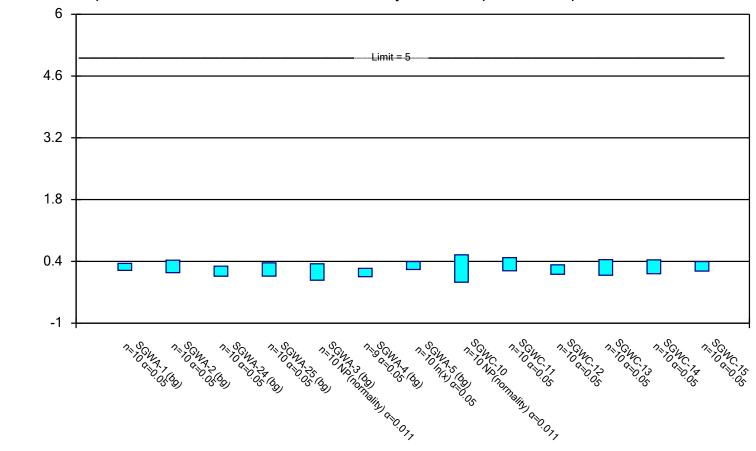
Parametric and Non-Parametric (NP) Confidence Interval


Compliance limit is exceeded.* Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Cobalt Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

Parametric and Non-Parametric (NP) Confidence Interval

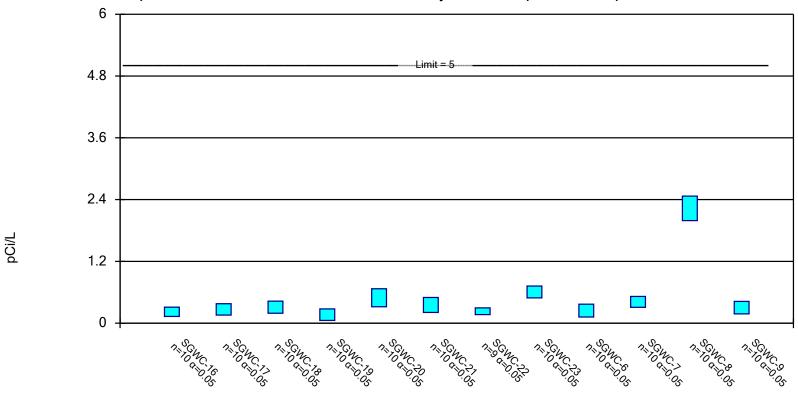
Compliance limit is exceeded.* Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Cobalt Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

pCi/L

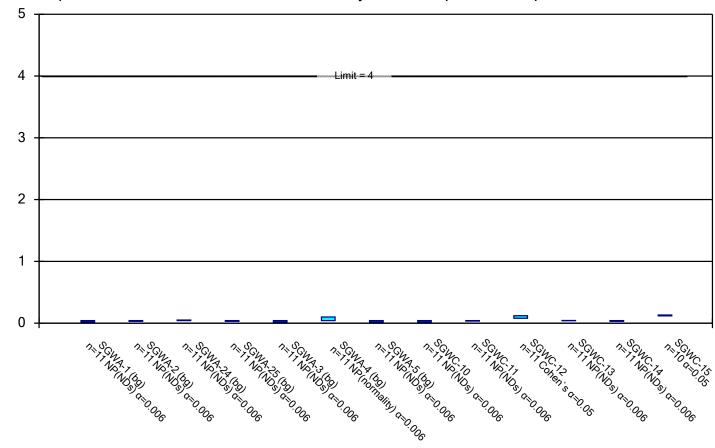
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Combined Radium 226 + 228 Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence I Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

Parametric Confidence Interval

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

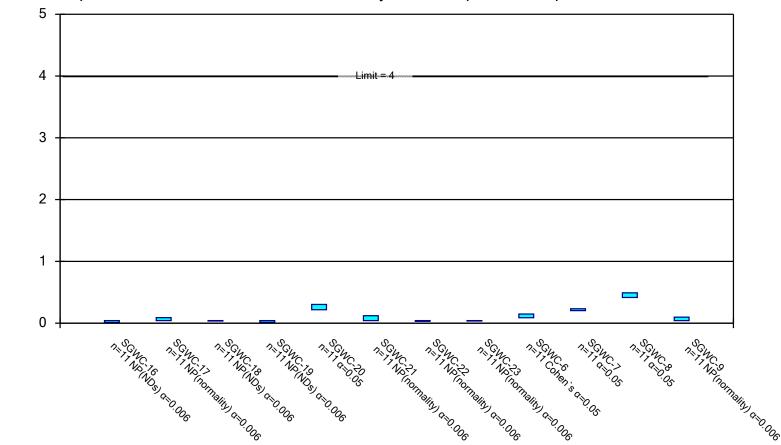


Constituent: Combined Radium 226 + 228 Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence I Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

mg/L

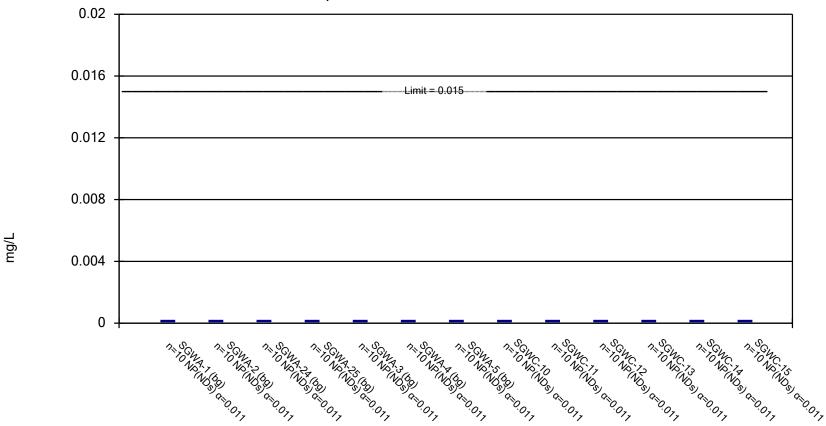
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

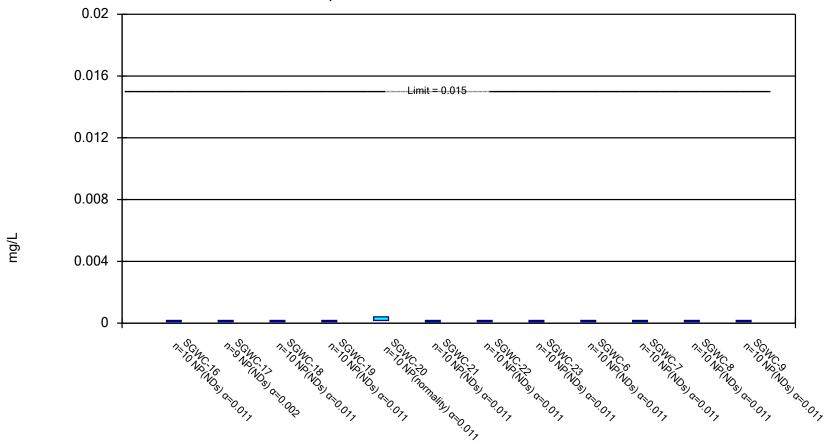


Constituent: Fluoride Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence Interval

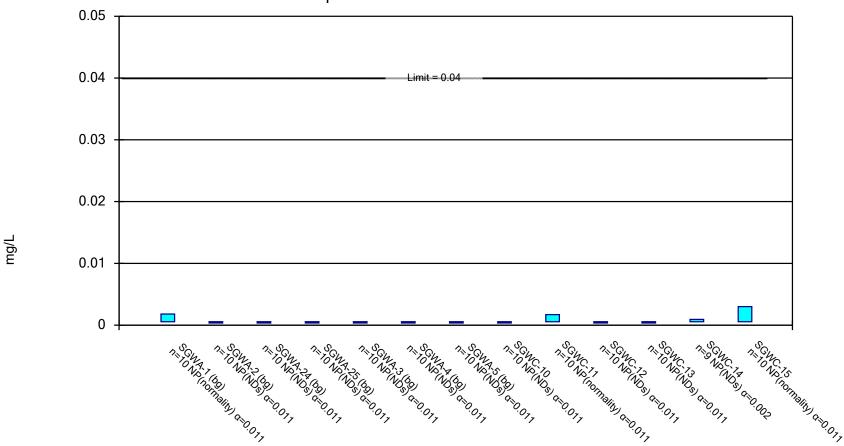
mg/L


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

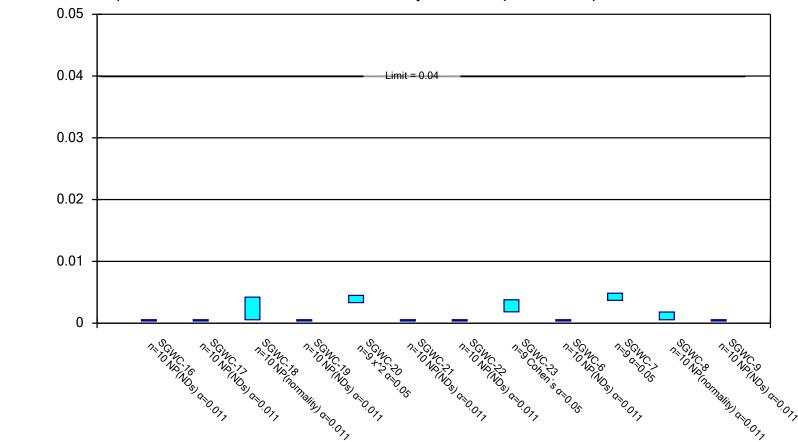


Constituent: Fluoride Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence Interval


Compliance Limit is not exceeded.

Compliance Limit is not exceeded.

Compliance Limit is not exceeded.

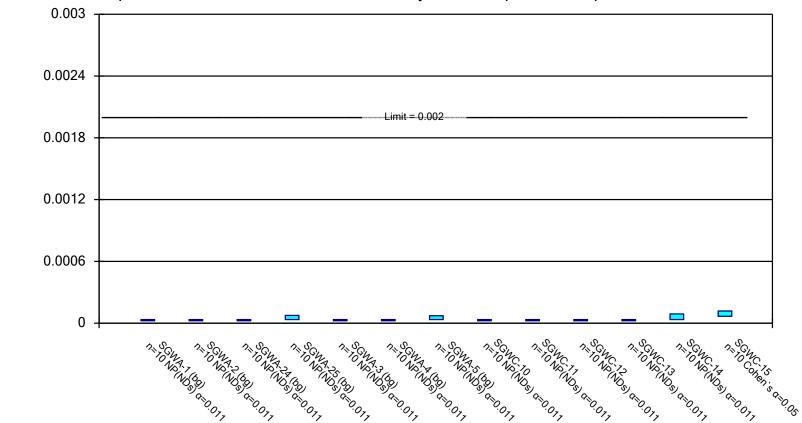


Constituent: Lithium Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence Interval

mg/L

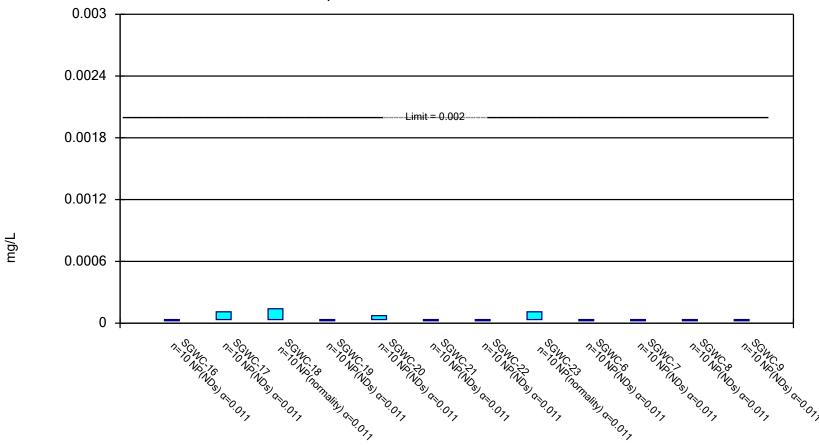
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.



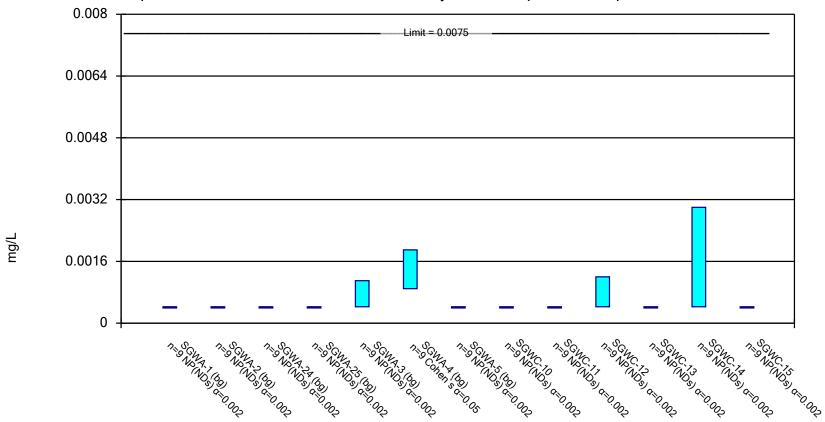
Constituent: Lithium Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence Interval

mg/L

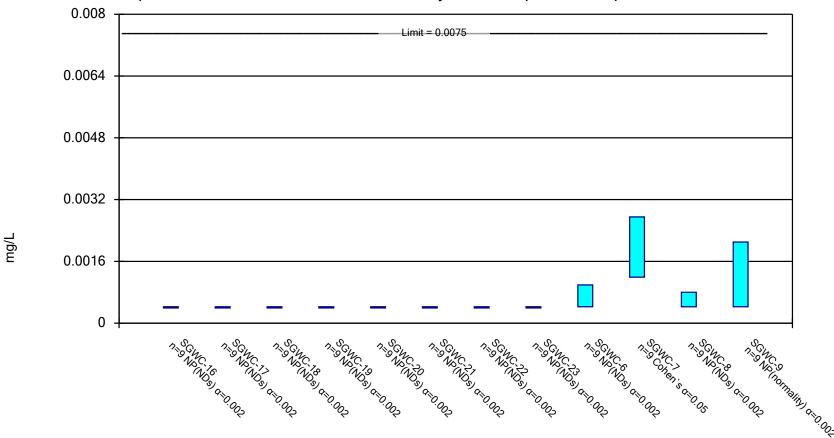

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

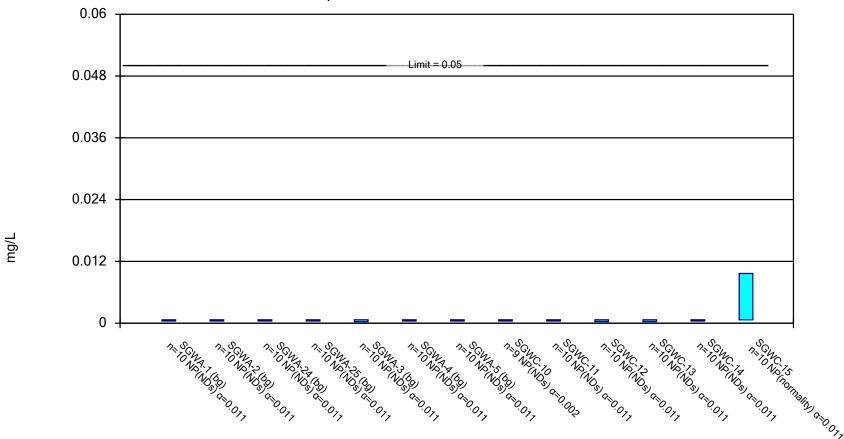
Constituent: Mercury Analysis Run 1/18/2019 10:16 AM View: Interwell Confidence Interval


Compliance Limit is not exceeded.

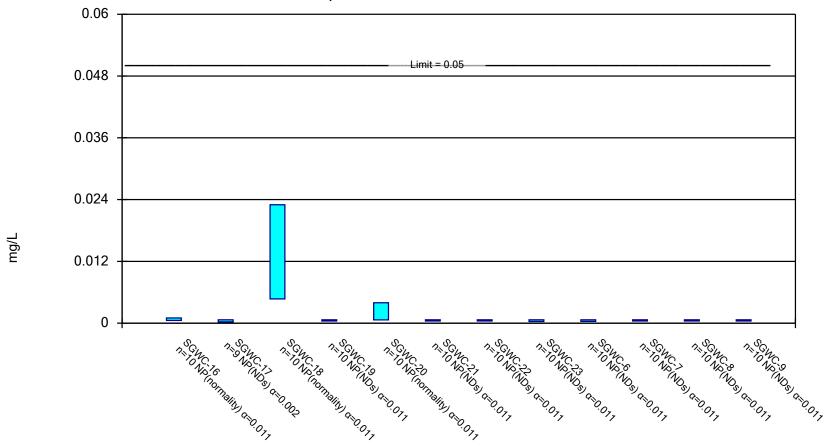
Constituent: Mercury Analysis Run 1/18/2019 10:17 AM View: Interwell Confidence Interval

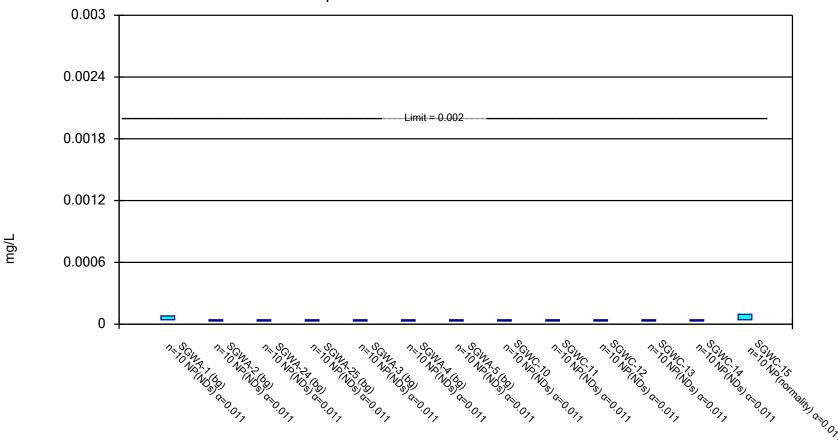

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

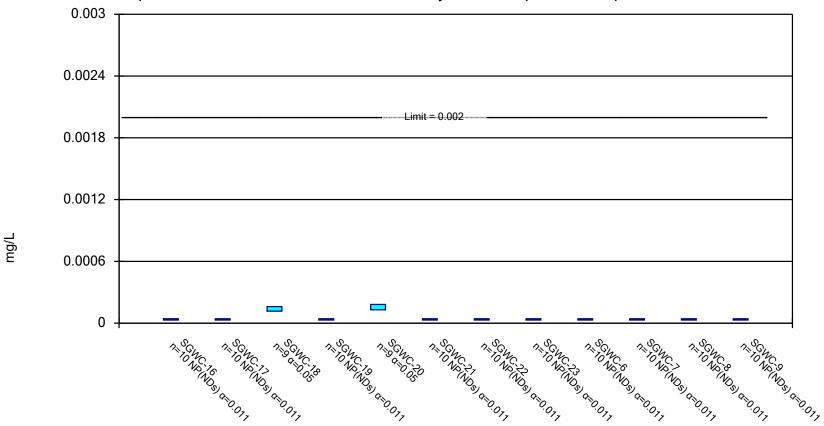


Parametric and Non-Parametric (NP) Confidence Interval

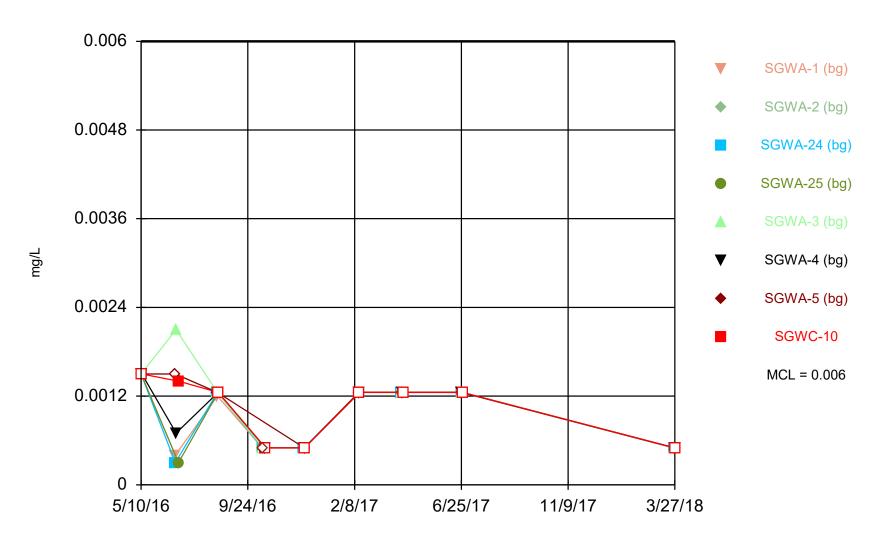

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.


Compliance Limit is not exceeded.

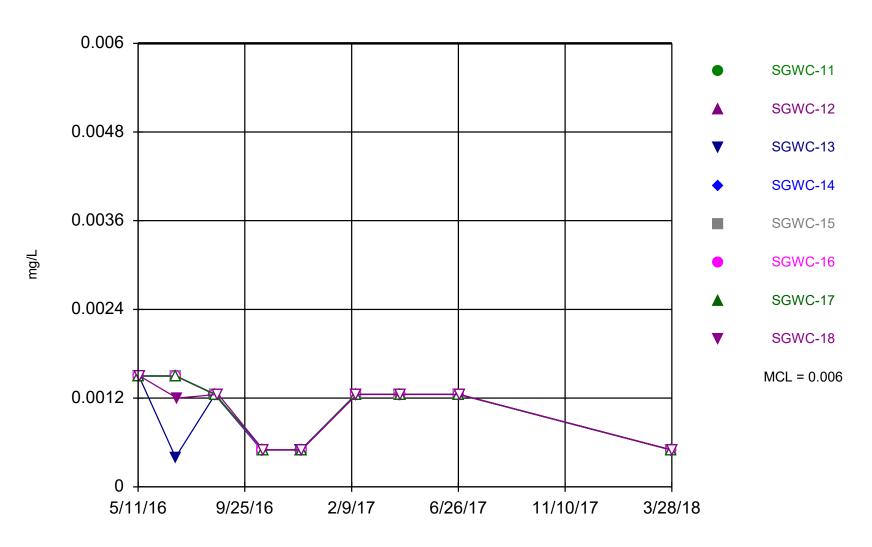
Compliance Limit is not exceeded.

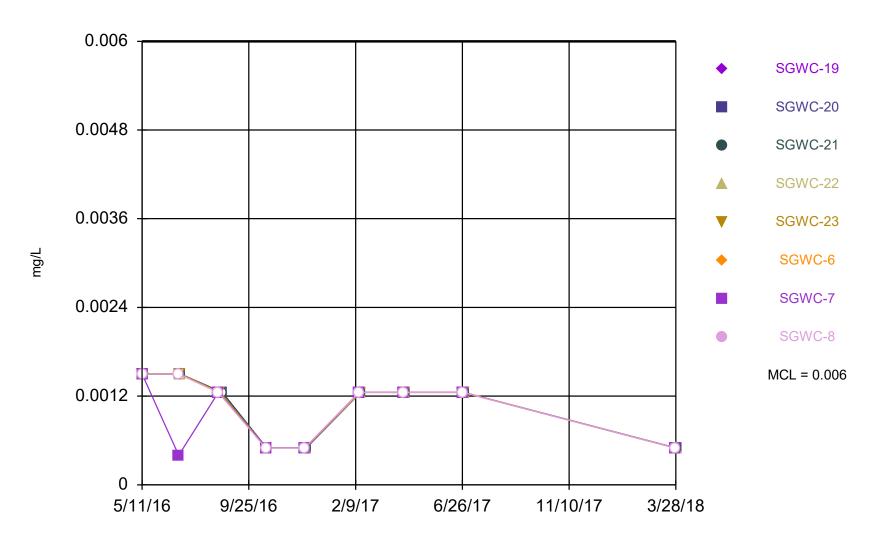

Compliance Limit is not exceeded.

Constituent: Thallium Analysis Run 1/18/2019 10:17 AM View: Interwell Confidence Interval

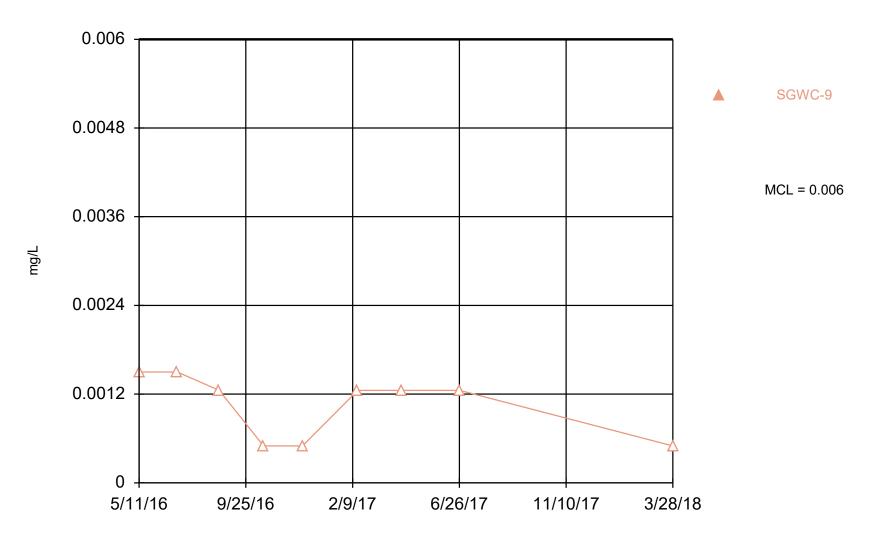

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

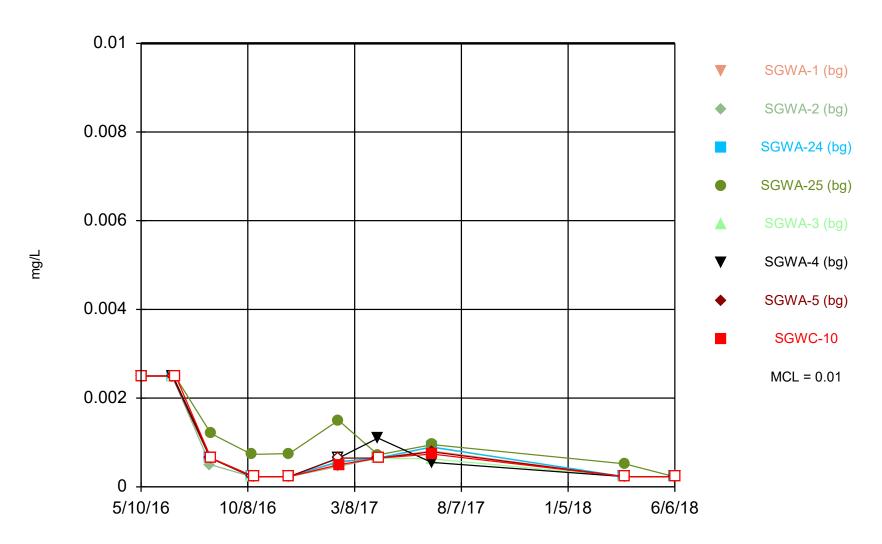


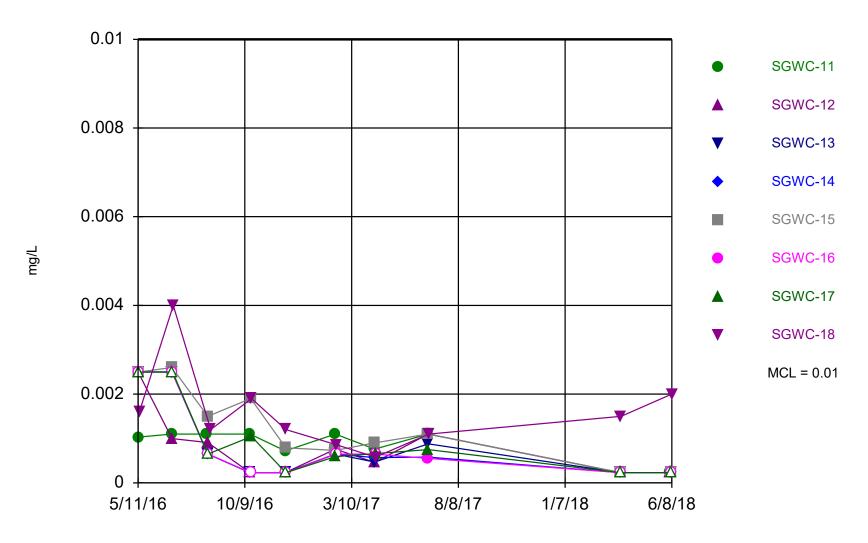

Constituent: Thallium Analysis Run 1/18/2019 10:17 AM View: Interwell Confidence Interval

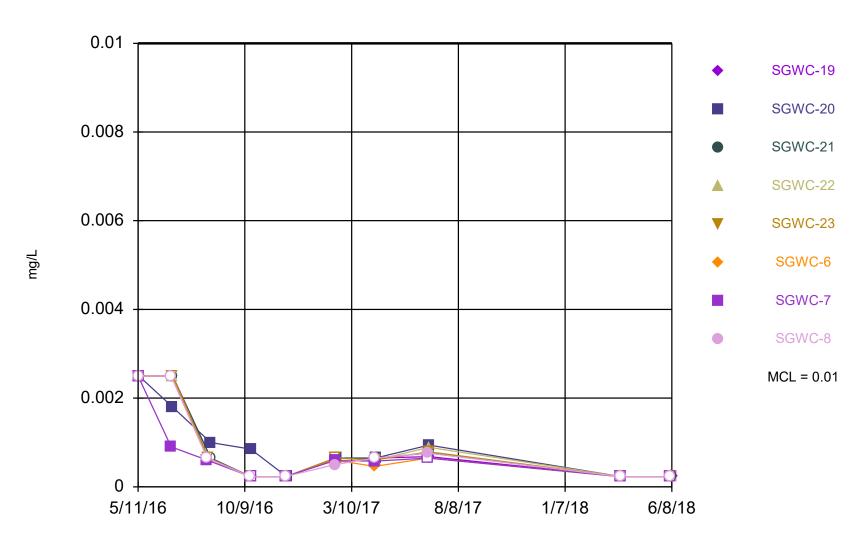
TIME SERIES PLOTS JUNE 2018

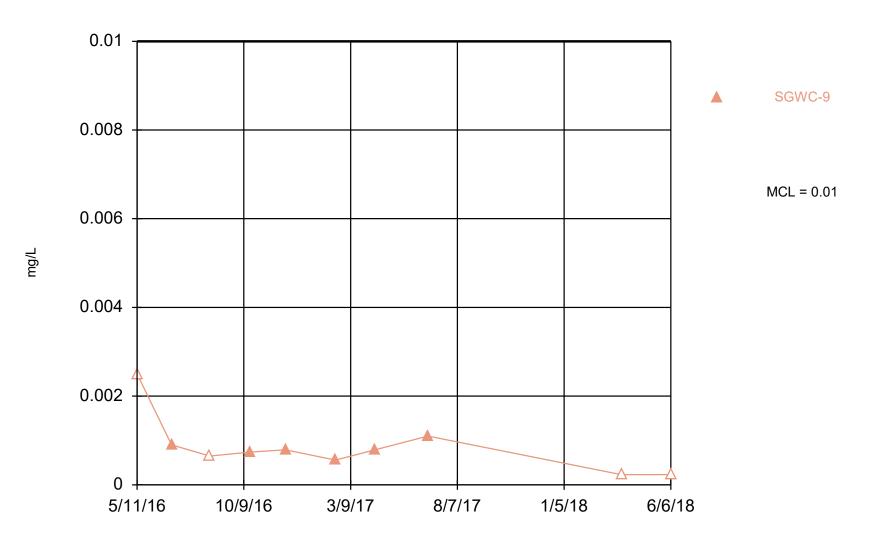


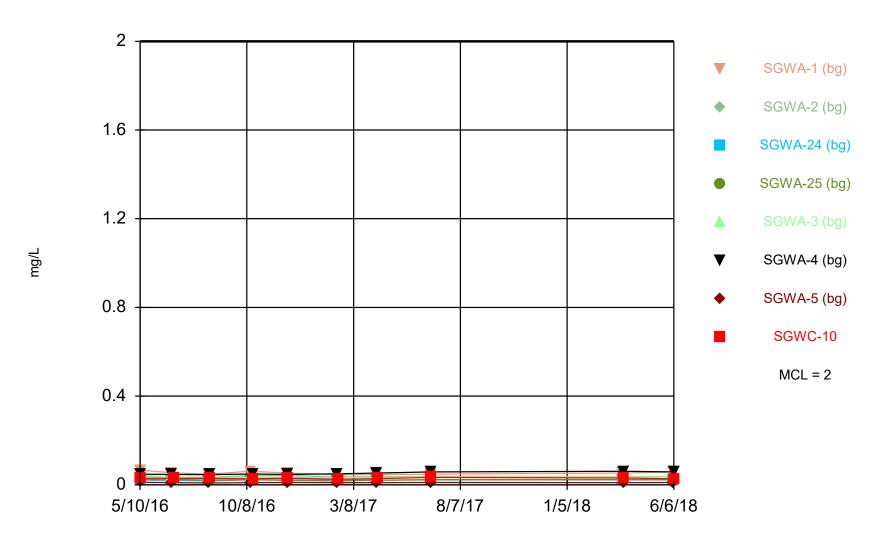
Constituent: Antimony Analysis Run 10/11/2018 12:24 PM View: Interwell Confidence Interval

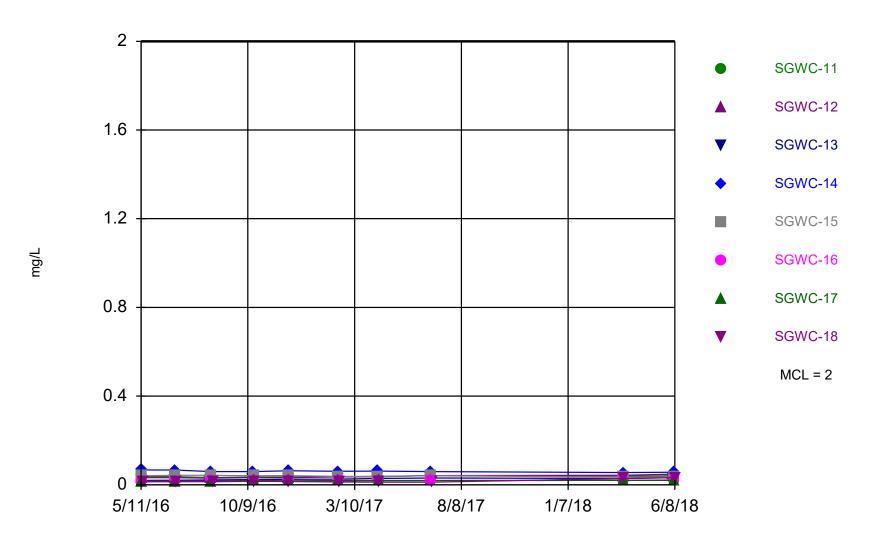


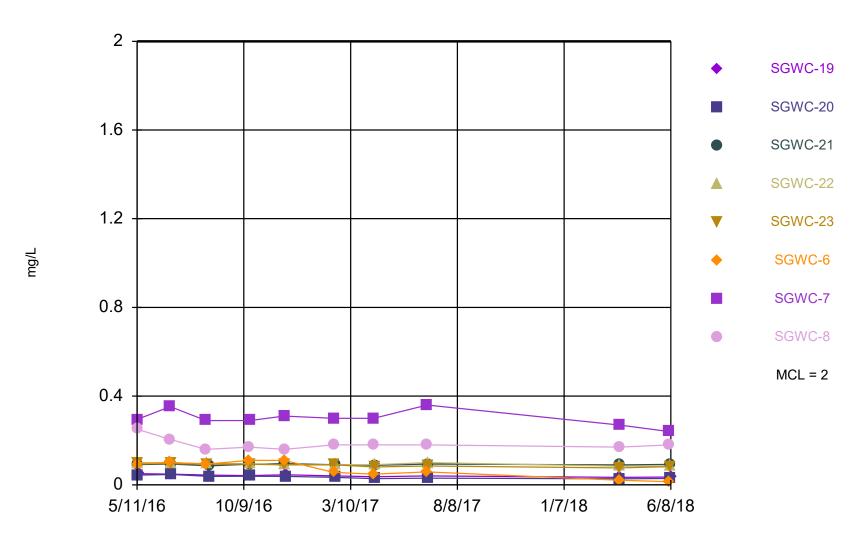


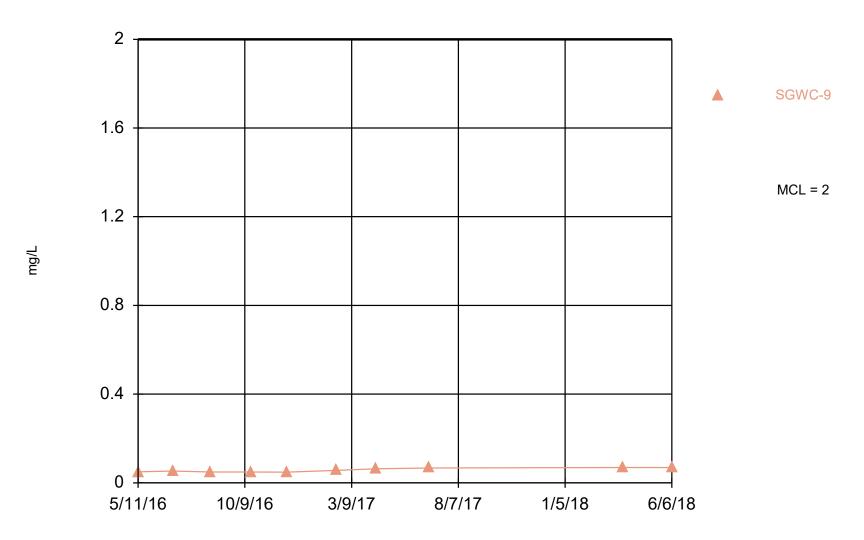

Constituent: Antimony Analysis Run 10/11/2018 12:24 PM View: Interwell Confidence Interval

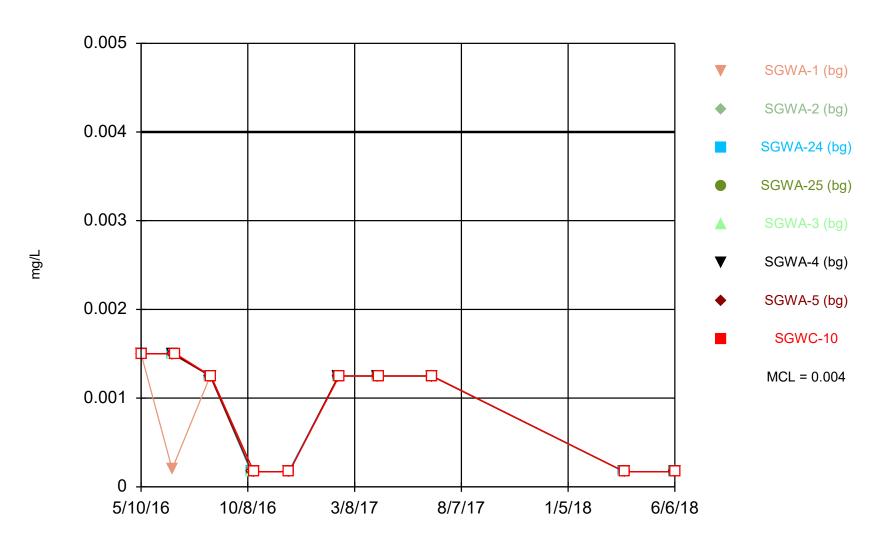


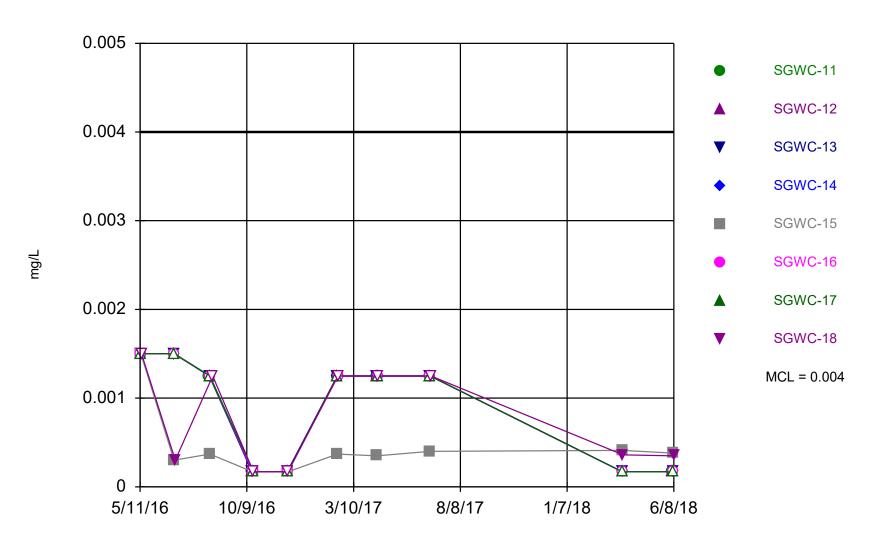

Constituent: Antimony Analysis Run 10/11/2018 12:24 PM View: Interwell Confidence Interval

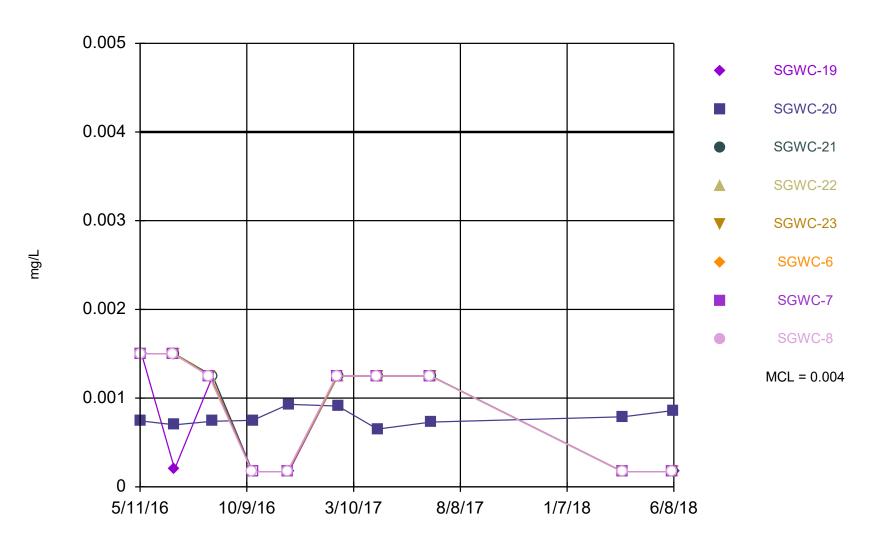


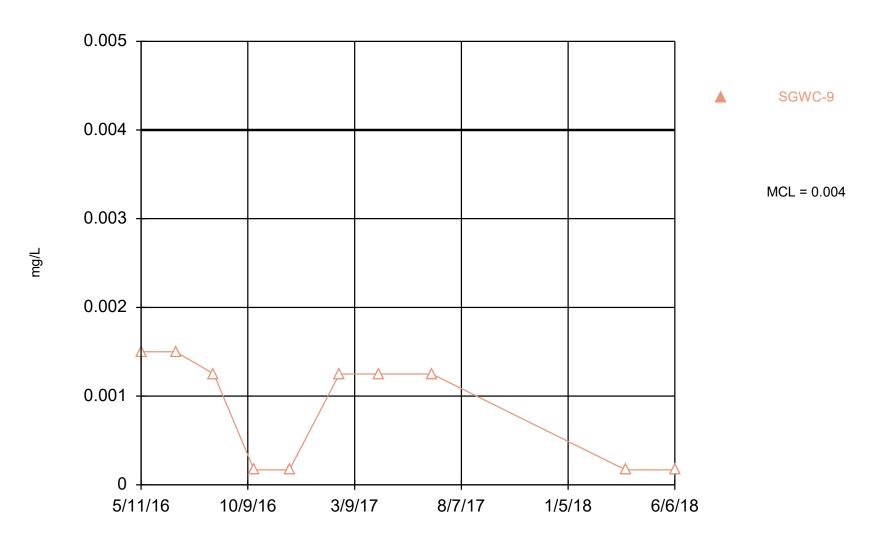




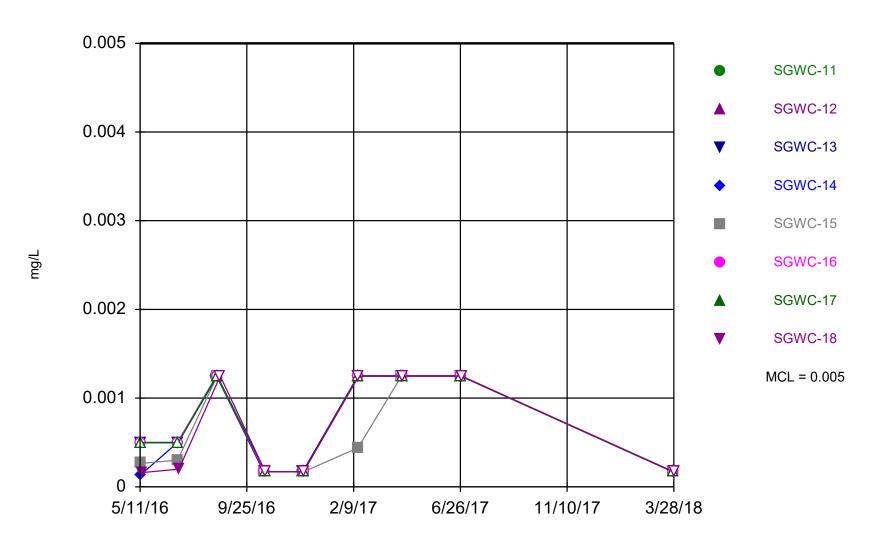

Constituent: Barium Analysis Run 10/11/2018 12:24 PM View: Interwell Confidence Interval

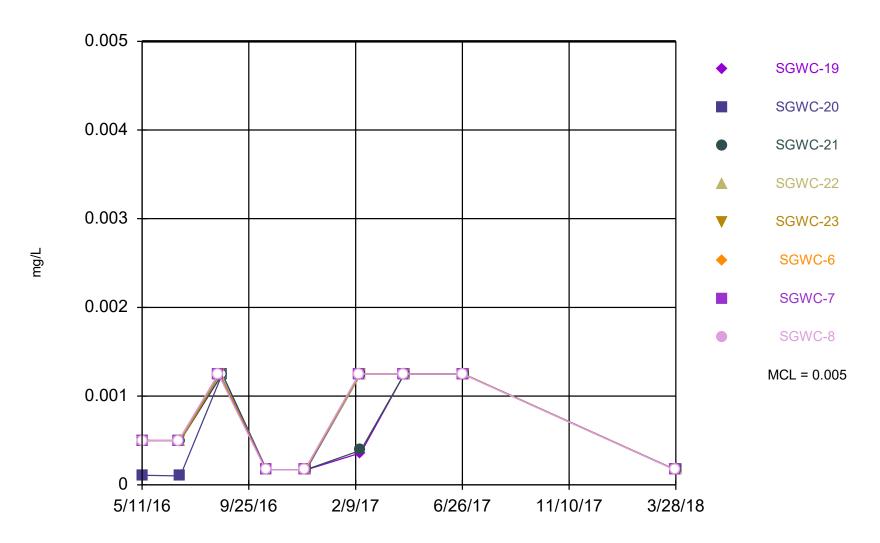




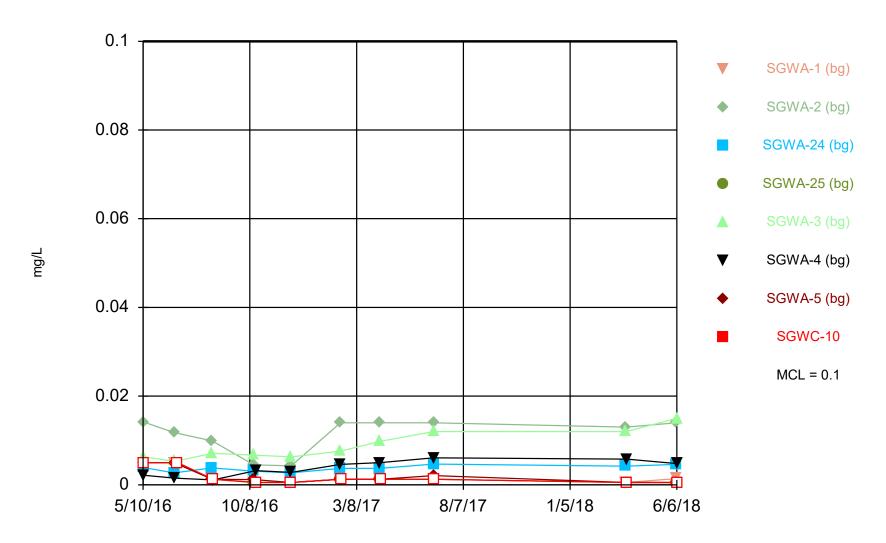


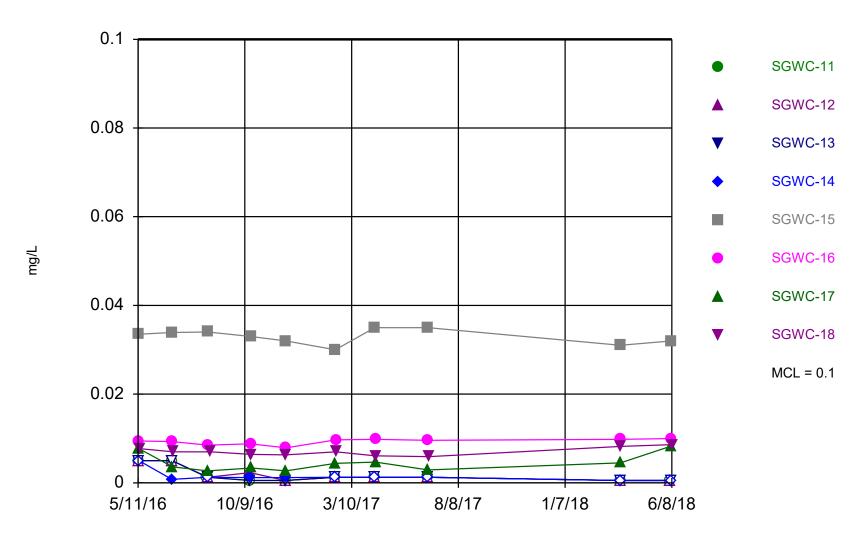
Constituent: Barium Analysis Run 10/11/2018 12:24 PM View: Interwell Confidence Interval

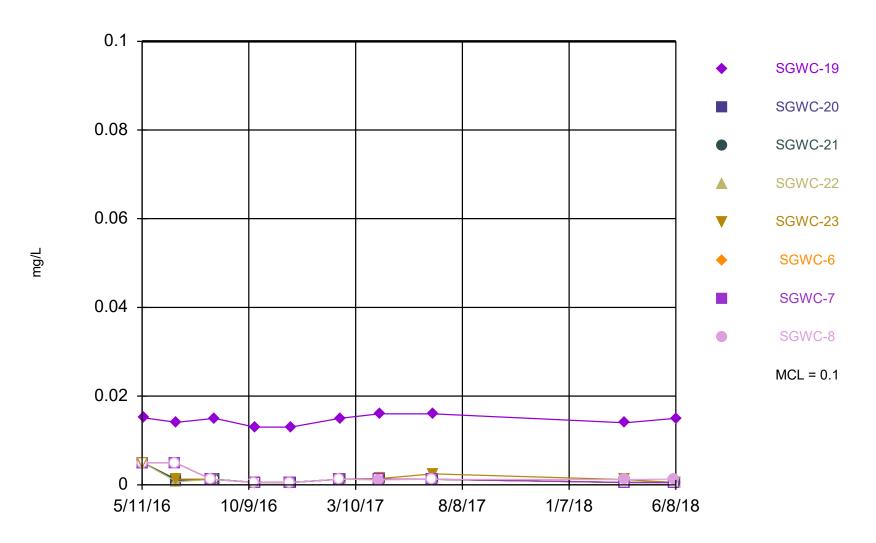


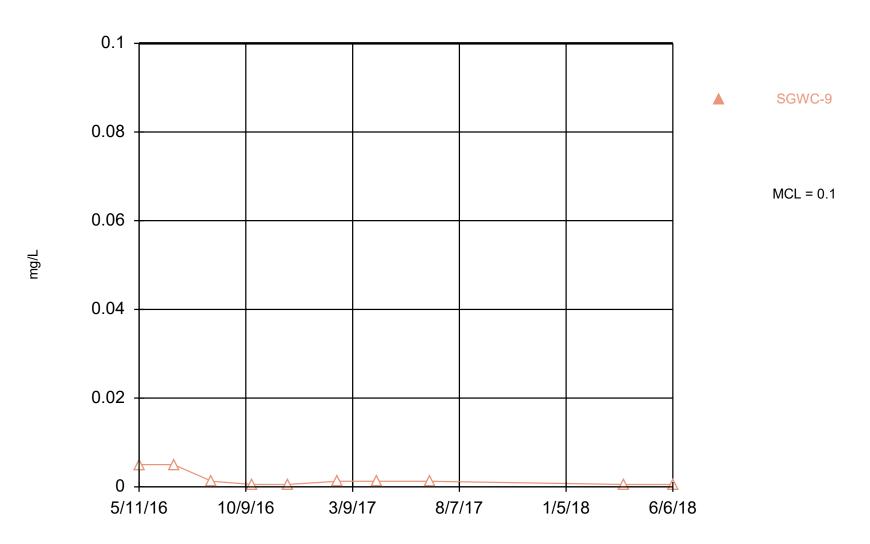


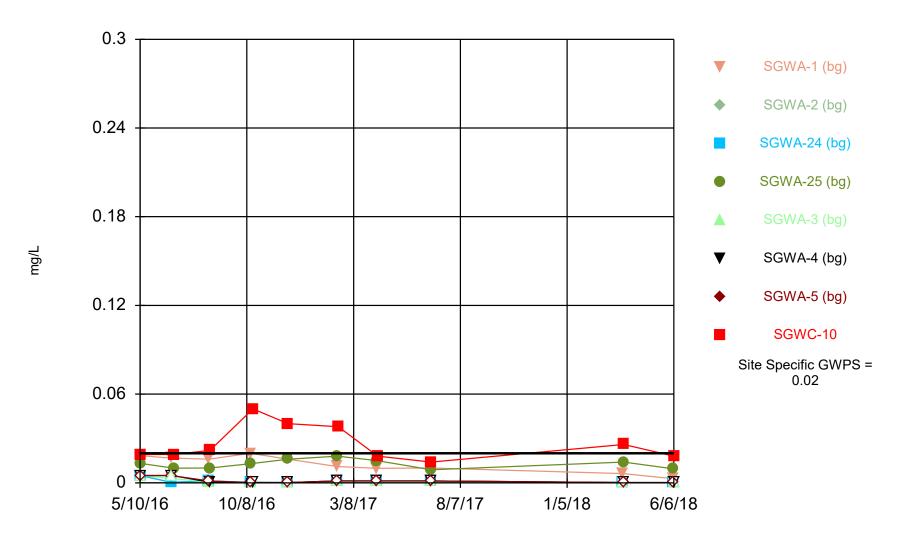


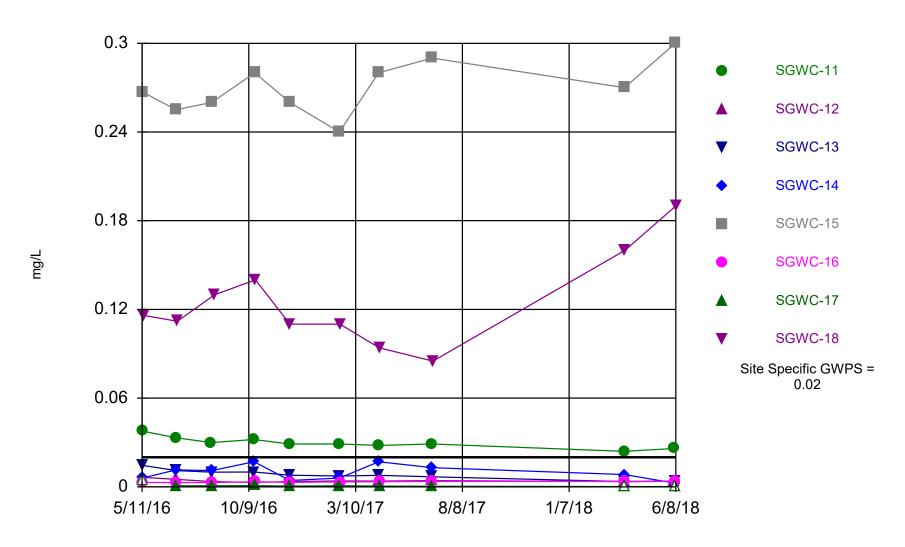

Constituent: Cadmium Analysis Run 10/11/2018 12:24 PM View: Interwell Confidence Interval

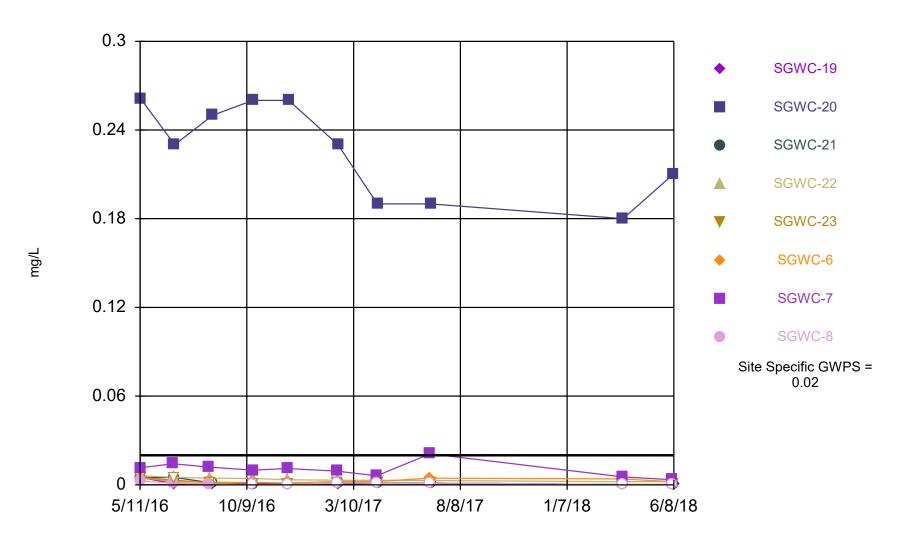


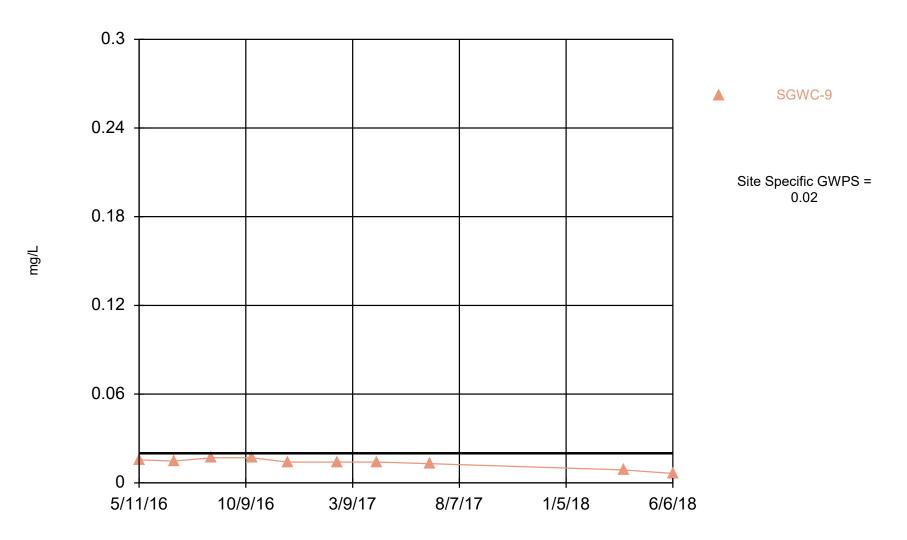




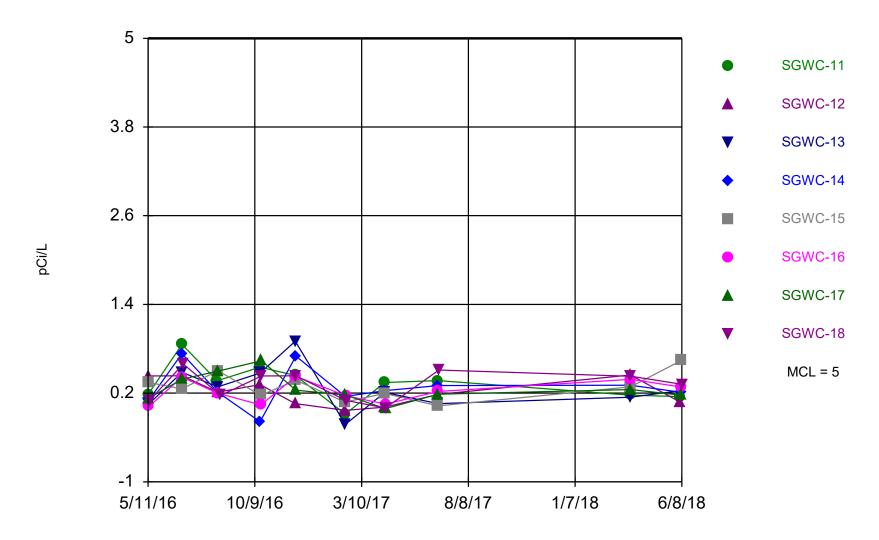

Constituent: Cadmium Analysis Run 10/11/2018 12:24 PM View: Interwell Confidence Interval





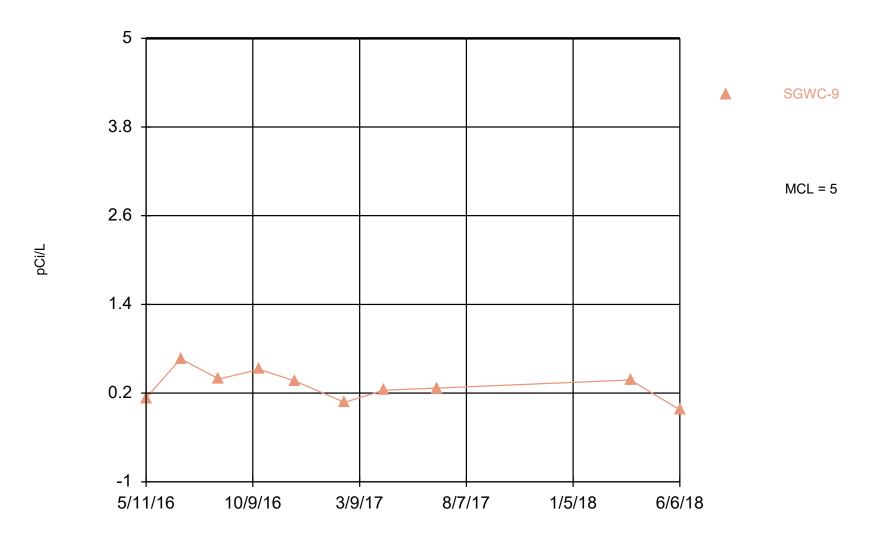


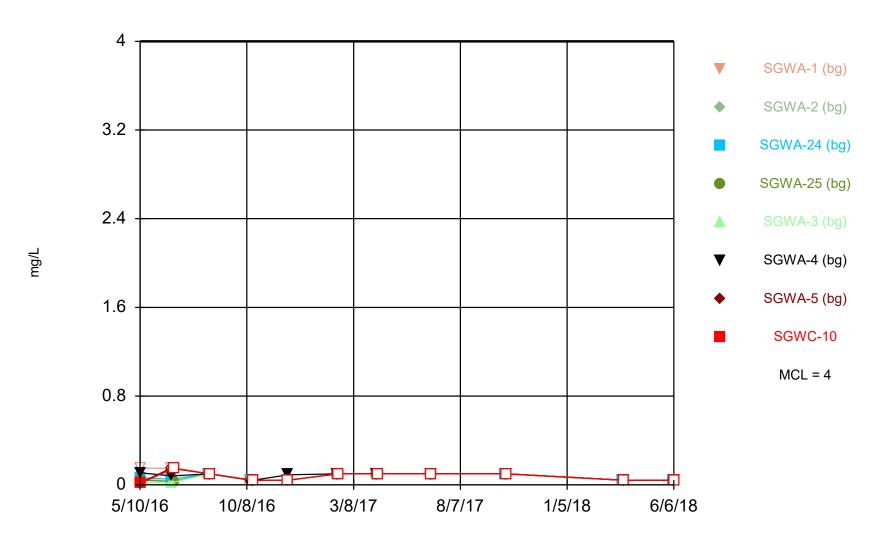


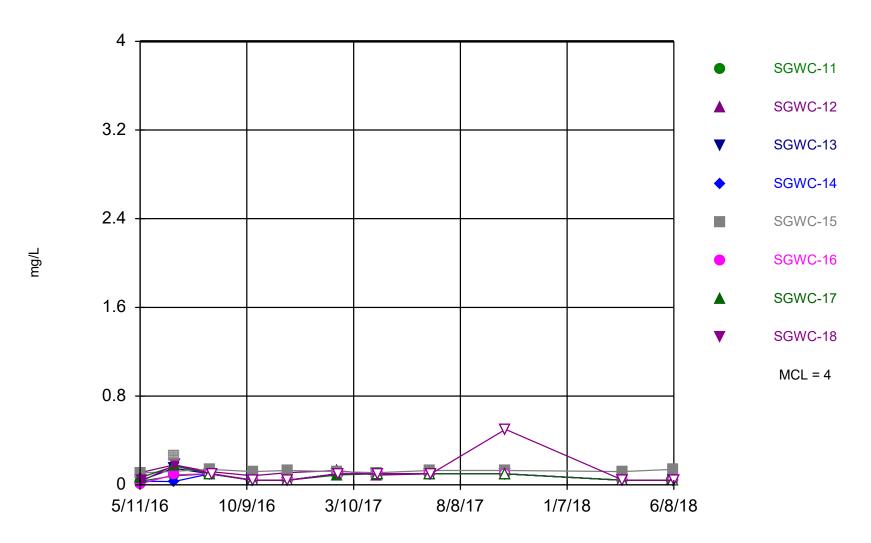


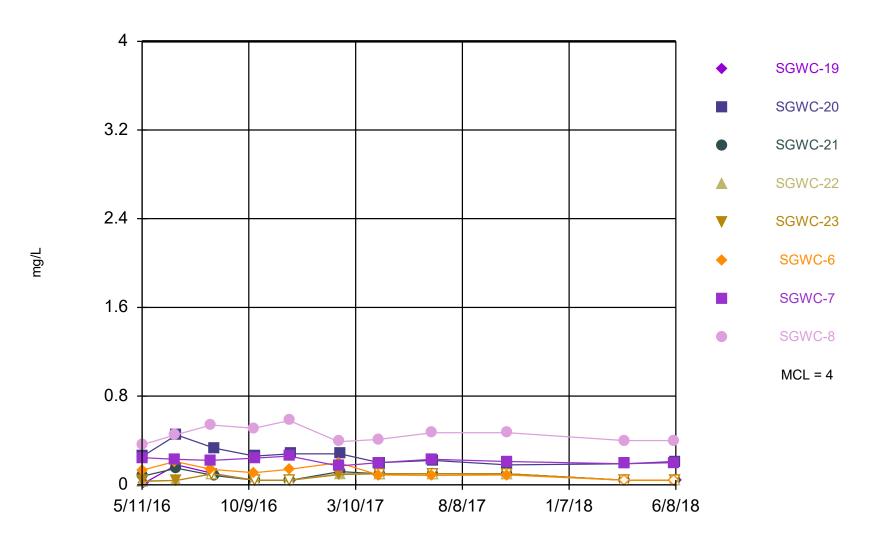
Constituent: Cobalt Analysis Run 10/11/2018 12:24 PM View: Interwell Confidence Interval

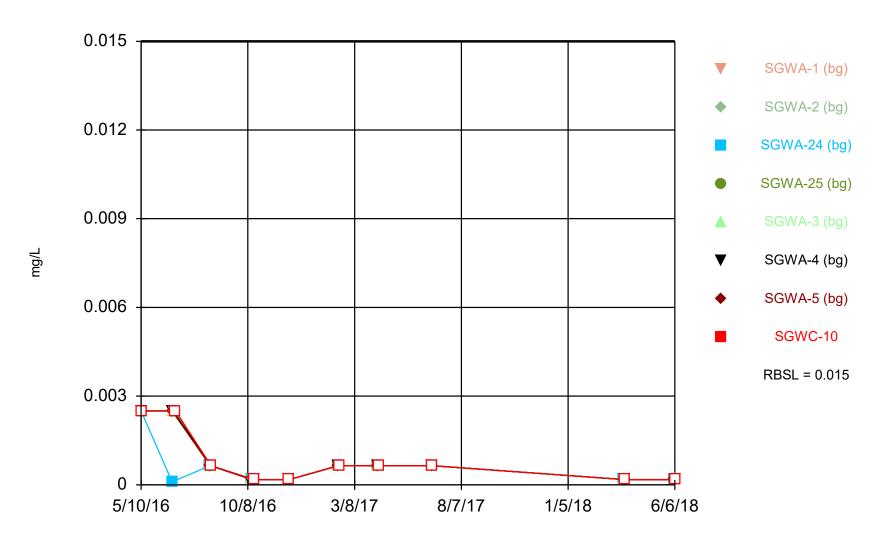
Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

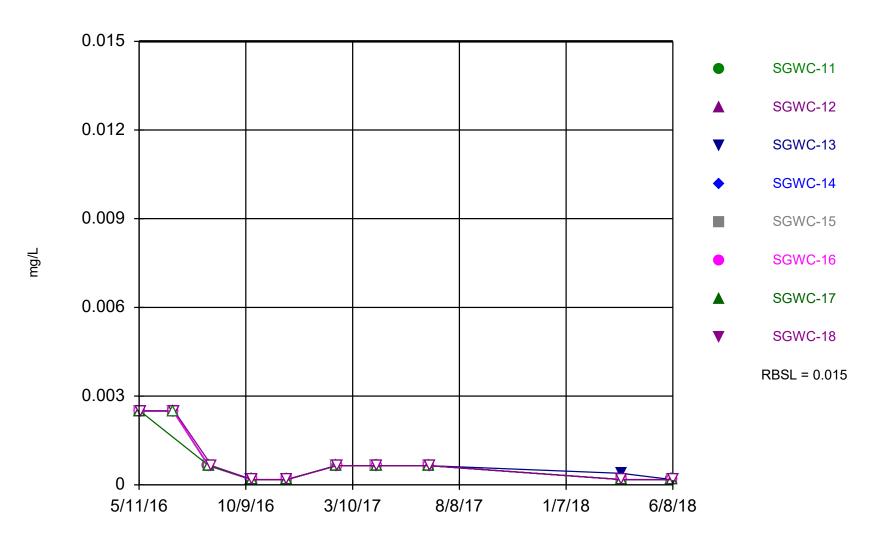

Constituent: Combined Radium 226 + 228 Analysis Run 10/11/2018 12:24 PM View: Interwell Confidence Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

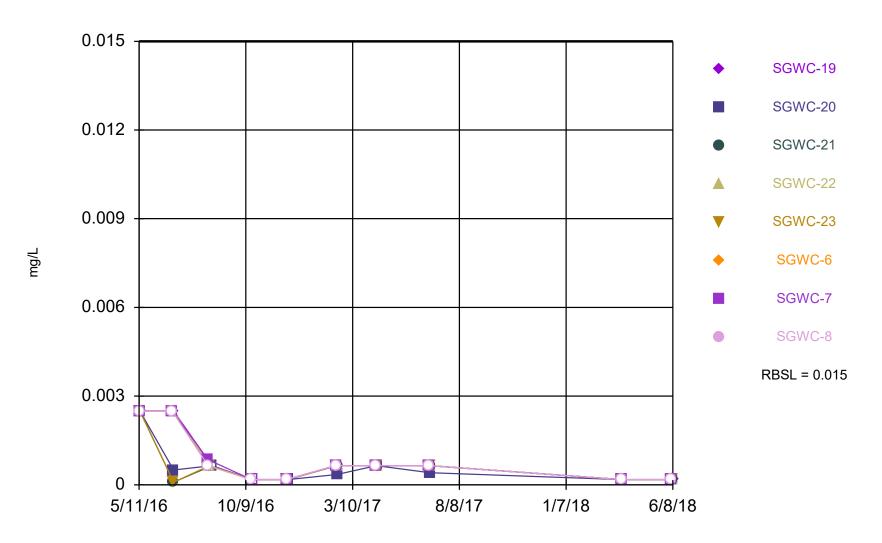

Constituent: Combined Radium 226 + 228 Analysis Run 10/11/2018 12:25 PM View: Interwell Confidence Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

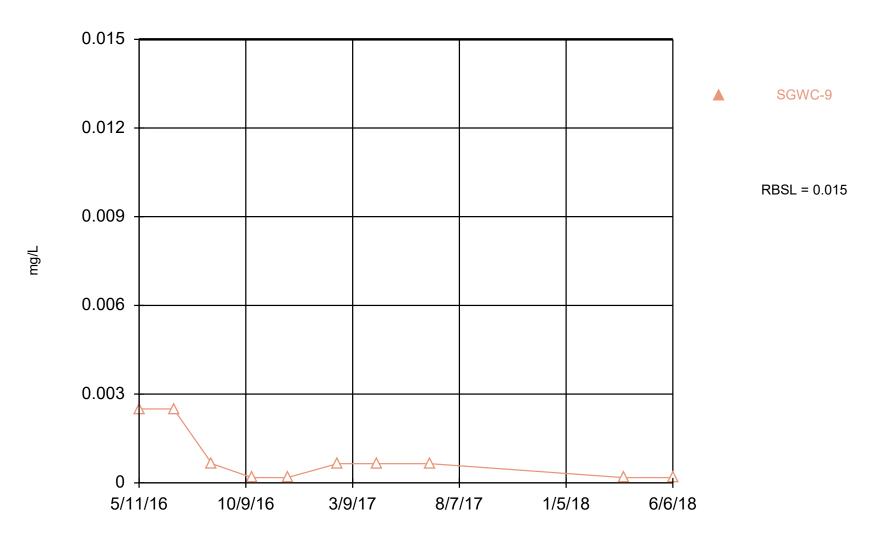


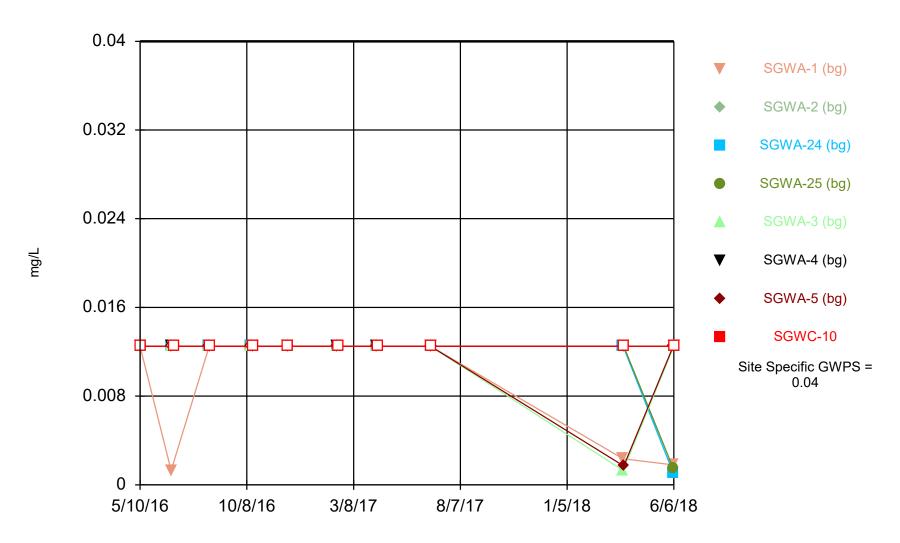

Constituent: Combined Radium 226 + 228 Analysis Run 10/11/2018 12:25 PM View: Interwell Confidence Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

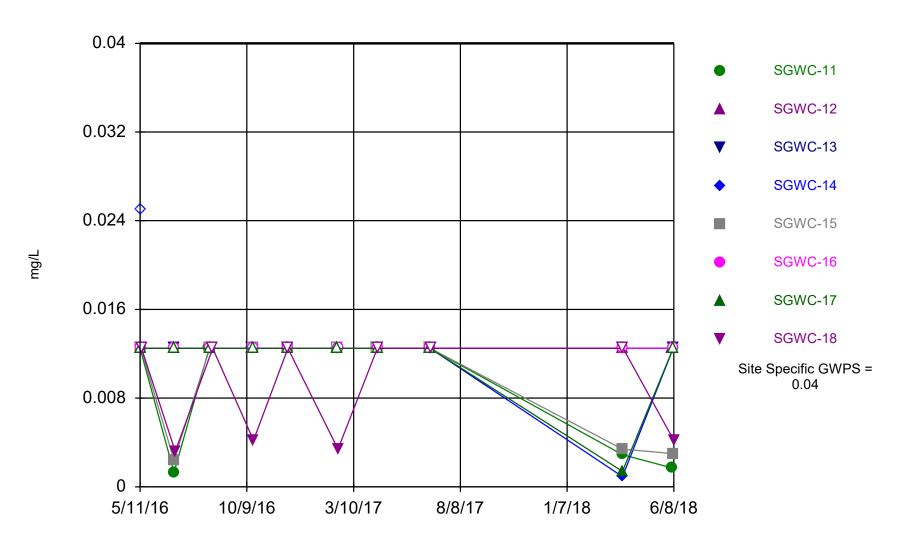

Constituent: Combined Radium 226 + 228 Analysis Run 10/11/2018 12:25 PM View: Interwell Confidence Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

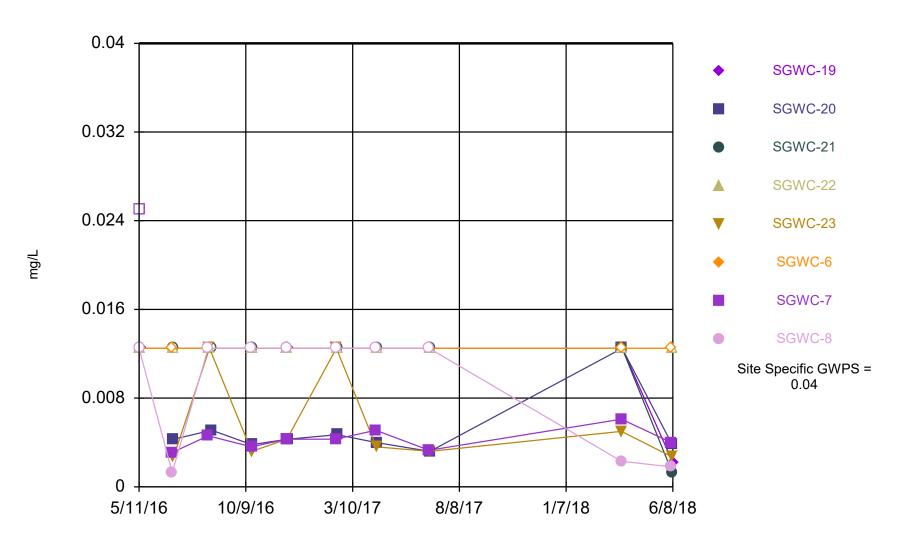


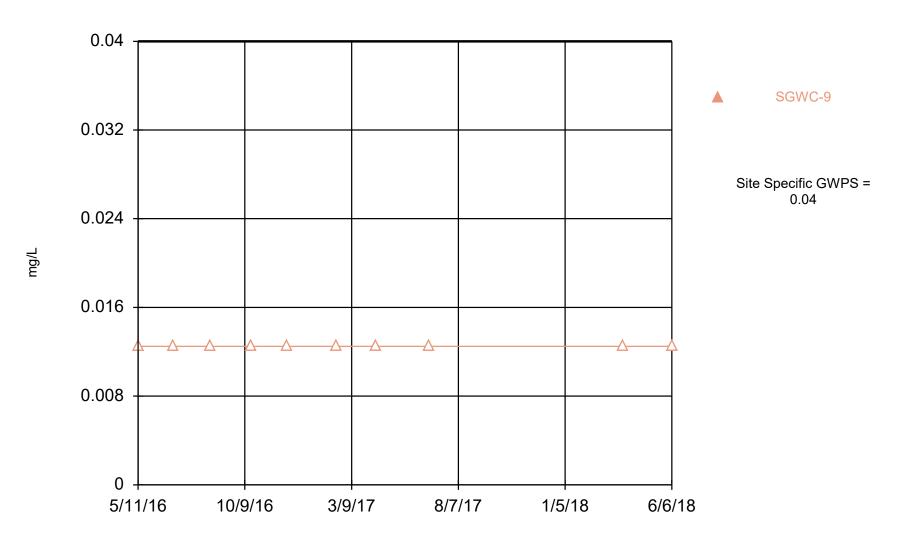






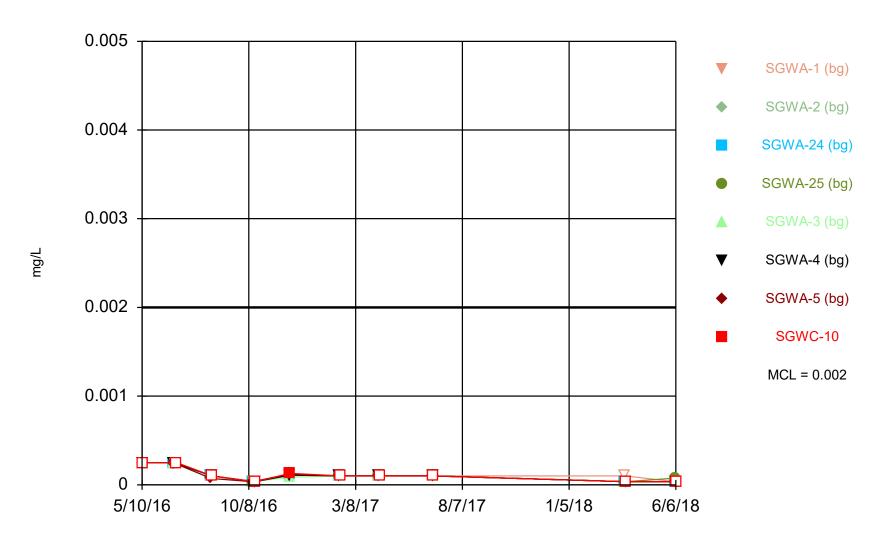


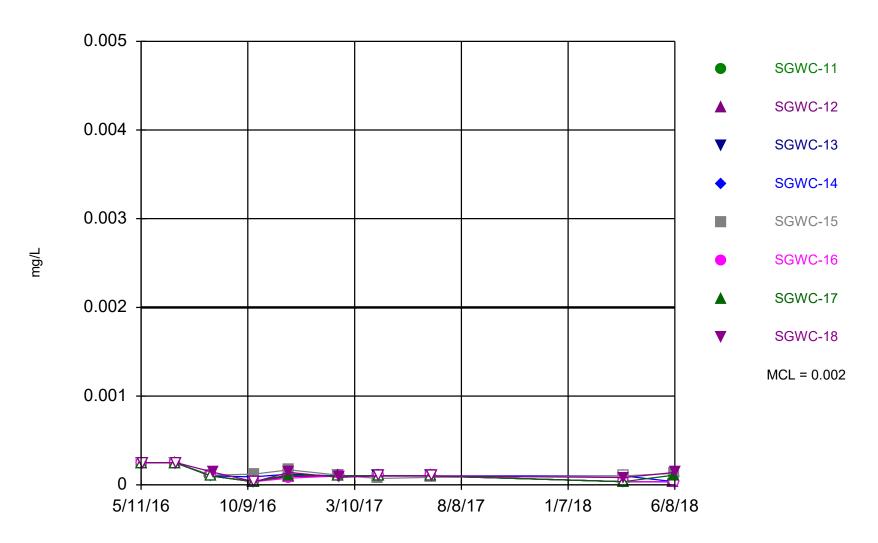


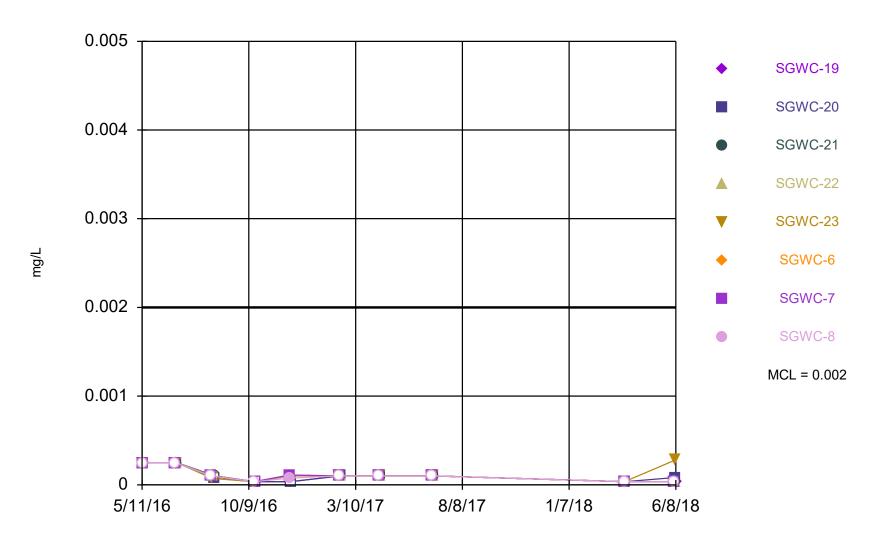


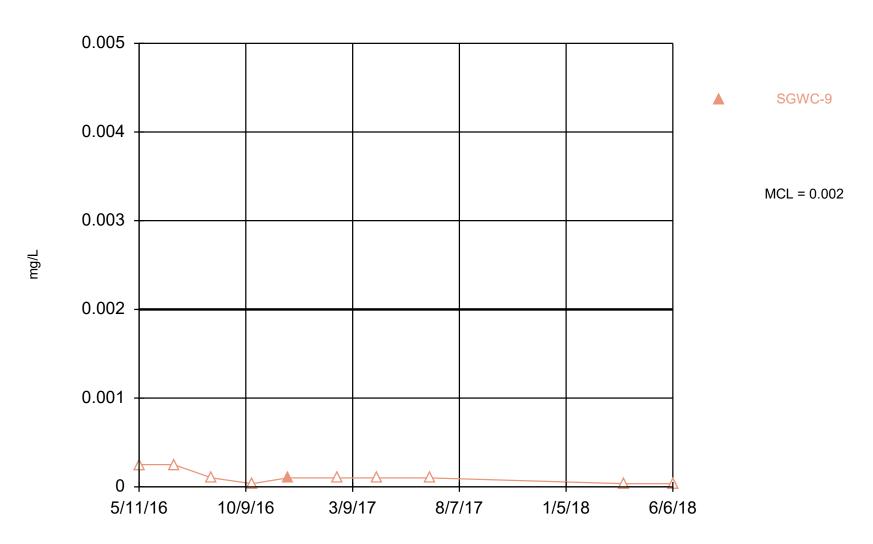
Constituent: Lithium Analysis Run 10/11/2018 12:25 PM View: Interwell Confidence Interval

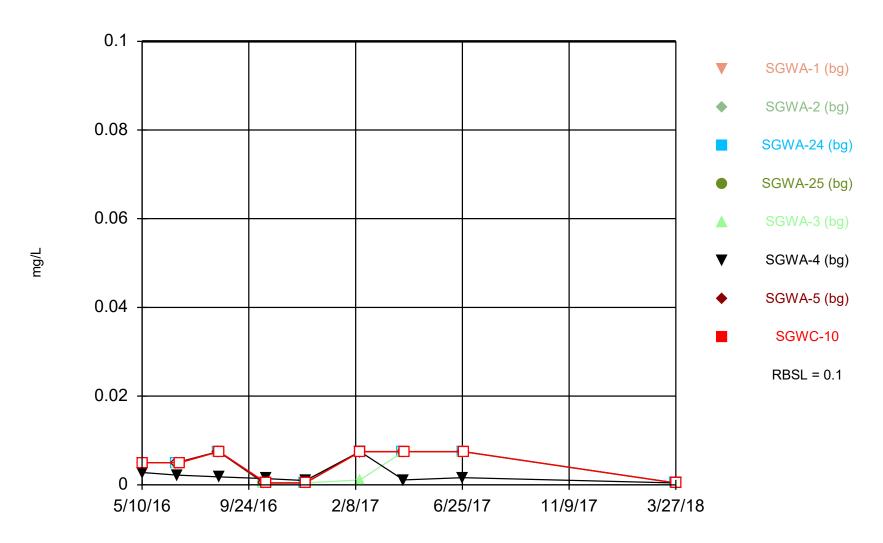
Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

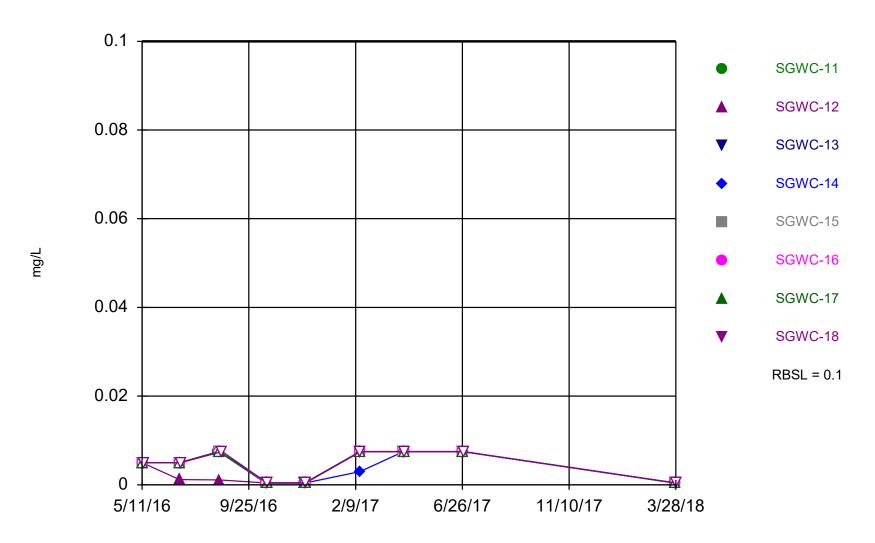


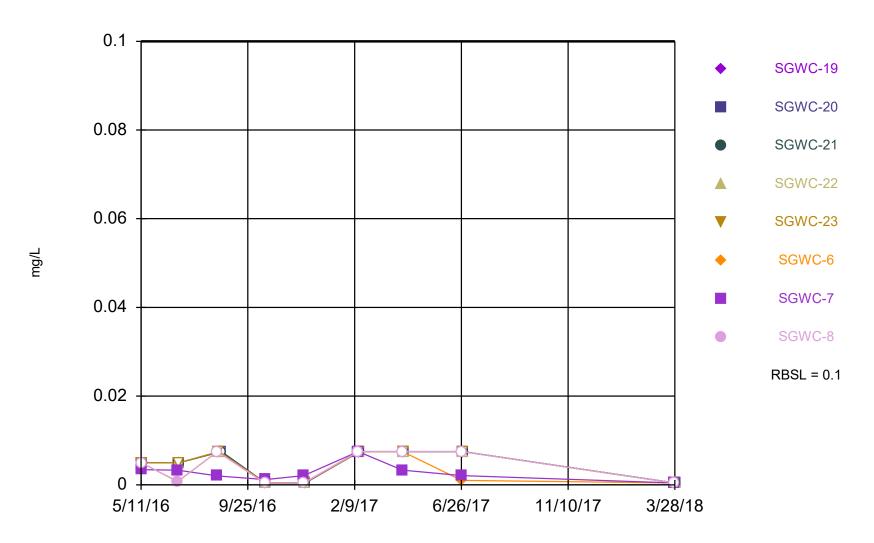


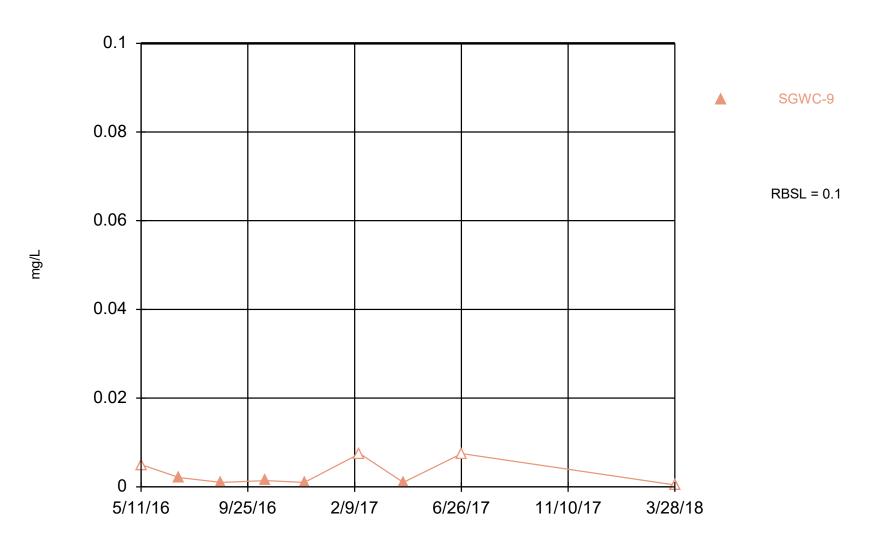


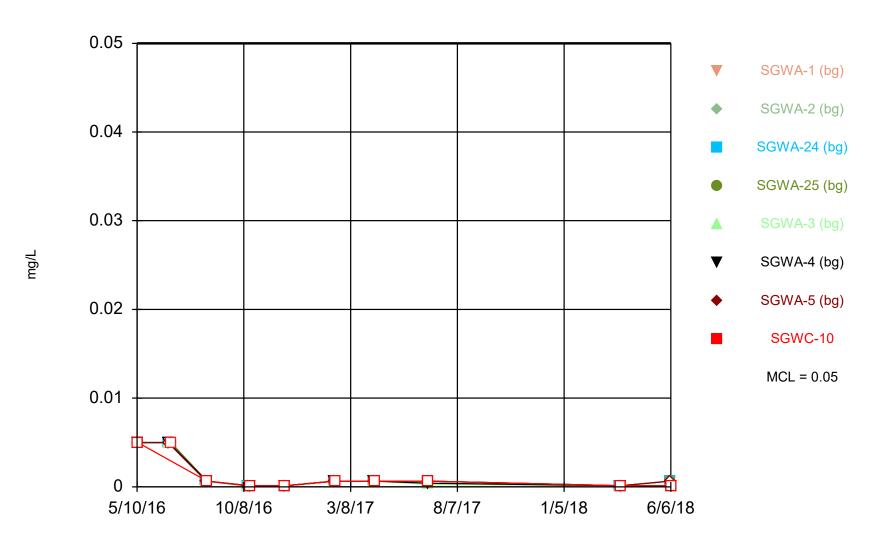

Constituent: Lithium Analysis Run 10/11/2018 12:25 PM View: Interwell Confidence Interval

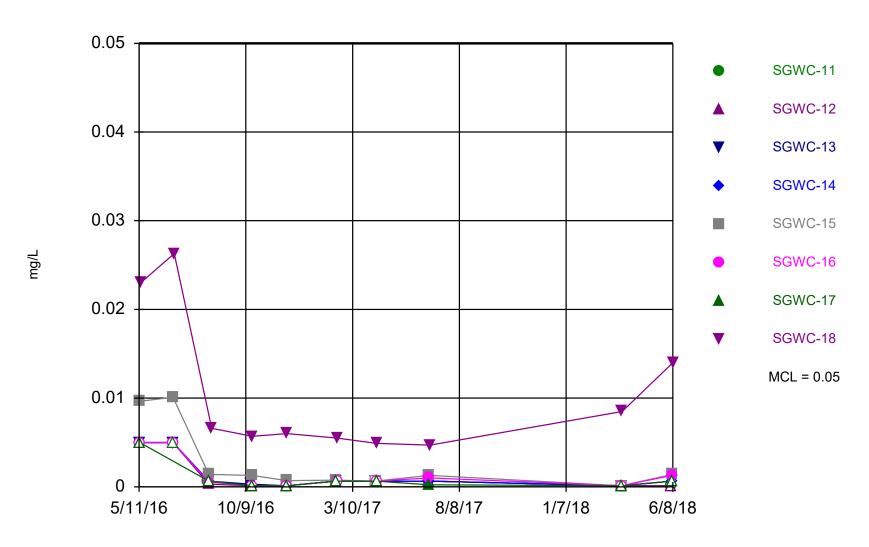

Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

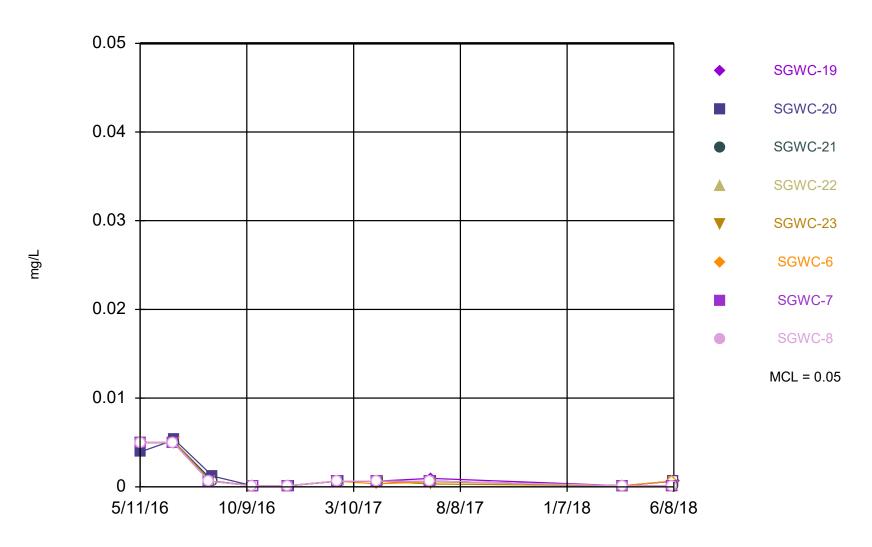


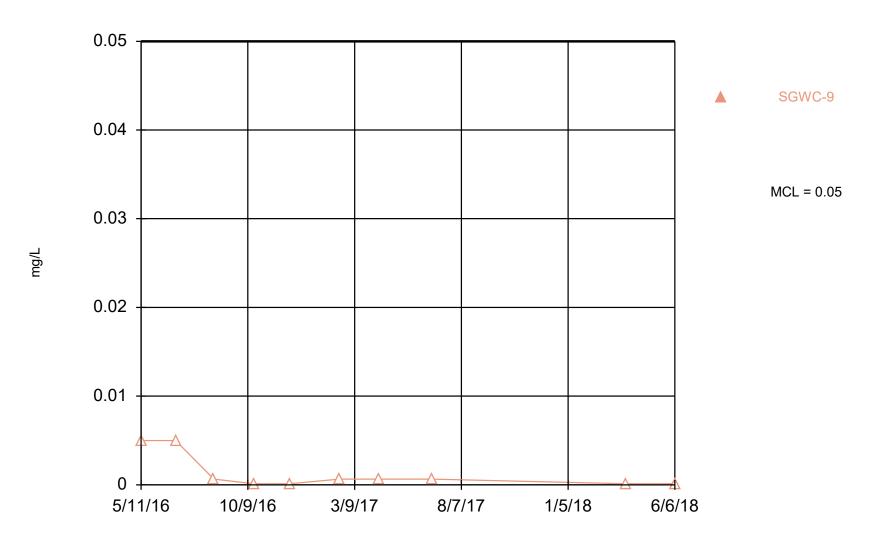


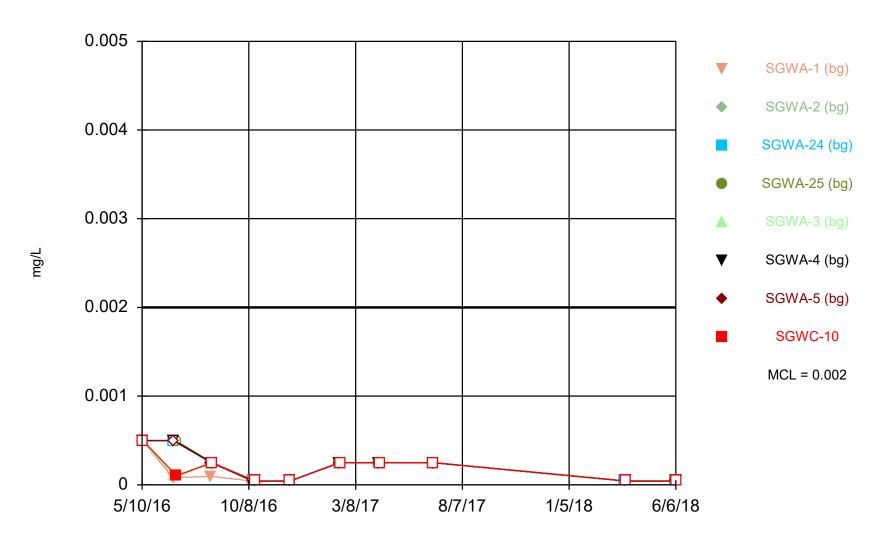


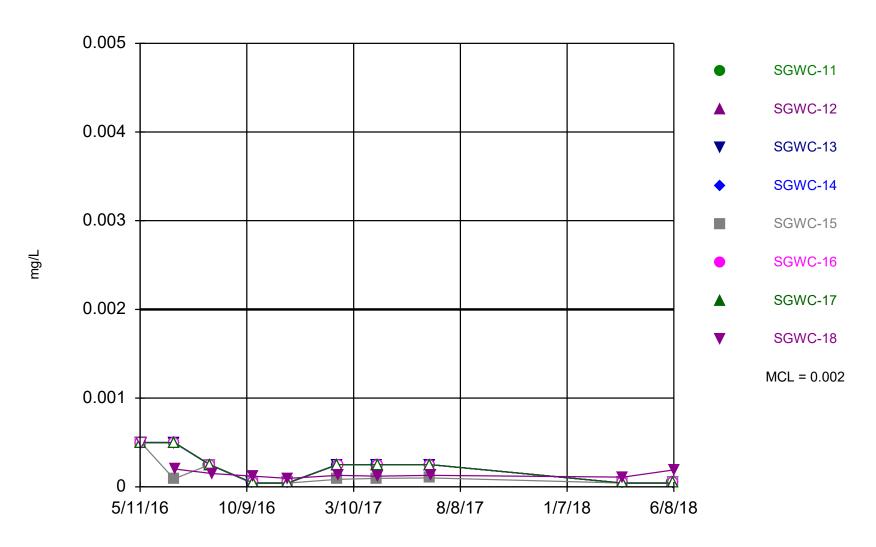


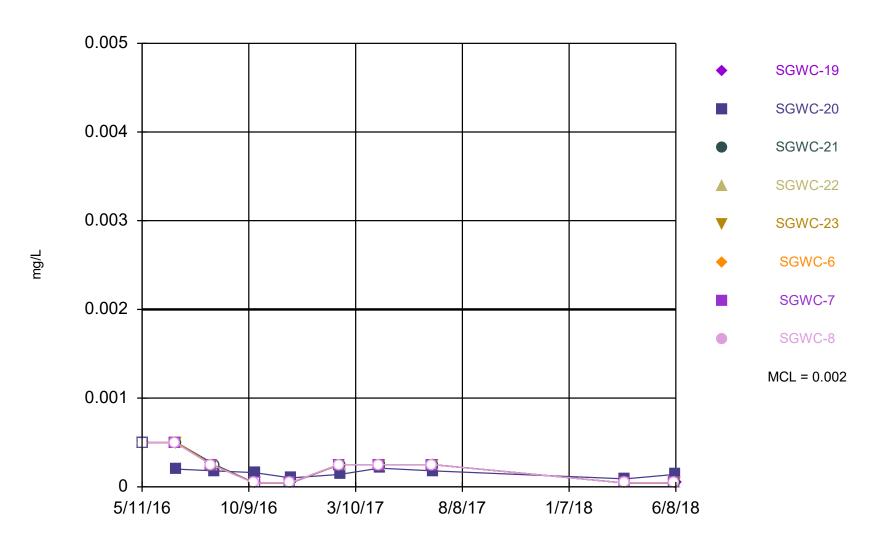


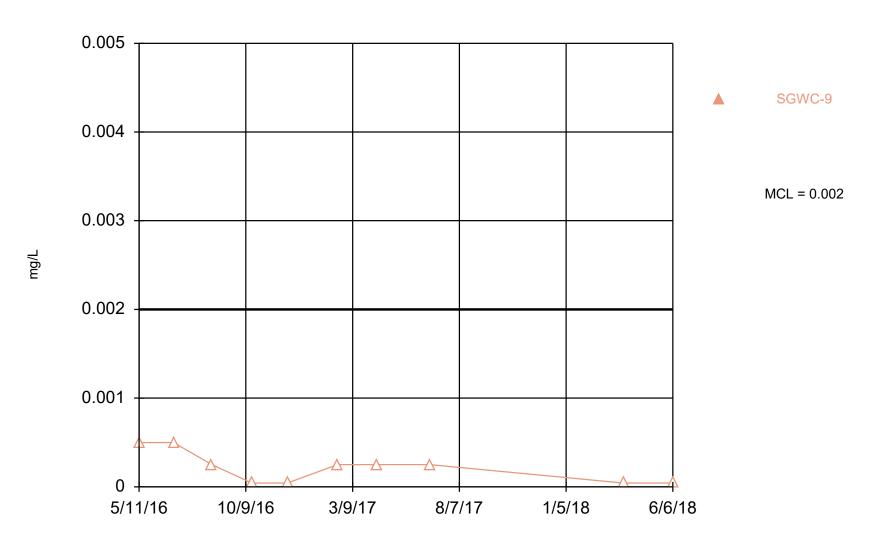












Time Series

Constituent: Thallium Analysis Run 10/11/2018 12:25 PM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

Time Series

Constituent: Thallium Analysis Run 10/11/2018 12:25 PM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

APPENDIX III PREDICTION LIMIT ANALYSES OCTOBER 2018

Prediction Limit Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR Printed 1/11/2019, 1:03 PM

		Scrierer Cherr	t. Golder Associa	ales Dala.	Scherel Asir i	onu_c	OIX	riiilleu i/i	1/2019, 1.03 FW		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	<u>Sig.</u>	<u>Bg N</u>		<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)	SGWC-10	0.0109	n/a	12/17/2018	0.098	Yes		96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-11	0.0109	n/a	10/16/2018	0.35	Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-13	0.0109	n/a	12/14/2018	0.47	Yes		96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-14	0.0109	n/a	12/14/2018	1.4		77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-15	0.0109	n/a	10/16/2018	1.5		77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-16	0.0109	n/a	12/17/2018	0.55		77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-17	0.0109	n/a	12/14/2018	0.44		77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-18	0.0109	n/a	10/18/2018	4.9	Yes		96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-19	0.0109	n/a	12/17/2018	1.8	Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-20	0.0109	n/a	10/18/2018	2.3		77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-21	0.0109	n/a	12/17/2018	1.2		77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-22	0.0109	n/a	12/17/2018	0.4	Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-23	0.0109	n/a	12/17/2018	0.6		77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-8	0.0109	n/a	12/14/2018	0.064	Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-9	0.0109	n/a	12/17/2018		Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Calcium (mg/L)	SGWC-12	19	n/a	12/14/2018	21	Yes	74	0	n/a		NP Inter (normality)
Calcium (mg/L)	SGWC-14	19	n/a	12/14/2018	37	Yes	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-17	19	n/a	12/14/2018	46	Yes	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-18	19	n/a	10/18/2018	100	Yes	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-19	19	n/a	12/17/2018	42	Yes	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-21	19	n/a	12/17/2018	29	Yes	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-22	19	n/a	12/17/2018	28	Yes	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-23	19	n/a	12/17/2018	24	Yes	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-8	19	n/a	12/14/2018	46	Yes	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-9	19	n/a	12/17/2018	55	Yes	74	0	n/a	0.000345	NP Inter (normality)
Chloride (mg/L)	SGWC-10	3.203	n/a	12/17/2018	8.6	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-11	3.203	n/a	10/16/2018	7.8	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-12	3.203	n/a	12/14/2018	9.1	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-13	3.203	n/a	12/14/2018	7.5	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-14	3.203	n/a	12/14/2018	10	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-15	3.203	n/a	10/16/2018	10	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-16	3.203	n/a	12/17/2018	8.1	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-17	3.203	n/a	12/14/2018	8.1	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-18	3.203	n/a	10/18/2018	16	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-19	3.203	n/a	12/17/2018	7.3	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-20	3.203	n/a	10/18/2018	11	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-21	3.203	n/a	12/17/2018	9.3	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-22	3.203	n/a	12/17/2018	10	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-23	3.203	n/a	12/17/2018	9.9	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-7	3.203	n/a	12/14/2018	4.2	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-8	3.203	n/a	12/14/2018	11	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-9	3.203	n/a	12/17/2018	13	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Fluoride (mg/L)	SGWC-20	0.205	n/a	10/18/2018	0.23	Yes	84	84.52	n/a	0.00027	NP Inter (NDs) 1 of 2
Fluoride (mg/L)	SGWC-8	0.205	n/a	10/9/2018	0.47	Yes	84	84.52	n/a	0.00027	NP Inter (NDs) 1 of 2
pH (S.U.)	SGWC-15	6.87	5.21	10/16/2018	4.59	Yes	75	0	n/a	0.000673	NP Inter (normality)
pH (S.U.)	SGWC-18	6.87	5.21	10/18/2018	4.7	Yes	75	0	n/a	0.000673	NP Inter (normality)
pH (S.U.)	SGWC-20	6.87	5.21	10/18/2018	4.3	Yes	75	0	n/a	0.000673	NP Inter (normality)
Sulfate (mg/L)	SGWC-10	3.75	n/a	12/17/2018	16	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-12	3.75	n/a	12/14/2018	43	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-13	3.75	n/a	12/14/2018	74	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2

Prediction Limit

		Scherer Clier	nt: Golder Assoc	iates Data: \$	Scherer Ash	Pond_0	CCR	Printed 1/	11/2019, 1:03 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	Bq N	%NDs	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Sulfate (mg/L)	SGWC-14	3.75	n/a	12/14/2018	190	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-15	3.75	n/a	10/16/2018	200	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-16	3.75	n/a	12/17/2018	28	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-17	3.75	n/a	12/14/2018	180	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-18	3.75	n/a	10/18/2018	1200	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-19	3.75	n/a	12/17/2018	270	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-20	3.75	n/a	10/18/2018	210	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-21	3.75	n/a	12/17/2018	88	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-22	3.75	n/a	12/17/2018	99	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-23	3.75	n/a	12/17/2018	96	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-7	3.75	n/a	12/14/2018	10	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-8	3.75	n/a	12/14/2018	72	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-9	3.75	n/a	12/17/2018	330	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Total Dissolved Solids (mg/L)	SGWC-12	143.7	n/a	12/14/2018	190	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-14	143.7	n/a	12/14/2018	280	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-15	143.7	n/a	10/16/2018	350	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-17	143.7	n/a	12/14/2018	390	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-18	143.7	n/a	10/18/2018	1200	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-19	143.7	n/a	12/17/2018	250	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-20	143.7	n/a	10/18/2018	370	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-21	143.7	n/a	12/17/2018	310	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-22	143.7	n/a	12/17/2018	260	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-7	143.7	n/a	12/14/2018	170	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-8	143.7	n/a	12/14/2018	390	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-9	143.7	n/a	12/17/2018	510	Yes	77	2.597	No	0.000418	Param Inter 1 of 2

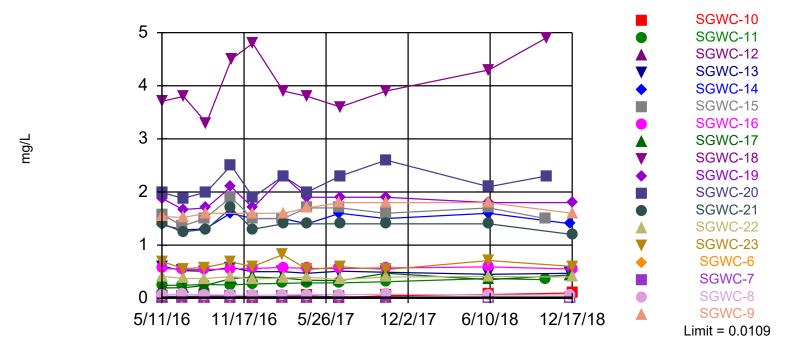
Prediction Limit Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR Printed 1/11/2019, 1:03 PM

		Scrierer Cile	iii. Goidei Assoc	Jales Dala.	Scherer Asir i	- onu_c	OIX	riiileu i/	1 1/2019, 1.03 FW		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Date</u>	Observ.	Sig.	<u>Bg N</u>		<u>Transform</u>	<u>Alpha</u>	Method
Boron (mg/L)	SGWC-10	0.0109	n/a	12/17/2018	0.098	Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-11	0.0109	n/a	10/16/2018	0.35	Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-12	0.0109	n/a	12/14/2018	0.0105ND	No	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-13	0.0109	n/a	12/14/2018	0.47	Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-14	0.0109	n/a	12/14/2018	1.4	Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-15	0.0109	n/a	10/16/2018	1.5	Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-16	0.0109	n/a	12/17/2018	0.55	Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-17	0.0109	n/a	12/14/2018	0.44	Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-18	0.0109	n/a	10/18/2018	4.9	Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-19	0.0109	n/a	12/17/2018	1.8	Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-20	0.0109	n/a	10/18/2018	2.3	Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-21	0.0109	n/a	12/17/2018	1.2	Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-22	0.0109	n/a	12/17/2018	0.4	Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-23	0.0109	n/a	12/17/2018	0.6	Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-6	0.0109	n/a	12/14/2018	0.0105ND	No	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-7	0.0109	n/a	12/14/2018	0.0105ND	No	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-8	0.0109	n/a	12/14/2018	0.064	Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Boron (mg/L)	SGWC-9	0.0109	n/a	12/17/2018	1.6	Yes	77	96.1	n/a	0.000	NP Inter (NDs) 1 of 2
Calcium (mg/L)	SGWC-10	19	n/a	12/17/2018	4	No	74	0	n/a		NP Inter (normality)
Calcium (mg/L)	SGWC-11	19	n/a	10/16/2018	1.8	No	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-12	19	n/a	12/14/2018	21	Yes	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-13	19	n/a	12/14/2018	16	No	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-14	19	n/a	12/14/2018	37	Yes	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-15	19	n/a	10/16/2018	16	No	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-16	19	n/a	12/17/2018	0.94	No	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-17	19	n/a	12/14/2018	46	Yes	74	0	n/a		NP Inter (normality)
Calcium (mg/L)	SGWC-18	19	n/a	10/18/2018	100	Yes	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-19	19	n/a	12/17/2018	42	Yes	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-20	19	n/a	10/18/2018	12	No	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-21	19	n/a	12/17/2018	29	Yes	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-22	19	n/a	12/17/2018	28	Yes	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-23	19	n/a	12/17/2018	24	Yes	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-6	19	n/a	12/14/2018	6.5	No	74	0	n/a		NP Inter (normality)
Calcium (mg/L)	SGWC-7	19	n/a	12/14/2018	16	No	74	0	n/a	0.000345	NP Inter (normality)
Calcium (mg/L)	SGWC-8	19	n/a	12/14/2018	46	Yes	74	0	n/a		NP Inter (normality)
Calcium (mg/L)	SGWC-9	19	n/a	12/17/2018	55	Yes	74	0	n/a		NP Inter (normality)
Chloride (mg/L)	SGWC-10	3.203	n/a	12/17/2018	8.6	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-11	3.203	n/a	10/16/2018	7.8	Yes	75	0	ln(x)		Param Inter 1 of 2
Chloride (mg/L)	SGWC-12	3.203	n/a	12/14/2018	9.1	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-13	3.203	n/a	12/14/2018	7.5	Yes	75	0	ln(x)		Param Inter 1 of 2
Chloride (mg/L)	SGWC-14	3.203	n/a	12/14/2018	10	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-15	3.203	n/a	10/16/2018	10	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-16	3.203	n/a	12/17/2018	8.1	Yes	75	0	ln(x)		Param Inter 1 of 2
Chloride (mg/L)	SGWC-17	3.203	n/a	12/14/2018	8.1	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-18	3.203	n/a	10/18/2018	16	Yes	75	0	In(x)		Param Inter 1 of 2
Chloride (mg/L)	SGWC-19	3.203	n/a	12/17/2018	7.3	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-20	3.203	n/a	10/18/2018	11	Yes	75	0	ln(x)		Param Inter 1 of 2
Chloride (mg/L)	SGWC-21	3.203	n/a	12/17/2018	9.3	Yes	75	0	ln(x)		Param Inter 1 of 2
Chloride (mg/L)	SGWC-22	3.203	n/a	12/17/2018	10	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2
Chloride (mg/L)	SGWC-23	3.203	n/a	12/17/2018	9.9	Yes	75	0	ln(x)	0.000418	Param Inter 1 of 2

Prediction Limit Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR Printed 1/11/2019, 1:03 PM

Contention (mgl.) Sow.Co. 3.203 n/a 21442018 1.8 n. 75 0 in log 0.000418 Param Intent of 2				. Goldel Associa	iles Dala. C	CHEICI ASH F	_			1/2019, 1.03 FW		
Chloride (mg/L) SGWC-7 S.203 n/a 12/14/2018 1.2 Ves 75 0. n/p) 0.000418 Param Inter1 of 2 Chloride (mg/L) SGWC-9 3.203 n/a 12/14/2018 13 Ves 75 0. n/p) 0.000418 Param Inter1 of 2 Chloride (mg/L) SGWC-1 0.205 n/a 10/14/2018 0.205N n/a 0.005N n/a 0.005W n/a 0.000418 Param Inter1 of 2 Chloride (mg/L) SGWC-11 0.205 n/a 10/14/2018 0.205N n/a 0.005N n/a 0.005W n/a	Constituent	<u>Well</u>	Upper Lim.				<u>Sig.</u>	_				<u>Method</u>
Chloride (mg/L)	, 9 /									` '		
Chloride (mg/L)	· - ·											
Fluoride (mg/L)	· - ·									` '		
Fluoride (mg/L) SGWC-12 0.205 n/a 10/16/2018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDa) 1 of 2 Fluoride (mg/L) SGWC-13 0.205 n/a 10/8/2018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDa) 1 of 2 Fluoride (mg/L) SGWC-15 0.205 n/a 10/8/2018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDa) 1 of 2 Fluoride (mg/L) SGWC-16 0.205 n/a 10/8/2018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDa) 1 of 2 Fluoride (mg/L) SGWC-16 0.205 n/a 10/8/2018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDa) 1 of 2 Fluoride (mg/L) SGWC-16 0.205 n/a 10/8/2018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDa) 1 of 2 Fluoride (mg/L) SGWC-18 0.205 n/a 10/8/2018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDa) 1 of 2 Fluoride (mg/L) SGWC-19 0.205 n/a 10/8/2018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDa) 1 of 2 Fluoride (mg/L) SGWC-20 0.205 n/a 10/8/2018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDa) 1 of 2 Fluoride (mg/L) SGWC-22 0.205 n/a 10/8/2018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDa) 1 of 2 Fluoride (mg/L) SGWC-22 0.205 n/a 10/8/2018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDa) 1 of 2 Fluoride (mg/L) SGWC-23 0.205 n/a 10/8/2018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDa) 1 of 2 Fluoride (mg/L) SGWC-24 0.205 n/a 10/8/2018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDa) 1 of 2 Fluoride (mg/L) SGWC-3 0.205 n/a 10/8/2018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDa) 1 of 2 Fluoride (mg/L) SGWC-4 0.87 5.21 10/8/2018 0.405ND No 84 84.52 n/a 0.00027 NP Inter (NDa) 1 of 2 Fluoride (mg/L) SGWC-1 0.87 5.21 10/8/2018 0.405ND No 84 84.52 n/a 0.00027 NP Inter (NDa) 1 of 2 Fluoride (mg/L) SGWC-1 0.87 5.21 10/8/2018 0.47 NP 84 0.45 0.40 0.000673 NP Inter (nDa) 1 of 2 Fluoride	, , ,									. ,		
Fluoride (mg/L)	,											` '
Fluoride (mg/L) SGWC-14 0.205 n/a 10/82/018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 nf 2 Fluoride (mg/L) SGWC-15 0.205 n/a 10/82/018 0.258ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 nf 2 Fluoride (mg/L) SGWC-16 0.205 n/a 10/82/018 0.258ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 nf 2 Fluoride (mg/L) SGWC-17 0.205 n/a 10/82/018 0.258ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 nf 2 Fluoride (mg/L) SGWC-18 0.205 n/a 10/82/018 0.258ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 nf 2 Fluoride (mg/L) SGWC-19 0.205 n/a 10/82/018 0.258ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 nf 2 Fluoride (mg/L) SGWC-20 0.205 n/a 10/82/018 0.258ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 nf 2 Fluoride (mg/L) SGWC-21 0.205 n/a 10/82/018 0.258ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 nf 2 Fluoride (mg/L) SGWC-22 0.205 n/a 10/82/018 0.258ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 nf 2 Fluoride (mg/L) SGWC-23 0.205 n/a 10/82/018 0.258ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 nf 2 Fluoride (mg/L) SGWC-24 0.205 n/a 10/82/018 0.258ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 nf 2 Fluoride (mg/L) SGWC-3 0.205 n/a 10/82/018 0.258ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 nf 2 Fluoride (mg/L) SGWC-4 0.205 n/a 10/82/018 0.258ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 nf 2 Fluoride (mg/L) SGWC-4 0.205 n/a 10/82/018 0.258ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 nf 2 Fluoride (mg/L) SGWC-4 0.205 n/a 10/82/018 0.47 vs 84 84.52 n/a 0.00027 NP Inter (NDs) 1 nf 2 Fluoride (mg/L) SGWC-1 6.87 5.21 10/82/018 6.47 vs 84 84.52 n/a 0.00027 NP Inter (NDs) 1 nf 2 Fluoride (mg/L) SGWC-1 6.87 5.21 10/82/018 6.47 vs 84 84.52 n/a 0.00027 NP Inter (NDs) 1 nf 2 Fluoride (mg/L) S	· • /											` '
Fluoride (mg/L) SGWC-15 0.205 n/a 10/82018 0.205HN No	· - ·											` '
Fluoride (mg/L) SGWC-16 0.205 n/a 10/8/2018 0.205N Na 84 84.52 n/a 0.00027 NP Inter (NDs) 1 of 2	· • /											` '
Fluoride (mg/L) SGWC-16 0.205 n/a 10/8/2018 0.205ND No	· - ·											, ,
Fluoride (mg/L) SGWC-18 0.205 n/a 10/8/2018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 of 2	· • /											, ,
Fluoride (mg/L) SGWC-19 0.255 n/a 10/18/2018 0.258/ND No 14 24.52 n/a 0.00027 NP Inter (NDs) 1 of 2												, ,
Fluoride (mg/L)	· - ·											` ,
Fluoride (mg/L) SGWC-21 0.205 n/a 10/82/018 0.235 Ves 34 84.52 n/a 0.00027 NP Inter (NDs) 1 of 2 Fluoride (mg/L) SGWC-22 0.205 n/a 10/82/018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 of 2 Fluoride (mg/L) SGWC-23 0.205 n/a 10/82/018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 of 2 Fluoride (mg/L) SGWC-6 0.205 n/a 10/82/018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 of 2 Fluoride (mg/L) SGWC-7 0.205 n/a 10/82/018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 of 2 Fluoride (mg/L) SGWC-8 0.205 n/a 10/82/018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 of 2 Fluoride (mg/L) SGWC-9 0.205 n/a 10/82/018 0.47 NP Inter (NDS) 1 of 2 Fluoride (mg/L) SGWC-9 0.205 n/a 10/82/018 0.47 NP Inter (NDS) 1 of 2 Fluoride (mg/L) SGWC-9 0.205 n/a 10/82/018 0.47 NP Inter (NDS) 1 of 2 Fluoride (mg/L) SGWC-10 6.87 5.21 10/82/018 5.34 No 75 0. n/a 0.00027 NP Inter (NDS) 1 of 2 Fluoride (mg/L) SGWC-10 6.87 5.21 10/82/018 5.34 No 75 0. n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-11 6.87 5.21 10/82/018 5.34 No 75 0. n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-14 6.87 5.21 10/82/018 6.20 No 75 0. n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-16 6.87 5.21 10/82/018 6.20 No 75 0. n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-16 6.87 5.21 10/82/018 6.70 No 75 0. n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-18 6.87 5.21 10/82/018 6.70 No 75 0. n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-18 6.87 5.21 10/82/018 6.70 No 75 0. n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-18 6.87 5.21 10/82/018 6.70 No 75 0. n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-18 6.87 5	· • /											• •
Fluoride (mg/L)	,											` '
Fluoride (mg/L)												, ,
Fluoride (mg/L) SGWC-3	· • /											, ,
Fluoride (mg/L) SGWC-6 0.205 n/a 10/8/2018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 of 2												` '
Fluoride (mg/L) SGWC-7 0.205 n/a 10/9/2018 0.2 No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 of 2												` '
Fluoride (mg/L) SGWC-8 0.205 n/a 10/9/2018 0.47 Ves 84 84.52 n/a 0.00027 NP Inter (NDs) 1 of 2 PH (S.U.) SGWC-9 0.205 n/a 10/9/2018 5.29 No 75 0 n/a 0.000673 NP Inter (NDs) 1 of 2 PH (S.U.) SGWC-11 6.87 5.21 10/16/2018 5.29 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-12 6.87 5.21 10/16/2018 5.29 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-13 6.87 5.21 10/16/2018 6.16 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-14 6.87 5.21 10/8/2018 6.16 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-14 6.87 5.21 10/8/2018 5.83 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-14 6.87 5.21 10/8/2018 5.83 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-16 6.87 5.21 10/8/2018 5.29 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-16 6.87 5.21 10/8/2018 5.29 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-19 6.87 5.21 10/8/2018 5.79 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-19 6.87 5.21 10/8/2018 4.7 Yes 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-20 6.87 5.21 10/8/2018 5.51 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-20 6.87 5.21 10/8/2018 6.14 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-21 6.87 5.21 10/8/2018 6.14 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-23 6.87 5.21 10/8/2018 6.14 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-23 6.87 5.21 10/8/2018 6.34 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-24 6.87 5.21 10/8/2018 6.54 No 75 0 n/a 0.000673 NP Inter (normality) PH (` ,
Fluoride (mg/L) SGWC-9 0.205 n/a 10/9/2018 0.205ND No 84 84.52 n/a 0.00027 NP Inter (NDs) 1 of 2 pH (S.U.) SGWC-10 6.87 5.21 10/9/2018 5.29 No 75 0 n/a 0.000673 NP Inter (normality)	,											• •
pH (S.U.) SGWC-10 6.87 5.21 10/9/2018 5.29 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-11 6.87 5.21 10/16/2018 5.34 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-12 6.87 5.21 10/16/2018 6.16 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-14 6.87 5.21 10/16/2018 6.20 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-14 6.87 5.21 10/16/2018 4.59 Yes 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-16 6.87 5.21 10/16/2018 4.59 Yes 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-16 6.87 5.21 10/16/2018 4.79 Yes 75 0 n/a 0.000673 NP I	, <u> </u>											, ,
PH (S.U.) SGWC-11 (6.87) 5.21 (10/16/2018) 5.34 (10/16/2018) 6.36 (16) (10/16/2018) 0.0 (75) (10/16/2018) 0.0 (10/16/2												, ,
PH (S.U.) SGWC-12 6.87 5.21 10/8/2018 6.16 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-14 6.87 5.21 10/8/2018 6.02 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-15 6.87 5.21 10/8/2018 5.83 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-15 6.87 5.21 10/16/2018 4.59 Yes 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-16 6.87 5.21 10/8/2018 5.29 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-17 6.87 5.21 10/8/2018 6.17 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-18 6.87 5.21 10/8/2018 6.17 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-19 6.87 5.21 10/18/2018 4.7 Yes 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-20 6.87 5.21 10/18/2018 4.7 Yes 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-20 6.87 5.21 10/8/2018 5.51 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-20 6.87 5.21 10/8/2018 6.14 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-22 6.87 5.21 10/8/2018 5.74 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-23 6.87 5.21 10/8/2018 5.94 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-23 6.87 5.21 10/8/2018 5.94 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-6 6.87 5.21 10/8/2018 6.36 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-6 6.87 5.21 10/8/2018 6.36 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-6 6.87 5.21 10/8/2018 6.36 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.) SGWC-6 6.87 5.21 10/8/2018 6.36 No 75 0 n/a 0.000673 NP Inter (normality) PH (S.U.)	,											` ',
PH (S.U.) SGWC-13 6.87 5.21 10/8/2018 6.02 No 75 0 n/a 0.000673 NP Inter (normality)												, ,,
PH (S.U.) SGWC-14 6.87 5.21 10/8/2018 5.83 No 75 0 n/a 0.000673 NP Inter (normality)												` ',
PH (S.U.) SGWC-16 6.87 5.21 10/16/2018 4.59 Yes 75 0 n/a 0.000673 NP Inter (normality)												` ,
pH (S.U.) pH (S.U.) SGWC-17 6.87 5.21 10/8/2018 6.17 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) SGWC-18 6.87 5.21 10/8/2018 6.17 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) SGWC-19 6.87 5.21 10/8/2018 4.7 Yes 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) SGWC-20 6.87 5.21 10/8/2018 6.3 Yes 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-21 6.87 5.21 10/8/2018 6.14 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-22 6.87 5.21 10/8/2018 6.14 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-23 6.87 5.21 10/8/2018 5.74 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-24 6.87 5.21 10/8/2018 5.74 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-25 6.87 5.21 10/8/2018 5.74 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-26 6.87 5.21 10/8/2018 5.74 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-6 6.87 5.21 10/8/2018 6.36 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-7 6.87 5.21 10/8/2018 6.56 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-8 6.87 5.21 10/9/2018 6.56 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-9 6.87 5.21 10/9/2018 6.56 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-10 3.75 n/a 12/17/2018 16 Yes 77 51.95 n/a 0.0006 NP Inter (normality) SGWC-11 3.75 n/a 12/14/2018 43 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-13 3.75 n/a 12/14/2018 190 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-15 3.75 n/a 12/14/2018 190 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) Sulfate (mg/L) SGWC-18 3.75 n/a 10/18/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2												` ,
pH (S.U.) pH (S.U.) pH (S.U.) SGWC-18 6.87 5.21 10/8/2018 4.7 Yes 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) SGWC-19 6.87 5.21 10/8/2018 4.7 Yes 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) SGWC-20 6.87 5.21 10/8/2018 4.3 Yes 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) SGWC-21 6.87 5.21 10/8/2018 4.3 Yes 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-22 6.87 5.21 10/8/2018 6.14 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-23 6.87 5.21 10/8/2018 5.74 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-23 6.87 5.21 10/8/2018 5.74 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-23 6.87 5.21 10/8/2018 5.74 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-23 6.87 5.21 10/8/2018 6.3 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-6 6.87 5.21 10/8/2018 6.3 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-7 6.87 5.21 10/9/2018 6.56 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-9 6.87 5.21 10/9/2018 6.56 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-9 6.87 5.21 10/9/2018 6.56 No 75 0 n/a 0.000673 NP Inter (normality) Sulfate (mg/L) SGWC-10 3.75 n/a 12/14/2018 16 Yes 77 51.95 n/a 0.000673 NP Inter (NDS) 1 of 2 Sulfate (mg/L) SGWC-12 3.75 n/a 12/14/2018 13 Yes 77 51.95 n/a 0.000 NP Inter (NDS) 1 of 2 Sulfate (mg/L) SGWC-13 3.75 n/a 12/14/2018 190 Yes 77 51.95 n/a 0.000 NP Inter (NDS) 1 of 2 Sulfate (mg/L) SGWC-14 3.75 n/a 12/14/2018 190 Yes 77 51.95 n/a 0.000 NP Inter (NDS) 1 of 2 Sulfate (mg/L) SGWC-15 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDS) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDS) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDS) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDS) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDS)	• • •											· • • • • • • • • • • • • • • • • • • •
pH (S.U.) pH (S.U.) pH (S.U.) SGWC-19 6.87 5.21 10/18/2018 4.7 Yes 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-19 6.87 5.21 10/9/2018 5.51 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-20 6.87 5.21 10/18/2018 4.3 Yes 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-21 6.87 5.21 10/8/2018 6.14 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-22 6.87 5.21 10/8/2018 5.74 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-23 6.87 5.21 10/8/2018 5.94 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-26 6.87 5.21 10/8/2018 5.94 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-6 6.87 5.21 10/8/2018 6.3 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-7 6.87 5.21 10/8/2018 6.56 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-8 6.87 5.21 10/9/2018 6.56 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-9 6.87 5.21 10/9/2018 6.56 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-9 6.87 5.21 10/9/2018 6.56 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-10 3.75 n/a 12/17/2018 16 Yes 77 51.95 n/a 0.000673 NP Inter (normality) Sulfate (mg/L) SGWC-11 3.75 n/a 12/14/2018 16 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-13 3.75 n/a 12/14/2018 190 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-14 3.75 n/a 12/14/2018 190 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-15 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2												` ,,
pH (S.U.) pH (S.U.) sGWC-20 6.87 5.21 10/9/2018 5.51 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) sGWC-21 6.87 5.21 10/8/2018 4.3 Yes 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) sGWC-22 6.87 5.21 10/8/2018 6.14 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) sGWC-22 6.87 5.21 10/8/2018 5.74 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) sGWC-23 6.87 5.21 10/8/2018 5.94 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) sGWC-6 6.87 5.21 10/8/2018 6.3 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) sGWC-7 6.87 5.21 10/9/2018 6.56 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) sGWC-8 6.87 5.21 10/9/2018 6.56 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) sGWC-9 6.87 5.21 10/9/2018 6.51 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) sGWC-9 6.87 5.21 10/9/2018 6.51 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) sGWC-9 6.87 5.21 10/9/2018 6.51 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) sGWC-9 6.87 5.21 10/9/2018 6.51 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) sGWC-9 6.87 5.21 10/9/2018 6.51 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) sGWC-10 3.75 n/a 12/11/2018 16 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-12 3.75 n/a 12/14/2018 43 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-14 3.75 n/a 12/14/2018 74 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-15 3.75 n/a 12/14/2018 20 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-16 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-16 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-16 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-18 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2	,											` ,
pH (S.U.) pSGWC-22 6.87 5.21 10/8/2018 6.14 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) pH (S.U.) pH (S.U.) pH (S.U.) pH (S.U.) pSGWC-23 6.87 5.21 10/8/2018 5.74 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) pH (S.U.) pH (S.U.) pH (S.U.) pSGWC-6 6.87 5.21 10/8/2018 6.3 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) pH (S.U.) pSGWC-7 6.87 5.21 10/8/2018 6.3 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) pH (S.U.) SGWC-8 6.87 5.21 10/9/2018 6.56 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) SGWC-9 6.87 5.21 10/9/2018 6.56 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) SGWC-9 6.87 5.21 10/9/2018 6.51 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-9 6.87 5.21 10/9/2018 6.06 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-10 3.75 n/a 12/11/2018 16 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-11 3.75 n/a 12/14/2018 13 No 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-13 3.75 n/a 12/14/2018 74 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-14 3.75 n/a 12/14/2018 190 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-15 3.75 n/a 12/14/2018 28 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/14/2018 28 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-18 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-18 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2												` ,
pH (S.U.) pH (S.U.) pH (S.U.) sGWC-22 6.87 5.21 10/8/2018 6.14 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) sGWC-22 6.87 5.21 10/8/2018 5.74 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) sGWC-3 6.87 5.21 10/8/2018 5.94 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) sGWC-6 6.87 5.21 10/8/2018 6.3 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) sGWC-7 6.87 5.21 10/9/2018 6.56 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) sGWC-8 6.87 5.21 10/9/2018 6.56 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) sGWC-9 6.87 5.21 10/9/2018 6.51 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) sGWC-9 6.87 5.21 10/9/2018 6.51 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) sGWC-10 3.75 n/a 12/11/2018 16 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-11 3.75 n/a 12/14/2018 43 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-13 3.75 n/a 12/14/2018 43 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-14 3.75 n/a 12/14/2018 74 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-15 3.75 n/a 12/14/2018 20 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-15 3.75 n/a 12/14/2018 28 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-16 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-16 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-16 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-18 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2												` ',
pH (S.U.) pH (S.U.) pH (S.U.) pH (S.U.) pH (S.U.) pH (S.U.) sGWC-23 6.87 5.21 10/8/2018 5.74 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) pH (S.U.) sGWC-6 6.87 5.21 10/8/2018 6.3 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) sGWC-7 6.87 5.21 10/8/2018 6.3 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) sGWC-8 6.87 5.21 10/9/2018 6.56 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) sGWC-9 6.87 5.21 10/9/2018 6.51 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) sGWC-9 6.87 5.21 10/9/2018 6.51 No 75 0 n/a 0.000673 NP Inter (normality) sulfate (mg/L) sGWC-10 3.75 n/a 12/17/2018 16 Yes 77 51.95 n/a 0.000673 NP Inter (normality) sulfate (mg/L) sGWC-11 3.75 n/a 10/16/2018 1.3 No 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-13 3.75 n/a 12/14/2018 43 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-14 3.75 n/a 12/14/2018 74 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-15 3.75 n/a 12/14/2018 200 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-16 3.75 n/a 12/14/2018 28 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-16 3.75 n/a 12/14/2018 28 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-16 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-16 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 sulfate (mg/L) sGWC-18 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2	• • •											· • • • • • • • • • • • • • • • • • • •
pH (S.U.) pH (S.U.) SGWC-6 6.87 5.21 10/8/2018 5.94 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) SGWC-6 6.87 5.21 10/8/2018 6.3 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) SGWC-7 6.87 5.21 10/9/2018 6.56 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) SGWC-8 6.87 5.21 10/9/2018 6.51 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) SGWC-9 6.87 5.21 10/9/2018 6.51 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-9 6.87 5.21 10/9/2018 6.06 No 75 0 n/a 0.000673 NP Inter (normality) Sulfate (mg/L) SGWC-10 3.75 n/a 12/17/2018 16 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-11 3.75 n/a 10/16/2018 1.3 No 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-13 3.75 n/a 12/14/2018 43 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-14 3.75 n/a 12/14/2018 74 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-15 3.75 n/a 10/16/2018 200 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/14/2018 28 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-18 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2												, ,,
pH (S.U.) SGWC-6 6.87 5.21 10/8/2018 6.3 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-7 6.87 5.21 10/9/2018 6.56 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) SGWC-8 6.87 5.21 10/9/2018 6.51 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) pH (S.U.) SGWC-9 6.87 5.21 10/9/2018 6.51 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-9 6.87 5.21 10/9/2018 6.06 No 75 0 n/a 0.000673 NP Inter (normality) Sulfate (mg/L) SGWC-10 3.75 n/a 12/17/2018 16 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-11 3.75 n/a 12/14/2018 1.3 No 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-13 3.75 n/a 12/14/2018 74 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-14 3.75 n/a 12/14/2018 74 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-15 3.75 n/a 12/14/2018 190 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-15 3.75 n/a 10/16/2018 200 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/14/2018 28 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-18 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-18 3.75 n/a 10/18/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2												· • • • • • • • • • • • • • • • • • • •
pH (S.U.)												
pH (S.U.) pH (S.U.) SGWC-9 6.87 5.21 10/9/2018 6.51 No 75 0 n/a 0.000673 NP Inter (normality) pH (S.U.) SGWC-9 6.87 5.21 10/9/2018 6.06 No 75 0 n/a 0.000673 NP Inter (normality) Sulfate (mg/L) SGWC-10 3.75 n/a 12/17/2018 16 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-11 3.75 n/a 10/16/2018 1.3 No 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-12 3.75 n/a 12/14/2018 43 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-13 3.75 n/a 12/14/2018 74 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) Sulfate (mg/L) SGWC-14 3.75 n/a 12/14/2018 190 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) Sulfate (mg/L) SGWC-15 3.75 n/a 10/16/2018 200 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) Sulfate (mg/L) SGWC-16 3.75 n/a 12/17/2018 28 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) Sulfate (mg/L) SGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-18 3.75 n/a 10/18/2018 1200 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2												` ',
pH (S.U.) SGWC-9 6.87 5.21 10/9/2018 6.06 No 75 0 n/a 0.000673 NP Inter (normality) Sulfate (mg/L) SGWC-10 3.75 n/a 12/17/2018 16 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-11 3.75 n/a 10/16/2018 1.3 No 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-12 3.75 n/a 12/14/2018 43 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-13 3.75 n/a 12/14/2018 74 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-14 3.75 n/a 10/16/2018 200 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-15 3.75 n/a 12/17/2018 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Sulfate (mg/L) SGWC-10 3.75 n/a 12/17/2018 16 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-11 3.75 n/a 10/16/2018 1.3 No 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-12 3.75 n/a 12/14/2018 43 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-13 3.75 n/a 12/14/2018 74 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-14 3.75 n/a 12/14/2018 190 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-15 3.75 n/a 10/16/2018 200 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/17/2018												` ,,
Sulfate (mg/L) SGWC-11 3.75 n/a 10/16/2018 1.3 No 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-12 3.75 n/a 12/14/2018 43 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-13 3.75 n/a 12/14/2018 74 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-14 3.75 n/a 10/16/2018 200 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-15 3.75 n/a 10/16/2018 200 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/17/2018 28 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-17 3.75 n/a 12/14/2018	,											` ,
Sulfate (mg/L) SGWC-12 3.75 n/a 12/14/2018 43 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-13 3.75 n/a 12/14/2018 74 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-14 3.75 n/a 12/14/2018 190 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-15 3.75 n/a 10/16/2018 200 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/17/2018 28 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-18 3.75 n/a 10/18/2018												· · ·
Sulfate (mg/L) SGWC-13 3.75 n/a 12/14/2018 74 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-14 3.75 n/a 12/14/2018 190 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-15 3.75 n/a 10/16/2018 200 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/17/2018 28 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-18 3.75 n/a 10/18/2018 1200 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2												` '
Sulfate (mg/L) SGWC-14 3.75 n/a 12/14/2018 190 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-15 3.75 n/a 10/16/2018 200 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/17/2018 28 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-18 3.75 n/a 10/18/2018 1200 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2	, <u> </u>											, ,
Sulfate (mg/L) SGWC-15 3.75 n/a 10/16/2018 200 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-16 3.75 n/a 12/17/2018 28 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-18 3.75 n/a 10/18/2018 1200 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2												
Sulfate (mg/L) SGWC-16 3.75 n/a 12/17/2018 28 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-18 3.75 n/a 10/18/2018 1200 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2												, ,
Sulfate (mg/L) SGWC-17 3.75 n/a 12/14/2018 180 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2 Sulfate (mg/L) SGWC-18 3.75 n/a 10/18/2018 1200 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2	, -,											, ,
Sulfate (mg/L) SGWC-18 3.75 n/a 10/18/2018 1200 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2	· - ·											` '
	, <u> </u>											, ,
Sulfate (mg/L) SGWC-19 3.75 n/a 12/17/2018 270 Yes 77 51.95 n/a 0.000 NP Inter (NDs) 1 of 2												` '
	Suirate (mg/L)	SGWC-19	3.75	n/a	12/17/2018	270	Yes	<i>1</i> 7	51.95	n/a	0.000	NP inter (NDs) 1 of 2

Prediction Limit


		Scherer Clie	nt: Golder Assoc	ciates Data:	Scherer Ash	Pond_0	CCR	Printed 1/	11/2019, 1:03 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Date	Observ.	Sig.	Bq N	l %NDs	Transform	Alpha	Method
Sulfate (mg/L)	SGWC-20	3.75	n/a	10/18/2018	210	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-21	3.75	n/a	12/17/2018	88	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-22	3.75	n/a	12/17/2018	99	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-23	3.75	n/a	12/17/2018	96	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-6	3.75	n/a	12/14/2018	0.35ND	No	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-7	3.75	n/a	12/14/2018	10	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-8	3.75	n/a	12/14/2018	72	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Sulfate (mg/L)	SGWC-9	3.75	n/a	12/17/2018	330	Yes	77	51.95	n/a	0.000	NP Inter (NDs) 1 of 2
Total Dissolved Solids (mg/L)	SGWC-10	143.7	n/a	12/17/2018	38	No	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-11	143.7	n/a	10/16/2018	100	No	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-12	143.7	n/a	12/14/2018	190	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-13	143.7	n/a	12/14/2018	140	No	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-14	143.7	n/a	12/14/2018	280	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-15	143.7	n/a	10/16/2018	350	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-16	143.7	n/a	12/17/2018	42	No	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-17	143.7	n/a	12/14/2018	390	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-18	143.7	n/a	10/18/2018	1200	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-19	143.7	n/a	12/17/2018	250	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-20	143.7	n/a	10/18/2018	370	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-21	143.7	n/a	12/17/2018	310	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-22	143.7	n/a	12/17/2018	260	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-23	143.7	n/a	12/17/2018	30	No	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-6	143.7	n/a	12/14/2018	44	No	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-7	143.7	n/a	12/14/2018	170	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-8	143.7	n/a	12/14/2018	390	Yes	77	2.597	No	0.000418	Param Inter 1 of 2
Total Dissolved Solids (mg/L)	SGWC-9	143.7	n/a	12/17/2018	510	Yes	77	2.597	No	0.000418	Param Inter 1 of 2

Sanitas™ v.9.6.11 For the statistical analyses of ground water by Golder Associates only. UG Hollow symbols indicate censored values.

Exceeds Limit: SGWC-10, SGWC-11, SGWC-13, SGWC-14, SGWC-15, SGWC-16

Prediction Limit

Interwell Non-parametric

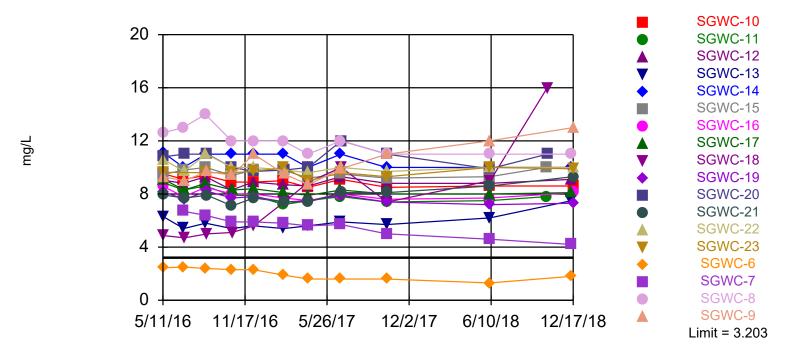
Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 77 background values. 96.1% NDs. Annual per-constituent alpha = 0.01144. Individual comparison alpha = 0.0003194 (1 of 2). Comparing 18 points to limit.

Constituent: Boron Analysis Run 1/11/2019 1:02 PM View: App III

Exceeds Limit: SGWC-12, SGWC-14, SGWC-17. SGWC-18. SGWC-19. SGWC-21

Prediction Limit

Interwell Non-parametric

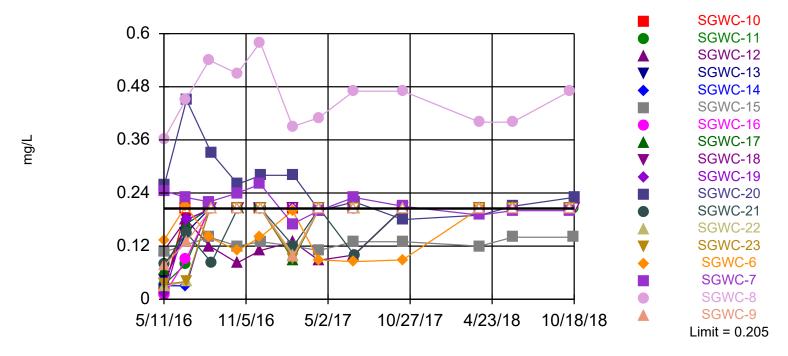


Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 74 background values. Annual per-constituent alpha = 0.01235. Individual comparison alpha = 0.000345 (1 of 2). Comparing 18 points to limit.

Constituent: Calcium Analysis Run 1/11/2019 1:02 PM View: App III

Exceeds Limit: SGWC-10, SGWC-11, SGWC-12, SGWC-13, SGWC-14, SGWC-15

Prediction Limit Interwell Parametric

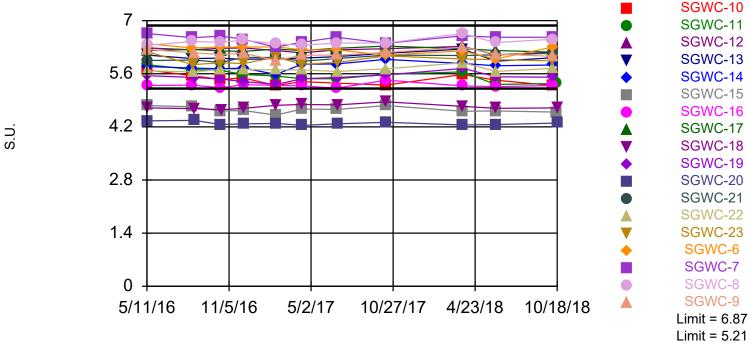

Background Data Summary (based on natural log transformation): Mean=0.5996, Std. Dev.=0.265, n=75. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.965, critical = 0.956. Kappa = 2.131 (c=7, w=18, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.000418. Comparing 18 points to limit.

Constituent: Chloride Analysis Run 1/11/2019 1:02 PM View: App III Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

Exceeds Limit: SGWC-20, SGWC-8

Prediction Limit

Interwell Non-parametric


Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 84 background values. 84.52% NDs. Annual per-constituent alpha = 0.009675. Individual comparison alpha = 0.00027 (1 of 2). Comparing 18 points to limit.

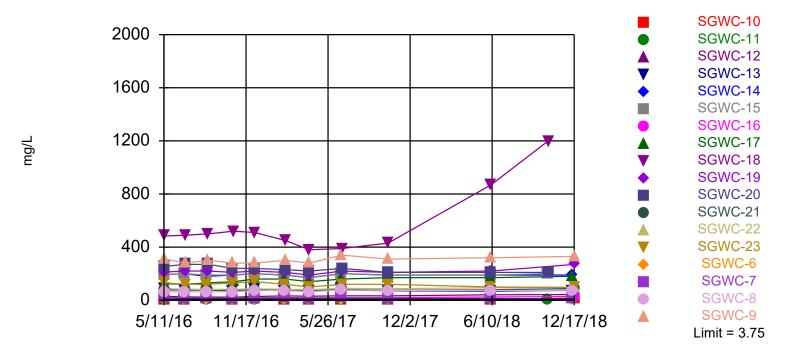
Constituent: Fluoride Analysis Run 1/11/2019 1:02 PM View: App III Scherer Client: Golder Associates Data: Scherer Ash Pond CCR

Exceeds Limits: SGWC-15, SGWC-18, SGWC-20

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because the Shapiro Francia normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 75 background values. Annual perconstituent alpha = 0.02409. Individual comparison alpha = 0.000673 (1 of 2). Comparing 18 points to limit.


Constituent: pH Analysis Run 1/11/2019 1:02 PM View: App III

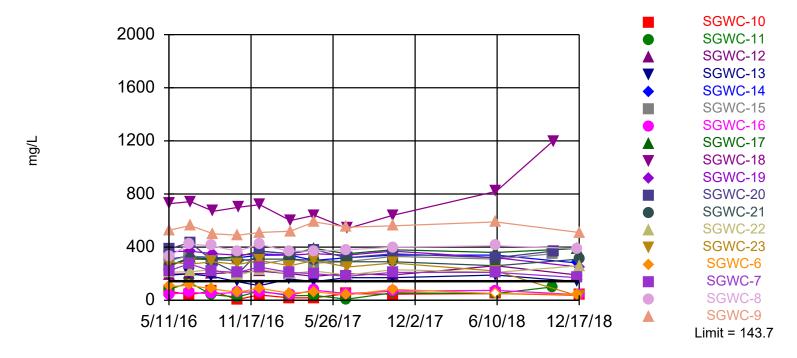
Sanitas™ v.9.6.11 For the statistical analyses of ground water by Golder Associates only. UG Hollow symbols indicate censored values.

Exceeds Limit: SGWC-10, SGWC-12, SGWC-13, SGWC-14, SGWC-15, SGWC-16

Prediction Limit

Interwell Non-parametric

Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 77 background values. 51.95% NDs. Annual per-constituent alpha = 0.01144. Individual comparison alpha = 0.0003194 (1 of 2). Comparing 18 points to limit.


Constituent: Sulfate Analysis Run 1/11/2019 1:02 PM View: App III

Sanitas $^{\rm m}$ v.9.6.11 For the statistical analyses of ground water by Golder Associates only. UG Hollow symbols indicate censored values.

Exceeds Limit: SGWC-12, SGWC-14, SGWC-15, SGWC-17, SGWC-18, SGWC-19

Prediction Limit

Interwell Parametric

Background Data Summary: Mean=74.74, Std. Dev.=32.4, n=77, 2.597% NDs. Normality test: Shapiro Francia @alpha = 0.01, calculated = 0.9669, critical = 0.957. Kappa = 2.127 (c=7, w=18, 1 of 2, event alpha = 0.05132). Report alpha = 0.007498. Individual comparison alpha = 0.000418. Comparing 18 points to limit.

Constituent: Total Dissolved Solids Analysis Run 1/11/2019 1:02 PM View: App III Scherer Client: Golder Associates Data: Scherer Ash Pond CCR

UPPER TOLERANCE LIMITS OCTOBER 2018

Tolerance Limit

		Scherer Client: Go	lder Associates	Data: Scherer A	Ash Pond_0	CCR P	rinted 1/24/2	2019, 6:54 PM		
Constituent	<u>Well</u>	Upper Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Antimony (mg/L)	n/a	0.0021	n/a	n/a	n/a	69	91.3	n/a	0.02904	NP Inter(NDs)
Arsenic (mg/L)	n/a	0.0015	n/a	n/a	n/a	77	75.32	n/a	0.01926	NP Inter(NDs)
Barium (mg/L)	n/a	0.06407	n/a	n/a	n/a	77	0	No	0.05	Inter
Beryllium (mg/L)	n/a	0.0002	n/a	n/a	n/a	77	98.7	n/a	0.01926	NP Inter(NDs)
Cadmium (mg/L)	n/a	0.0011	n/a	n/a	n/a	70	97.14	n/a	0.02758	NP Inter(NDs)
Chromium (mg/L)	n/a	0.016	n/a	n/a	n/a	77	36.36	n/a	0.01926	NP Inter(normal
Cobalt (mg/L)	n/a	0.02	n/a	n/a	n/a	76	63.16	n/a	0.02028	NP Inter(normal
Combined Radium 226 + 228 (pCi/L)	n/a	1.2	n/a	n/a	n/a	76	0	n/a	0.02028	NP Inter(normal
Fluoride (mg/L)	n/a	0.108	n/a	n/a	n/a	84	84.52	n/a	0.01345	NP Inter(NDs)
Lead (mg/L)	n/a	0.000175	n/a	n/a	n/a	77	98.7	n/a	0.01926	NP Inter(NDs)
Lithium (mg/L)	n/a	0.00235	n/a	n/a	n/a	77	88.31	n/a	0.01926	NP Inter(NDs)
Mercury (mg/L)	n/a	0.00012	n/a	n/a	n/a	77	88.31	n/a	0.01926	NP Inter(NDs)
Molybdenum (mg/L)	n/a	0.00278	n/a	n/a	n/a	70	88.57	n/a	0.02758	NP Inter(NDs)
Selenium (mg/L)	n/a	0.00041	n/a	n/a	n/a	77	92.21	n/a	0.01926	NP Inter(NDs)
Thallium (mg/L)	n/a	0.0001	n/a	n/a	n/a	77	96.1	n/a	0.01926	NP Inter(NDs)

CONFIDENCE INTERVALS OCTOBER 2018

		Scherer Client:	Golder Associates	Data: Schere	r Ash Po	nd_CCR	Printed 1/	11/2019, 2:01 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Compliance</u>	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Cobalt (mg/L)	SGWC-10	0.033	0.02051	0.02	Yes	11	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-11	0.03147	0.02689	0.02	Yes	11	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-15	0.2794	0.261	0.02	Yes	11	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-18	0.154	0.1109	0.02	Yes	11	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-20	0.2399	0.2003	0.02	Yes	11	0	No	0.05	Param.

		Scherer Client: 0	Golder Associates	Data: Scherer	Ash Poi	nd_CCR	Printed 1/1	1/2019, 2:01 PM		
<u>Constituent</u> <u>V</u>	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Antimony (mg/L)	SGWA-1 (bg)	0.0005	0.0004	0.006	No	10	80	No	0.011	NP (NDs)
Antimony (mg/L)	SGWA-2 (bg)	0.0005	0.0005	0.006	No	10	100	No	0.011	NP (NDs)
Antimony (mg/L)	SGWA-24 (bg)	0.0005	0.0003	0.006	No	10	90	No	0.011	NP (NDs)
Antimony (mg/L)	SGWA-25 (bg)	0.0005	0.0003	0.006	No	10	90	No	0.011	NP (NDs)
	SGWA-3 (bg)	0.0005	0.0005	0.006	No	10	90	No	0.011	NP (NDs)
Antimony (mg/L)	SGWA-4 (bg)	0.0005	0.0005	0.006	No	10	90	No	0.011	NP (NDs)
Antimony (mg/L)	SGWA-5 (bg)	0.0005	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-10	0.0005	0.0005	0.006	No	10	90	No	0.011	NP (NDs)
Antimony (mg/L)	SGWC-11	0.0005	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-12	0.0005	0.0005	0.006	No	10	100	No	0.011	NP (NDs)
Antimony (mg/L)	SGWC-13	0.0005	0.0004	0.006	No	10	90	No	0.011	NP (NDs)
Antimony (mg/L)	SGWC-14	0.0005	0.0005	0.006	No	10	100	No	0.011	NP (NDs)
Antimony (mg/L)	SGWC-15	0.0005	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-16	0.0005	0.0005	0.006	No	10	100	No	0.011	NP (NDs)
Antimony (mg/L)	SGWC-17	0.0005	0.0005	0.006	No	10	100	No	0.011	NP (NDs)
Antimony (mg/L)	SGWC-18	0.0012	0.0005	0.006	No	9	88.89	No	0.002	NP (NDs)
	SGWC-19	0.0005	0.0005	0.006	No	10	100	No	0.011	NP (NDs)
	SGWC-20	0.0005	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
	SGWC-21	0.0005	0.0005	0.006	No	10	100	No	0.011	NP (NDs)
	SGWC-22	0.0005	0.0005	0.006	No	10	100	No	0.011	NP (NDs)
Antimony (mg/L)	SGWC-23	0.0005	0.0005	0.006	No	10	100	No	0.011	NP (NDs)
	SGWC-6	0.0005	0.0005	0.006	No	10	100	No	0.011	NP (NDs)
Antimony (mg/L)	SGWC-7	0.0005	0.0004	0.006	No	10	90	No	0.011	NP (NDs)
	SGWC-8	0.0005	0.0005	0.006	No	10	100	No	0.011	NP (NDs)
	SGWC-9	0.0005	0.0005	0.006	No	10	100	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWA-1 (bg)	0.00065	0.00023	0.01	No	11	72.73	No	0.006	NP (normality)
	SGWA-2 (bg)	0.0005	0.00023	0.01	No	11	72.73	No	0.006	NP (normality)
	SGWA-24 (bg)	0.00057	0.00023	0.01	No	11	81.82	No	0.006	NP (NDs)
Arsenic (mg/L)	SGWA-25 (bg)	0.0008918	0.0003533	0.01	No	11	36.36	No	0.05	Param.
Arsenic (mg/L)	SGWA-3 (bg)	0.00023	0.00023	0.01	No	11	90.91	No	0.006	NP (NDs)
Arsenic (mg/L)	SGWA-4 (bg)	0.00055	0.00023	0.01	No	11	81.82	No	0.006	NP (NDs)
Arsenic (mg/L)	SGWA-5 (bg)	0.00023	0.00023	0.01	No	11	90.91	No	0.006	NP (NDs)
Arsenic (mg/L)	SGWC-10	0.0005	0.00023	0.01	No	11	81.82	No	0.006	NP (NDs)
Arsenic (mg/L)	SGWC-11	0.0011	0.00023	0.01	No	11	27.27	No	0.006	NP (normality)
Arsenic (mg/L)	SGWC-12	0.001	0.00023	0.01	No	11	45.45	No	0.006	NP (normality)
Arsenic (mg/L)	SGWC-13	0.00069	0.00023	0.01	No	11	72.73	No	0.006	NP (normality)
Arsenic (mg/L)	SGWC-14	0.00058	0.00023	0.01	No	11	72.73	No	0.006	NP (normality)
	SGWC-15	0.001326	0.0002356	0.01	No	11	36.36	No	0.05	Param.
Arsenic (mg/L)	SGWC-16	0.00054	0.00023	0.01	No	11	81.82	No	0.006	NP (NDs)
Arsenic (mg/L)	SGWC-17	0.00075	0.00023	0.01	No	11	54.55	No	0.006	NP (normality)
Arsenic (mg/L)	SGWC-18	0.002222	0.001169	0.01	No	11	0	No	0.05	Param.
Arsenic (mg/L)	SGWC-19	0.00058	0.00023	0.01	No	11	81.82	No	0.006	NP (NDs)
Arsenic (mg/L)	SGWC-20	0.001	0.00023	0.01	No	11	63.64	No	0.006	NP (normality)
Arsenic (mg/L)	SGWC-21	0.00023	0.00023	0.01	No	11	90.91	No	0.006	NP (NDs)
	SGWC-22	0.0006	0.00023	0.01	No	11	81.82	No	0.006	NP (NDs)
	SGWC-23	0.00061	0.00023	0.01	No	11	81.82	No	0.006	NP (NDs)
		0.00046	0.00023	0.01	No	11	81.82	No	0.006	NP (NDs)
	SGWC-7	0.0006	0.00023	0.01	No	11	54.55	No	0.006	NP (normality)
	SGWC-8	0.00053	0.00023	0.01	No	11	72.73	No	0.006	NP (normality)
Arsenic (mg/L)		0.0007673	0.0004315	0.01	No	11	36.36	No	0.05	Param.

		Scherer Client	: Golder Associates	Data: Schere	r Ash Po	ond_CCR	Printed 1/	/11/2019, 2:01 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Barium (mg/L)	SGWA-1 (bg)	0.05749	0.05029	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWA-2 (bg)	0.0389	0.03584	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWA-24 (bg)	0.02236	0.02069	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWA-25 (bg)	0.02398	0.0214	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWA-3 (bg)	0.0351	0.03278	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWA-4 (bg)	0.05632	0.0494	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWA-5 (bg)	0.011	0.0088	2	No	11	0	No	0.006	NP (normality)
Barium (mg/L)	SGWC-10	0.03062	0.02787	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWC-11	0.03876	0.03584	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWC-12	0.04133	0.03386	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWC-13	0.02902	0.024	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWC-14	0.06283	0.05813	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWC-15	0.04111	0.0368	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWC-16	0.022	0.0163	2	No	10	0	No	0.011	NP (normality)
Barium (mg/L)	SGWC-17	0.01979	0.01762	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWC-18	0.032	0.012	2	No	11	0	No	0.006	NP (normality)
Barium (mg/L)	SGWC-19	0.04417	0.03823	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWC-20	0.03835	0.03078	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWC-21	0.09304	0.09	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWC-22	0.09578	0.08887	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWC-23	0.09113	0.08316	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWC-6	0.08904	0.05175	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWC-7	0.3175	0.2803	2	No	11	0	No	0.05	Param.
Barium (mg/L)	SGWC-8	0.205	0.16	2	No	11	0	No	0.006	NP (normality)
Barium (mg/L)	SGWC-9	0.0647	0.05347	2	No	11	0	No	0.05	Param.
Beryllium (mg/L)	SGWA-1 (bg)	0.00017	0.00017	0.004	No	11	90.91	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWA-2 (bg)	0.00017	0.00017	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWA-24 (bg)	0.00017	0.00017	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWA-25 (bg)	0.00017	0.00017	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWA-3 (bg)	0.00017	0.00017	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWA-4 (bg)	0.00017	0.00017	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWA-5 (bg)	0.00017	0.00017	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWC-10	0.00017	0.00017	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWC-11	0.00017	0.00017	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWC-12	0.00017	0.00017	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWC-13	0.00017	0.00017	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWC-14	0.00017	0.00017	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWC-15	0.0004	0.00017	0.004	No	11	27.27	No	0.006	NP (Cohens/xfrm)
Beryllium (mg/L)	SGWC-16	0.00017	0.00017	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWC-17	0.00017	0.00017	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWC-18	0.00035	0.00017	0.004	No	11	72.73	No	0.006	NP (normality)
Beryllium (mg/L)	SGWC-19	0.00017	0.00017	0.004	No	11	90.91	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWC-20	0.0008286	0.0007335	0.004	No	11	0	No	0.05	Param.
Beryllium (mg/L)	SGWC-21	0.00017	0.0007333	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWC-22	0.00017	0.00017	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWC-23	0.00017	0.00017	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWC-6	0.00017	0.00017	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWC-7	0.00017	0.00017	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWC-8	0.00017	0.00017	0.004	No	11	100	No	0.006	NP (NDs)
Beryllium (mg/L)	SGWC-9	0.00017	0.00017	0.004	No	11	100	No	0.006	NP (NDs)
Dorymani (mg/L)	30110-9	5.00017	3.00017	J.00 -1	140	• •	100	. 10	0.000	141 (1403)

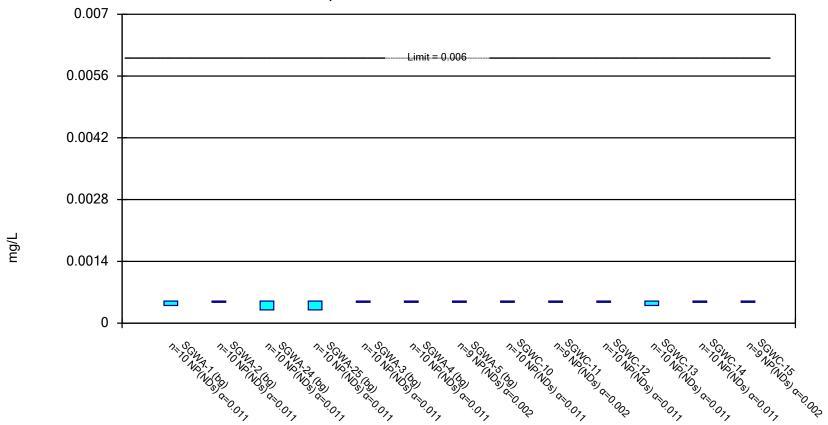
		Scherer Client:	Golder Associates	Data: Schere	r Ash Po	nd_CCR	Printed 1/1	11/2019, 2:01 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Compliance</u>	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Cadmium (mg/L)	SGWA-1 (bg)	0.00017	0.000156	0.005	No	10	90	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWA-2 (bg)	0.00017	0.00017	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWA-24 (bg)	0.00017	0.00017	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWA-25 (bg)	0.00017	0.00017	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWA-3 (bg)	0.00017	0.00017	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWA-4 (bg)	0.00017	0.00017	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWA-5 (bg)	0.00017	0.00017	0.005	No	10	90	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWC-10	0.00017	0.00017	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWC-11	0.00017	0.00017	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWC-12	0.00017	0.00017	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWC-13	0.00017	0.00017	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWC-14	0.00017	0.000136	0.005	No	10	90	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWC-15	0.0003	0.00017	0.005	No	10	70	No	0.011	NP (normality)
Cadmium (mg/L)	SGWC-16	0.00017	0.00017	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWC-17	0.00017	0.00017	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWC-18	0.00017	0.00016	0.005	No	10	80	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWC-19	0.00017	0.00017	0.005	No	10	90	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWC-20	0.00017	0.0001	0.005	No	10	80	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWC-21	0.00017	0.00017	0.005	No	10	90	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWC-22	0.00017	0.00017	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWC-23	0.00017	0.00017	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWC-6	0.00017	0.00017	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWC-7	0.00017	0.00017	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWC-8	0.00017	0.00017	0.005	No	10	100	No	0.011	NP (NDs)
Cadmium (mg/L)	SGWC-9	0.00017	0.00017	0.005	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	SGWA-1 (bg)	0.0014	0.00055	0.1	No	11	81.82	No	0.006	NP (NDs)
Chromium (mg/L)	SGWA-2 (bg)	0.01398	0.01054	0.1	No	11	0	x^2	0.05	Param.
Chromium (mg/L)	SGWA-24 (bg)	0.004405	0.003401	0.1	No	11	0	No	0.05	Param.
Chromium (mg/L)	SGWA-25 (bg)	0.00055	0.00055	0.1	No	11	100	No	0.006	NP (NDs)
Chromium (mg/L)	SGWA-3 (bg)	0.01133	0.007421	0.1	No	11	0	No	0.05	Param.
Chromium (mg/L)	SGWA-4 (bg)	0.005629	0.002893	0.1	No	11	0	No	0.05	Param.
Chromium (mg/L)	SGWA-5 (bg)	0.0012	0.00055	0.1	No	11	72.73	No	0.006	NP (normality)
Chromium (mg/L)	SGWC-10	0.00055	0.00055	0.1	No	11	100	No	0.006	NP (NDs)
Chromium (mg/L)	SGWC-11	0.00055	0.00055	0.1	No	11	100	No	0.006	NP (NDs)
Chromium (mg/L)	SGWC-12	0.00055	0.00055	0.1	No	11	90.91	No	0.006	NP (NDs)
Chromium (mg/L)	SGWC-13	0.00055	0.00055	0.1	No	11	100	No	0.006	NP (NDs)
Chromium (mg/L)	SGWC-14	0.0012	0.00055	0.1	No	11	72.73	No	0.006	NP (normality)
Chromium (mg/L)	SGWC-15	0.03373	0.03198	0.1	No	11	0	No	0.05	Param.
Chromium (mg/L)	SGWC-16	0.01022	0.00892	0.1	No	11	0	ln(x)	0.05	Param.
Chromium (mg/L)	SGWC-17	0.005626	0.003528	0.1	No	11	0	No	0.05	Param.
Chromium (mg/L)	SGWC-18	0.007772	0.00663	0.1	No	11	0	No	0.05	Param.
Chromium (mg/L)	SGWC-19	0.01552	0.01416	0.1	No	11	0	No	0.05	Param.
Chromium (mg/L)	SGWC-20	0.00055	0.00055	0.1	No	11	90.91	No	0.006	NP (NDs)
Chromium (mg/L)	SGWC-21	0.00055	0.00055	0.1	No	11	90.91	No	0.006	NP (NDs)
Chromium (mg/L)	SGWC-22	0.0007	0.00055	0.1	No	11	81.82	No	0.006	NP (NDs)
Chromium (mg/L)	SGWC-23	0.0017	0.00055	0.1	No	10	50	No	0.011	NP (normality)
Chromium (mg/L)	SGWC-6	0.00055	0.00055	0.1	No	11	100	No	0.006	NP (NDs)
Chromium (mg/L)	SGWC-7	0.00055	0.00055	0.1	No	11	100	No	0.006	NP (NDs)
Chromium (mg/L)	SGWC-8	0.0013	0.00055	0.1	No	11	63.64	No	0.006	NP (normality)
Chromium (mg/L)	SGWC-9	0.00055	0.00055	0.1	No	11	100	No	0.006	NP (NDs)

		Scherer Client:	Golder Associates	Data: Schere	r Ash Poi	nd_CCR	Printed 1/	11/2019, 2:01 PM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Cobalt (mg/L)	SGWA-1 (bg)	0.01513	0.008108	0.02	No	11	0	No	0.05	Param.
Cobalt (mg/L)	SGWA-2 (bg)	0.0002	0.0002	0.02	No	11	90.91	No	0.006	NP (NDs)
Cobalt (mg/L)	SGWA-24 (bg)	0.0004	0.0002	0.02	No	11	72.73	No	0.006	NP (normality)
Cobalt (mg/L)	SGWA-25 (bg)	0.01409	0.009924	0.02	No	11	0	No	0.05	Param.
Cobalt (mg/L)	SGWA-3 (bg)	0.0002	0.0002	0.02	No	10	90	No	0.011	NP (NDs)
Cobalt (mg/L)	SGWA-4 (bg)	0.0002	0.0002	0.02	No	11	90.91	No	0.006	NP (NDs)
Cobalt (mg/L)	SGWA-5 (bg)	0.0002	0.0002	0.02	No	11	100	No	0.006	NP (NDs)
Cobalt (mg/L)	SGWC-10	0.033	0.02051	0.02	Yes	11	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-11	0.03147	0.02689	0.02	Yes	11	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-12	0.004506	0.003556	0.02	No	11	0	x^(1/3)	0.05	Param.
Cobalt (mg/L)	SGWC-13	0.009705	0.005967	0.02	No	11	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-14	0.01209	0.006751	0.02	No	11	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-15	0.2794	0.261	0.02	Yes	11	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-16	0.003652	0.003154	0.02	No	11	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-17	0.0006661	0.0004348	0.02	No	10	20	No	0.05	Param.
Cobalt (mg/L)	SGWC-18	0.154	0.1109	0.02	Yes	11	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-19	0.00078	0.0002	0.02	No	11	54.55	No	0.006	NP (normality)
Cobalt (mg/L)	SGWC-20	0.2399	0.2003	0.02	Yes	11	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-21	0.0002	0.0002	0.02	No	11	100	No	0.006	NP (NDs)
Cobalt (mg/L)	SGWC-22	0.004274	0.002825	0.02	No	11	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-23	0.0002	0.0002	0.02	No	10	100	No	0.011	NP (NDs)
Cobalt (mg/L)	SGWC-6	0.002719	0.001084	0.02	No	11	18.18	No	0.05	Param.
Cobalt (mg/L)	SGWC-7	0.01327	0.008018	0.02	No	11	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-8	0.0012	0.0002	0.02	No	11	72.73	No	0.006	NP (normality)
Cobalt (mg/L)	SGWC-9	0.01492	0.0104	0.02	No	11	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWA-1 (bg)	0.3794	0.2157	5	No	11	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWA-2 (bg)	0.4328	0.1714	5	No	11	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWA-24 (bg)	0.3329	0.09243	5	No	11	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWA-25 (bg)	0.3805	0.09928	5	No	11	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWA-3 (bg)	0.5	-0.026	5	No	11	0	No	0.006	NP (normality)
Combined Radium 226 + 228 (pCi/L)	SGWA-4 (bg)	0.2174	0.02764	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWA-5 (bg)	0.4624	0.2354	5	No	11	0	x^(1/3)	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-10	0.548	-0.0725	5	No	11	0	No	0.006	NP (normality)
Combined Radium 226 + 228 (pCi/L)	SGWC-10	0.5796	0.2222	5	No	11	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-11	0.4168	0.1292	5	No	11	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-13	0.4669	0.1261	5	No	11	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-14	0.4624	0.1576	5	No	11	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L) Combined Radium 226 + 228 (pCi/L)	SGWC-15	0.4495	0.2067	5	No	11	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L) Combined Radium 226 + 228 (pCi/L)	SGWC-15			5	No	11	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L) Combined Radium 226 + 228 (pCi/L)	SGWC-10	0.3984 0.4251	0.1488 0.1852	5	No	11	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L) Combined Radium 226 + 228 (pCi/L)		0.4138	0.2039							
Combined Radium 226 + 228 (pCi/L) Combined Radium 226 + 228 (pCi/L)	SGWC-18	0.3236	0.08044	5	No	11 11	0	No	0.05	Param.
	SGWC-19			5	No		0	No No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-20	0.6416	0.3277	5	No	11	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-21	0.4846	0.2252	5	No	11	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-22	0.3341	0.183	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-23	0.697	0.4839	5	No	11	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-6	0.4322	0.1505	5	No	11	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-7	0.5044	0.3154	5	No	11	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-8	2.549	2.053	5	No	11	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-9	0.4416	0.2088	5	No	11	0	No	0.05	Param.

		Scherer Client:	Golder Associates	Data: Schere	r Ash Po	ond_CCR	Printed 1/	11/2019, 2:01 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Fluoride (mg/L)	SGWA-1 (bg)	0.205	0.205	4	No	12	100	No	0.05	NP (NDs)
Fluoride (mg/L)	SGWA-2 (bg)	0.205	0.0537	4	No	12	83.33	No	0.05	NP (NDs)
Fluoride (mg/L)	SGWA-24 (bg)	0.205	0.0648	4	No	12	83.33	No	0.05	NP (NDs)
Fluoride (mg/L)	SGWA-25 (bg)	0.205	0.041	4	No	12	83.33	No	0.05	NP (NDs)
Fluoride (mg/L)	SGWA-3 (bg)	0.205	0.02	4	No	12	83.33	No	0.05	NP (NDs)
Fluoride (mg/L)	SGWA-4 (bg)	0.205	0.1	4	No	12	66.67	No	0.05	NP (normality)
Fluoride (mg/L)	SGWA-5 (bg)	0.205	0.0188	4	No	12	91.67	No	0.05	NP (NDs)
Fluoride (mg/L)	SGWC-10	0.205	0.019	4	No	12	91.67	No	0.05	NP (NDs)
Fluoride (mg/L)	SGWC-11	0.205	0.08	4	No	12	83.33	No	0.05	NP (NDs)
Fluoride (mg/L)	SGWC-12	0.205	0.1	4	No	12	33.33	No	0.05	NP (Cohens/xfrm)
Fluoride (mg/L)	SGWC-13	0.205	0.15	4	No	12	83.33	No	0.05	NP (NDs)
Fluoride (mg/L)	SGWC-14	0.205	0.031	4	No	12	83.33	No	0.05	NP (NDs)
Fluoride (mg/L)	SGWC-15	0.1325	0.1197	4	No	11	0	No	0.05	Param.
Fluoride (mg/L)	SGWC-16	0.205	0.09	4	No	12	83.33	No	0.05	NP (NDs)
Fluoride (mg/L)	SGWC-17	0.205	0.17	4	No	12	75	No	0.05	NP (normality)
Fluoride (mg/L)	SGWC-18	0.205	0.18	4	No	12	83.33	No	0.05	NP (NDs)
Fluoride (mg/L)	SGWC-19	0.205	0.18	4	No	12	83.33	No	0.05	NP (NDs)
Fluoride (mg/L)	SGWC-20	0.2903	0.2184	4	No	12	0	sqrt(x)	0.05	Param.
Fluoride (mg/L)	SGWC-21	0.205	0.1	4	No	12	58.33	No	0.05	NP (normality)
Fluoride (mg/L)	SGWC-22	0.205	0.1	4	No	12	75	No	0.05	NP (normality)
Fluoride (mg/L)	SGWC-23	0.205	0.092	4	No	12	75	No	0.05	NP (normality)
Fluoride (mg/L)	SGWC-6	0.205	0.089	4	No	12	25	No	0.05	NP (normality)
Fluoride (mg/L)	SGWC-7	0.2297	0.2028	4	No	12	0	No	0.05	Param.
Fluoride (mg/L)	SGWC-8	0.4884	0.4203	4	No	12	0	No	0.05	Param.
Fluoride (mg/L)	SGWC-9	0.205	0.13	4	No	12	75	No	0.05	NP (normality)
Lead (mg/L)	SGWA-1 (bg)	0.000175	0.000175	0.015	No	11	100	No	0.006	NP (NDs)
Lead (mg/L)	SGWA-2 (bg)	0.000175	0.000175	0.015	No	11	100	No	0.006	NP (NDs)
Lead (mg/L)	SGWA-24 (bg)	0.000175	0.0001	0.015	No	11	90.91	No	0.006	NP (NDs)
Lead (mg/L)	SGWA-25 (bg)	0.000175	0.000175	0.015	No	11	100	No	0.006	NP (NDs)
Lead (mg/L)	SGWA-3 (bg)	0.000175	0.000175	0.015	No	11	100	No	0.006	NP (NDs)
Lead (mg/L)	SGWA-4 (bg)	0.000175	0.000175	0.015	No	11	100	No	0.006	NP (NDs)
Lead (mg/L)	SGWA-5 (bg)	0.000175	0.000175	0.015	No	11	100	No	0.006	NP (NDs)
Lead (mg/L)	SGWC-10	0.000175	0.000175	0.015	No	11	100	No	0.006	NP (NDs)
Lead (mg/L)	SGWC-11	0.000175	0.000175	0.015	No	11	100	No	0.006	NP (NDs)
Lead (mg/L)	SGWC-12	0.000175	0.000175	0.015	No	11	100	No	0.006	NP (NDs)
Lead (mg/L)	SGWC-13	0.000175	0.000175	0.015	No	11	90.91	No	0.006	NP (NDs)
Lead (mg/L)	SGWC-14	0.000175	0.000175	0.015	No	11	100	No	0.006	NP (NDs)
Lead (mg/L)	SGWC-15	0.000175	0.000175	0.015	No	11	100	No	0.006	NP (NDs)
Lead (mg/L)	SGWC-16	0.000175	0.000175	0.015	No	11	100	No	0.006	NP (NDs)
Lead (mg/L)	SGWC-17	0.000175	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	SGWC-18	0.000175	0.000175	0.015	No	11	100	No	0.006	NP (NDs)
Lead (mg/L)	SGWC-19	0.000175	0.000175	0.015	No	11	100	No	0.006	NP (NDs)
Lead (mg/L)	SGWC-20	0.00041	0.000175	0.015	No	11	72.73	No	0.006	NP (normality)
Lead (mg/L)	SGWC-21	0.000175	0.00009	0.015	No	11	90.91	No	0.006	NP (NDs)
Lead (mg/L)	SGWC-22	0.000175	0.000175	0.015	No	11	100	No	0.006	NP (NDs)
Lead (mg/L)	SGWC-23	0.000175	0.00009	0.015	No	11	90.91	No	0.006	NP (NDs)
Lead (mg/L)	SGWC-6	0.000175	0.000175	0.015	No	11	100	No	0.006	NP (NDs)
Lead (mg/L)	SGWC-7	0.000175	0.000175	0.015	No	11	90.91	No	0.006	NP (NDs)
Lead (mg/L)	SGWC-8	0.000175	0.000175	0.015	No	11	100	No	0.006	NP (NDs)
Lead (mg/L)	SGWC-9	0.000175	0.000175	0.015	No	11	100	No	0.006	NP (NDs)

		Scherer Clien	t: Golder Associates	Data: Schere	r Ash Por	nd_CCR	Printed 1/	/11/2019, 2:01 PM		
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Lithium (mg/L)	SGWA-1 (bg)	0.0018	0.00055	0.04	No	11	63.64	No	0.006	NP (normality)
Lithium (mg/L)	SGWA-2 (bg)	0.00055	0.00055	0.04	No	11	100	No	0.006	NP (NDs)
Lithium (mg/L)	SGWA-24 (bg)	0.0011	0.00055	0.04	No	11	81.82	No	0.006	NP (NDs)
Lithium (mg/L)	SGWA-25 (bg)	0.00055	0.00055	0.04	No	11	90.91	No	0.006	NP (NDs)
Lithium (mg/L)	SGWA-3 (bg)	0.00055	0.00055	0.04	No	11	90.91	No	0.006	NP (NDs)
Lithium (mg/L)	SGWA-4 (bg)	0.00055	0.00055	0.04	No	11	100	No	0.006	NP (NDs)
Lithium (mg/L)	SGWA-5 (bg)	0.00055	0.00055	0.04	No	11	90.91	No	0.006	NP (NDs)
Lithium (mg/L)	SGWC-10	0.00055	0.00055	0.04	No	11	100	No	0.006	NP (NDs)
Lithium (mg/L)	SGWC-11	0.0029	0.00055	0.04	No	11	63.64	No	0.006	NP (normality)
Lithium (mg/L)	SGWC-12	0.00055	0.00055	0.04	No	11	100	No	0.006	NP (NDs)
Lithium (mg/L)	SGWC-13	0.00055	0.00055	0.04	No	11	90.91	No	0.006	NP (NDs)
Lithium (mg/L)	SGWC-14	0.000925	0.00055	0.04	No	10	80	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-15	0.0034	0.00055	0.04	No	11	63.64	No	0.006	NP (normality)
Lithium (mg/L)	SGWC-16	0.00055	0.00055	0.04	No	11	90.91	No	0.006	NP (NDs)
Lithium (mg/L)	SGWC-17	0.00055	0.00055	0.04	No	11	90.91	No	0.006	NP (NDs)
Lithium (mg/L)	SGWC-18	0.0042	0.00055	0.04	No	11	54.55	No	0.006	NP (normality)
Lithium (mg/L)	SGWC-19	0.00055	0.00055	0.04	No	11	90.91	No	0.006	NP (NDs)
Lithium (mg/L)	SGWC-20	0.004845	0.003145	0.04	No	10	10	No	0.05	Param.
Lithium (mg/L)	SGWC-21	0.0013	0.00055	0.04	No	11	81.82	No	0.006	NP (NDs)
Lithium (mg/L)	SGWC-22	0.00055	0.00055	0.04	No	11	90.91	No	0.006	NP (NDs)
Lithium (mg/L)	SGWC-23	0.003747	0.002051	0.04	No	10	20	No	0.05	Param.
Lithium (mg/L)	SGWC-6	0.00055	0.00055	0.04	No	11	100	No	0.006	NP (NDs)
Lithium (mg/L)	SGWC-7	0.004915	0.003825	0.04	No	10	0	No	0.05	Param.
Lithium (mg/L)	SGWC-8	0.002	0.00055	0.04	No	11	63.64	No	0.006	NP (normality)
Lithium (mg/L)	SGWC-9	0.00055	0.00055	0.04	No	11	100	No	0.006	NP (NDs)
Mercury (mg/L)	SGWA-1 (bg)	0.000035	0.000035	0.002	No	11	90.91	No	0.006	NP (NDs)
Mercury (mg/L)	SGWA-2 (bg)	0.000035	0.000035	0.002	No	11	90.91	No	0.006	NP (NDs)
Mercury (mg/L)	SGWA-24 (bg)	0.000035	0.000035	0.002	No	11	90.91	No	0.006	NP (NDs)
Mercury (mg/L)	SGWA-25 (bg)	0.000075	0.000035	0.002	No	11	81.82	No	0.006	NP (NDs)
Mercury (mg/L)	SGWA-3 (bg)	0.000035	0.000035	0.002	No	11	90.91	No	0.006	NP (NDs)
Mercury (mg/L)	SGWA-4 (bg)	0.000035	0.000035	0.002	No	11	90.91	No	0.006	NP (NDs)
Mercury (mg/L)	SGWA-5 (bg)	0.000072	0.000035	0.002	No	11	81.82	No	0.006	NP (NDs)
Mercury (mg/L)	SGWC-10	0.000035	0.000035	0.002	No	11	90.91	No	0.006	NP (NDs)
Mercury (mg/L)	SGWC-11	0.0000535	0.000035	0.002	No	11	81.82	No	0.006	NP (NDs)
Mercury (mg/L)	SGWC-12	0.000035	0.000035	0.002	No	11	90.91	No	0.006	NP (NDs)
Mercury (mg/L)	SGWC-13	0.000035	0.000035	0.002	No	11	90.91	No	0.006	NP (NDs)
Mercury (mg/L)	SGWC-14	0.000089	0.000035	0.002	No	11	81.82	No	0.006	NP (NDs)
Mercury (mg/L)	SGWC-15	0.0001144	0.00006912	0.002	No	11	27.27	No	0.05	Param.
Mercury (mg/L)	SGWC-16	0.000035	0.000035	0.002		11	90.91	No	0.006	NP (NDs)
Mercury (mg/L)	SGWC-17	0.00011	0.000035	0.002		11	81.82	No	0.006	NP (NDs)
Mercury (mg/L)	SGWC-18	0.00014	0.000035	0.002	No	11	45.45	No	0.006	NP (normality)
Mercury (mg/L)	SGWC-19	0.000035	0.000035	0.002	No	11	100	No	0.006	NP (NDs)
Mercury (mg/L)	SGWC-20	0.000073	0.000035	0.002	No	11	81.82	No	0.006	NP (NDs)
Mercury (mg/L)	SGWC-21	0.000035	0.000035	0.002	No	11	90.91	No	0.006	NP (NDs)
Mercury (mg/L)	SGWC-22	0.000035	0.000035	0.002	No	11	90.91	No	0.006	NP (NDs)
Mercury (mg/L)	SGWC-23	0.000033	0.000035	0.002	No	11	72.73	No	0.006	NP (normality)
Mercury (mg/L) Mercury (mg/L)	SGWC-23	0.00011	0.000035	0.002	No	11	90.91	No	0.006	NP (NDs)
Mercury (mg/L)	SGWC-7	0.000035	0.000035	0.002	No	11	90.91	No	0.006	NP (NDs)
Mercury (mg/L) Mercury (mg/L)	SGWC-8	0.000035	0.000035	0.002		11	90.91	No	0.006	NP (NDs)
Mercury (mg/L) Mercury (mg/L)	SGWC-9	0.000035	0.000035	0.002	No	11	90.91	No	0.006	NP (NDs)
Wisiouty (IIIg/L)	30110-8	0.000033	0.000033	0.002	INO	11	JU.J I	INO	0.000	INE (IND2)

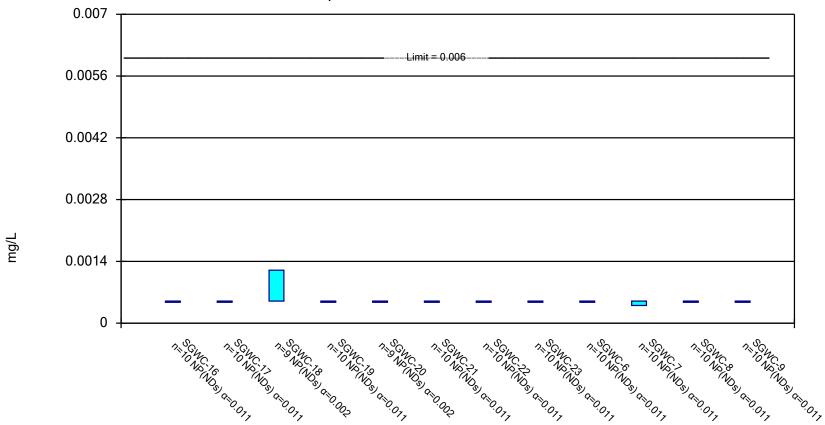
		Scherer Clien	t: Golder Associates	Data: Scherer Ash Pond_CCR		Printed 1/11/2019, 2:01 PM				
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Molybdenum (mg/L)	SGWA-1 (bg)	0.000425	0.000425	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWA-2 (bg)	0.000425	0.000425	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWA-24 (bg)	0.000425	0.000425	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWA-25 (bg)	0.000425	0.000425	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWA-3 (bg)	0.000425	0.000425	0.1	No	10	90	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWA-4 (bg)	0.001775	0.0007627	0.1	No	10	30	No	0.05	Param.
Molybdenum (mg/L)	SGWA-5 (bg)	0.000425	0.000425	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWC-10	0.000425	0.000425	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWC-11	0.000425	0.000425	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWC-12	0.0011	0.000425	0.1	No	10	80	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWC-13	0.000425	0.000425	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWC-14	0.000425	0.000425	0.1	No	10	90	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWC-15	0.000425	0.000425	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWC-16	0.000425	0.000425	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWC-17	0.000425	0.000425	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWC-18	0.000425	0.000425	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWC-19	0.000425	0.000425	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWC-20	0.000425	0.000425	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWC-21	0.000425	0.000425	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWC-22	0.000425	0.000425	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWC-23	0.000425	0.000425	0.1	No	10	100	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWC-6	0.0007	0.000425	0.1	No	10	80	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWC-7	0.002555	0.0009329	0.1	No	10	30	No	0.05	Param.
Molybdenum (mg/L)	SGWC-8	0.000425	0.000425	0.1	No	10	90	No	0.011	NP (NDs)
Molybdenum (mg/L)	SGWC-9	0.0014	0.000425	0.1	No	10	50	No	0.011	NP (normality)
Selenium (mg/L)	SGWA-1 (bg)	0.00012	0.00012	0.05	No	11	90.91	No	0.006	NP (NDs)
Selenium (mg/L)	SGWA-2 (bg)	0.00012	0.00012	0.05	No	11	90.91	No	0.006	NP (NDs)
Selenium (mg/L)	SGWA-24 (bg)	0.00012	0.00012	0.05	No	11	100	No	0.006	NP (NDs)
Selenium (mg/L)	SGWA-25 (bg)	0.00012	0.00012	0.05	No	11	100	No	0.006	NP (NDs)
Selenium (mg/L)	SGWA-3 (bg)	0.00024	0.00012	0.05	No	11	81.82	No	0.006	NP (NDs)
Selenium (mg/L)	SGWA-4 (bg)	0.00041	0.00012	0.05	No	11	81.82	No	0.006	NP (NDs)
Selenium (mg/L)	SGWA-5 (bg)	0.00012	0.00012	0.05	No	11	100	No	0.006	NP (NDs)
Selenium (mg/L)	SGWC-10	0.00012	0.00012	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-11	0.00012	0.00012	0.05	No	11	90.91	No	0.006	NP (NDs)
Selenium (mg/L)	SGWC-12	0.00012	0.00012	0.05	No	11	90.91	No	0.006	NP (NDs)
Selenium (mg/L)	SGWC-13	0.00012	0.00012	0.05	No	11	90.91	No	0.006	NP (NDs)
Selenium (mg/L)	SGWC-14	0.00012	0.00012	0.05	No	11	90.91	No	0.006	NP (NDs)
Selenium (mg/L)	SGWC-15	0.00965	0.00012	0.05	No	11	18.18	No	0.006	NP (Cohens/xfrm)
Selenium (mg/L)	SGWC-16	0.0013	0.00012	0.05	No	11	63.64	No	0.006	NP (normality)
Selenium (mg/L)	SGWC-17	0.00024	0.00012	0.05	No	10	80	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-18	0.01292	0.006396	0.05	No	11	0	ln(x)	0.05	Param.
Selenium (mg/L)	SGWC-19	0.0005	0.00012	0.05	No	11	81.82	No	0.006	NP (NDs)
Selenium (mg/L)	SGWC-20	0.00396	0.00012	0.05	No	11	54.55	No	0.006	NP (normality)
Selenium (mg/L)	SGWC-21	0.00012	0.00012	0.05	No	11	100	No	0.006	NP (NDs)
Selenium (mg/L)	SGWC-22	0.00012	0.00012	0.05	No	11	100	No	0.006	NP (NDs)
Selenium (mg/L)	SGWC-23	0.00026	0.00012	0.05	No	11	81.82	No	0.006	NP (NDs)
Selenium (mg/L)	SGWC-6	0.00034	0.00012	0.05	No	11	81.82	No	0.006	NP (NDs)
Selenium (mg/L)	SGWC-7	0.00012	0.00012	0.05	No	11	90.91	No	0.006	NP (NDs)
Selenium (mg/L)	SGWC-8	0.00012	0.00012	0.05	No	11	100	No	0.006	NP (NDs)
Selenium (mg/L)	SGWC-9	0.00012	0.00012	0.05	No	11	100	No	0.006	NP (NDs)
(5.)	-	=	-		-					` '


Constituent
Thallium (mg/L)

Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)

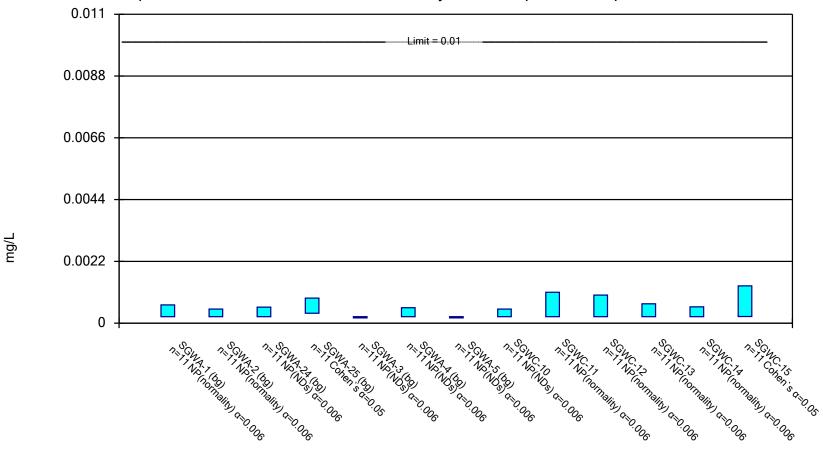
	Scherer	Client: Golder Associates	Data: Schere	er Ash P	ond_CCR	Printed 1/	/11/2019, 2:01 PM		
Well	Upper Lin	n. Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
SGWA-1 (bg)	0.00008	0.0000425	0.002	No	11	81.82	No	0.006	NP (NDs)
SGWA-2 (bg)	0.000042	5 0.0000425	0.002	No	11	100	No	0.006	NP (NDs)
SGWA-24 (bg)	0.000042	5 0.0000425	0.002	No	11	100	No	0.006	NP (NDs)
SGWA-25 (bg)	0.000042	5 0.0000425	0.002	No	11	100	No	0.006	NP (NDs)
SGWA-3 (bg)	0.000042	5 0.0000425	0.002	No	11	90.91	No	0.006	NP (NDs)
SGWA-4 (bg)	0.000042	5 0.0000425	0.002	No	11	100	No	0.006	NP (NDs)
SGWA-5 (bg)	0.000042	5 0.0000425	0.002	No	11	100	No	0.006	NP (NDs)
SGWC-10	0.000042	5 0.0000425	0.002	No	11	90.91	No	0.006	NP (NDs)
SGWC-11	0.000042	5 0.0000425	0.002	No	11	100	No	0.006	NP (NDs)
SGWC-12	0.000042	5 0.0000425	0.002	No	11	100	No	0.006	NP (NDs)
SGWC-13	0.000042	5 0.0000425	0.002	No	11	100	No	0.006	NP (NDs)
SGWC-14	0.000042	5 0.0000425	0.002	No	11	100	No	0.006	NP (NDs)
SGWC-15	0.0001	0.0000425	0.002	No	11	54.55	No	0.006	NP (normality)
SGWC-16	0.000042	5 0.0000425	0.002	No	11	100	No	0.006	NP (NDs)
SGWC-17	0.000042	5 0.0000425	0.002	No	11	100	No	0.006	NP (NDs)
SGWC-18	0.000165	1 0.0001219	0.002	No	10	0	No	0.05	Param.
SGWC-19	0.000042	5 0.0000425	0.002	No	11	100	No	0.006	NP (NDs)
SGWC-20	0.000181	3 0.0001347	0.002	No	10	0	No	0.05	Param.
SGWC-21	0.000042	5 0.0000425	0.002	No	11	100	No	0.006	NP (NDs)
SGWC-22	0.000042	5 0.0000425	0.002	No	11	100	No	0.006	NP (NDs)
SGWC-23	0.000042	5 0.0000425	0.002	No	11	100	No	0.006	NP (NDs)
SGWC-6	0.000042	5 0.0000425	0.002	No	11	100	No	0.006	NP (NDs)
SGWC-7	0.000042	5 0.0000425	0.002	No	11	100	No	0.006	NP (NDs)
SGWC-8	0.000042	5 0.0000425	0.002	No	11	100	No	0.006	NP (NDs)
SGWC-9	0.000042	5 0.0000425	0.002	No	11	100	No	0.006	NP (NDs)

Non-Parametric Confidence Interval


Compliance Limit is not exceeded.

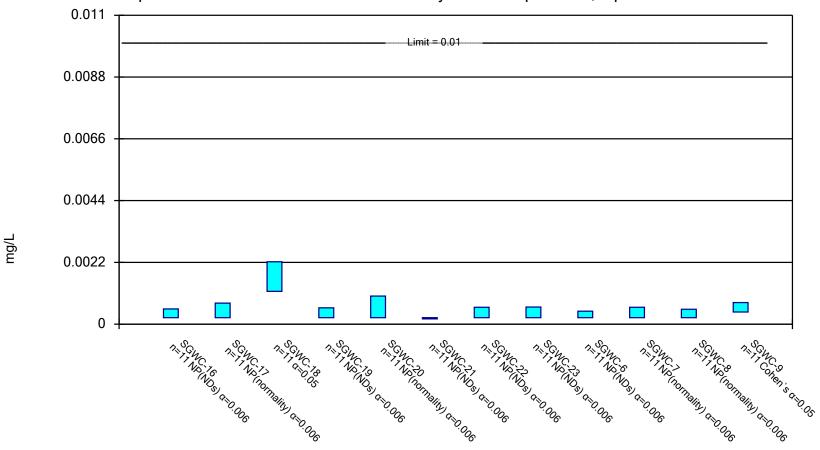
Constituent: Antimony Analysis Run 1/11/2019 1:59 PM View: Interwell Confidence Interval

Non-Parametric Confidence Interval


Compliance Limit is not exceeded.

Constituent: Antimony Analysis Run 1/11/2019 1:59 PM View: Interwell Confidence Interval

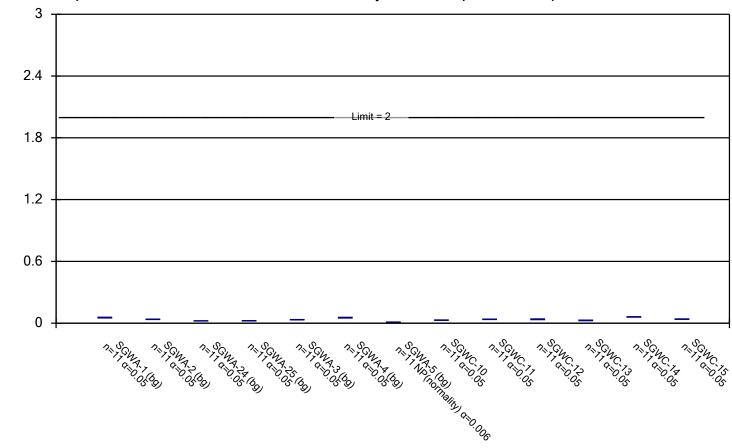
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic Analysis Run 1/11/2019 1:59 PM View: Interwell Confidence Interval

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

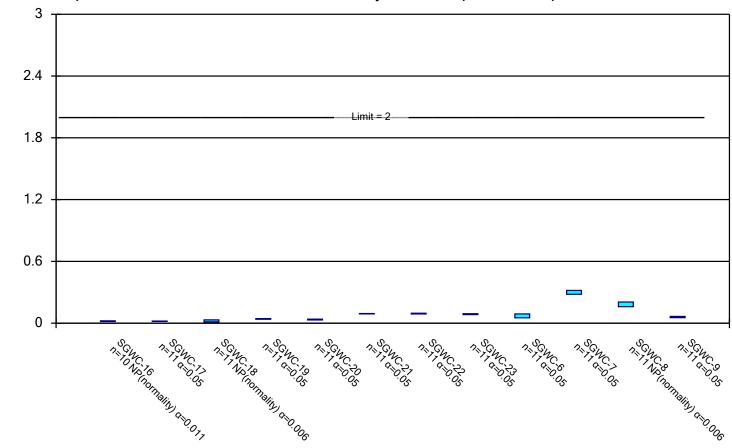


Constituent: Arsenic Analysis Run 1/11/2019 1:59 PM View: Interwell Confidence Interval

mg/L

Parametric and Non-Parametric (NP) Confidence Interval

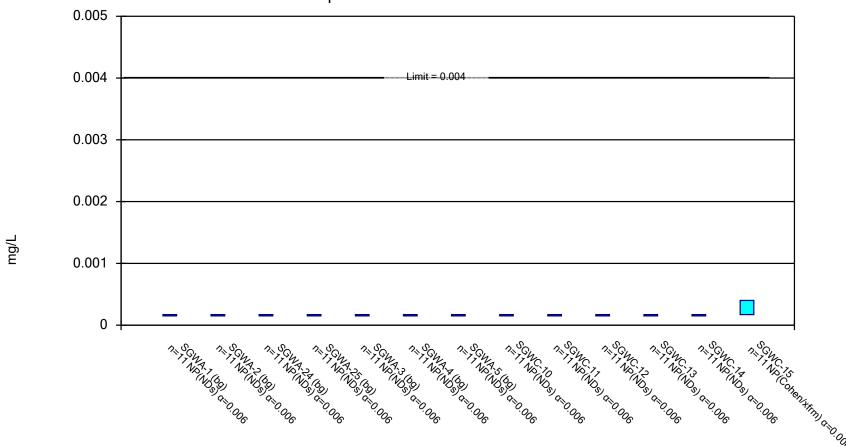
Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Barium Analysis Run 1/11/2019 1:59 PM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

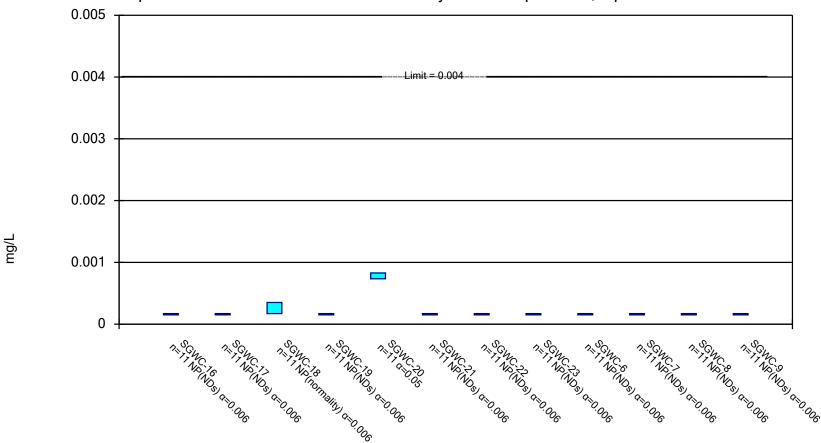
mg/L

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

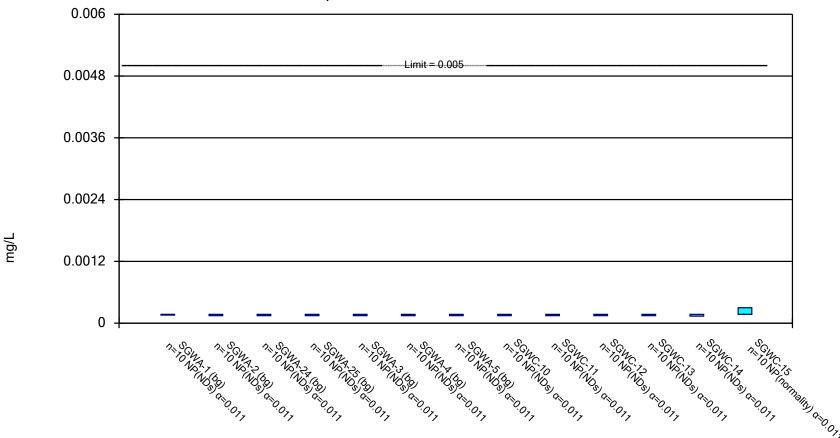
Constituent: Barium Analysis Run 1/11/2019 1:59 PM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

Non-Parametric Confidence Interval

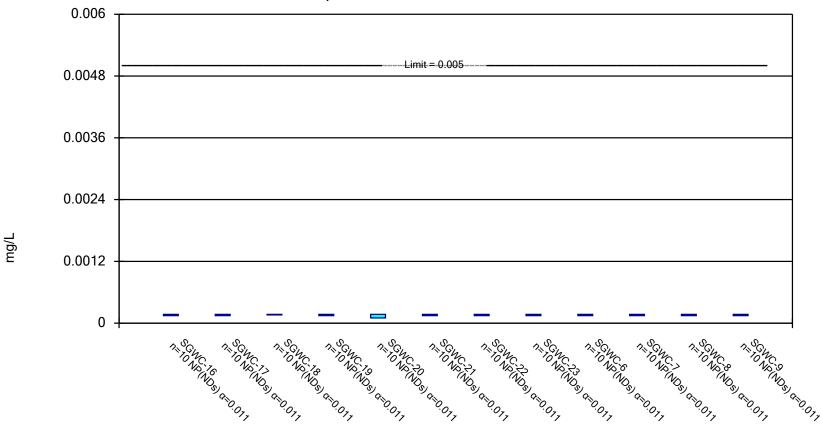

Compliance Limit is not exceeded.

Constituent: Beryllium Analysis Run 1/11/2019 1:59 PM View: Interwell Confidence Interval

Parametric and Non-Parametric (NP) Confidence Interval

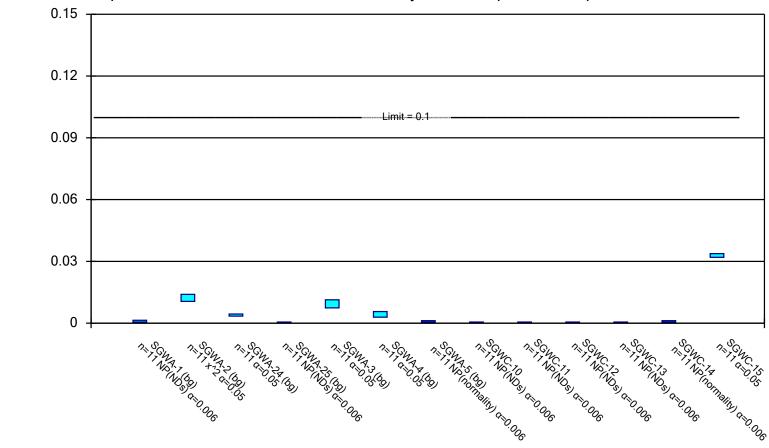

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Beryllium Analysis Run 1/11/2019 1:59 PM View: Interwell Confidence Interval


Non-Parametric Confidence Interval

Compliance Limit is not exceeded.

Constituent: Cadmium Analysis Run 1/11/2019 1:59 PM View: Interwell Confidence Interval


Compliance Limit is not exceeded.

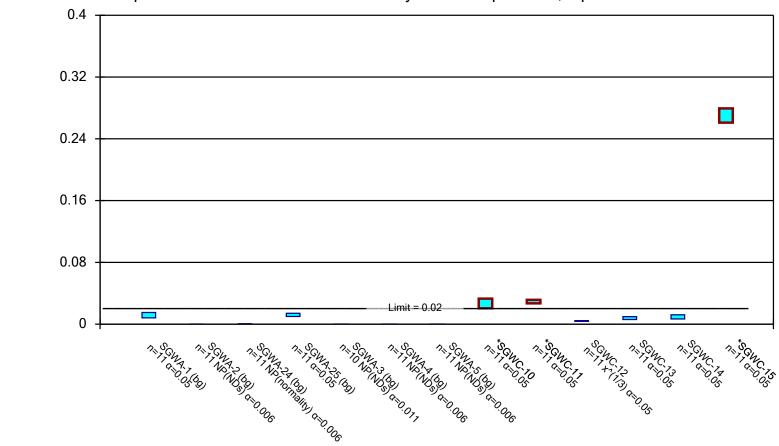
Constituent: Cadmium Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Interval

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

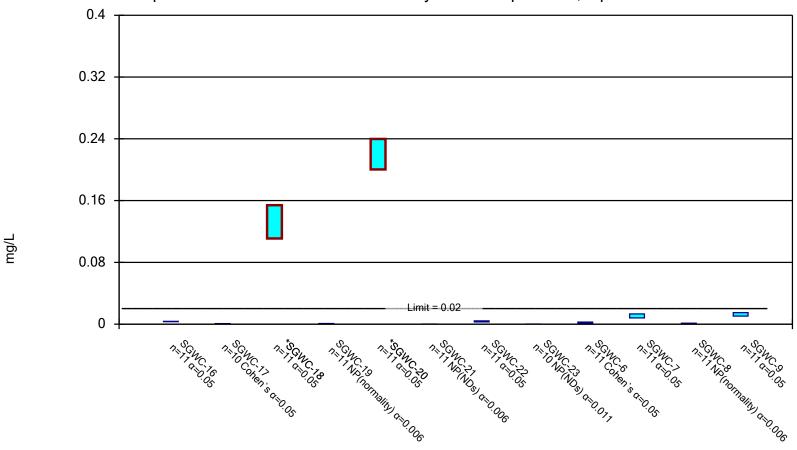
Constituent: Chromium Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Chromium Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

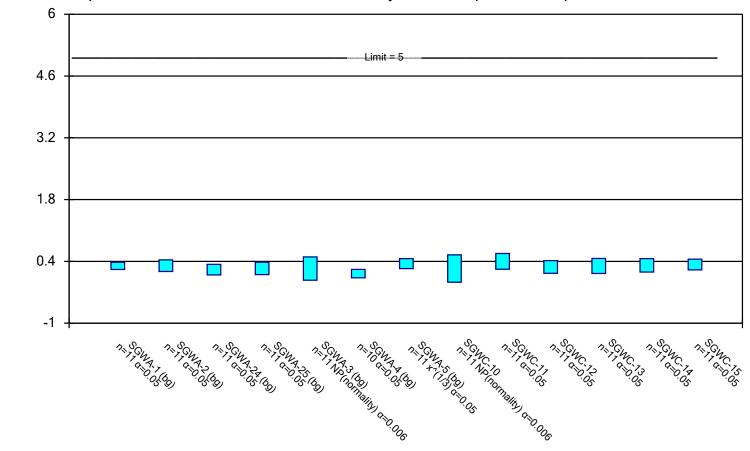
Parametric and Non-Parametric (NP) Confidence Interval


Compliance limit is exceeded.* Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Cobalt Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

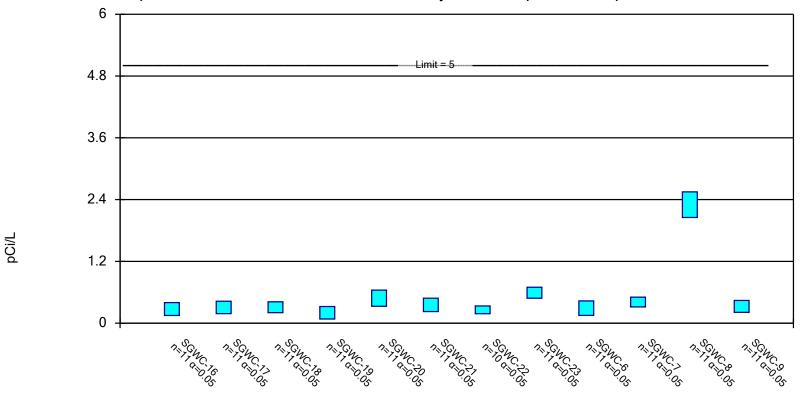
Parametric and Non-Parametric (NP) Confidence Interval

Compliance limit is exceeded.* Normality Test: Shapiro Wilk, alpha based on n.



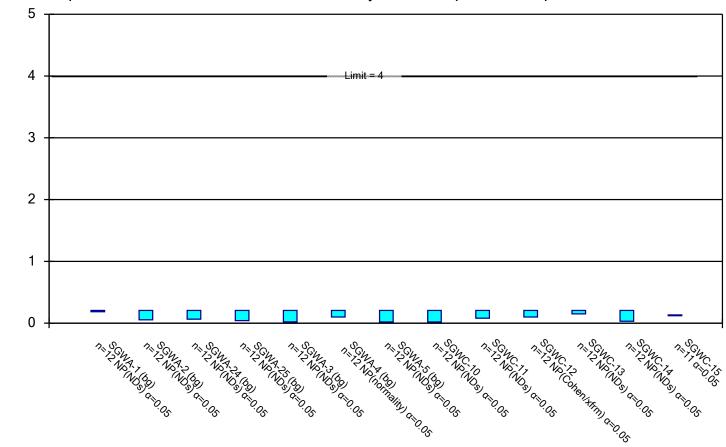
Constituent: Cobalt Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Interval

pCi/L


Parametric and Non-Parametric (NP) Confidence Interval

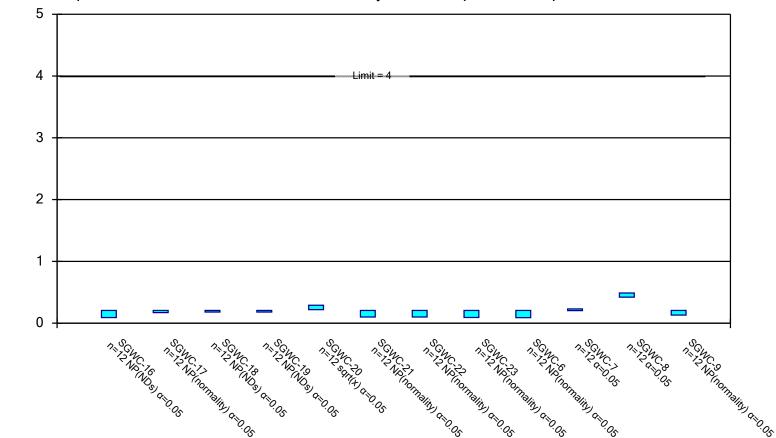
Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Combined Radium 226 + 228 Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Int Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

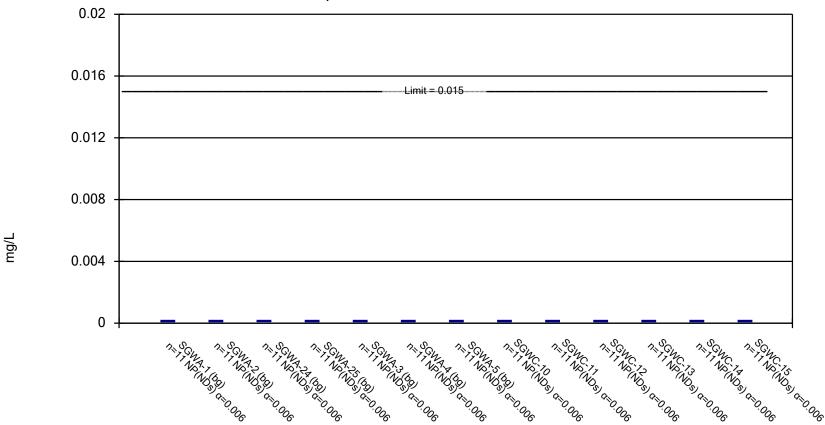

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Combined Radium 226 + 228 Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Int Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

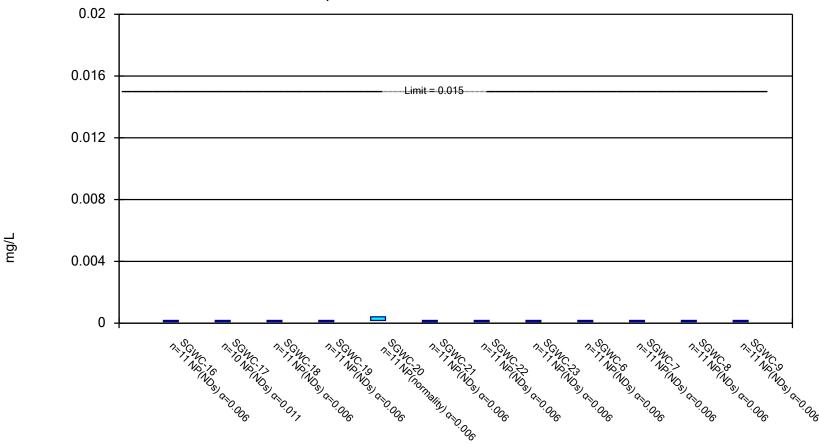
Parametric and Non-Parametric (NP) Confidence Interval


Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

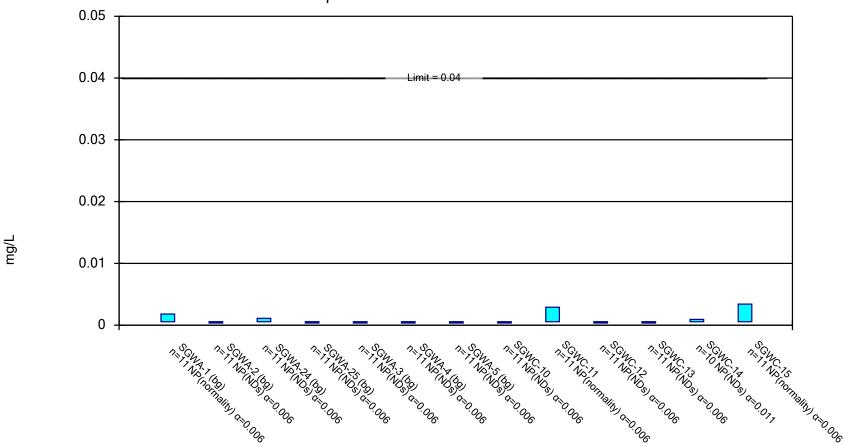
Constituent: Fluoride Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Interval


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

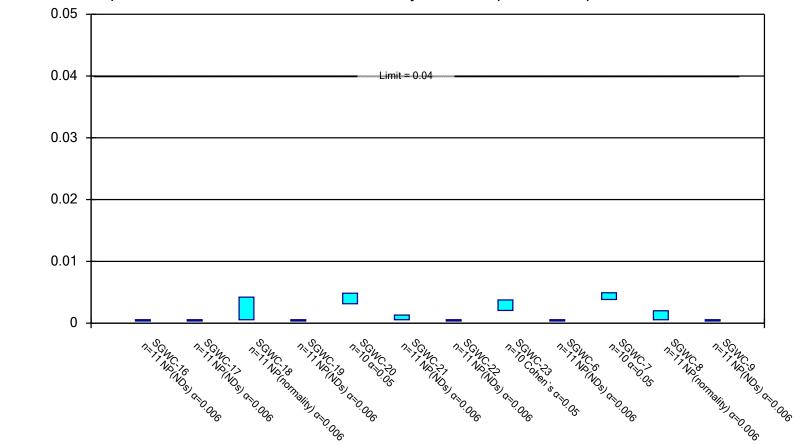

Constituent: Fluoride Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Interval

Compliance Limit is not exceeded.


Constituent: Lead Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Interval

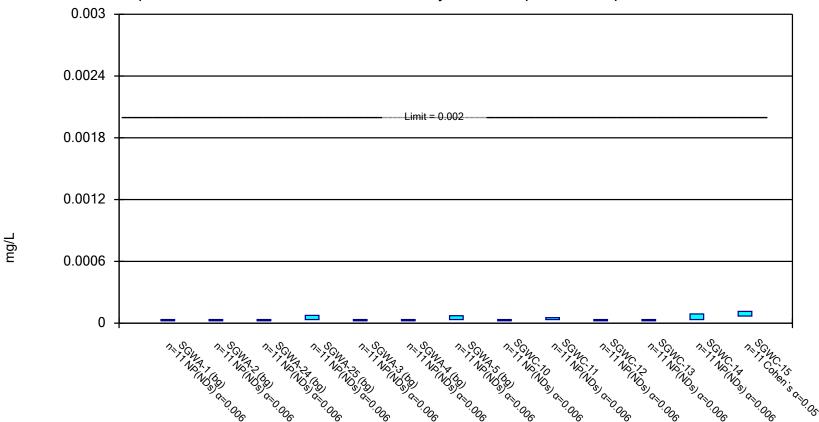
Compliance Limit is not exceeded.

Constituent: Lead Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Interval

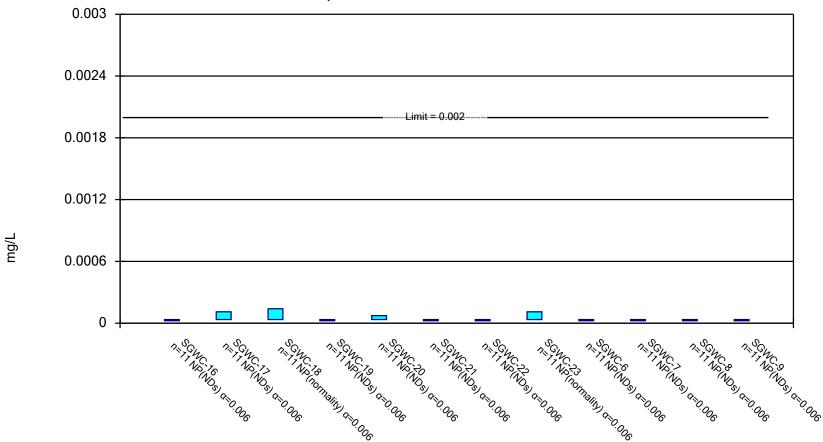

Compliance Limit is not exceeded.

Constituent: Lithium Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Interval

Parametric and Non-Parametric (NP) Confidence Interval

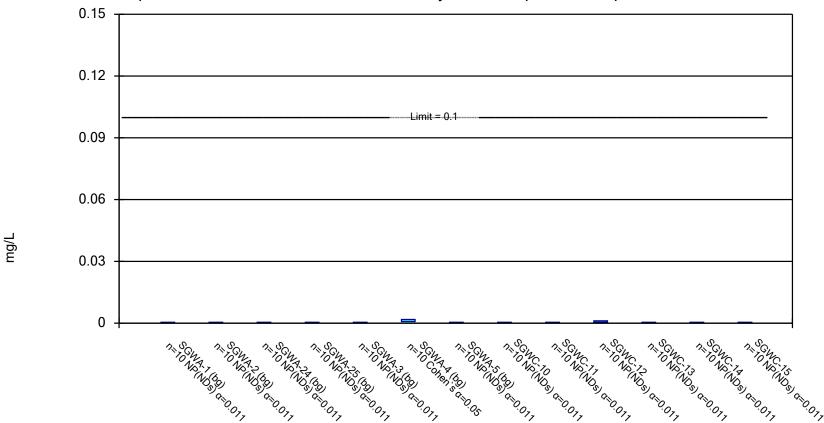

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Lithium Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Interval


Parametric and Non-Parametric (NP) Confidence Interval

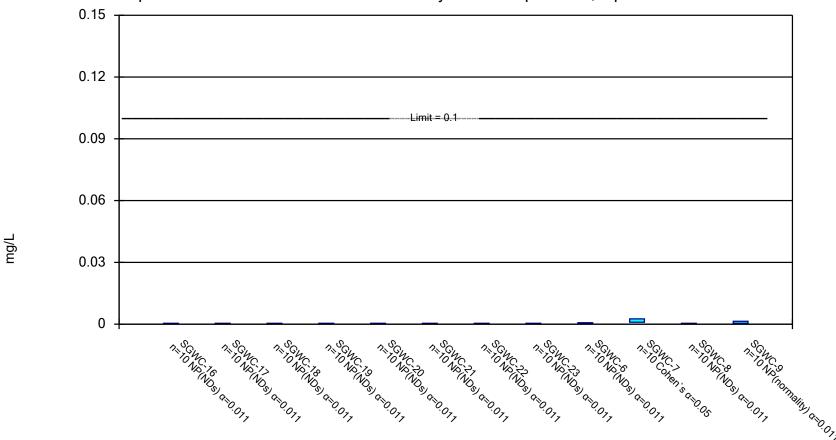
Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Mercury Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Interval

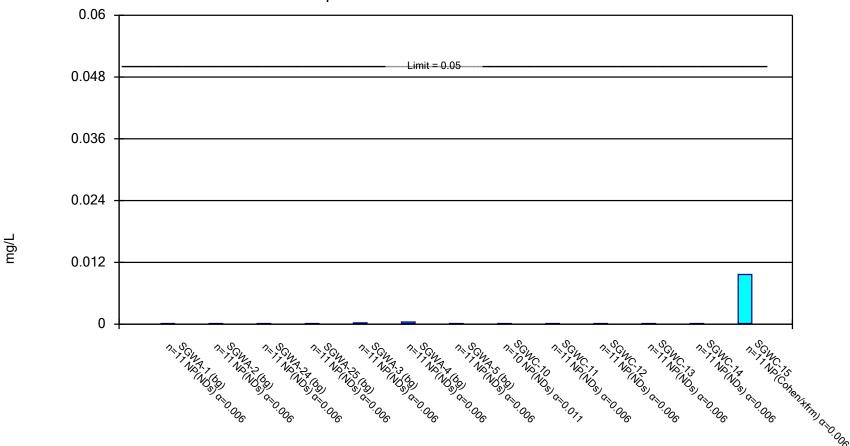

Compliance Limit is not exceeded.

Constituent: Mercury Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Interval

Parametric and Non-Parametric (NP) Confidence Interval

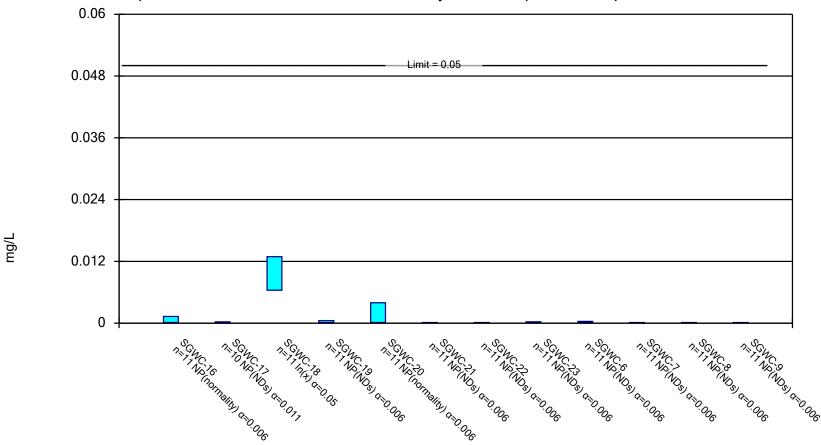

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Molybdenum Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

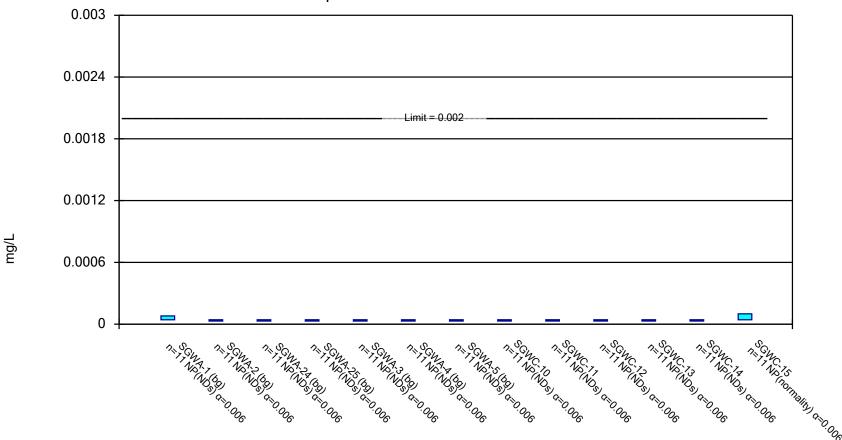

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Molybdenum Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

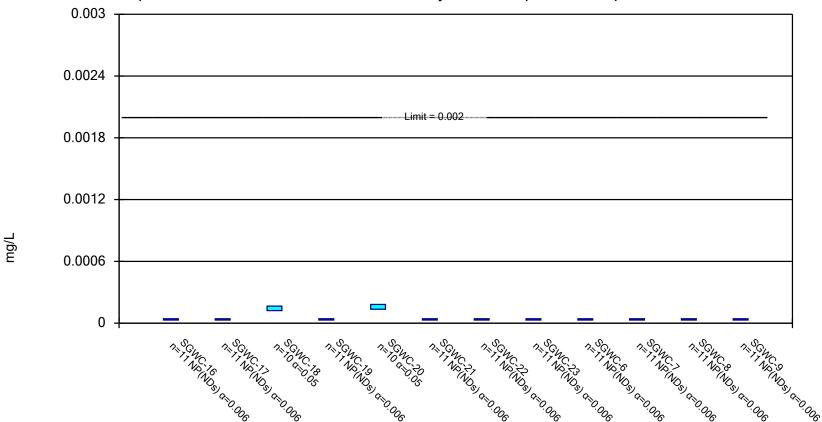

Compliance Limit is not exceeded.

Constituent: Selenium Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Interval


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Selenium Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Interval


Compliance Limit is not exceeded.

Constituent: Thallium Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Interval

Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Thallium Analysis Run 1/11/2019 2:00 PM View: Interwell Confidence Interval

APPENDIX C

Alternate Source Demonstration

REPORT

ALTERNATE SOURCE DEMONSTRATION

Georgia Power Company Plant Scherer AP-1

Submitted to:

Georgia Power Company

Submitted by:

Golder Associates Inc.

5170 Peachtree Road Building 100 Suite 300, Atlanta, Georgia, USA 30341 +1 770 496-1893 166235018 January 14, 2019

Distribution List

Georgia Power Company - Plant Scherer

Joju Abraham, PG - Southern Company Services

Tyler J. Boyles - Georgia Power Company

i

Table of Contents

1.0	INTRODUCTION2				
2.0	SITE	SITE DESCRIPTION AND BACKGROUND			
	2.1	Ash Pond AP-1	2		
	2.2	Geologic and Hydrogeologic Setting	2		
3.0	MARY OF ANALYTICAL RESULTS AND STATISTICAL ANALYSES	3			
	3.1	Statistical Analyses Methods	3		
	3.2	Assessment Monitoring	3		
	3.3	Statistically Significant Levels	4		
4.0	ALTE	RNATE SOURCE DEMONSTRATION	4		
	4.1	Pore-water Chemistry	4		
	4.2	Naturally-Occurring Cobalt in Aquifer Materials	4		
	4.3	Soil to Groundwater Partitioning	8		
	4.4	Naturally-Occurring Cobalt in Regional Groundwater	9		
	4.5	Alternate Source Demonstration Summary	10		
5.0	CONC	CLUSIONS	10		
6.0	REFE	RENCES	10		

Table of Contents - continued TABLES

Table 3.1.1: Site-Specific Groundwater Protection Standards	3
Table 4.2.1: USGS landscape site #5072 and NGDB rock sample W239273; Monroe County, GA	5
Table 4.2.2: Cobalt Concentrations vs. pH at Plant Scherer AP-1	8
Table 4.3.1: Summary of Partitioning Calculations Using EPA Partitioning Coefficients for Cobalt	9
FIGURES	
Figure 1: Site Location Map	\ttached
Figure 2: Site Plan and Well Location Map	\ttached
Figure 3: AP-1 Potentiometric Surface Contour Map - October 2018	\ttached
Figure 4.2.1: Pourbaix diagram demonstrating the speciation and stability fields of cobalt and iron at monitoring wells and pore-water samples at Plant Scherer AP-1	6
Figure 4.2.2: A geochemical simulation demonstrating the stability of iron (ferrihydrite) and cobalt (cobalt carbonate) minerals in equilibrium with SGWC-18 groundwater in response to changes in pH	
Figure 4.2.3: The percent of cobalt dissolved or adsorbed to ferrihydrite in response to changes in pH in groundwater sample SGWC-18	7

APPENDICES

APPENDIX AStatistical Analyses

APPENDIX BAnalytical Data

APPENDIX CUSGS Open-File Report

Certification

This Alternate Source Demonstration, Georgia Power Company Plant Scherer AP-1, Juliette, Monroe County, Georgia, has been prepared in compliance with applicable United States Environmental Protection Agency (USEPA) coal combustion residual (CCR) rule (40 Code of Federal Regulations [CFR] 257 Subpart D; published in 80 FR 21302-21501, April 17, 2015) under the direction of a licensed professional engineer with Golder Associates Inc.

I hereby certify that this *Alternate Source Demonstration, Georgia Power Company Plant Scherer AP-1*, located at 10986 Georgia 87, Juliette, Monroe County, Georgia 31046 has been prepared to meet the requirements of 40 CFR §257.95(g)(3)(ii).

Rachel P. Kirkman, PG

1-14-2019

Date

Georgia Registered Professional Geologist No. 1756

W. Randall Sullivan, P.E.

1-14-2019

Date

Georgia Registered Professional Engineer No. 13030

Golder and the G logo are trademarks of Golder Associates Corporation

https://golderassociates.sharepoint.com/sites/24912g/project files/200 reports/alternate source demonstrations/ap-1 january 2019_asd/final/scherer ap1_asd_app iv_final_1.14.2019.docx

1.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (40 Code of Federal Regulations [CFR] 257 Subpart D; published in 80 FR 21302-21501, April 17, 2015) (CCR Rule or The Rule), this *Alternate Source Demonstration Plant Scherer AP-1* (ASD) has been prepared to document an alternate source for Statistically Significant Levels (SSLs) calculated at Georgia Power Company's Plant Scherer Ash Pond 1 (AP-1) during assessment monitoring. This document satisfies the requirements of §257.95(g)(3)(ii) which allows the owner or operator to demonstrate that a source other than the CCR Unit has caused an SSL and that the SSL was the result of an alternate source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

As documented by this report, the SSLs for cobalt are attributed to naturally-occurring cobalt in subsurface aquifer materials and are not caused by a release from the CCR unit.

2.0 SITE DESCRIPTION AND BACKGROUND

Plant Scherer is located in northeast Monroe County, GA, and is operated by the Georgia Power Company (GPC). The Plant is located approximately 5 miles south of Juliette, GA. The property occupies more than 12,000 acres and is bounded on the south by Lake Juliette. A site location map is included as Figure 1, Site Location Map.

2.1 Ash Pond AP-1

An ash pond (AP-1) and a cooling pond have been developed on site, and AP-1 is situated on a topographic high and occupies approximately 476 acres.

The groundwater monitoring system for AP-1 consists of twenty-five (25) monitoring wells screened in the uppermost aquifer as shown on Figure 2. Five (5) wells are situated upgradient of AP-1. Figure 2, Site Plan and Well Location Map identifies the location of AP-1 at Plant Scherer and shows the monitoring well network for AP-1.

2.2 Geologic and Hydrogeologic Setting

The site is situated within the Piedmont Physiographic Province of central Georgia, which is characterized by gently rolling hills and narrow valleys, with locally pronounced linear ridges. AP-1 is located in a topographically high area on the property, with several relatively small, intermittent and perennial creeks and streams surrounding the pond, creating radial surface water drainage downslope of the pond. Topographic relief across the site is greater than 200 feet, with a natural topographic high of over 570 feet above mean sea level (ft. msl) occurring along the topographic ridge west of AP-1, and a topographic low of less than 380 ft. msl in the eastern portion of the site near Berry Creek. Based on geologic mapping at the site, the plant property is primarily underlain by fine-to medium-grained, massive, poorly-jointed, feldspathic biotite gneiss, which has the potential to host iron and manganese oxides (Golder, 2018).

The groundwater table at the site is laterally consistent and generally occurs within overburden overlying fresh bedrock, which consists of residual soils and a transitionally weathered zone typical of Piedmont settings. Chemical weathering of bedrock results in a zone of enhanced permeability, which is referred to as the transitionally weathered zone, and is characterized by heterogeneously interlayered, fresh to completely weathered (saprolitic) rock. Saprolitic soils and/or saprolitic rock range in thickness across the site and the top of rock surface mimics topography. Bedrock aquifer systems are recharged by groundwater that is stored in the overburden, which slowly infiltrates underlying bedrock aquifer systems by moving through preferentially-weathered discontinuities in the bedrock mass, such as foliation/compositional layering, joints, and faults. A potentiometric map for the site is presented as Figure 3, AP-1 Potentiometric Surface Contour Map – October 2018.

3.0 SUMMARY OF ANALYTICAL RESULTS AND STATISTICAL ANALYSES

Following the October 2017 sampling event, as part of detection monitoring, Plant Scherer identified statistically-significant increases (SSIs) of Appendix III parameters above the upper prediction limits established based on the site-specific statistical plan. As a result, the AP-1 unit has transitioned to assessment monitoring. The following sections summarize the assessment monitoring plan for AP-1 and present the statistical analysis method for evaluation of assessment monitoring constituents (i.e., Appendix IV parameters) as they pertain to this ASD.

3.1 Statistical Analyses Methods

During assessment monitoring, concentrations of Appendix IV constituents are compared to an applicable Groundwater Protection Standard (GWPS). As described in 40 CFR §257.95(h)(1-3) the GWPS is:

- The maximum contaminant level (MCL) established under §§141.62 and 141.66 of this title (the "MCL").
- 2) Where an MCL has not been established:
 - i) Cobalt 6 micrograms per liter (ug/l);
 - ii) Lead 15 ug/l;
 - iii) Lithium 40 ug/l; and
 - iv) Molybdenum 100 ug/l.
- Background levels for constituents where the background level is higher than the MCL or rule-specified GWPS.

As specified in 40 CFR §257.95(h), the GWPS is the Maximum Contaminant Level (MCL) or the background concentration for constituents for which an MCL has not been established. Since an MCL has not been established for cobalt, the GWPS is the background concentration. The upper tolerance limits (UTLs) are used to calculate background limits from pooled upgradient well data to determine the background concentration/GWPS. Table 3.1.1, Site-Specific Groundwater Protection Standards, presents the data used for statistical comparison of Appendix IV data at AP-1.

Table 3.1.1: Site-Specific Groundwater Protection Standards

Analyte	Units	MCL	Site Specific Upper Tolerance Limit	Site-Specific Groundwater Protection Standard Used for Assessment Monitoring
Cobalt	mg/L	None	0.02	0.02

After the GWPS is established, confidence intervals are then constructed on downgradient wells for each of the Appendix IV parameters using the GWPS for comparison. Only when the entire confidence interval is above a GWPS is the constituent considered to exceed the GWPS.

3.2 Assessment Monitoring

On January 15, 2018, Assessment Monitoring was initiated at Plant Scherer AP-1. Pursuant to 40 CFR §257.95(a) monitoring wells were sampled for all Appendix IV parameters in March as the initial assessment sampling event. In June the first semiannual assessment monitoring event was completed by sampling

monitoring wells for all Appendix III constituents and those Appendix IV constituents that were detected (had a reportable data value) in the initial March 2018 groundwater samples.

The June 2018 Appendix IV data were compared to the GWPS using confidence intervals. Statistical plots presenting the confidence intervals for AP-1 are presented in Appendix A, Statistical Analyses. Additionally, time series plots for Appendix IV groundwater quality data at AP-1 are provided in Appendix A.

3.3 Statistically Significant Levels

Review of confidence intervals in Appendix A indicates SSLs of cobalt are identified at monitoring wells SGWC-11, SGWC-15, SGWC-18 and SGWC-20. On October 15, 2018, Plant Scherer provided notification of SSL exceedances as required by 40 CFR §257.95. The next chapter provides documentation of an alternate source for cobalt in site groundwater.

4.0 ALTERNATE SOURCE DEMONSTRATION

There are multiple lines of evidence that support the conclusion that the SSLs of cobalt at AP-1 are not the result of impact by AP-1 but from an alternate source instead; specifically, that cobalt is naturally occurring in aquifer materials at the site. The following information supports the conclusion that cobalt SSLs are not the result of a release from AP-1:

- Cobalt has not been detected in porewater samples above the laboratory reporting limit. Cobalt concentrations in porewater samples from AP-1 are estimated and significantly below those detected at groundwater wells.
- Naturally-occurring cobalt is present in soils/sediment, saprolite, and bedrock at Plant Scherer and regionally.
- Naturally-occurring cobalt is present in regional groundwater.
- There are no statistical trends for cobalt in wells exhibiting SSLs.

4.1 Pore-water Chemistry

During January 2019, samples of pore-water from within AP-1 were collected and analyzed. Interstitial monitoring probes B-102A, B-102B, B-103A, B-103B, B-104A and B-104B were sampled for total cobalt. These piezometers are screened in the CCR material at AP-1. Results of these analyses are presented in Appendix B, Analytical Data. Review of analytical data reports indicates the absence of cobalt in pore-water samples above laboratory reporting limits. Total cobalt was not detected in pore-water samples above the reporting limit (RL; 0.0025 mg/L). Estimated concentrations, slightly above the MDL (0.000075 mg/L) were identified at interstitial probes B-102A, B-102B, B-103A, B-103B, and B-104A. The estimated concentrations of cobalt in porewater are below the risk-based screening level (0.006 mg/L) and are significantly below concentrations observed in site groundwater. At the measured pH range of AP-1 pore-water (8.7 to 11.9 standard units), cobalt mobility is limited, as described below and graphically presented in Figure 4.2.2. As such, the cobalt in site groundwater cannot reasonably be caused by a release from AP-1.

4.2 Naturally-Occurring Cobalt in Aquifer Materials

Naturally-occurring cobalt is present in soils/sediment, saprolite, and bedrock at and near AP-1 as well as at U.S. Geological Survey test holes in Monroe County, GA (Table 4.2.1). For reference, naturally-occurring cobalt in U.S. soils occurs at an average concentration of 29 mg/kg (Shacklette & Boerngen, 1984). Cobalt may be present in mineral form as arsenides, carbonates, sulfides and oxides (Hem, 1989; Smith and Carson, 1981). During weathering of these minerals (i.e., dissolution and/or oxidation), any cobalt is typically released and redistributed to iron or manganese (hydr)oxides (Butt et al., 2000) or other sorbent (e.g., clays, organic matter).

However, under low-pH conditions, the formation of such (hydr)oxides is inhibited, leading to increased dissolved cobalt levels and increased mobility in groundwater (Nordstrom and Alpers, 1999).

Mineralogical results obtained by X-ray diffraction (XRD) from on-site aquifer solids correlate with those reported regionally (included in Appendix B). The mineralogical composition of the saprolitic soils represents a typical weathering profile. The mineralogical compositions of deeper samples are more closely related to the original parent materials and show less indication of weathering. Trace levels of jarosite were identified in some samples corresponding to the intermediate aquifer (64.5ft bgs. and 67.3 ft bgs; PZ-9I and PZ-40I). Jarosite, an acid sulfate salt containing potassium and iron, typically forms during the oxidative weathering of iron-rich sulfide deposits under acidic conditions (Cook, 1978; Nordstrom and Alpers, 1999). Thus, the formation of jarosite during geological weathering at depth may infer historically low-pH conditions in some locations in the saprolite surrounding AP-1. During this weathering, cobalt may have been released as well and remained mobile in a dissolved state in groundwater.

Table 4.2.1: USGS landscape site #5072 and NGDB rock sample W239273; Monroe County, GA

Element Units		Top 5cm	A Horizon C Horizon ^[3]		Bedrock ^[4]	
Cobalt ^[2] mg/kg ^[1]		21.3	21.3	26.9	87 - 96	
Site-specific element data (average of site samples)		Site-specific surface data	Shallow site data (30-40 ft. bgs.)	Intermediate site data (40-65 ft. bgs.)	Bedrock site data (90-106 ft. bgs.)	
Cobalt mg/kg		Not Available	33	22.3	2.9	

Notes:

- [1] mg/kg milligrams per kilogram
- [2] Data available from US Geological Survey, Geochemical and Mineralogical Maps for Soils of the Conterminous United States, Open-File Report 2014-1082 (Appendix C, USGS Open-File Report).
- [3] USGS landscape site #5072 is located approximately 8 miles southwest of Plant Scherer.
- [4] USGS landscape site #W239273 is located approximately 1,000 feet southeast of Plant Scherer.

Cobalt co-precipitation, adsorption, or inclusion within manganese and iron (hydr)oxides typically controls cobalt mobility in the environment (Hem, 1989). As determined from speciation modeling, at the pH and redox conditions measured in monitoring wells at Plant Scherer, cobalt will form the divalent cation Co⁺² when dissolved, as shown in Figure 4.2.1, which is a Pourbaix diagram illustrating cobalt speciation for a range of pH/redox conditions. Superimposed on the cobalt predominance fields are those of iron, including the stability field for ferrihydrite [Fe(OH)₃], an iron hydroxide and common host mineral for cobalt. As shown in the figure, under more acidic and reducing conditions, this ferrihydrite dissolves, thereby releasing any sorbed/entrained cobalt (Figure 4.2.1). Monitoring wells SGWC-11, 15, 18, and 20 all have a measured pH and redox combination that locates them in the dissolved Fe⁺² field, or on the boundary line where the transition from ferrihydrite to dissolved iron occurs, supporting the presence of ferrihydrite as a likely control on cobalt mobility.

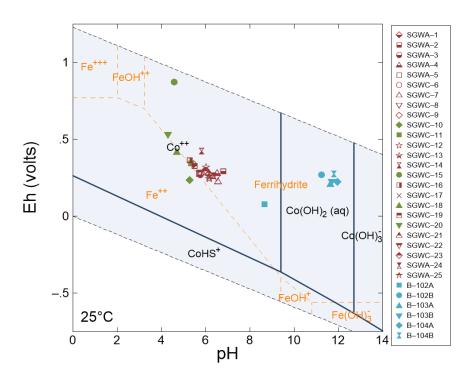


Figure 4.2.1: Pourbaix diagram demonstrating the speciation and stability fields of cobalt and iron at monitoring wells and pore-water samples at Plant Scherer AP-1

(Note: Cobalt /Iron adsorptive phase speciation figure created in Geochemist's Workbench "Act2" module using the following parameters:

Activity=Molarity; $a[Co] = 10^{-6}$; $a[Fe]=10^{-5.301}$; Generalized parameters: Temperature 25C, P= 1.013 bars; $a[SO4]=10^{-3}$; $a[Cl]=10^{-3}$; $a[Na]=10^{-3}$; $a[Mg]=10^{-3}$; $a[Mg]=10^{-3}$).

Geochemical modeling further corroborated the dissolution of solid phase cobalt and iron minerals at low pH (<5) (Figure 4.2.2). The geochemical computer code PHREEQC (Parkhurst and Appelo, 2013) was used to simulate the stability of iron (as ferrihydrite) and cobalt (as cobalt carbonate - CoCO₃) in equilibrium with groundwater in response to changes in pH. Groundwater from monitoring well SGWC-18 was used as the starting solution. Under the conditions modeled, these two minerals are unstable at lower pH (<5), resulting in the presence of dissolved iron and cobalt. Additional geochemical modeling was used to simulate the response of adsorbed cobalt species on ferrihydrite to changes in pH using the same geochemical conditions and groundwater. As seen in Figure 4.2.3, full desorption of any cobalt adsorbed to ferrihydrite occurs at pH < 5. At higher pH, cobalt is more apt to be adsorbed on ferrihydrite and less mobile in groundwater, leading to lower dissolved levels of cobalt in the aquifer. Thus, whether cobalt occurs in the form of a carbonate mineral or is adsorbed to a metal (hydr)oxide, at low pH (<5), cobalt is released to groundwater.

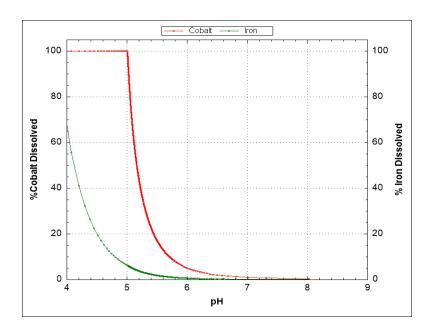
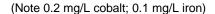



Figure 4.2.2: A geochemical simulation demonstrating the stability of iron (ferrihydrite) and cobalt (cobalt carbonate) minerals in equilibrium with SGWC-18 groundwater in response to changes in pH

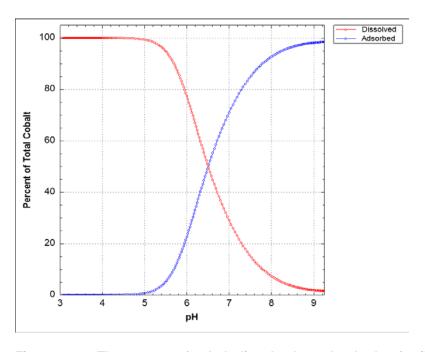


Figure 4.2.3: The percent of cobalt dissolved or adsorbed to ferrihydrite in response to changes in pH in groundwater sample SGWC-18

(Note: Ferrihydrite [10-5] strong and -10-4] weak sites; 0.2 mg/L cobalt)

Based on the cobalt Pourbaix diagram and the geochemical simulations illustrated in Figures 4.2.1 to 4.2.3, pH is the likely control on dissolved cobalt concentrations and the reason why cobalt is detected above background levels in some monitoring wells around AP-1. This is further demonstrated in Table 4.2.2, which indicates that cobalt is not observed at concentrations above analytical reporting limits where pH is greater than 8. Further, piezometers PZ-17I, PZ-39S, PZ-42I, and PZ-44I, each have pH levels that are circum-neutral and low cobalt levels, even though they are directly adjacent to monitoring wells in which conditions are more acidic and cobalt is observed above background levels. Therefore, it appears that small groundwater pockets exist where low pH (<5) results in elevated levels of naturally-occurring cobalt.

Table 4.2.2: Cobalt Concentrations vs. pH at Plant Scherer AP-1

Table 4.2.2. Cobar Concentrations vo. pri at Flant Concentration								
Well ID	Location/Description	pH (S.U.)	Measured Cobalt (mg/L) ^[1]					
B-102A	CCR Pore-water	8.7	0.0017J					
B-102B	CCR Pore-water	11.2	0.00096 J					
B-103A	CCR Pore-water	11.6	0.00078 J					
B-103B	CCR Pore-water	11.7	0.00021 J					
B-104A	CCR Pore-water	11.9	0.00019 J					
B-104B	CCR Pore-water	11.8	< 0.000075					
SGWC-10	Downgradient	5.3	0.03					
SGWC-11	Downgradient	5.3	0.02					
SGWC-15	Downgradient	4.6	0.27					
SGWC-18	Downgradient	4.7	0.21					
SGWC-20	Downgradient	4.3	0.16					
PZ-17I	Adjacent to SGWC-15	7.0	<0.0004					
PZ-39S	Adjacent to SGWC-18	7.3	0.0005					
PZ-42I	PZ-42I Adjacent to SGWC-20		0.006					
PZ-44I Adjacent to SGWC-10 and SGWC-11		7.1	0.002					

NOTE:

4.3 Soil to Groundwater Partitioning

To evaluate reasonably expected concentrations of naturally occurring cobalt in groundwater produced as a result of leaching from the soil samples, soil-to-groundwater partitioning calculations were performed, and are presented in Table 4, Summary of Partitioning Calculations Using EPA Partitioning Coefficients. The Kd is the ratio of a constituent concentration in the solid to the constituent concentration in surrounding solution, at equilibrium. A literature search of partitioning coefficients (Kd) was performed, which resulted in wide range of Kd values for cobalt. Partitioning calculations were performed using the range of published Kd values. The maximum

^{[1] &}quot;J" indicates the substance was detected at such low levels that the precision of the laboratory instruments could not produce a reliable value. Therefore, the value displayed (value J) is qualified by the laboratory as an estimated number.

concentrations of cobalt in historical groundwater samples for the facility are within or less than the simulated range utilizing the published Kd values (EPA, 1996).

Based on the partitioning calculations presented in Table 4, the concentrations of cobalt measured in soil samples collected within the facility boundary are simulated to produce groundwater concentrations similar to or greater than those observed in samples from downgradient monitoring wells. The table below presents the results of the partitioning calculations and compares them to maximum observed detections and the highest detections from the June 2018 water quality sampling event.

Table 4.3.1: Summary of Partitioning Calculations Using EPA Partitioning Coefficients for Cobalt

		Kd (L/kg)	Groundwate			
Well ID/Sample ID	Soil and Rock Cobalt Concentration (mg/kg)	From EPA Regional Screening Level Table (November 2018)	Based on Literature Kd Value	Minimum Calculated Groundwater Concentration (mg/L)	Maximum Calculated Groundwater Concentration (mg/L)	Maximum Observed Cobalt Concentration in Monitoring Well (mg/L)
PZ-36S (31.5')	24	45	0.533		2.089	0.300 (SGWC-15) 0.210 (SGWC-18) 0.261 (SGWC-20)
PZ-9I (67.3')	9.8		0.218			
PZ-40I (43.4')	36		0.800	0.051		
PZ-42I (37.5')	42		0.933			
PZ-42I (92.0')	3.5		0.078			
PZ-44I (29.5')	94		2.089			
PZ-44I (51.5')	21		0.467			
PZ-44I (106')	2.3		0.051			

The partitioning calculations indicate that concentrations of cobalt in native soils in the area around AP-1 are within the range, and exceeding, the observed concentrations of cobalt in site groundwater. As a result, it is likely that the cobalt identified in the groundwater is leaching from the naturally-occurring soils and is not originating from AP-1.

4.4 Naturally-Occurring Cobalt in Regional Groundwater

USGS Publication, *Naturally Occurring Contaminants in the Piedmont and Blue Ridge Crystalline-Rock Aquifers and Piedmont Early Mesozoic Basin Siliciclastic-Rock Aquifers, Eastern United States, 1994-2008*, provides information on naturally-occurring cobalt in regional groundwater. Regional pH in the Piedmont and Blue Ridge Crystalline-Rock aquifers and Piedmont Early Mesozoic Basin Siliciclastic-Rock aquifers range on average between 4.7 to 5.5. Underlying geology strongly controls groundwater pH. Where quartz-rich metamorphic or felsic rocks dominate, up to 81% of groundwater locations have pH values less than 6.5. In these locations low pH also promoted the dissolution of metal (hydr) oxides, a primary component controlling trace metals groundwater.

Constituents of potential concern, including cobalt, were identified on the basis of drinking water exposure guidelines proposed by the USEPA for sources of public drinking water, including MCLs, and health-based

benchmarks (HHBs) (USGS, 2013). This report concludes that at a pH below 6.5, greater than 20 to 50 percent of samples exceed the highest common reporting level (HCRL) or HHB for cobalt in regional groundwater. The report further supports the interpretation that pH is a major factor controlling the chemical composition of groundwater from siliciclastic-rock and crystalline-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces. (USGS, 1994-2008). Consistent with the findings of the present study, the report finds that cobalt can be adsorbed by iron and manganese oxides while subsequent dissolution of these minerals under reducing or low-pH conditions will mobilize any sorbed constituents, including cobalt.

4.5 Alternate Source Demonstration Summary

The evaluation presented in this document demonstrates the statistically-significant levels of cobalt identified in groundwater are the result of naturally-occurring cobalt present in soils, saprolite and bedrock and not due to releases from the CCR unit.

Based on information provided regarding the regional and local geology as well as natural groundwater conditions, naturally-occurring cobalt is present in soils and saprolite surrounding AP-1. Pockets of low-pH groundwater have led to the release and mobilization of naturally-occurring cobalt into groundwater. The presence of jarosite in the intermediate aquifer indicates the low pH likely represents an historic artefact of sulfide weathering. As such, the low-pH conditions and associated cobalt are not caused by AP-1, as the pore-water in AP -1 is alkaline and contains no or very low detectable cobalt concentrations.

These lines of evidence, namely the lack of cobalt in CCR pore-water, the natural abundance of cobalt in aquifer solids, the natural occurrence of cobalt in upgradient groundwater (topographically higher in the landscape), and the lack of any statistical trends in the analytical data, strongly support a natural source of cobalt to groundwater at the site. Therefore, the CCR unit is not the source for the statistical exceedance of cobalt in the detection monitoring network. This summary serves as an "Alternate Source Demonstration" prepared for Plant Scherer in accordance with §257.95(g)(3)(ii).

5.0 CONCLUSIONS

This ASD has been prepared in response to SSLs identified for cobalt in groundwater monitoring wells established for AP-1 at Plant Scherer following the June 2018 sampling event. In accordance with §257.95(g)(3), this ASD addresses SSLs of cobalt at monitoring wells SGWC-10, SGWC-11, SGWC-15, SGWC-18, and SGWC-20.

Review of analytical results and statistical evaluations indicate that the cobalt exceedances identified are not the result of a release from AP-1 at Plant Scherer but can be attributed to naturally-occurring cobalt in subsurface aquifer materials. Therefore, no further action (i.e., Assessment of Corrective Measures) is warranted, and the Plant Scherer AP-1 will remain in Assessment Monitoring.

6.0 REFERENCES

Butt, CRMI, M. J. Lintern, and RRI'L. Anand, *Evolution of regoliths and landscapes in deeply weathered terrain—implications for geochemical exploration*, Ore Geology Reviews 16, no. 3-4 (2000): 167-183.

Cook, Robert B. *Minerals of Georgia: Their Properties and Occurrences*, State of Georgia, Department of Natural Resources, The Geologic and Water Resourced Division, (1978).

Golder Associates Inc., Statistical Analysis Plan (2018)

Golder Associates Inc., *Geologic and Hydrogeologic Summary Report*, Plant Scherer Ash Pond 1 Monroe County, Georgia (2018).

- Hem, John David, and Geological Survey (US). Study and interpretation of the chemical characteristics of natural water. (1989): 263.
- Nordstrom, D. Kirk, and Alpers, Charlie. *Geochemistry of acid mine waters,* The environmental geochemistry of mineral deposits (1999).
- Parkhurst, David L., and C. A. J. Appelo, Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. No. 6-A43. US Geological Survey, (2013).
- Shacklette, Hansford T., and Josephine G. Boerngen, *Element concentrations in soils and other surficial materials of the conterminous United States*, (1984).
- Smith, H. I. C., and B. L. Carson, *Trace metals in the environment. Volume 6: cobalt. An appraisal of environmental exposure*, Ann Arbor, MI: Ann Arbor Science (1981).
- Smith, Kathleen S., *Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits,* The Environmental Geochemistry of Mineral Deposits. Part B: Case Studies and Research Topics 6 (1999): 161-182.
- USEPA. Federal Register. Volume 80. No. 74. Friday April 17, Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule/ [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER] (2015).
- USGS Geochemical and Mineralogical Maps for Soils of the Conterminous United States, Open-File Report 2014-1082, Landscape site #5072; NGDB rock sample W239273; Monroe County, GA, Mineral Resources (https://minerals.usgs.gov/) / Online Spatial Data (/) / Geochemistry and mineralogy of US soils (/ds-801/) (2015).
- USGS Natural Occurring Contaminants in the Piedmont and Blue Ridge Crystalline-Rock Aquifers and Piedmont Early Mesozoic Basin Siliciclastic-Rock Aquifers, Eastern United States, 1994-2008, Scientific Investigations Report 2013-5072 (2013).

APPENDIX A Statistical Analyses

Tolerance Limit

		Scherer Client: Gold	er Associates	Data: Scherer Ash	Pond_C	CCR P	rinted 10/15/2	2018, 9:30 AM		
Constituent	Well	Upper Lim.	<u>Date</u>	Observ.	Sig.	Bg N	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	n/a	0.0021	n/a	n/a	n/a	62	90.32	n/a	0.04158	NP Inter(NDs)
Arsenic (mg/L)	n/a	0.0025	n/a	n/a	n/a	70	72.86	n/a	0.02758	NP Inter(normal
Barium (mg/L)	n/a	0.06359	n/a	n/a	n/a	70	0	No	0.05	Inter
Beryllium (mg/L)	n/a	0.0015	n/a	n/a	n/a	70	98.57	n/a	0.02758	NP Inter(NDs)
Cadmium (mg/L)	n/a	0.00125	n/a	n/a	n/a	63	96.83	n/a	0.0395	NP Inter(NDs)
Chromium (mg/L)	n/a	0.015	n/a	n/a	n/a	70	38.57	n/a	0.02758	NP Inter(normal
Cobalt (mg/L)	n/a	0.02	n/a	n/a	n/a	69	63.77	n/a	0.02904	NP Inter(normal
Combined Radium 226 + 228 (pCi/L)	n/a	1.2	n/a	n/a	n/a	69	0	n/a	0.02904	NP Inter(normal
Fluoride (mg/L)	n/a	0.15	n/a	n/a	n/a	77	83.12	n/a	0.01926	NP Inter(NDs)
Lead (mg/L)	n/a	0.0025	n/a	n/a	n/a	70	98.57	n/a	0.02758	NP Inter(NDs)
Lithium (mg/L)	n/a	0.025	n/a	n/a	n/a	70	90	n/a	0.02758	NP Inter(NDs)
Mercury (mg/L)	n/a	0.00025	n/a	n/a	n/a	70	87.14	n/a	0.02758	NP Inter(NDs)
Molybdenum (mg/L)	n/a	0.0075	n/a	n/a	n/a	63	87.3	n/a	0.0395	NP Inter(NDs)
Selenium (mg/L)	n/a	0.005	n/a	n/a	n/a	70	97.14	n/a	0.02758	NP Inter(NDs)
Thallium (mg/L)	n/a	0.0005	n/a	n/a	n/a	70	95.71	n/a	0.02758	NP Inter(NDs)

		Scherer Client: 0	Golder Associates	Data: Scherer	Ash Po	nd_CCR	Printed 10/	/15/2018, 9:38 AM		
Constituent	Well	Upper Lim.	Lower Lim.	<u>Compliance</u>	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Cobalt (mg/L)	SGWC-11	0.03203	0.02757	0.02	Yes	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-15	0.2805	0.2599	0.02	Yes	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-18	0.143	0.1064	0.02	Yes	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-20	0.2445	0.2077	0.02	Yes	10	0	No	0.05	Param.

		Scherer Client:	Golder Associates	Data: Scherer Ash Pond_CCR		Printed 10	/15/2018, 9:38 AM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Antimony (mg/L)	SGWA-1 (bg)	0.0015	0.0004	0.006	No	9	77.78	No	0.002	NP (NDs)
Antimony (mg/L)	SGWA-2 (bg)	0.0015	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWA-24 (bg)	0.0015	0.0003	0.006	No	9	88.89	No	0.002	NP (NDs)
Antimony (mg/L)	SGWA-25 (bg)	0.0015	0.0003	0.006	No	9	88.89	No	0.002	NP (NDs)
Antimony (mg/L)	SGWA-3 (bg)	0.0021	0.0005	0.006	No	9	88.89	No	0.002	NP (NDs)
Antimony (mg/L)	SGWA-4 (bg)	0.0015	0.0005	0.006	No	9	88.89	No	0.002	NP (NDs)
Antimony (mg/L)	SGWA-5 (bg)	0.0015	0.0005	0.006	No	8	100	No	0.004	NP (NDs)
Antimony (mg/L)	SGWC-10	0.0015	0.0005	0.006	No	9	88.89	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-11	0.0015	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-12	0.0015	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-13	0.0015	0.0004	0.006	No	9	88.89	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-14	0.0015	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-15	0.0015	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-16	0.0015	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-17	0.0015	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-18	0.0015	0.0005	0.006	No	9	88.89	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-19	0.0015	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-20	0.0015	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-21	0.0015	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-22	0.0015	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-23	0.0015	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-6	0.0015	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-7	0.0015	0.0004	0.006	No	9	88.89	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-8	0.0015	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Antimony (mg/L)	SGWC-9	0.0015	0.0005	0.006	No	9	100	No	0.002	NP (NDs)
Arsenic (mg/L)	SGWA-1 (bg)	0.0025	0.00023	0.01	No	10	70	No	0.011	NP (normality)
Arsenic (mg/L)	SGWA-2 (bg)	0.0025	0.00023	0.01	No	10	70	No	0.011	NP (normality)
Arsenic (mg/L)	SGWA-24 (bg)	0.0025	0.00023	0.01	No	10	80	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWA-25 (bg)	0.004091	0.001046	0.01	No	10	30	No	0.05	Param.
Arsenic (mg/L)	SGWA-3 (bg)	0.0025	0.00023	0.01	No	10	90	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWA-4 (bg)	0.0025	0.00023	0.01	No	10	80	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWA-5 (bg)	0.0025	0.00023	0.01	No	10	90	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-10	0.0025	0.00023	0.01	No	10	80	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-11	0.0011	0.00023	0.01	No	10	20	No	0.011	NP (normality)
Arsenic (mg/L)	SGWC-12	0.0011	0.00023	0.01	No	10	50	No	0.011	NP (Cohens/xfrm)
Arsenic (mg/L)	SGWC-13	0.0025	0.00023	0.01	No	10	80	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-14	0.0025	0.00023	0.01	No	10	80	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-15	0.004264	0.001445	0.01	No	10	30	No	0.05	Param.
Arsenic (mg/L)	SGWC-16	0.0025	0.00023	0.01	No	10	90	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-17	0.0025	0.00023	0.01	No	10	60	No	0.011	NP (Cohens/xfrm)
Arsenic (mg/L)	SGWC-18	0.002009	0.001051	0.01	No	10	0	sqrt(x)	0.05	Param.
Arsenic (mg/L)	SGWC-19	0.0025	0.00023	0.01	No	10	90	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-20	0.001334	0.0004822	0.01	No	10	60	No	0.05	Param.
Arsenic (mg/L)	SGWC-21	0.0025	0.00023	0.01	No	10	90	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-22	0.0025	0.00023	0.01	No	10	80	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-23	0.0025	0.00023	0.01	No	10	80	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-6	0.0025	0.00023	0.01	No	10	80	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-7	0.0009	0.00023	0.01	No	10	60	No	0.011	NP (Cohens/xfrm)
Arsenic (mg/L)	SGWC-8	0.0025	0.00023	0.01	No	10	80	No	0.011	NP (NDs)
Arsenic (mg/L)	SGWC-9	0.0011	0.00023	0.01	No	10	40	No	0.011	NP (Cohens/xfrm)

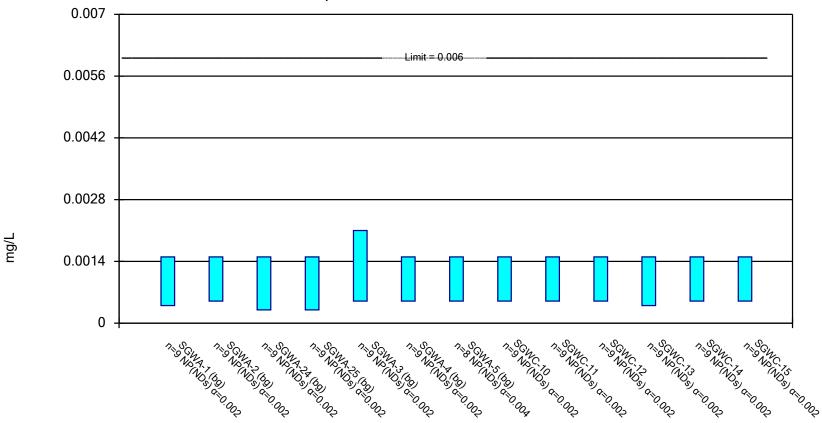
Persistang Memory Memor			Scherer Client:	Golder Associates	Data: Scherer	Ash Pond_CCR		Printed 10/15/2018, 9:38 AM			
Bertun (reght) SeW-Ag MogNes MogNes Sew Ag MogNes M	Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	<u>Compliance</u>	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Betwen (myst) SGW-A2 (by) O.2207 O.2207 O.2207 O.2004 O.2 O. O. O. O. O. O. O	Barium (mg/L)	SGWA-1 (bg)	0.05742	0.04954	2	No	10	0	No	0.05	Param.
Bernum (mgls) SOW-AS (30) O.2298 O.22988 O.22988 O.22988 O.22988 O.22988 O.2298 O.22988	Barium (mg/L)	SGWA-2 (bg)	0.0392	0.03582	2	No	10	0	No	0.05	Param.
Brain mynql	Barium (mg/L)	SGWA-24 (bg)	0.02207	0.02049	2	No	10	0	No	0.05	Param.
Barrum (mplc)	Barium (mg/L)	SGWA-25 (bg)	0.02398	0.02114	2	No	10	0	No	0.05	Param.
Bartum (mgh.) SAW-5 (go.) Colorad Colo	Barium (mg/L)	SGWA-3 (bg)	0.03511	0.03255	2	No	10	0	No	0.05	Param.
Bartum (mgl.) SGWC-14	Barium (mg/L)		0.05489	0.04861	2	No	10	0	No	0.05	Param.
Bartium (mpli)	Barium (mg/L)	SGWA-5 (bg)	0.01074	0.009881	2	No	10	0	No	0.05	Param.
Bartum (mg/L)	Barium (mg/L)	SGWC-10	0.03041	0.02753	2	No	10	0	No	0.05	Param.
Bartum (mg/L)	Barium (mg/L)	SGWC-11	0.03896	0.0357	2	No	10	0	No	0.05	Param.
Bartum (mg/L) SGWC-14 0.05381 0.05080 2 No 10 0 No 0.05 Param Barium (mg/L) SGWC-15 0.04154 0.03796 2 No 9 0 No 0.05 Param Barium (mg/L) SGWC-16 0.022 0.138 2 No 10 0 No 0.05 Param Barium (mg/L) SGWC-18 0.022 0.0331 2 No 10 No 0.05 0.05 Param Barium (mg/L) SGWC-18 0.04832 0.03318 2 No 10 No 0.05 0.05 Param Barium (mg/L) SGWC-24 0.08087 0.08877 2 No 10 No 0.05 0.05 Param Barium (mg/L) SGWC-24 0.09088 0.0824 No 10 No 0.05 0.05 Param Barium (mg/L) SGWC-24 0.09388 0.08689 2 No 10 <	Barium (mg/L)	SGWC-12	0.03993	0.03297	2	No	10	0	No	0.05	Param.
Bartum (mg/L)	Barium (mg/L)	SGWC-13	0.02834	0.02338	2	No	10	0	No	0.05	Param.
Bartum (mg/L) SGWC-14 O.1956 O.1956 O.19736 2 No 9 0 No O.050 Param. (mg/L) SGWC-14 O.1956 O.1956 O.19736 2 No 10 O. No O.050 Param. (mg/L) SGWC-14 O.0482 O.03926 O.33914 2 No 10 O. No O.050 Param. (mg/L) SGWC-24 O.03926 O.33914 2 No 10 O. No O.050 Param. (mg/L) SGWC-24 O.03926 O.39914 O.03917 2 No 10 O. No O.050 Param. (mg/L) SGWC-24 O.09693 O.08967 2 No O.050 No O.050 Param. (mg/L) SGWC-24 O.09693 O.08968	Barium (mg/L)	SGWC-14	0.06338	0.05908	2	No	10	0	No	0.05	Param.
Bartum (mg/L) SGWC-17 0.0196 0.01736 2 No 10 0 No 0.05 Param. Fam. Promising Param. Programs (mg/L) Barium (mg/L) SGWC-18 0.029 0.012 2 No 10 0 No 0.05 0.05 Param. Barium (mg/L) SGWC-21 0.03937 0.03873 2 No 10 No 0.05 Param. Barium (mg/L) SGWC-21 0.09817 0.08877 2 No 10 No 0.05 Param. Barium (mg/L) SGWC-23 0.09811 0.08821 2 No 10 No 0.05 Param. Barium (mg/L) SGWC-3 0.0911 0.08421 2 No 10 No 0.05 Param. Barium (mg/L) SGWC-24 0.0913 0.04824 2 No 10 No 0.05 Param. Barium (mg/L) SGWC-8 0.05192 0.0519 0.04 No 10 No	Barium (mg/L)	SGWC-15	0.04154	0.03796	2	No	10	0	No	0.05	Param.
Barium (mgil.) Barium (mgil.) SGWC-18 O.0483 O.03841 2 No 10 O. No 0.05 O.018 No 0.05 Param. Barium (mgil.) SGWC-20 O.03926 O.03318 2 No 10 O. No 0.05 O.05 Param. Barium (mgil.) SGWC-20 O.09826 O.03318 2 No 10 O. No 0.05 Param. O.05 Param.	Barium (mg/L)	SGWC-16	0.022	0.0163	2	No	9	0	No	0.002	NP (normality)
Barlum (mg/L)	Barium (mg/L)	SGWC-17	0.0196	0.01736	2	No	10	0	No	0.05	Param.
Barium (mg/L) SGW-2-1 0.09326 0.03138 2 No 10 0 No 0.05 Param. Barium (mg/L) SGW-2-2 0.09663 0.08660 2 No 10 0 No 0.05 Param. Barium (mg/L) SGW-2-2 0.09663 0.08660 2 No 10 0 No 0.05 Param. Barium (mg/L) SGW-2-3 0.09663 0.08680 2 No 10 0 No 0.05 Param. Barium (mg/L) SGW-2-4 0.09131 0.08214 2 No 10 0 No 0.05 Param. Barium (mg/L) SGW-2-6 0.09138 0.04868 2 No 10 0 No 0.05 Param. Barium (mg/L) SGW-3 0.25 0.2613 0.2803 2 No 10 0 No 0.05 Param. Barium (mg/L) SGW-3 0.25 0.616 2 No 10 0 No 0.011 NP (normality) Barium (mg/L) SGW-3 0.06152 0.0519 2 No 10 0 No 0.011 NP (normality) Beryllium (mg/L) SGW-3 0.015 0.00017 0.004 No 10 0 No 0.011 NP (NDs) Beryllium (mg/L) SGW-3 0.0015 0.00017 0.004 No 10 No No 0.011 NP (NDs) Beryllium (mg/L) SGW-3 0.0015 0.00017 0.004 No 10 No No 0.011 NP (NDs) Beryllium (mg/L) SGW-3 0.0015 0.00017 0.004 No 10 No No 0.011 NP (NDs) Beryllium (mg/L) SGW-3 0.0015 0.00017 0.004 No 10 No No 0.011 NP (NDs) Beryllium (mg/L) SGW-3 0.0015 0.00017 0.004 No 10 No No 0.011 NP (NDs) Beryllium (mg/L) SGW-3 0.0015 0.00017 0.004 No 10 No No 0.011 NP (NDs) Beryllium (mg/L) SGW-3 0.0015 0.00017 0.004 No 10 No No 0.011 NP (NDs) Beryllium (mg/L) SGW-3 0.0015 0.00017 0.004 No 10 No No 0.011 NP (NDs) Beryllium (mg/L) SGW-3 0.0015 0.00017 0.004 No 10 No No 0.011 NP (NDs) Beryllium (mg/L) SGW-3 0.0015 0.00017 0.004 No 10 No No 0.011 NP (NDs) Beryllium (mg/L) SGW-3 0.0015 0.00017 0.004 No 10 No No 0.011 NP (NDs) Beryllium (mg/L) SGW-3 0.0015 0.00017 0.004 No 10 No No 0.011 NP (NDs) Beryllium (mg/L) SGW-3 0.0015 0.00017 0.004 No 1	Barium (mg/L)	SGWC-18	0.029	0.012	2	No	10	0	No	0.011	NP (normality)
Barium (mg/L) SGWC-21 0.09317 0.08977 2 No 10 0 No 0 0.05 Param. Barium (mg/L) SGWC-22 0.09683 0.08214 2 No 10 0 No 0 0.05 Param. Barium (mg/L) SGWC-34 0.09214 0.08424 2 No 10 0 No 0 0.05 Param. Barium (mg/L) SGWC-64 0.0938 0.09214 0.28824 2 No 10 0 No 0 0.05 Param. Barium (mg/L) SGWC-67 0.2213 0.2803 2 No 10 0 No 0 0.05 Param. Barium (mg/L) SGWC-69 0.0215 0.28014 0.2803 2 No 10 0 No 0 0.05 Param. Barium (mg/L) SGWC-80 0.025 0.166 2 No 10 0 No 0 0.01 No 0 0.011 NP (normality) Barium (mg/L) SGWC-90 0.0015 0.0017 0.004 No 10 0 0 No 0 0.011 NP (Nos) Beryllium (mg/L) SGWA-2 (bg) 0.0015 0.00017 0.004 No 10 0 0 No 0 0.011 NP (Nos) Beryllium (mg/L) SGWA-2 (bg) 0.0015 0.00017 0.004 No 10 0 0 No 0 0.011 NP (Nos) Beryllium (mg/L) SGWA-3 (bg) 0.0015 0.00017 0.004 No 10 0 0 No 0 0.011 NP (Nos) Beryllium (mg/L) SGWA-3 (bg) 0.0015 0.00017 0.004 No 10 0 0 No 0 0.011 NP (Nos) Beryllium (mg/L) SGWA-3 (bg) 0.0015 0.00017 0.004 No 10 0 0 No 0 0.011 NP (Nos) Beryllium (mg/L) SGWA-3 (bg) 0.0015 0.00017 0.004 No 10 0 0 No 0 0.011 NP (Nos) Beryllium (mg/L) SGWA-4 (bg) 0.0015 0.00017 0.004 No 10 0 No 0 0.011 NP (Nos) Beryllium (mg/L) SGWC-14 0.0015 0.00017 0.004 No 10 0 No 0 0.011 NP (Nos) Beryllium (mg/L) SGWC-14 0.0015 0.00017 0.004 No 10 0 0 No 0 0.011 NP (Nos) Beryllium (mg/L) SGWC-14 0.0015 0.00017 0.004 No 10 0 0 No 0 0.011 NP (Nos) Beryllium (mg/L) SGWC-14 0.0015 0.00017 0.004 No 10 0 0 No 0 0.011 NP (Nos) Beryllium (mg/L) SGWC-14 0.0015 0.00017 0.004 No 10 0 0 0 No 0 0.011 NP (Nos) Beryllium (mg/L) SGWC-14 0.0015 0.00017 0.004 No 10 0 0 0 0 0 0 0 0 0	Barium (mg/L)	SGWC-19	0.04483	0.03841	2	No	10	0	No	0.05	Param.
Barlum (might) SGWC-22 0.09863 0.08969 2 No 10 0 No 0.05 Param. Barlum (might) SGWC-23 0.99211 0.04261 2 No 10 No 0.05 Param. Barlum (might) SGWC-7 0.2913 0.2803 2 No 10 No 0.05 Param. Barlum (might) SGWC-8 0.2513 0.2803 2 No 10 No 0.01 0.01 No 0.01 No <t< td=""><td>Barium (mg/L)</td><td>SGWC-20</td><td>0.03926</td><td>0.03138</td><td>2</td><td>No</td><td>10</td><td>0</td><td>No</td><td>0.05</td><td>Param.</td></t<>	Barium (mg/L)	SGWC-20	0.03926	0.03138	2	No	10	0	No	0.05	Param.
Barium (mg/L) SGWC-23 0.99211 0.04212 2 No 10 0 No 0.05 Param. Barium (mg/L) SGWC-6 0.99138 0.04988 2 No 10 No 0.05 Param. Barium (mg/L) SGWC-8 0.255 0.16 2 No 10 No 0.01 Param. Barium (mg/L) SGWC-9 0.60192 0.0017 0.004 No 10 No 0.01 NP (nomality) Beryllium (mg/L) SGWA-2 (bg) 0.0015 0.00017 0.004 No 10 No 0.01 NP (NDs) Beryllium (mg/L) SGWA-2 (bg) 0.0015 0.00017 0.004 No 10 No 0.011 NP (NDs) Beryllium (mg/L) SGWA-2 (bg) 0.0015 0.00017 0.004 No 10 NO 0.011 NP (NDs) Beryllium (mg/L) SGWA-3 (bg) 0.0015 0.00017 0.004 No 10 NO 0.011	Barium (mg/L)	SGWC-21	0.09317	0.08977	2	No	10	0	No	0.05	Param.
Barium (mg/L) SGWC-6 0.9138 0.04988 2 No 10 0 No 10 0.05 Param. Barium (mg/L)	SGWC-22	0.09663	0.08969	2	No	10	0	No	0.05	Param.	
Barium (mg/L)	Barium (mg/L)	SGWC-23	0.09211	0.08421	2	No	10	0	No	0.05	Param.
Barium (mg/L)	Barium (mg/L)	SGWC-6	0.09138	0.04968	2	No	10	0	No	0.05	Param.
Barium (mg/L)	Barium (mg/L)	SGWC-7	0.3213	0.2803	2	No	10	0	No	0.05	Param.
Beryllium (mg/L) SGWA-1 (bg) 0.00125 0.00017 0.004 No 10 90 No 0.011 NP (NDs)	Barium (mg/L)	SGWC-8	0.205	0.16	2	No	10	0	No	0.011	NP (normality)
Beryllium (mg/L) SGWA-2 (bg) 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs)	Barium (mg/L)	SGWC-9	0.06192	0.0519	2	No	10	0	ln(x)	0.05	Param.
Beryllium (mg/L)	Beryllium (mg/L)	SGWA-1 (bg)	0.00125	0.00017	0.004	No	10	90	No	0.011	NP (NDs)
Beryllium (mg/L) SGWA-25 (bg) 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs)	Beryllium (mg/L)	SGWA-2 (bg)	0.0015	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L) SGWA-3 (bg) 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs)	Beryllium (mg/L)	SGWA-24 (bg)	0.0015	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L) SGWA-4 (bg) 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs)	Beryllium (mg/L)	SGWA-25 (bg)	0.0015	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L) SGWA-5 (bg) 0.0015 0.0017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-10 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-11 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-12 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-13 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-13 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-15 0.00015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-16	Beryllium (mg/L)	SGWA-3 (bg)	0.0015	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L)	Beryllium (mg/L)	SGWA-4 (bg)	0.0015	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L) SGWC-11 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-12 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-13 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-14 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-15 0.00041 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-16 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-18 0.00125 0.00017 0.004 No 10 10 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-21 0.0	Beryllium (mg/L)	SGWA-5 (bg)	0.0015	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L) SGWC-12 0.0015 0.0017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-13 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-14 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-15 0.00041 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-16 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-17 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-18 0.00125 0.00017 0.004 No 10 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-29 0.000833 <t< td=""><td>Beryllium (mg/L)</td><td>SGWC-10</td><td>0.0015</td><td>0.00017</td><td>0.004</td><td>No</td><td>10</td><td>100</td><td>No</td><td>0.011</td><td>NP (NDs)</td></t<>	Beryllium (mg/L)	SGWC-10	0.0015	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L) SGWC-13 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-14 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-15 0.00041 0.00017 0.004 No 10 30 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-16 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-17 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-18 0.00125 0.00017 0.004 No 10 70 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-19 0.00125 0.00017 0.004 No 10 10 No 0.01 NP (NDs) Beryllium (mg/L) SGWC-20 0.000	Beryllium (mg/L)	SGWC-11	0.0015	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L) SGWC-14 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-15 0.00041 0.00017 0.004 No 10 30 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-16 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-17 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-18 0.00125 0.00017 0.004 No 10 70 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-19 0.00125 0.00017 0.004 No 10 90 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-20 0.008333 0.0007271 0.004 No 10 No No 0.01 NP (NDs) Beryllium (mg/L) SGWC-22 0.	Beryllium (mg/L)	SGWC-12	0.0015	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L) SGWC-15 0.00041 0.0017 0.004 No 10 30 No 0.011 NP (normality) Beryllium (mg/L) SGWC-16 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-17 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-18 0.00125 0.00017 0.004 No 10 70 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-19 0.00125 0.00017 0.004 No 10 90 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-20 0.0008333 0.0007271 0.004 No 10 No 0.05 Param. Beryllium (mg/L) SGWC-21 0.0015 0.00017 0.004 No 10 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-22 0.0015 0.00017	Beryllium (mg/L)	SGWC-13	0.0015	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L) SGWC-16 0.0015 0.00017 0.004 No 10 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-17 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-18 0.00125 0.00017 0.004 No 10 70 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-19 0.00125 0.00017 0.004 No 10 90 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-20 0.0008333 0.0007271 0.004 No 10 0 No 0.05 Param. Beryllium (mg/L) SGWC-21 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-22 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-23 0.0015 0	Beryllium (mg/L)	SGWC-14	0.0015	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L) SGWC-17 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-18 0.00125 0.00017 0.004 No 10 70 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-19 0.00125 0.00017 0.004 No 10 90 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-20 0.0008333 0.0007271 0.004 No 10 No 0.05 Param. Beryllium (mg/L) SGWC-21 0.0015 0.00017 0.004 No 10 No 0.01 NP (NDs) Beryllium (mg/L) SGWC-22 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-23 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-6 0.0015 0.00017 <	Beryllium (mg/L)		0.00041	0.00017		No	10	30	No	0.011	,
Beryllium (mg/L) SGWC-18 0.00125 0.00017 0.004 No 10 70 No 0.011 NP (normality) Beryllium (mg/L) SGWC-19 0.00125 0.00017 0.004 No 10 90 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-20 0.0008333 0.0007271 0.004 No 10 No 0.05 Param. Beryllium (mg/L) SGWC-21 0.0015 0.00017 0.004 No 10 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-22 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-22 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-3 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-3 0.0015 0.00017	Beryllium (mg/L)	SGWC-16	0.0015	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L) SGWC-19 0.00125 0.00017 0.004 No 10 90 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-20 0.0008333 0.0007271 0.004 No 10 0 No 0.05 Param. Beryllium (mg/L) SGWC-21 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-22 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-23 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-6 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-7 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-8 0.0015<	Beryllium (mg/L)	SGWC-17	0.0015	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L) SGWC-20 0.0008333 0.0007271 0.004 No 10 0 No 0.05 Param. Beryllium (mg/L) SGWC-21 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-22 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-23 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-6 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-7 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-8 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-8 0.0015 </td <td>Beryllium (mg/L)</td> <td></td> <td>0.00125</td> <td>0.00017</td> <td>0.004</td> <td>No</td> <td>10</td> <td>70</td> <td>No</td> <td>0.011</td> <td>NP (normality)</td>	Beryllium (mg/L)		0.00125	0.00017	0.004	No	10	70	No	0.011	NP (normality)
Beryllium (mg/L) SGWC-21 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-22 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-23 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-6 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-7 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-8 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-8 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs)	Beryllium (mg/L)	SGWC-19	0.00125	0.00017	0.004	No	10	90	No	0.011	NP (NDs)
Beryllium (mg/L) SGWC-22 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-23 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-6 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-8 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-8 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs)	Beryllium (mg/L)	SGWC-20	0.0008333	0.0007271	0.004	No	10	0	No	0.05	Param.
Beryllium (mg/L) SGWC-23 0.0015 0.00017 0.004 No 10 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-6 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-7 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-8 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs)		SGWC-21	0.0015	0.00017	0.004	No	10	100	No	0.011	NP (NDs)
Beryllium (mg/L) SGWC-6 0.0015 0.00017 0.004 No 10 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-7 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-8 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs)	Beryllium (mg/L)	SGWC-22	0.0015			No	10	100	No	0.011	
Beryllium (mg/L) SGWC-7 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs) Beryllium (mg/L) SGWC-8 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs)	Beryllium (mg/L)	SGWC-23				No	10	100	No		
Beryllium (mg/L) SGWC-8 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs)	Beryllium (mg/L)					No	10	100	No		NP (NDs)
	Beryllium (mg/L)	SGWC-7				No	10	100	No		
Beryllium (mg/L) SGWC-9 0.0015 0.00017 0.004 No 10 100 No 0.011 NP (NDs)	Beryllium (mg/L)		0.0015	0.00017		No	10	100	No	0.011	
	Beryllium (mg/L)	SGWC-9	0.0015	0.00017	0.004	No	10	100	No	0.011	NP (NDs)

		Scherer Client: 0	Golder Associates	Data: Scherer Ash Pond_CCR		Printed 10/15/2018, 9:38 AM				
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	<u>Method</u>
Cadmium (mg/L)	SGWA-1 (bg)	0.00125	0.000156	0.005	No	9	88.89	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWA-2 (bg)	0.00125	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWA-24 (bg)	0.00125	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWA-25 (bg)	0.00125	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWA-3 (bg)	0.00125	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWA-4 (bg)	0.00125	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWA-5 (bg)	0.00125	0.00017	0.005	No	9	88.89	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-10	0.00125	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-11	0.00125	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-12	0.00125	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-13	0.00125	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-14	0.00125	0.000136	0.005	No	9	88.89	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-15	0.00125	0.00017	0.005	No	9	66.67	No	0.002	NP (normality)
Cadmium (mg/L)	SGWC-16	0.00125	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-17	0.00125	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-18	0.00125	0.00016	0.005	No	9	77.78	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-19	0.00125	0.00017	0.005	No	9	88.89	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-20	0.00125	0.0001	0.005	No	9	77.78	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-21	0.00125	0.00017	0.005	No	9	88.89	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-22	0.00125	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-23	0.00125	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-6	0.00125	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-7	0.00125	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-8	0.00125	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Cadmium (mg/L)	SGWC-9	0.00125	0.00017	0.005	No	9	100	No	0.002	NP (NDs)
Chromium (mg/L)	SGWA-1 (bg)	0.005	0.00055	0.1	No	10	90	No	0.011	NP (NDs)
Chromium (mg/L)	SGWA-2 (bg)	0.014	0.0043	0.1	No	10	0	No	0.011	NP (normality)
Chromium (mg/L)	SGWA-24 (bg)	0.004122	0.003304	0.1	No	10	0	No	0.05	Param.
Chromium (mg/L)	SGWA-25 (bg)	0.005	0.00055	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	SGWA-3 (bg)	0.01068	0.006948	0.1	No	10	0	No	0.05	Param.
Chromium (mg/L)	SGWA-4 (bg)	0.004745	0.002669	0.1	No	10	0	No	0.05	Param.
Chromium (mg/L)	SGWA-5 (bg)	0.005	0.00055	0.1	No	10	80	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-10	0.005	0.00055	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-11	0.005	0.00055	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-12	0.005	0.00055	0.1	No	10	90	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-13	0.005	0.00055	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-14	0.00125	0.00055	0.1	No	10	70	No	0.011	NP (normality)
Chromium (mg/L)	SGWC-15	0.03391	0.03197	0.1	No	10	0	No	0.05	Param.
Chromium (mg/L)	SGWC-16	0.009674	0.008892	0.1	No	10	0	No	0.05	Param.
Chromium (mg/L)	SGWC-17	0.005437	0.003313	0.1	No	10	0	sqrt(x)	0.05	Param.
Chromium (mg/L)	SGWC-18	0.007546	0.006496	0.1	No	10	0	No	0.05	Param.
Chromium (mg/L)	SGWC-19	0.01524	0.014	0.1	No	10	0	No	0.05	Param.
Chromium (mg/L)	SGWC-20	0.00125	0.00055	0.1	No	10	90	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-21	0.00125	0.00055	0.1	No	10	90	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-22	0.00125	0.00055	0.1	No	10	90	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-23	0.0025	0.00055	0.1	No	9	55.56	No	0.002	NP (normality)
Chromium (mg/L)	SGWC-6	0.005	0.00055	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-7	0.005	0.00055	0.1	No	10	100	No	0.011	NP (NDs)
Chromium (mg/L)	SGWC-8	0.005	0.00055	0.1	No	10	70	No	0.011	NP (normality)
Chromium (mg/L)	SGWC-9	0.005	0.00055	0.1	No	10	100	No	0.011	NP (NDs)
(3 /	-					-			-	/

		Scherer Client:	Golder Associates	Data: Scherer Ash Pond_CCR		Printed 10/15/2018, 9:38 AM				
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Cobalt (mg/L)	SGWA-1 (bg)	0.01595	0.009457	0.02	No	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWA-2 (bg)	0.00125	0.0002	0.02	No	10	90	No	0.011	NP (NDs)
Cobalt (mg/L)	SGWA-24 (bg)	0.00125	0.0002	0.02	No	10	80	No	0.011	NP (NDs)
Cobalt (mg/L)	SGWA-25 (bg)	0.01454	0.01094	0.02	No	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWA-3 (bg)	0.005	0.0002	0.02	No	9	88.89	No	0.002	NP (NDs)
Cobalt (mg/L)	SGWA-4 (bg)	0.005	0.0002	0.02	No	10	90	No	0.011	NP (NDs)
Cobalt (mg/L)	SGWA-5 (bg)	0.005	0.0002	0.02	No	10	100	No	0.011	NP (NDs)
Cobalt (mg/L)	SGWC-10	0.03339	0.01947	0.02	No	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-11	0.03203	0.02757	0.02	Yes	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-12	0.004619	0.003536	0.02	No	10	0	sqrt(x)	0.05	Param.
Cobalt (mg/L)	SGWC-13	0.01017	0.006355	0.02	No	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-14	0.01261	0.006705	0.02	No	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-15	0.2805	0.2599	0.02	Yes	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-16	0.003495	0.003111	0.02	No	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-17	0.0006892	0.0004288	0.02	No	9	22.22	No	0.05	Param.
Cobalt (mg/L)	SGWC-18	0.143	0.1064	0.02	Yes	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-19	0.00125	0.0002	0.02	No	10	50	No	0.011	NP (Cohens/xfrm)
Cobalt (mg/L)	SGWC-20	0.2445	0.2077	0.02	Yes	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-21	0.005	0.0002	0.02	No	10	100	No	0.011	NP (NDs)
Cobalt (mg/L)	SGWC-22	0.004449	0.002939	0.02	No	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-23	0.005	0.0002	0.02	No	9	100	No	0.002	NP (NDs)
Cobalt (mg/L)	SGWC-6	0.003437	0.001903	0.02	No	10	10	No	0.05	Param.
Cobalt (mg/L)	SGWC-7	0.01331	0.007511	0.02	No	10	0	No	0.05	Param.
Cobalt (mg/L)	SGWC-8	0.00125	0.0002	0.02	No	10	70	No	0.011	NP (normality)
Cobalt (mg/L)	SGWC-9	0.01542	0.01146	0.02	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWA-1 (bg)	0.3546	0.1956	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWA-2 (bg)	0.4268	0.143	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWA-24 (bg)	0.2907	0.06359	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWA-25 (bg)	0.3657	0.06644	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWA-3 (bg)	0.345	-0.026	5	No	10	0	No	0.011	NP (normality)
Combined Radium 226 + 228 (pCi/L)	SGWA-4 (bg)	0.2418	0.0521	5	No	9	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWA-5 (bg)	0.3948	0.2169	5	No	10	0	In(x)	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-10	0.548	-0.0725	5	No	10	0	No	0.011	NP (normality)
Combined Radium 226 + 228 (pCi/L)	SGWC-11	0.4835	0.1865	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-12	0.3209	0.1068	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-13	0.4395	0.08482	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-14	0.4345	0.1203	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-15	0.3963	0.1794	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-16	0.3112	0.1309	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-17	0.3778	0.1572	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-18	0.4267	0.192	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-19	0.2756	0.05208	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-20	0.6679	0.3185	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-21	0.498	0.208	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-22	0.297	0.1666	5	No	9	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-23	0.7208	0.4908	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-6	0.3675	0.1195	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-7	0.518	0.3068	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-8	2.468	1.992	5	No	10	0	No	0.05	Param.
Combined Radium 226 + 228 (pCi/L)	SGWC-9	0.4219	0.1804	5	No	10	0	No	0.05	Param.
v 7										

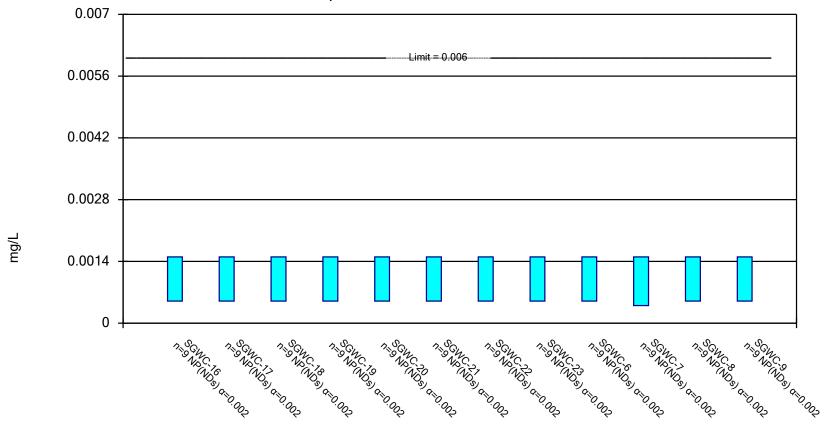
		Scherer Client:	Golder Associates	Data: Scherer Ash Pond_CCR		Printed 10/15/2018, 9:38 AM				
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Fluoride (mg/L)	SGWA-1 (bg)	0.15	0.041	4	No	11	100	No	0.006	NP (NDs)
Fluoride (mg/L)	SGWA-2 (bg)	0.1	0.03	4	No	11	81.82	No	0.006	NP (NDs)
Fluoride (mg/L)	SGWA-24 (bg)	0.1	0.041	4	No	11	81.82	No	0.006	NP (NDs)
Fluoride (mg/L)	SGWA-25 (bg)	0.1	0.03	4	No	11	81.82	No	0.006	NP (NDs)
Fluoride (mg/L)	SGWA-3 (bg)	0.1	0.0192	4	No	11	81.82	No	0.006	NP (NDs)
Fluoride (mg/L)	SGWA-4 (bg)	0.1	0.041	4	No	11	63.64	No	0.006	NP (Cohens/xfrm)
Fluoride (mg/L)	SGWA-5 (bg)	0.1	0.0188	4	No	11	90.91	No	0.006	NP (NDs)
Fluoride (mg/L)	SGWC-10	0.1	0.019	4	No	11	90.91	No	0.006	NP (NDs)
Fluoride (mg/L)	SGWC-11	0.1	0.033	4	No	11	81.82	No	0.006	NP (NDs)
Fluoride (mg/L)	SGWC-12	0.1806	0.1142	4	No	11	27.27	No	0.05	Param.
Fluoride (mg/L)	SGWC-13	0.1	0.041	4	No	11	81.82	No	0.006	NP (NDs)
Fluoride (mg/L)	SGWC-14	0.1	0.03	4	No	11	81.82	No	0.006	NP (NDs)
Fluoride (mg/L)	SGWC-15	0.1312	0.1182	4	No	10	0	No	0.05	Param.
Fluoride (mg/L)	SGWC-16	0.1	0.011	4	No	11	81.82	No	0.006	NP (NDs)
Fluoride (mg/L)	SGWC-17	0.1	0.041	4	No	11	72.73	No	0.006	NP (Cohens/xfrm)
Fluoride (mg/L)	SGWC-18	0.18	0.0343	4	No	11	81.82	No	0.006	NP (NDs)
Fluoride (mg/L)	SGWC-19	0.1	0.0126	4	No	11	81.82	No	0.006	NP (NDs)
Fluoride (mg/L)	SGWC-20	0.3025	0.2173	4	No	11	0	No	0.05	Param.
Fluoride (mg/L)	SGWC-21	0.1017	0.06118	4	No	11	54.55	No	0.05	Param.
Fluoride (mg/L)	SGWC-22	0.1	0.029	4	No	11	72.73	No	0.006	NP (normality)
Fluoride (mg/L)	SGWC-23	0.1	0.0341	4	No	11	72.73	No	0.006	NP (normality)
Fluoride (mg/L)	SGWC-6	0.1473	0.08814	4	No	11	18.18	No	0.05	Param.
Fluoride (mg/L)	SGWC-7	0.2323	0.2032	4	No	11	0	No	0.05	Param.
Fluoride (mg/L)	SGWC-8	0.4905	0.4153	4	No	11	0	No	0.05	Param.
Fluoride (mg/L)	SGWC-9	0.1	0.041	4	No	11	72.73	No	0.006	NP (normality)
Lead (mg/L)	SGWA-1 (bg)	0.0025	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	SGWA-2 (bg)	0.0025	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	SGWA-24 (bg)	0.00065	0.0001	0.015	No	10	90	No	0.011	NP (NDs)
Lead (mg/L)	SGWA-25 (bg)	0.0025	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	SGWA-3 (bg)	0.0025	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	SGWA-4 (bg)	0.0025	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	SGWA-5 (bg)	0.0025	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	SGWC-10	0.0025	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	SGWC-11	0.0025	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	SGWC-12	0.0025	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	SGWC-13	0.0025	0.000175	0.015	No	10	90	No	0.011	NP (NDs)
Lead (mg/L)	SGWC-14	0.0025	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	SGWC-15	0.0025	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	SGWC-16	0.0025	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	SGWC-17	0.0025	0.000175	0.015	No	9	100	No	0.002	NP (NDs)
Lead (mg/L)	SGWC-18	0.0025	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	SGWC-19	0.0025	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	SGWC-20	0.00065	0.000175	0.015	No	10	70	No	0.011	NP (Cohens/xfrm)
Lead (mg/L)	SGWC-21	0.00065	0.00009	0.015	No	10	90	No	0.011	NP (NDs)
Lead (mg/L)	SGWC-22	0.0025	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	SGWC-23	0.00065	0.00009	0.015	No	10	90	No	0.011	NP (NDs)
Lead (mg/L)	SGWC-6	0.0025	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	SGWC-7	0.0025	0.000175	0.015	No	10	90	No	0.011	NP (NDs)
Lead (mg/L)	SGWC-8	0.0025	0.000175	0.015	No	10	100	No	0.011	NP (NDs)
Lead (mg/L)	SGWC-9	0.0025	0.000175	0.015	No	10	100	No	0.011	NP (NDs)

		Scherer Client: G	Golder Associates	Data: Scherer	Ash Pon	nd_CCR	Printed 10/	15/2018, 9:38 AM		
Constituent	<u>Well</u>	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Lithium (mg/L)	SGWA-1 (bg)	0.0025	0.0013	0.04	No	10	70	No	0.011	NP (normality)
Lithium (mg/L)	SGWA-2 (bg)	0.025	0.00055	0.04	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	SGWA-24 (bg)	0.025	0.00055	0.04	No	10	90	No	0.011	NP (NDs)
Lithium (mg/L)	SGWA-25 (bg)	0.025	0.00055	0.04	No	10	90	No	0.011	NP (NDs)
Lithium (mg/L)	SGWA-3 (bg)	0.025	0.00055	0.04	No	10	90	No	0.011	NP (NDs)
Lithium (mg/L)	SGWA-4 (bg)	0.025	0.00055	0.04	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	SGWA-5 (bg)	0.025	0.00055	0.04	No	10	90	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-10	0.025	0.00055	0.04	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-11	0.0029	0.0013	0.04	No	10	70	No	0.011	NP (normality)
Lithium (mg/L)	SGWC-12	0.025	0.00055	0.04	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-13	0.025	0.00055	0.04	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-14	0.025	0.00055	0.04	No	9	88.89	No	0.002	NP (NDs)
Lithium (mg/L)	SGWC-15	0.0034	0.0016	0.04	No	10	70	No	0.011	NP (normality)
Lithium (mg/L)	SGWC-16	0.025	0.00055	0.04	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-17	0.025	0.00055	0.04	No	10	90	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-18	0.0042	0.0016	0.04	No	10	60	No	0.011	NP (normality)
Lithium (mg/L)	SGWC-19	0.025	0.00055	0.04	No	10	90	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-20	0.004444	0.003523	0.04	No	9	11.11	No	0.05	Param.
Lithium (mg/L)	SGWC-21	0.025	0.0013	0.04	No	10	90	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-22	0.025	0.00055	0.04	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-23	0.004746	0.003265	0.04	No	9	22.22	No	0.05	Param.
Lithium (mg/L)	SGWC-6	0.025	0.00055	0.04	No	10	100	No	0.011	NP (NDs)
Lithium (mg/L)	SGWC-7	0.004846	0.003688	0.04	No	9	0	No	0.05	Param.
Lithium (mg/L)	SGWC-8	0.0025	0.0013	0.04	No	10	70	No	0.011	NP (normality)
Lithium (mg/L)	SGWC-9	0.025	0.00055	0.04	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	SGWA-1 (bg)	0.00025	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWA-2 (bg)	0.00025	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWA-24 (bg)	0.00025	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWA-25 (bg)	0.00025	0.000035	0.002	No	10	80	No	0.011	NP (NDs)
Mercury (mg/L)	SGWA-3 (bg)	0.00025	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWA-4 (bg)	0.00025	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWA-5 (bg)	0.00025	0.000035	0.002	No	10	80	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-10	0.00025	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-11	0.00025	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-12	0.00025	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-13	0.00025	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-14	0.00025	0.000035	0.002	No	10	80	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-15	0.00025	0.000072	0.002	No	10	30	No	0.011	NP (Cohens/xfrm)
Mercury (mg/L)	SGWC-16	0.00025	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-17	0.00025	0.000035	0.002	No	10	80	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-18	0.0006439	0.0002353	0.002	No	10	50	No	0.05	Param.
Mercury (mg/L)	SGWC-19	0.00025	0.000035	0.002	No	10	100	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-20	0.00025	0.000035	0.002	No	10	80	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-21	0.00025	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-22	0.00025	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-23	0.00025	0.000035	0.002	No	10	70	No	0.011	NP (Cohens/xfrm)
Mercury (mg/L)	SGWC-6	0.00025	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-7	0.00025	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-8	0.00025	0.000035	0.002	No	10	90	No	0.011	NP (NDs)
Mercury (mg/L)	SGWC-9	0.00025	0.000035	0.002	No	10	90		0.011	NP (NDs)

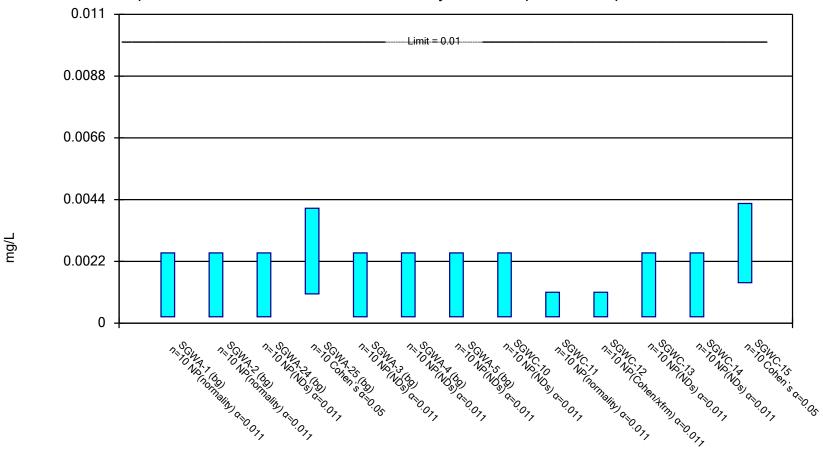

		Scherer Client:	Golder Associates	Data: Scherer Ash Pond_CCR		Printed 10	/15/2018, 9:38 AM			
Constituent	Well	Upper Lim.	Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
Molybdenum (mg/L)	SGWA-1 (bg)	0.0075	0.000425	0.1	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWA-2 (bg)	0.0075	0.000425	0.1	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWA-24 (bg)	0.0075	0.000425	0.1	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWA-25 (bg)	0.0075	0.000425	0.1	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWA-3 (bg)	0.0075	0.000425	0.1	No	9	88.89	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWA-4 (bg)	0.0075	0.000425	0.1	No	9	22.22	No	0.002	NP (Cohens/xfrm)
Molybdenum (mg/L)	SGWA-5 (bg)	0.0075	0.000425	0.1	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-10	0.0075	0.000425	0.1	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-11	0.0075	0.000425	0.1	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-12	0.0075	0.000425	0.1	No	9	77.78	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-13	0.0075	0.000425	0.1	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-14	0.0075	0.000425	0.1	No	9	88.89	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-15	0.0075	0.000425	0.1	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-16	0.0075	0.000425	0.1	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-17	0.0075	0.000425	0.1	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-18	0.0075	0.000425	0.1	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-19	0.0075	0.000425	0.1	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-20	0.0075	0.000425	0.1	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-21	0.0075	0.000425	0.1	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-22	0.0075	0.000425	0.1	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-23	0.0075	0.000425	0.1	No	9	100	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-6	0.0075	0.000425	0.1	No	9	77.78	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-7	0.0075	0.000425	0.1	No	9	22.22	No	0.002	NP (Cohens/xfrm)
Molybdenum (mg/L)	SGWC-8	0.0075	0.000425	0.1	No	9	88.89	No	0.002	NP (NDs)
Molybdenum (mg/L)	SGWC-9	0.0075	0.000425	0.1	No	9	44.44	No	0.002	NP (Cohens/xfrm)
Selenium (mg/L)	SGWA-1 (bg)	0.005	0.00012	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWA-2 (bg)	0.005	0.00012	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWA-24 (bg)	0.005	0.00012	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWA-25 (bg)	0.005	0.00012	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWA-3 (bg)	0.005	0.00012	0.05	No	10	90	No	0.011	NP (NDs)
Selenium (mg/L)	SGWA-4 (bg)	0.005	0.00012	0.05	No	10	90	No	0.011	NP (NDs)
Selenium (mg/L)	SGWA-5 (bg)	0.005	0.00012	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-10	0.005	0.00012	0.05	No	9	100	No	0.002	NP (NDs)
Selenium (mg/L)	SGWC-11	0.005	0.00012	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-12	0.005	0.00012	0.05	No	10	90	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-13	0.005	0.00012	0.05	No	10	90	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-14	0.005	0.00012	0.05	No	10	90	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-15	0.00965	0.00012	0.05	No	10	20	No	0.011	NP (Cohens/xfrm)
Selenium (mg/L)	SGWC-16	0.005	0.00012	0.05	No	10	70	No	0.011	NP (Cohens/xfrm)
Selenium (mg/L)	SGWC-17	0.005	0.00012	0.05	No	9	88.89	No	0.002	NP (NDs)
Selenium (mg/L)	SGWC-18	0.023	0.0047	0.05	No	10	0	No	0.011	NP (normality)
Selenium (mg/L)	SGWC-19	0.005	0.00012	0.05	No	10	90	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-20	0.00396	0.00012	0.05	No	10	60	No	0.011	NP (Cohens/xfrm)
Selenium (mg/L)	SGWC-21	0.005	0.00012	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-22	0.005	0.00012	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-23	0.005	0.00012	0.05	No	10	90	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-6	0.005	0.00012	0.05	No	10	80	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-7	0.005	0.00012	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-8	0.005	0.00012	0.05	No	10	100	No	0.011	NP (NDs)
Selenium (mg/L)	SGWC-9	0.005	0.00012	0.05	No	10	100	No	0.011	NP (NDs)

Constituent
Thallium (mg/L)

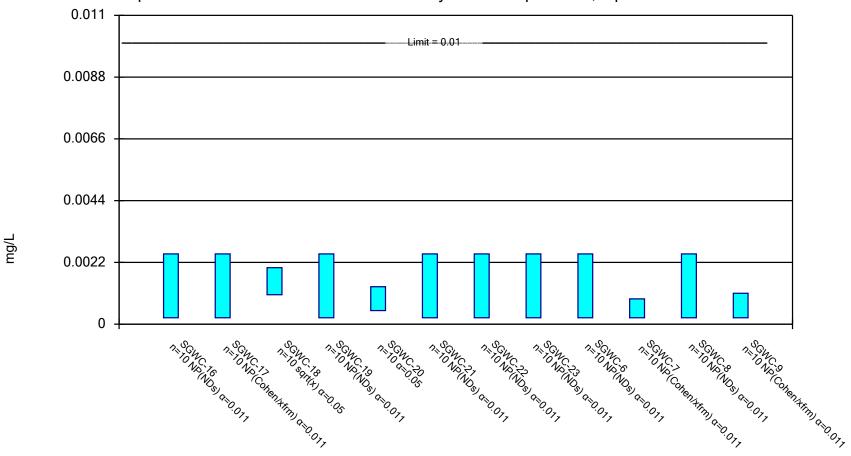
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)
Thallium (mg/L)


	Scherer	Client: Golder Associates	Data: Schere	r Ash Po	ond_CCR	Printed 1	0/15/2018, 9:38 AM		
Well	Upper Lir	m. Lower Lim.	Compliance	Sig.	<u>N</u>	%NDs	<u>Transform</u>	<u>Alpha</u>	Method
SGWA-1 (bg)	0.00025	0.0000425	0.002	No	10	80	No	0.011	NP (NDs)
SGWA-2 (bg)	0.0005	0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWA-24 (bg)	0.0005	0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWA-25 (bg)	0.0005	0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWA-3 (bg)	0.00025	0.0000425	0.002	No	10	90	No	0.011	NP (NDs)
SGWA-4 (bg)	0.0005	0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWA-5 (bg)	0.0005	0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-10	0.00025	0.0000425	0.002	No	10	90	No	0.011	NP (NDs)
SGWC-11	0.0005	0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-12	0.0005	0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-13	0.0005	0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-14	0.0005	0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-15	0.00025	0.0000425	0.002	No	10	60	No	0.011	NP (normality)
SGWC-16	0.0005	0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-17	0.0005	0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-18	0.000160	0.0001163	0.002	No	9	0	No	0.05	Param.
SGWC-19	0.0005	0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-20	0.000181	5 0.0001296	0.002	No	9	0	No	0.05	Param.
SGWC-21	0.0005	0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-22	0.0005	0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-23	0.0005	0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-6	0.0005	0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-7	0.0005	0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-8	0.0005	0.0000425	0.002	No	10	100	No	0.011	NP (NDs)
SGWC-9	0.0005	0.0000425	0.002	No	10	100	No	0.011	NP (NDs)

Compliance Limit is not exceeded.


Constituent: Antimony Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

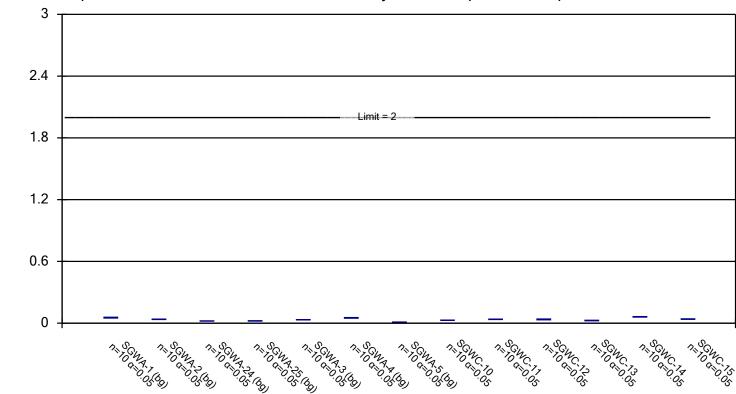
Compliance Limit is not exceeded.


Constituent: Antimony Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Arsenic Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence Interval

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

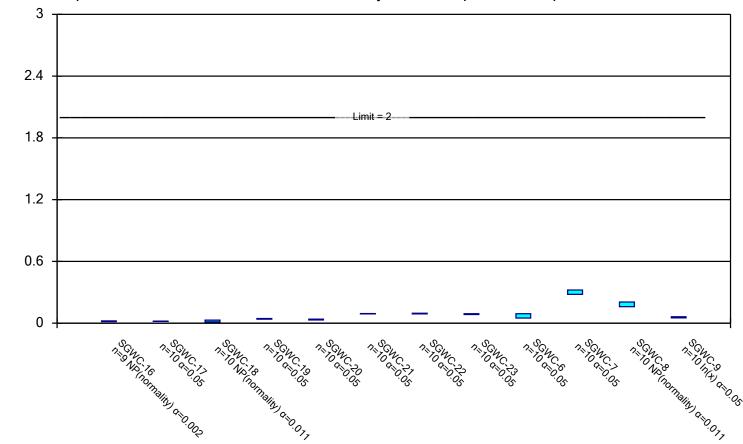


Constituent: Arsenic Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence Interval

mg/L

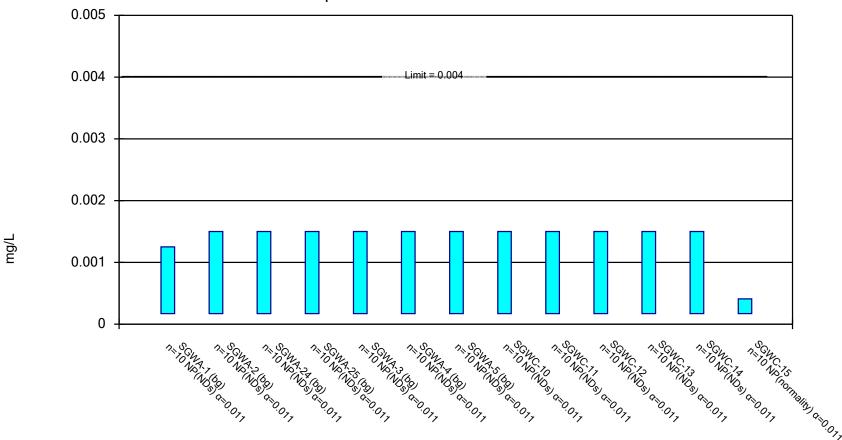
Parametric Confidence Interval

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

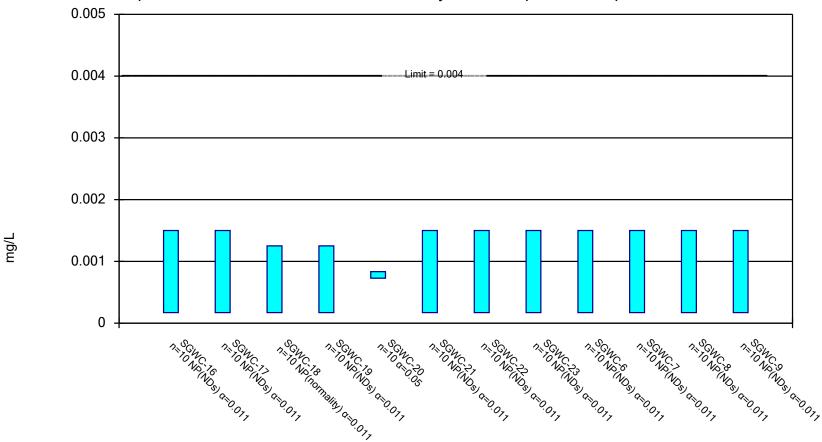


Constituent: Barium Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence Interval

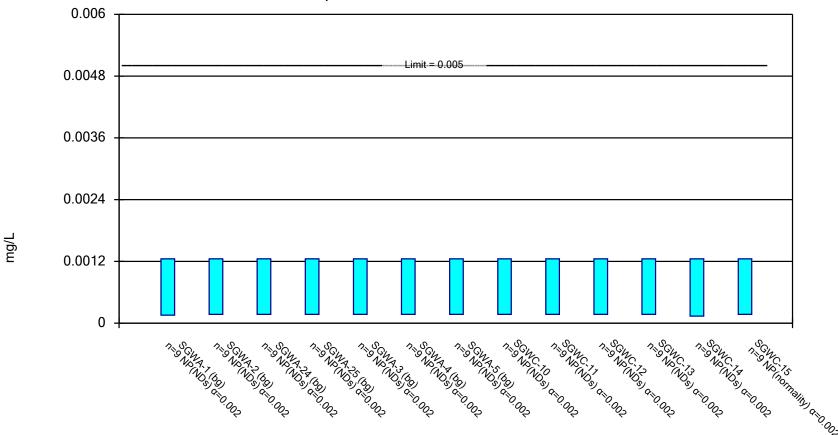
mg/L


Parametric and Non-Parametric (NP) Confidence Interval

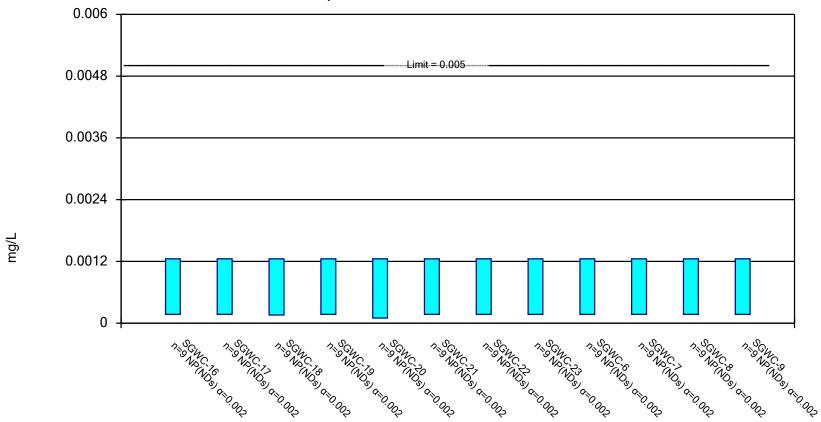
Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Barium Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence Interval

Compliance Limit is not exceeded.


Constituent: Beryllium Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence Interval

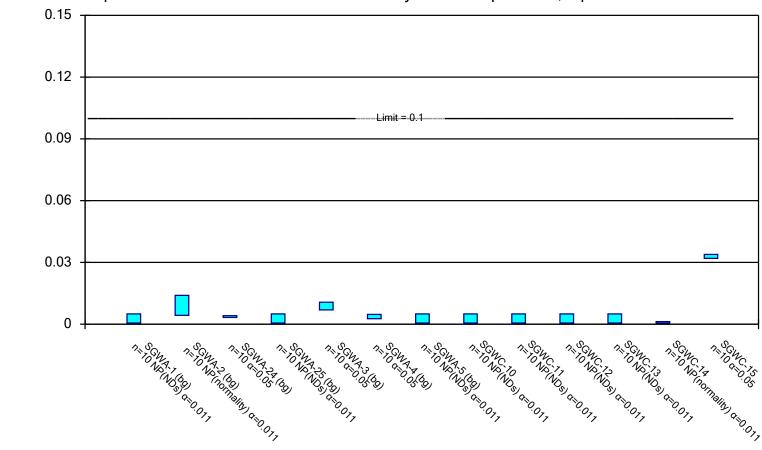
Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Beryllium Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence Interval

Compliance Limit is not exceeded.

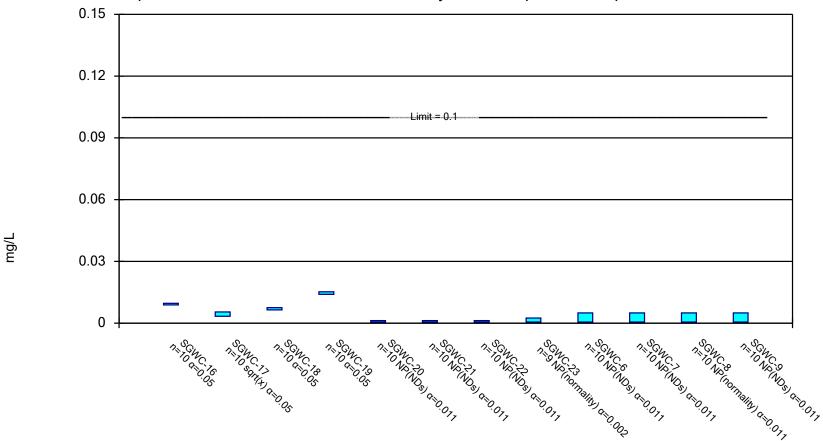
Constituent: Cadmium Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence Interval

Compliance Limit is not exceeded.

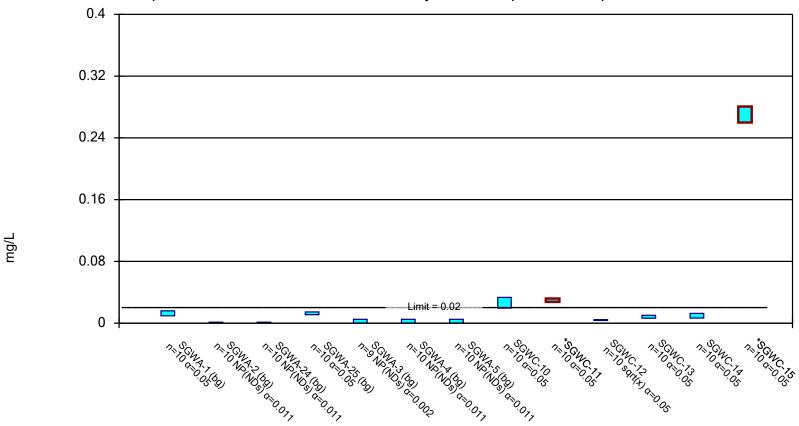


Constituent: Cadmium Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

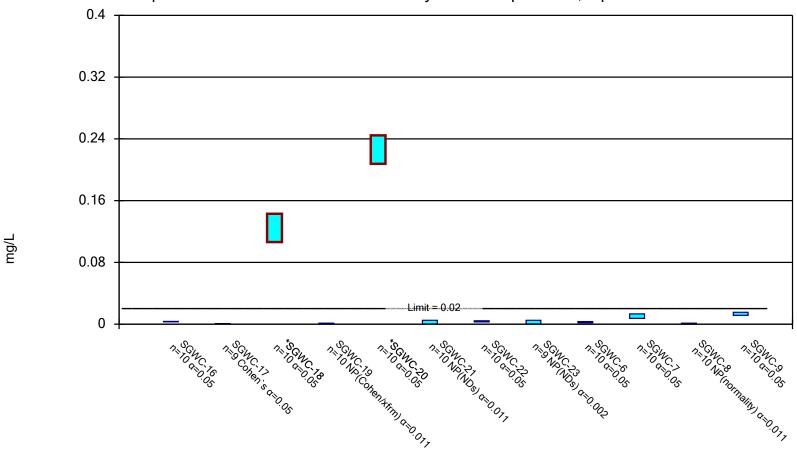
mg/L


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Chromium Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

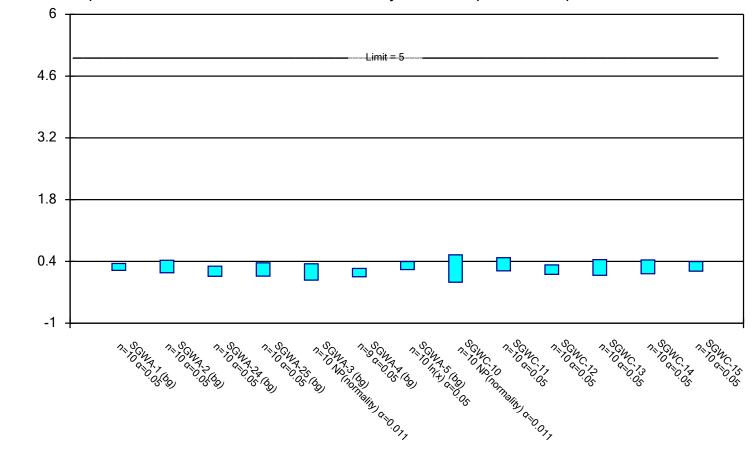
Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Chromium Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

Compliance limit is exceeded.* Normality Test: Shapiro Wilk, alpha based on n.

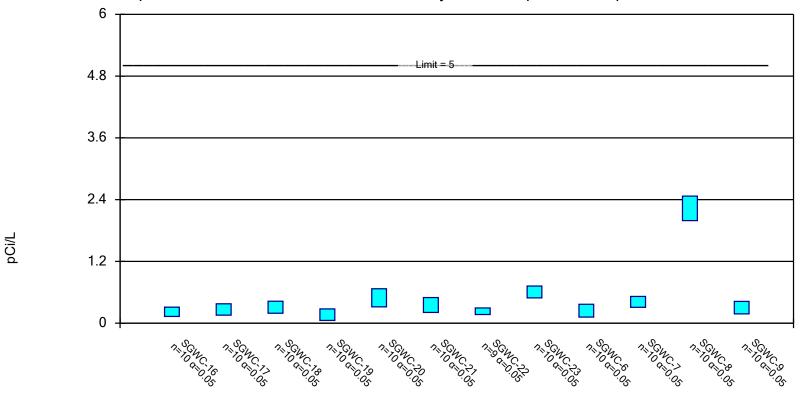
Constituent: Cobalt Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

Compliance limit is exceeded.* Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Cobalt Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence Interval Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

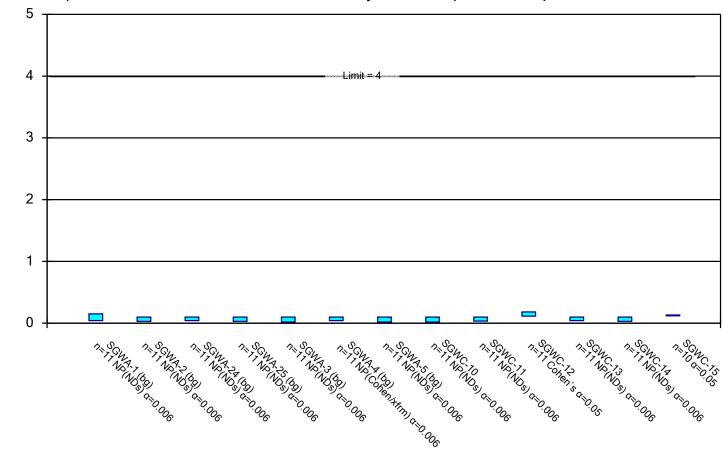
pCi/L


Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

Constituent: Combined Radium 226 + 228 Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence I Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

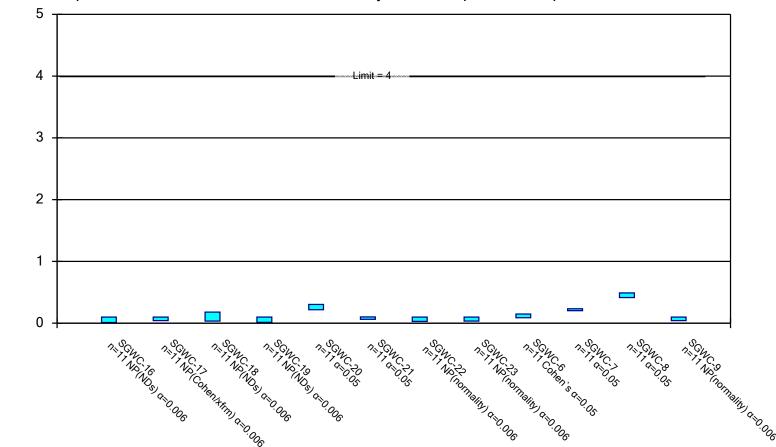


Constituent: Combined Radium 226 + 228 Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence I Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

mg/L

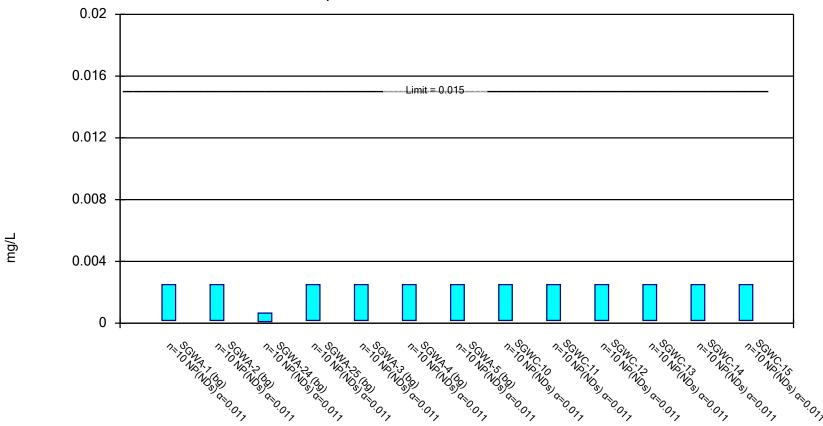
Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.

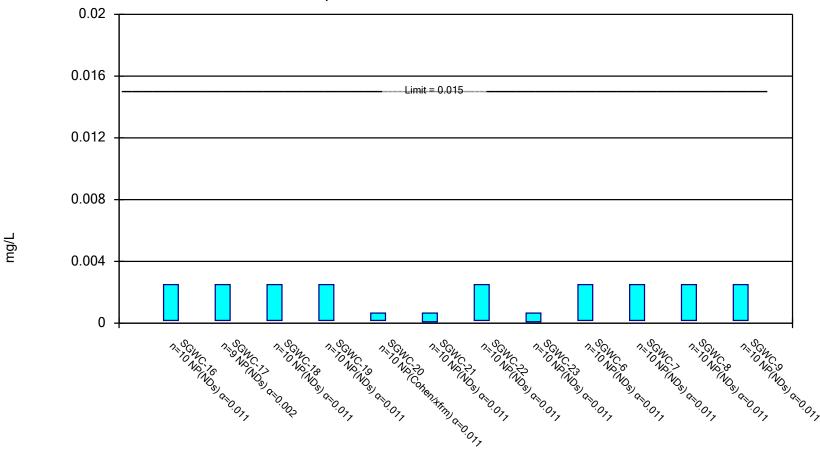


Constituent: Fluoride Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence Interval

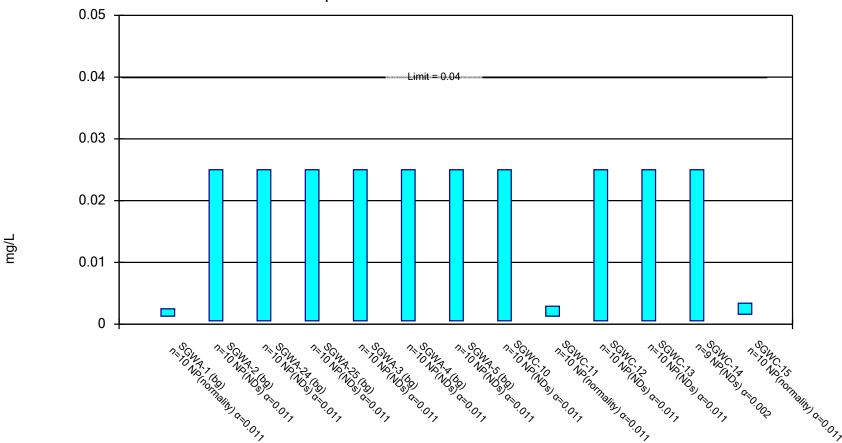
mg/L


Parametric and Non-Parametric (NP) Confidence Interval

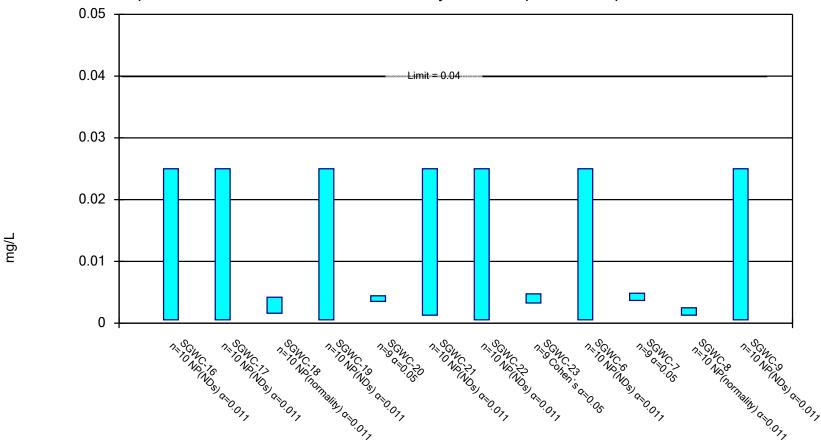
Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Fluoride Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence Interval

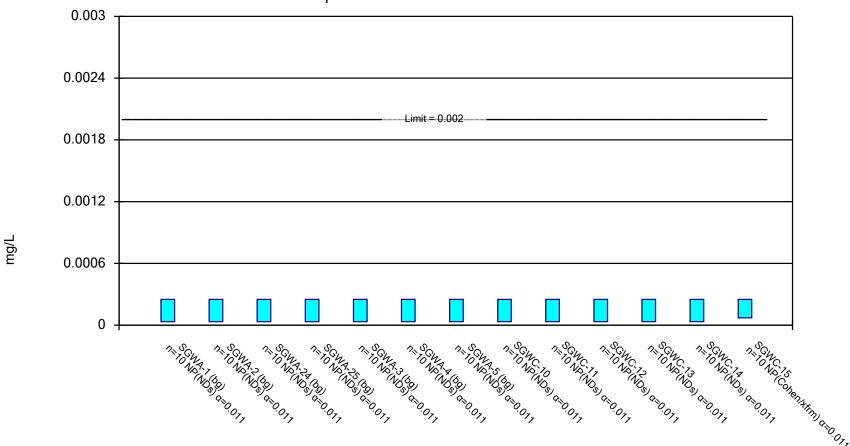
Compliance Limit is not exceeded.


Constituent: Lead Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence Interval

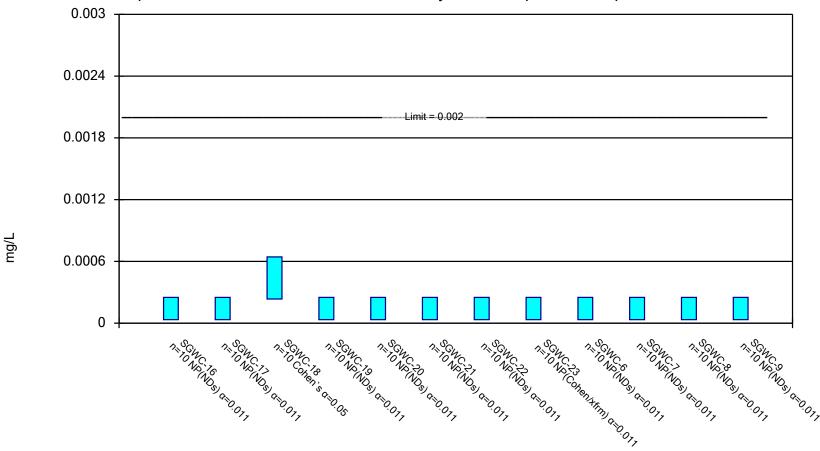
Compliance Limit is not exceeded.


Constituent: Lead Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence Interval

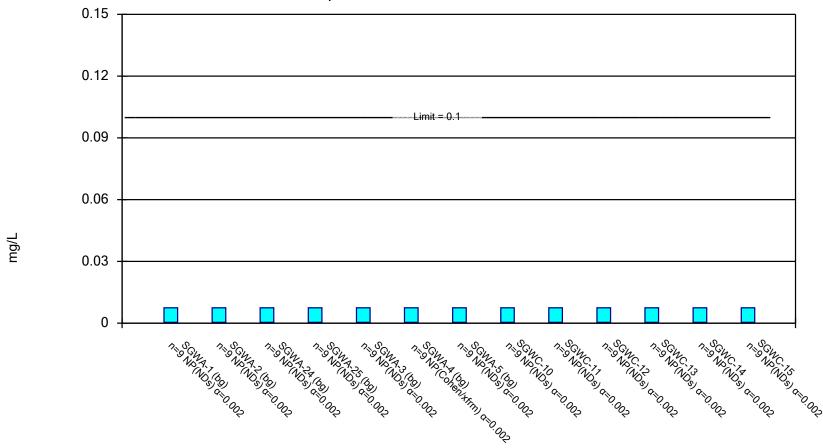
Compliance Limit is not exceeded.


Constituent: Lithium Analysis Run 10/15/2018 9:31 AM View: Interwell Confidence Interval

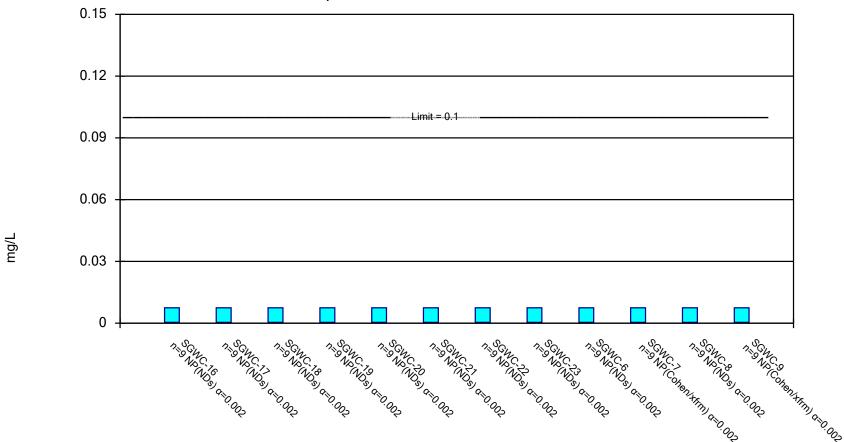
Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.


Constituent: Lithium Analysis Run 10/15/2018 9:32 AM View: Interwell Confidence Interval

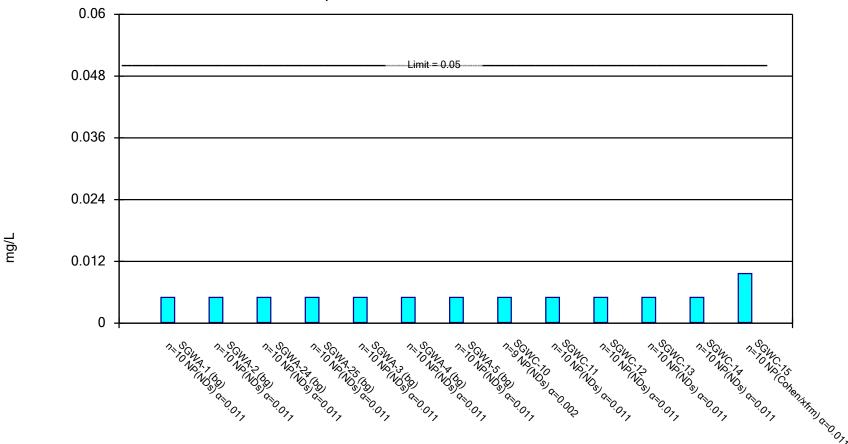
Compliance Limit is not exceeded.

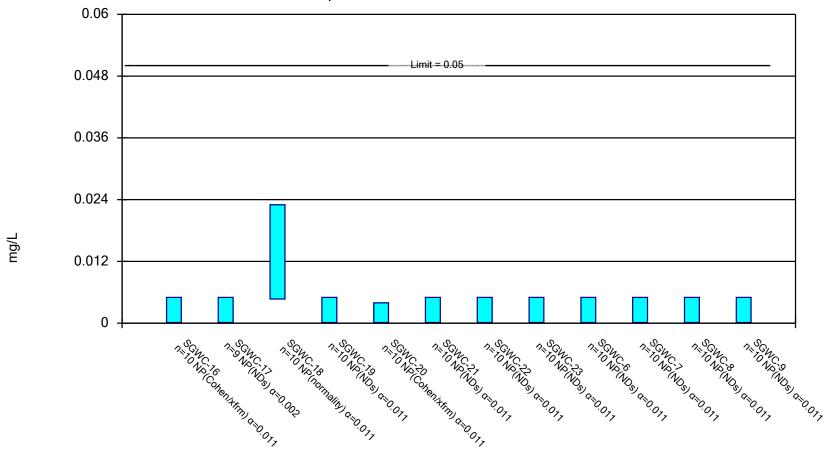

Constituent: Mercury Analysis Run 10/15/2018 9:32 AM View: Interwell Confidence Interval

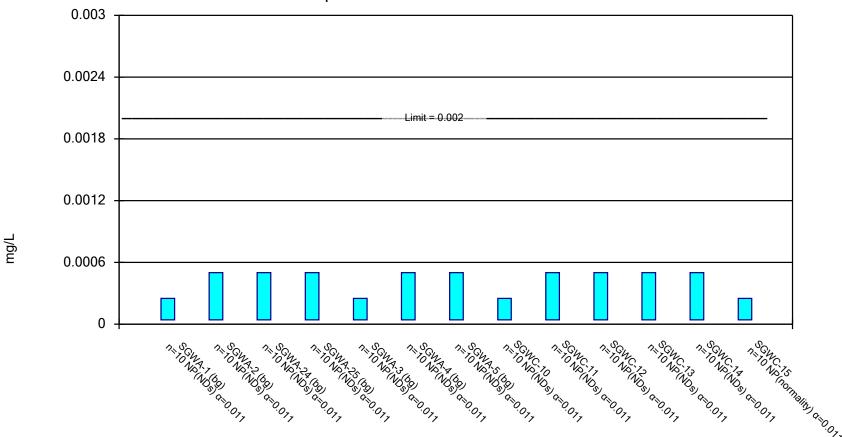
Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Mercury Analysis Run 10/15/2018 9:32 AM View: Interwell Confidence Interval

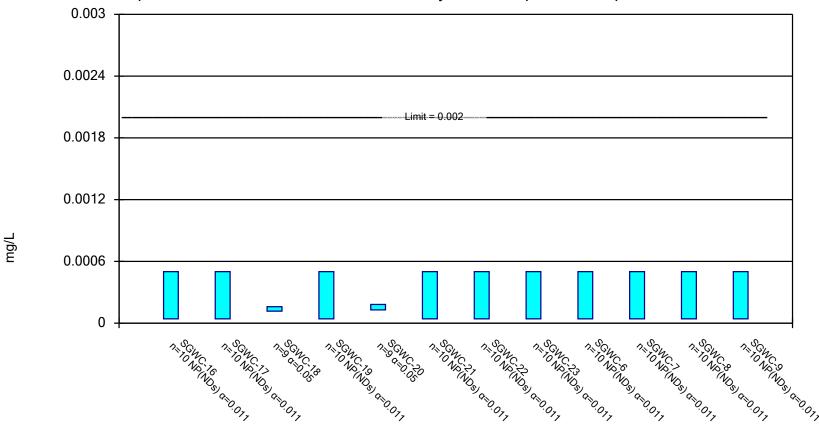

Compliance Limit is not exceeded.


Compliance Limit is not exceeded.


Compliance Limit is not exceeded.

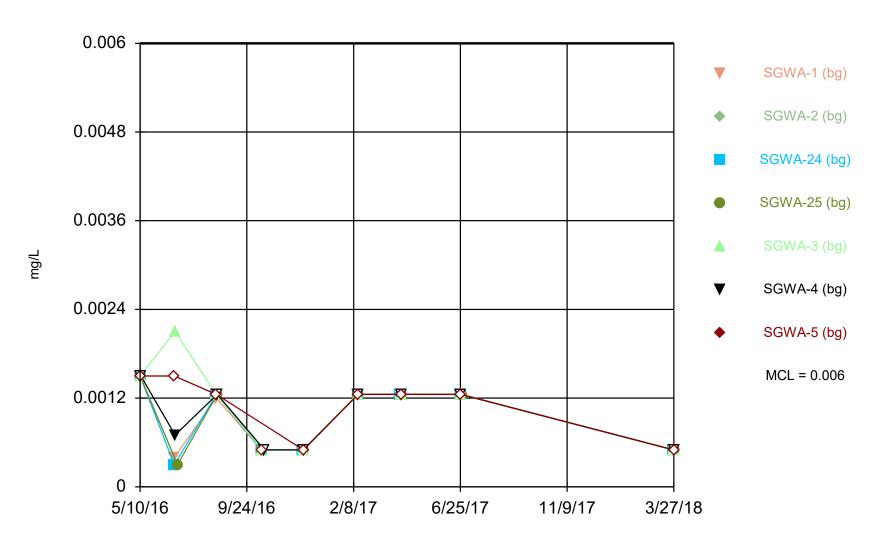
Compliance Limit is not exceeded.

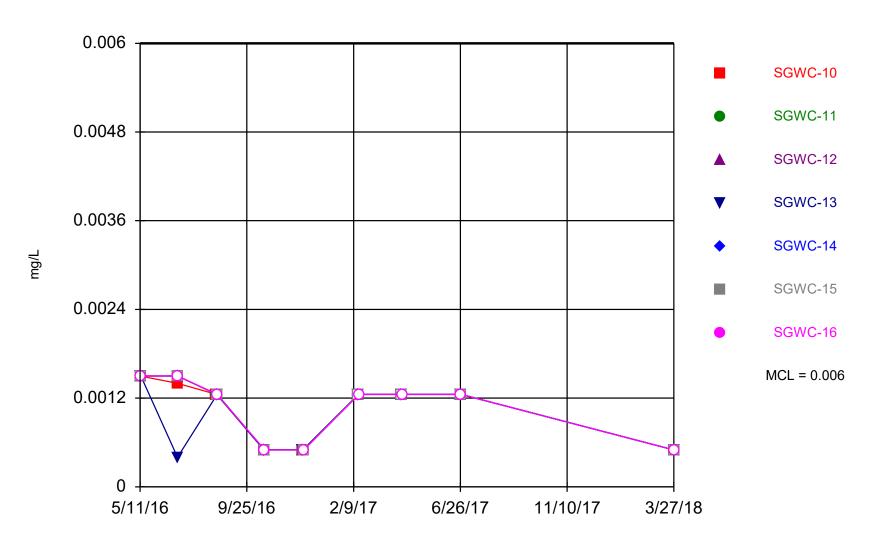
Compliance Limit is not exceeded.

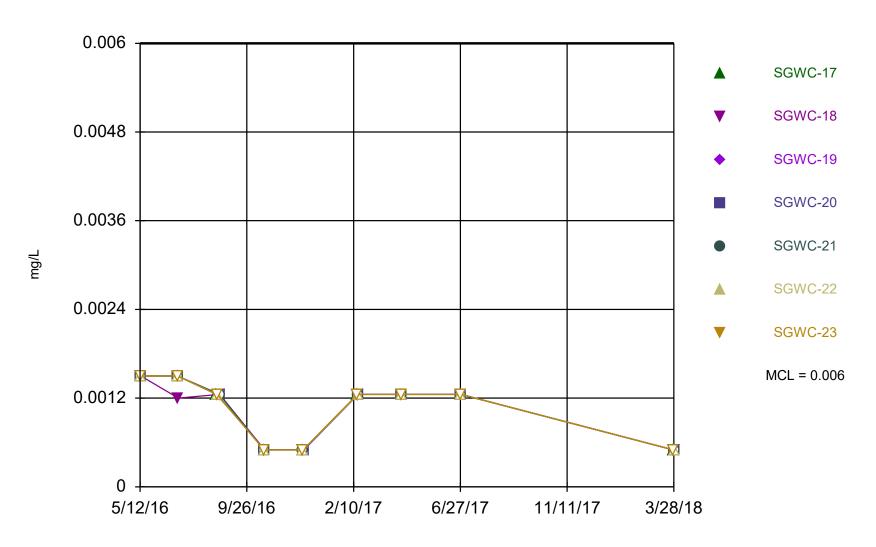


Constituent: Thallium Analysis Run 10/15/2018 9:32 AM View: Interwell Confidence Interval

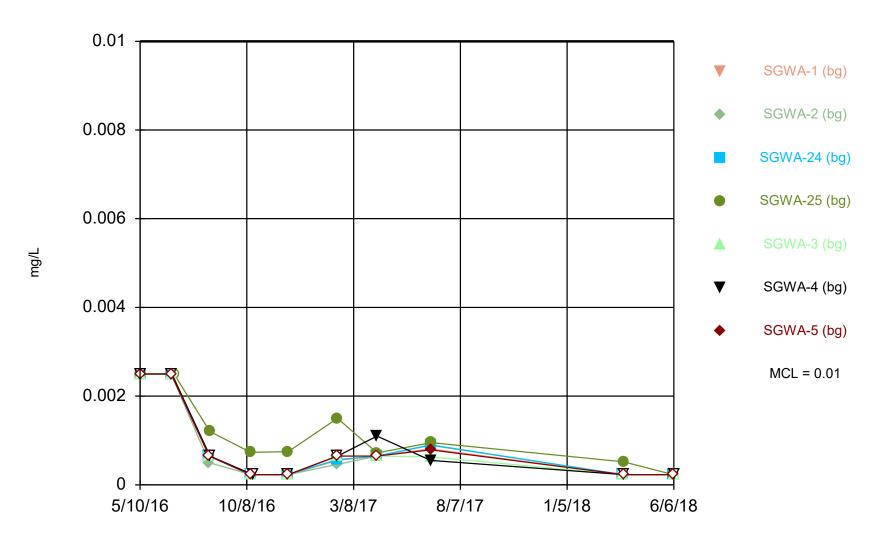
Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

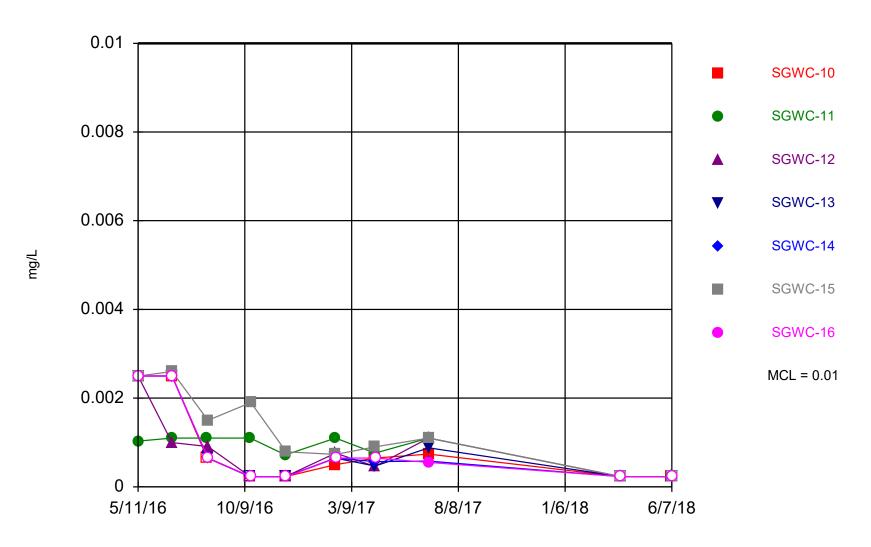

Parametric and Non-Parametric (NP) Confidence Interval

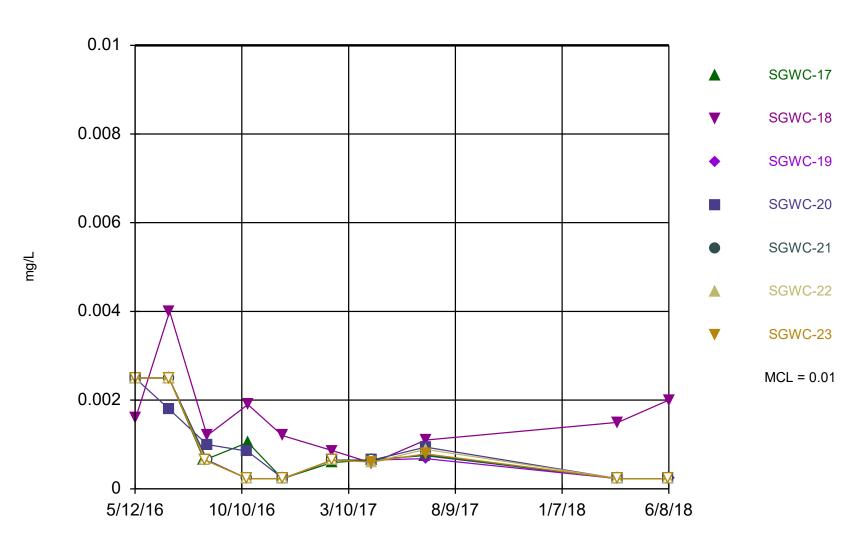

Compliance Limit is not exceeded. Normality Test: Shapiro Wilk, alpha based on n.



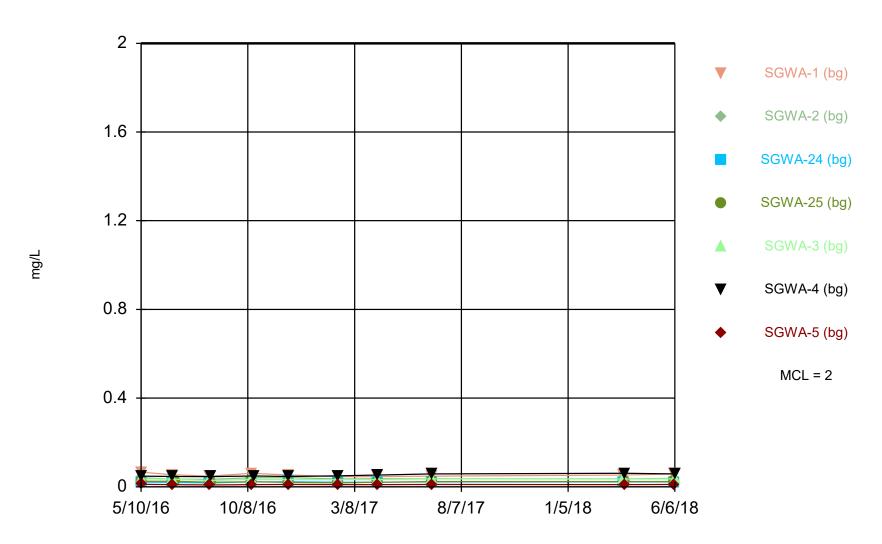
Constituent: Thallium Analysis Run 10/15/2018 9:32 AM View: Interwell Confidence Interval


Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

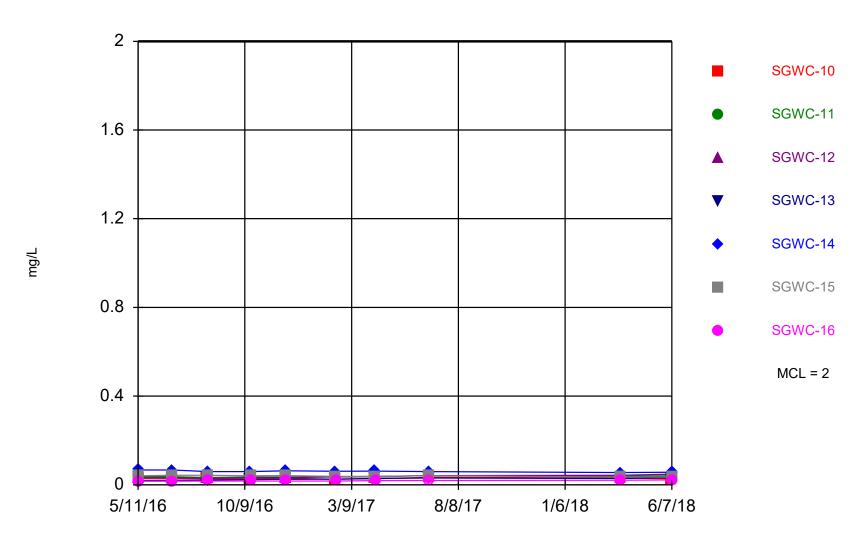


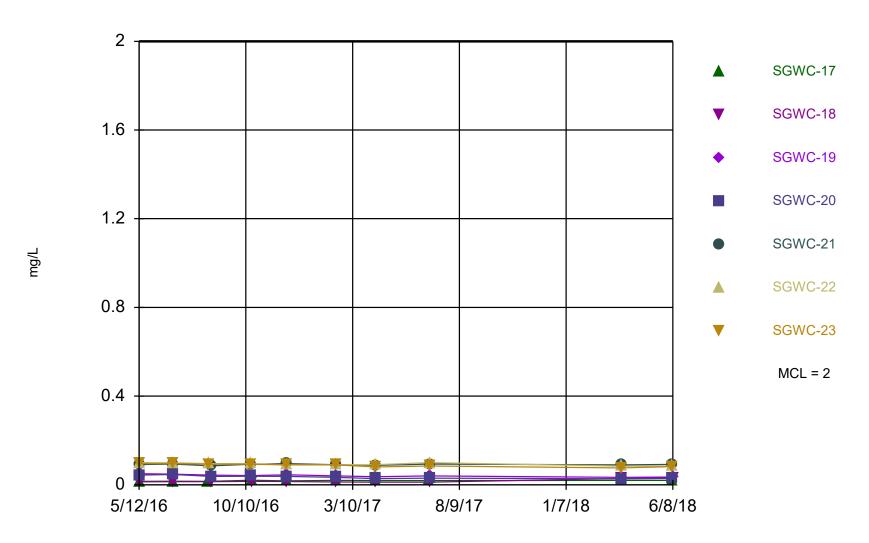


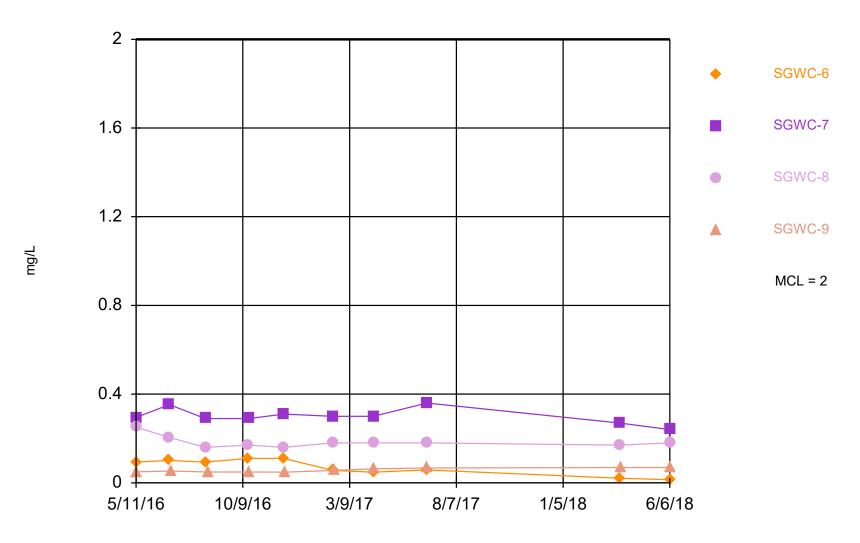


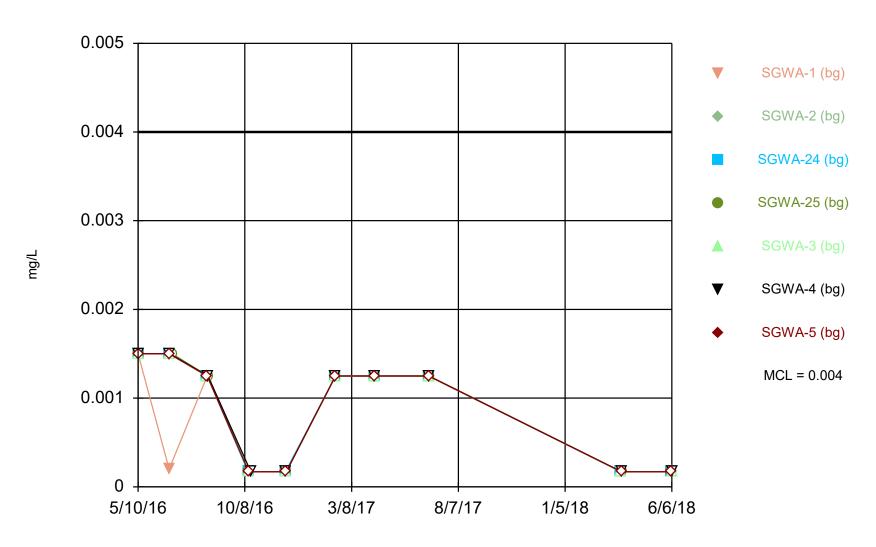

Constituent: Arsenic Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence Interval

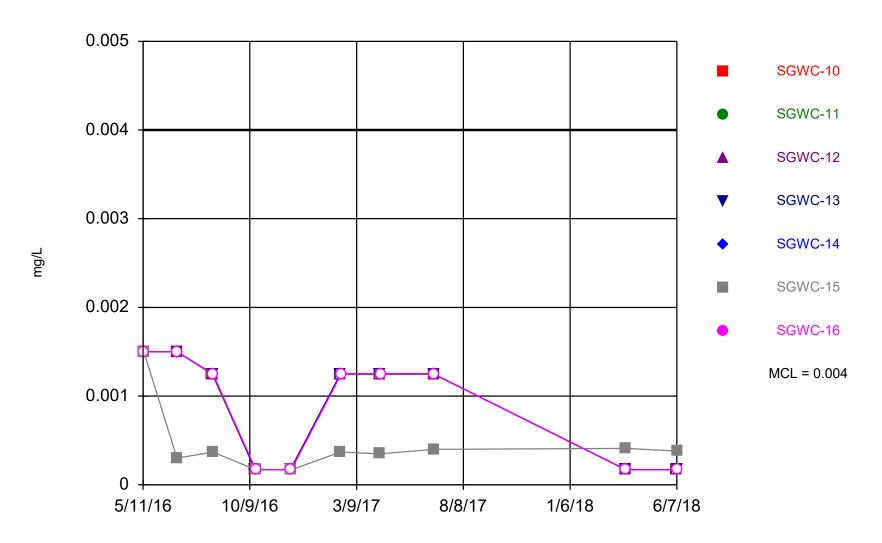
Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

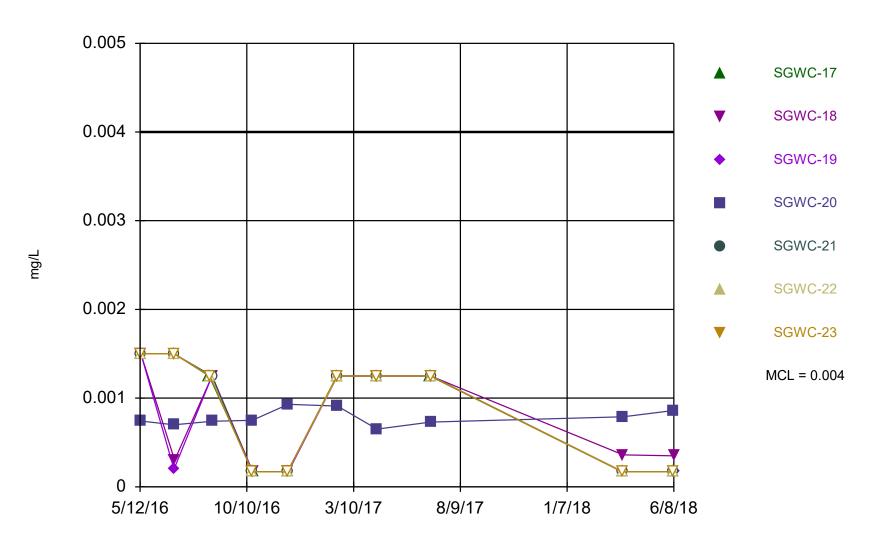


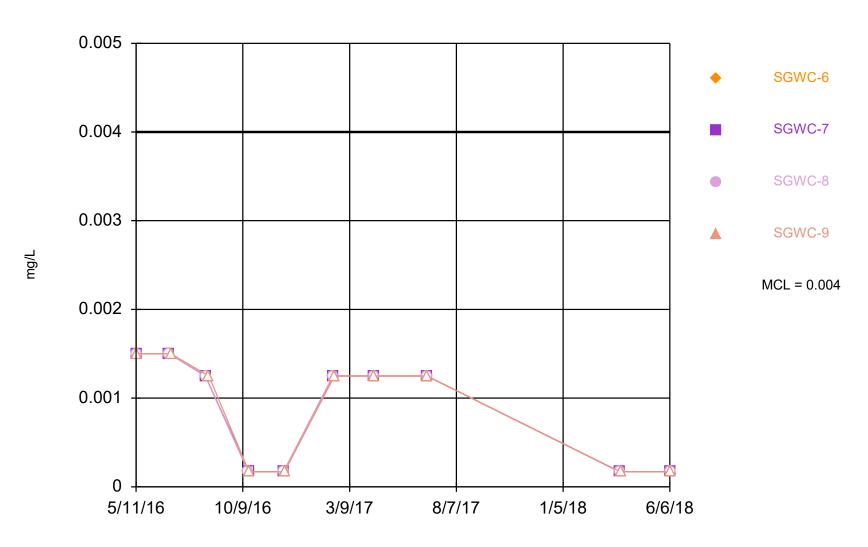

Constituent: Barium Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence Interval

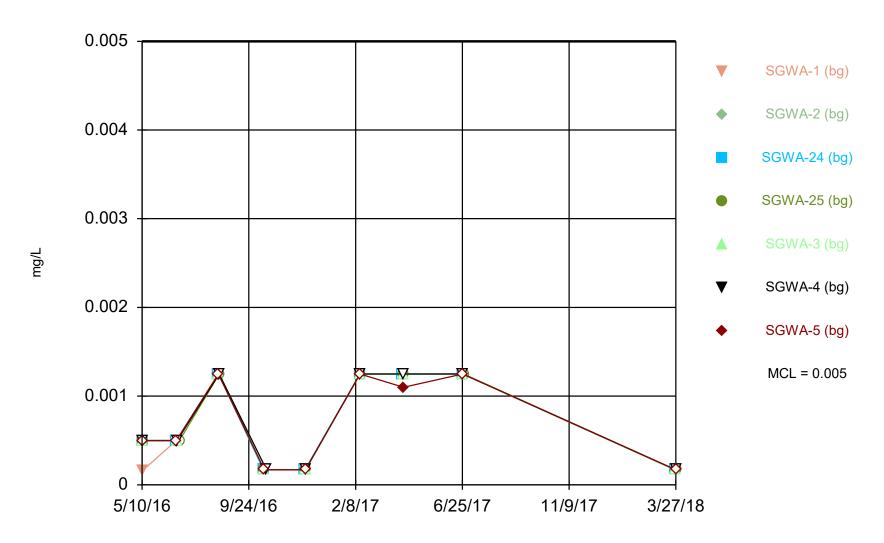

Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

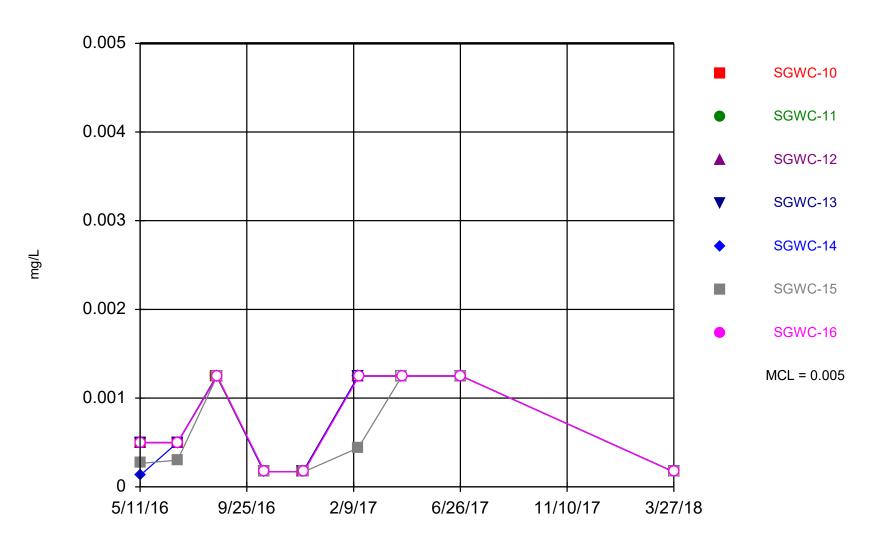


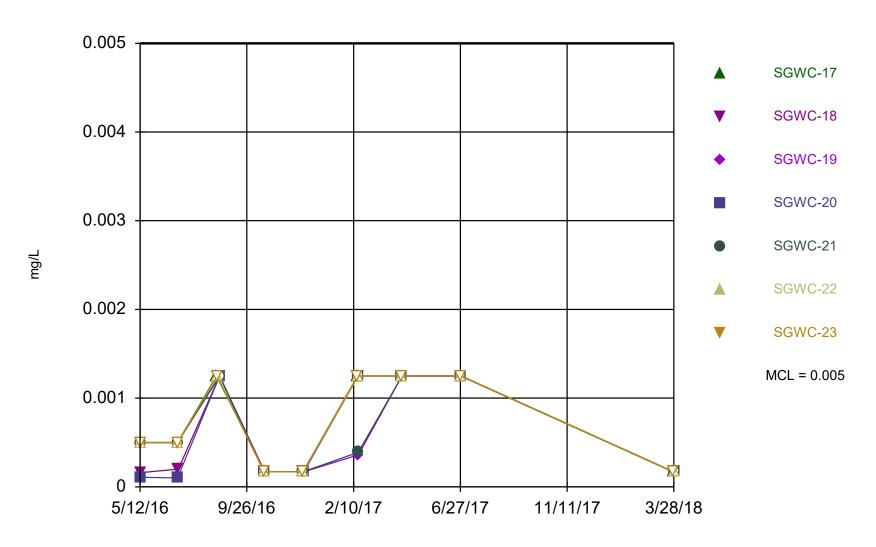

Constituent: Barium Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence Interval

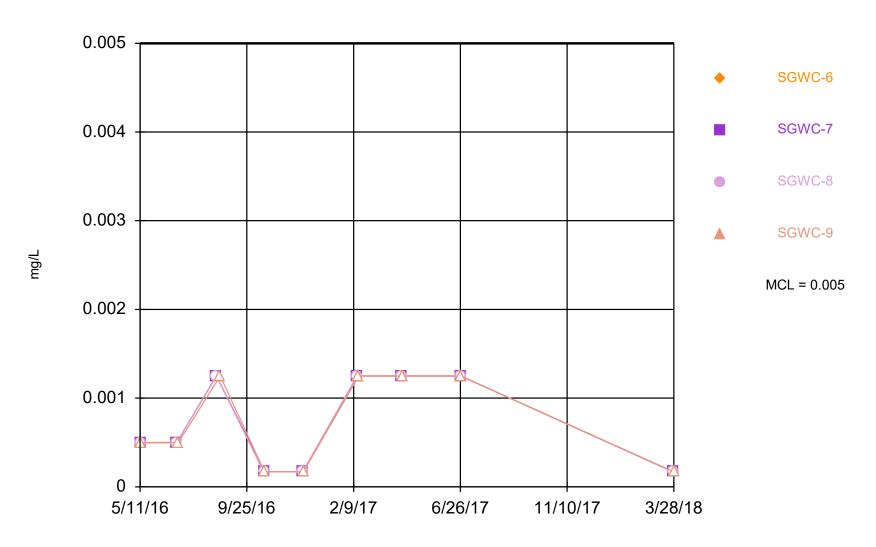

Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

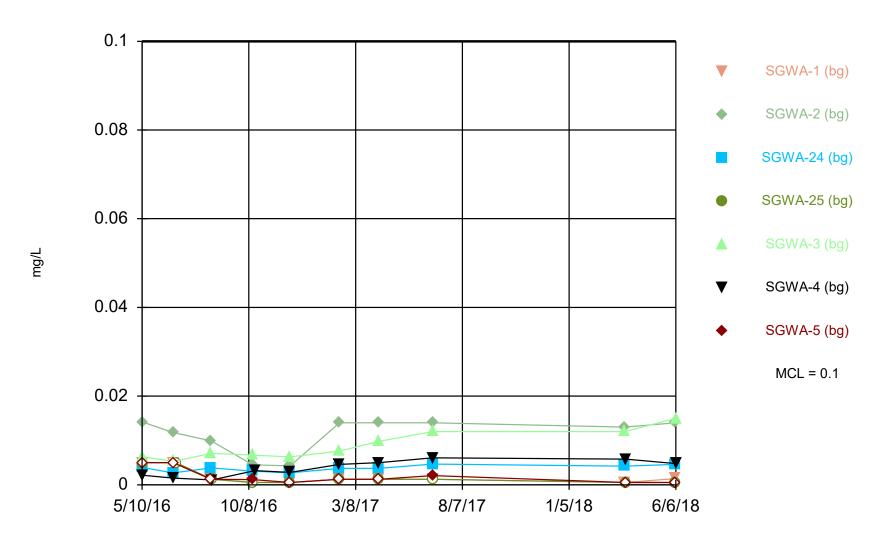


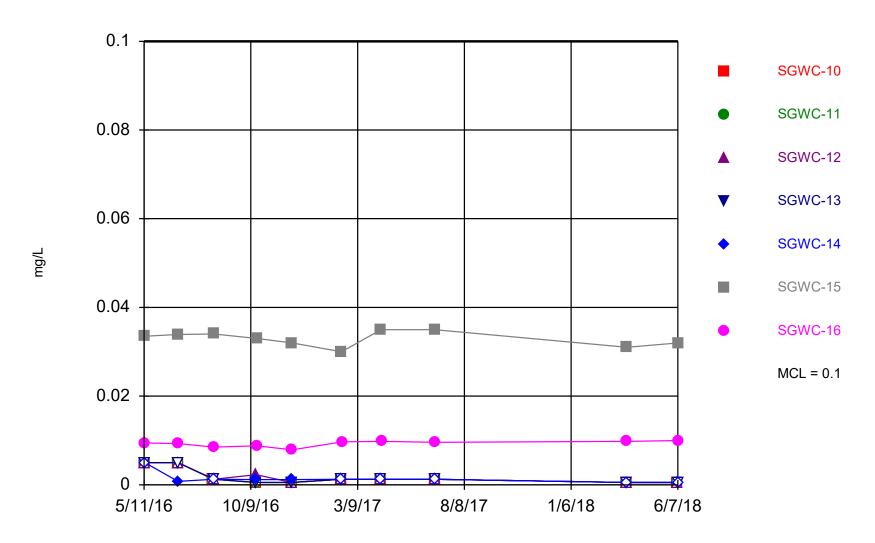


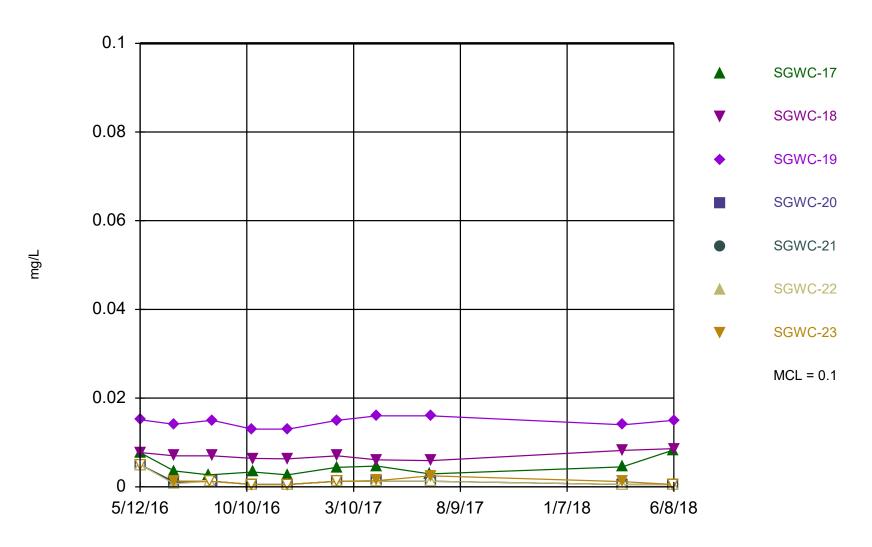


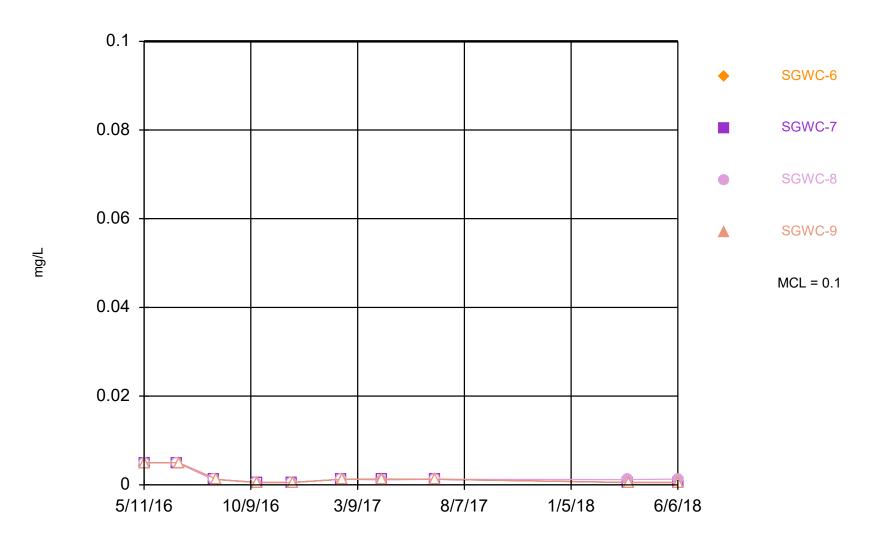


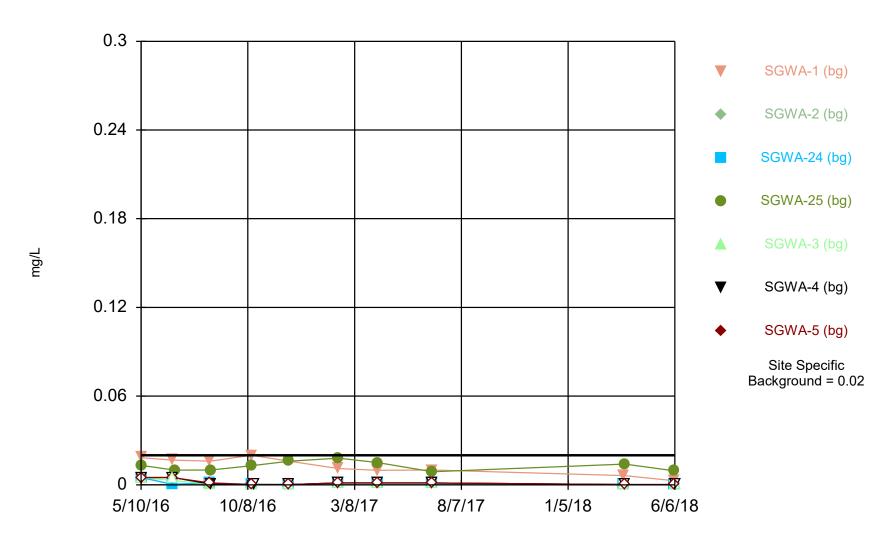


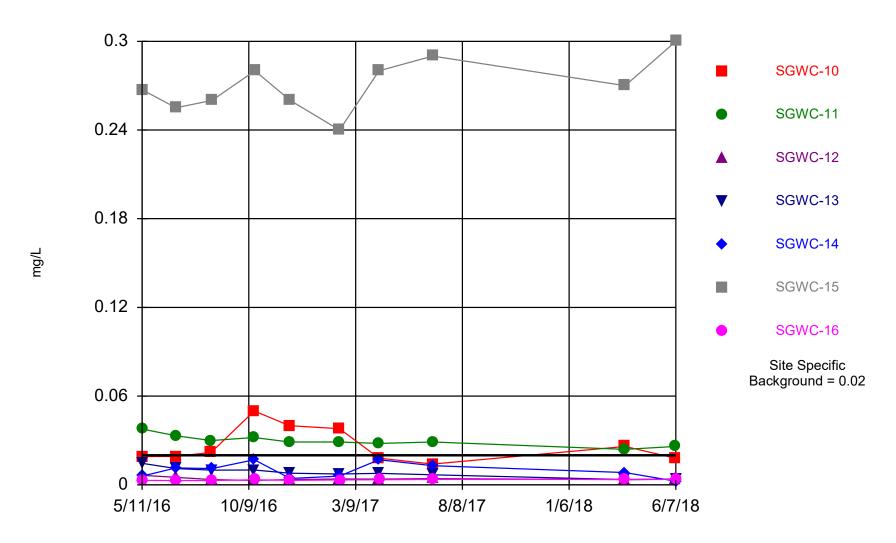


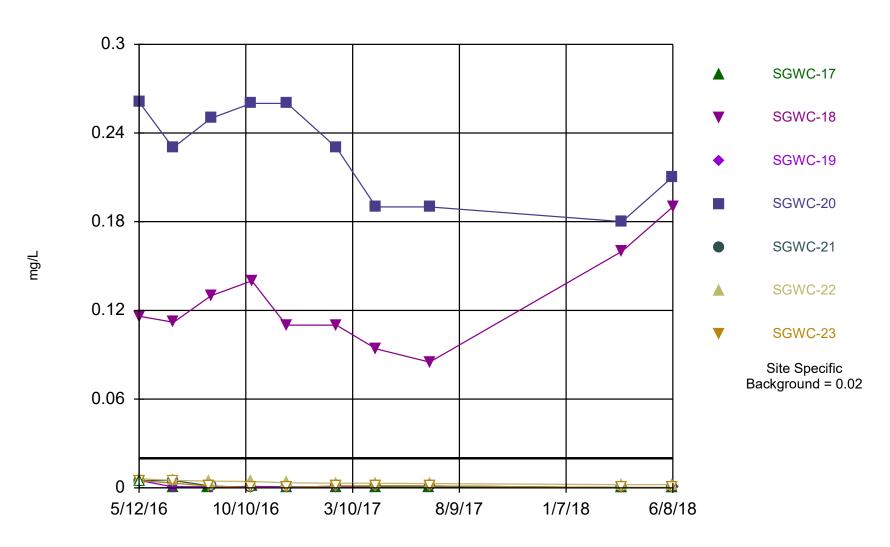


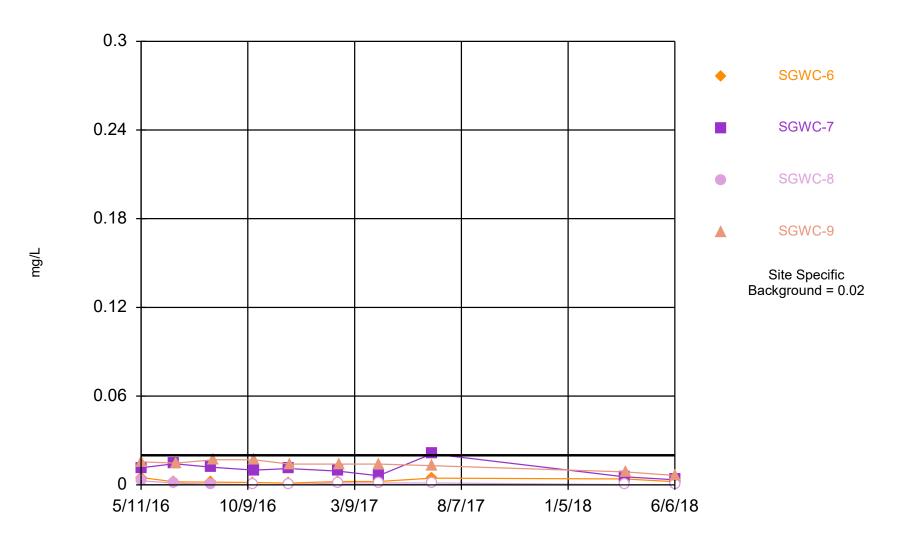


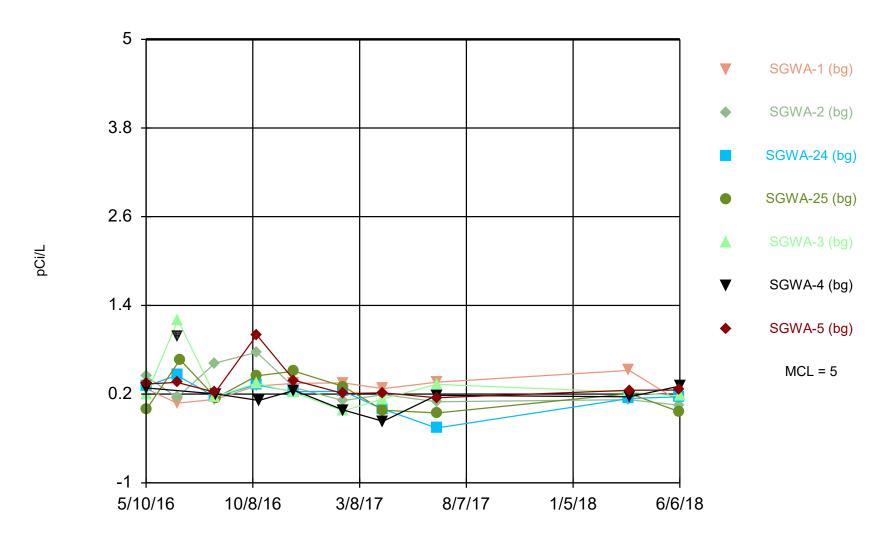


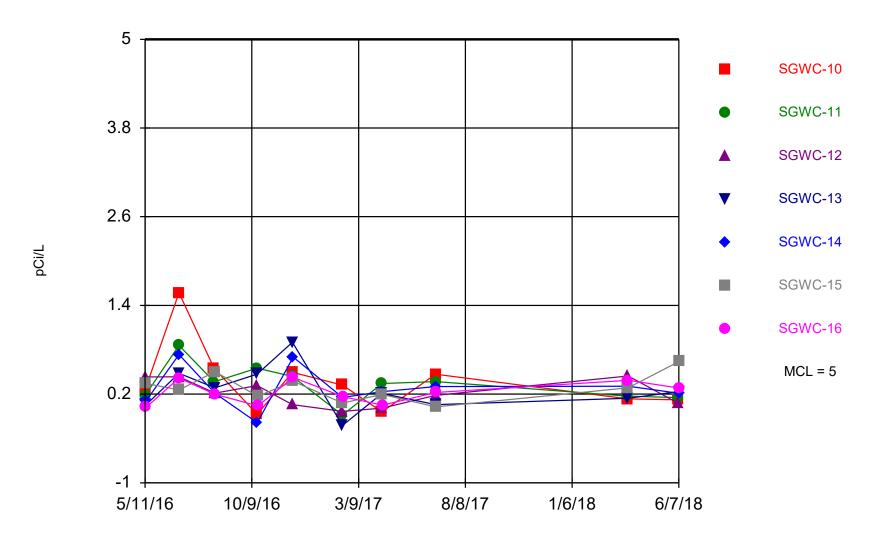


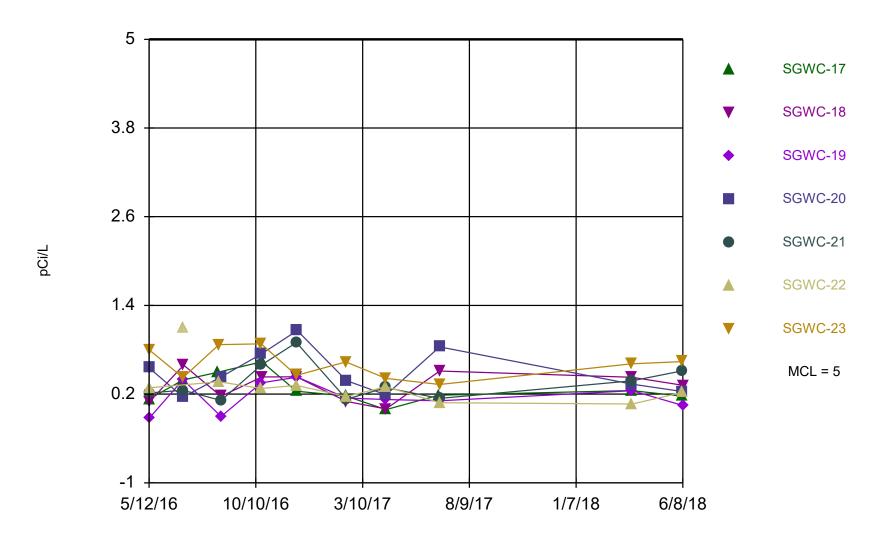


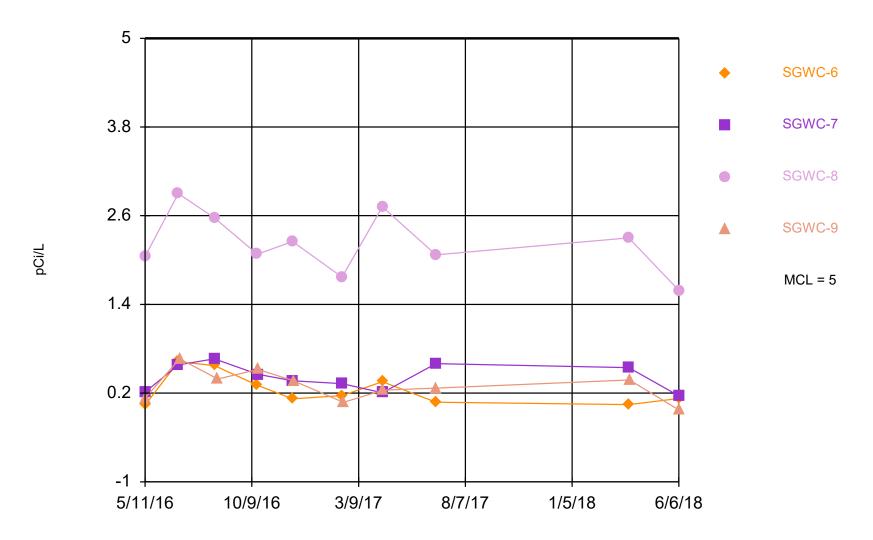




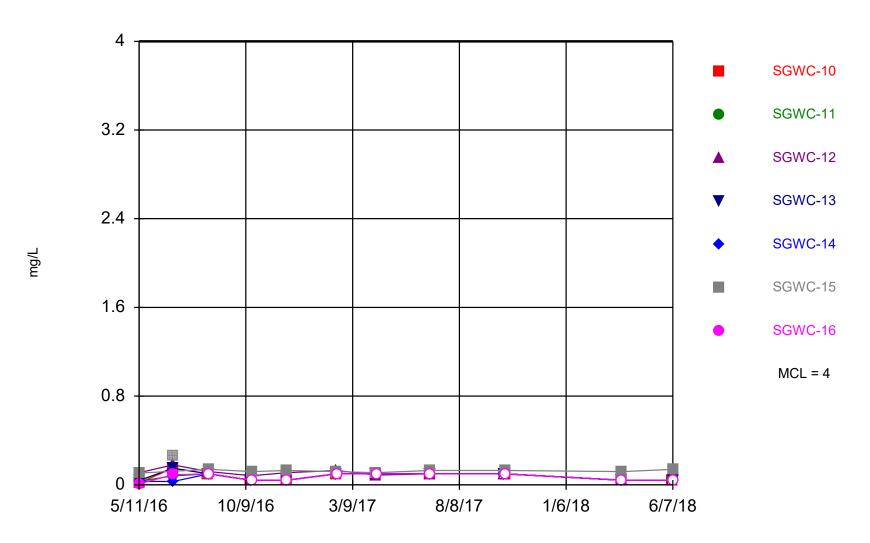


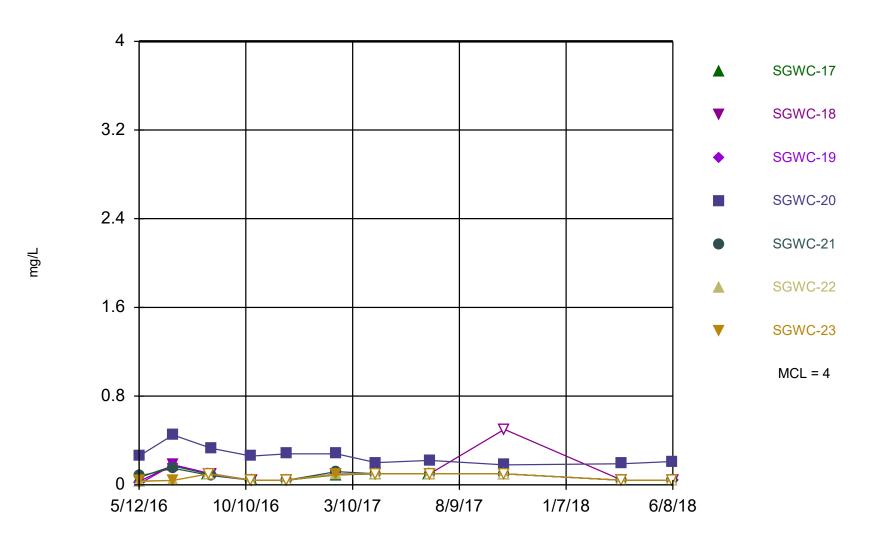


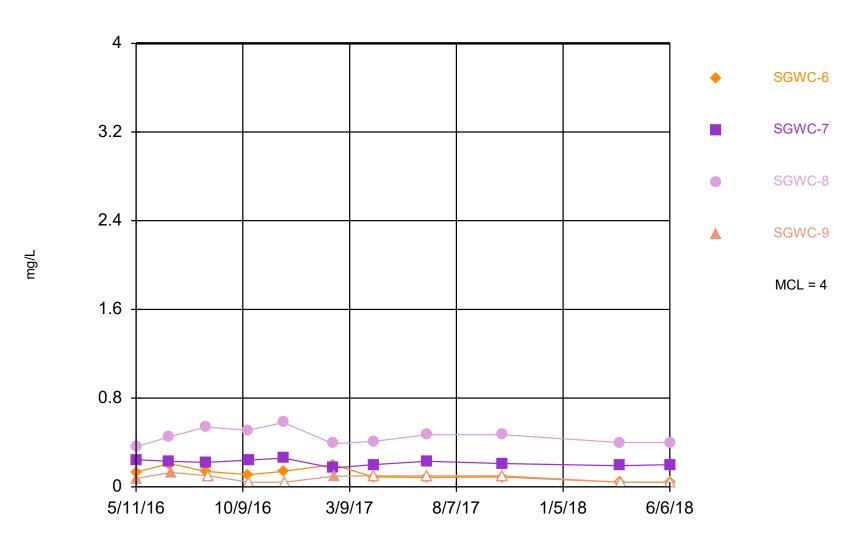


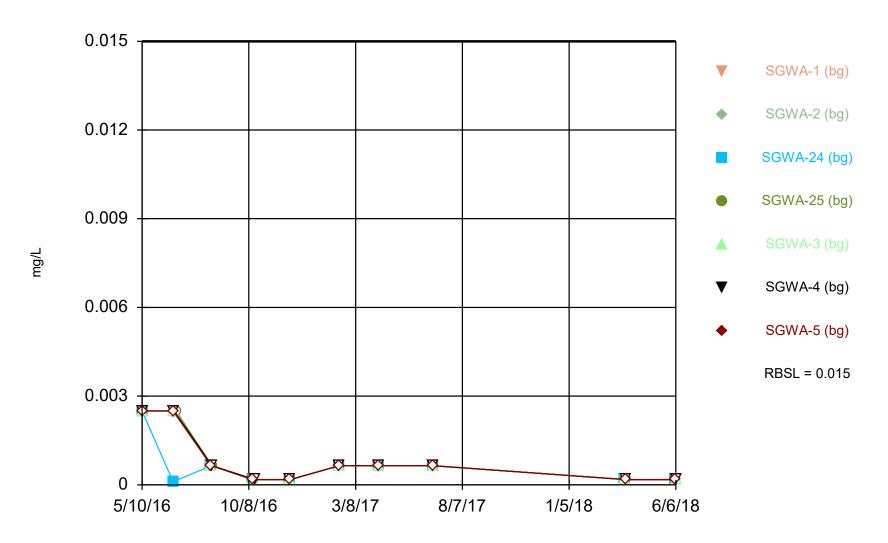


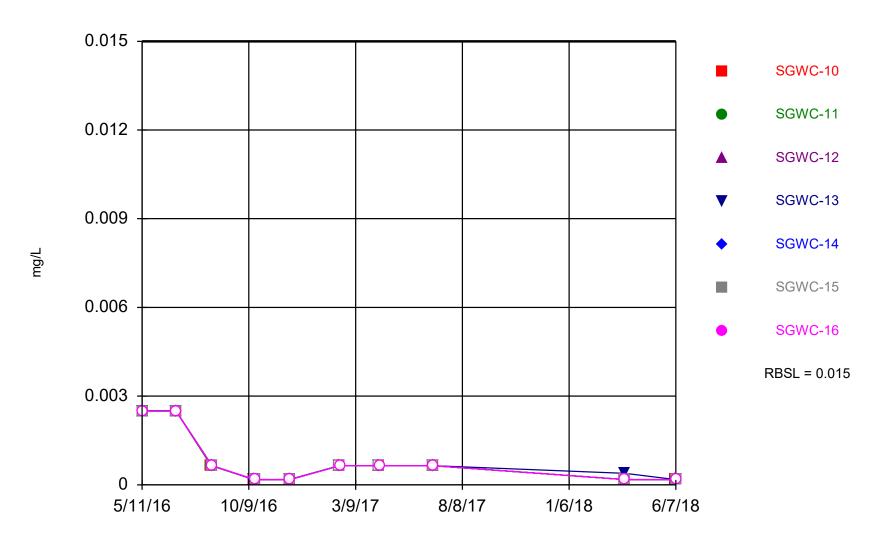


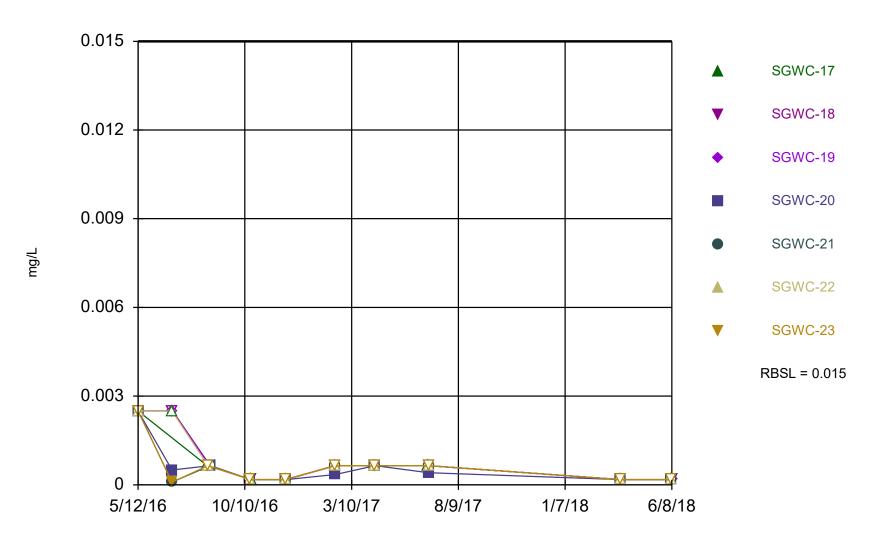

Constituent: Combined Radium 226 + 228 Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence I Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

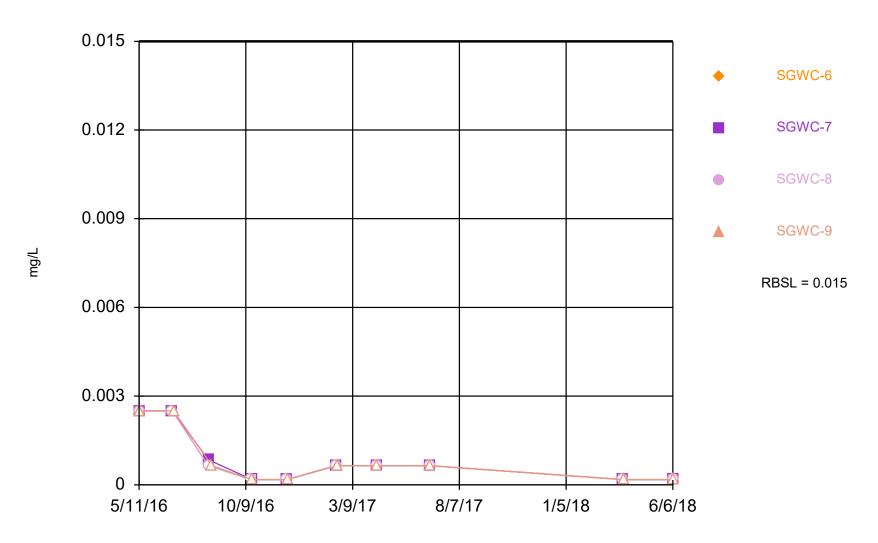

Constituent: Combined Radium 226 + 228 Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence I Scherer Client: Golder Associates Data: Scherer Ash Pond_CCR

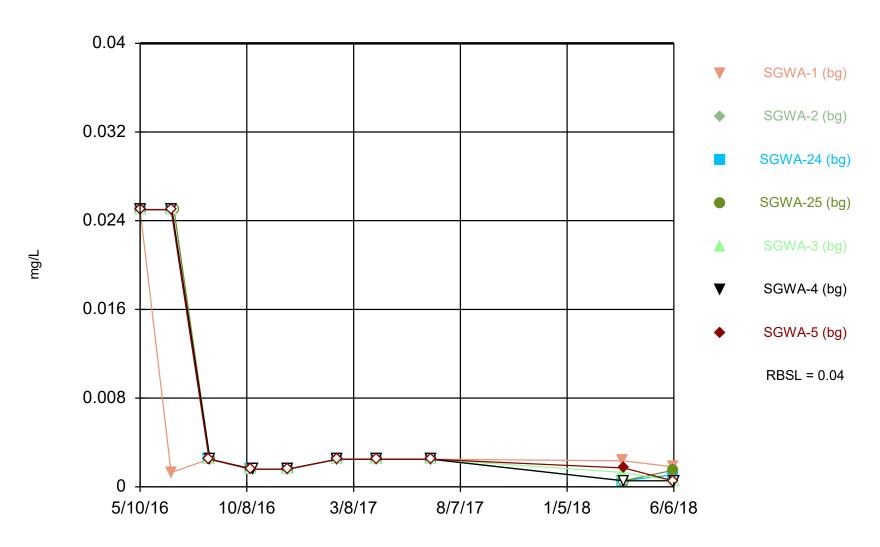

Constituent: Fluoride Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence Interval

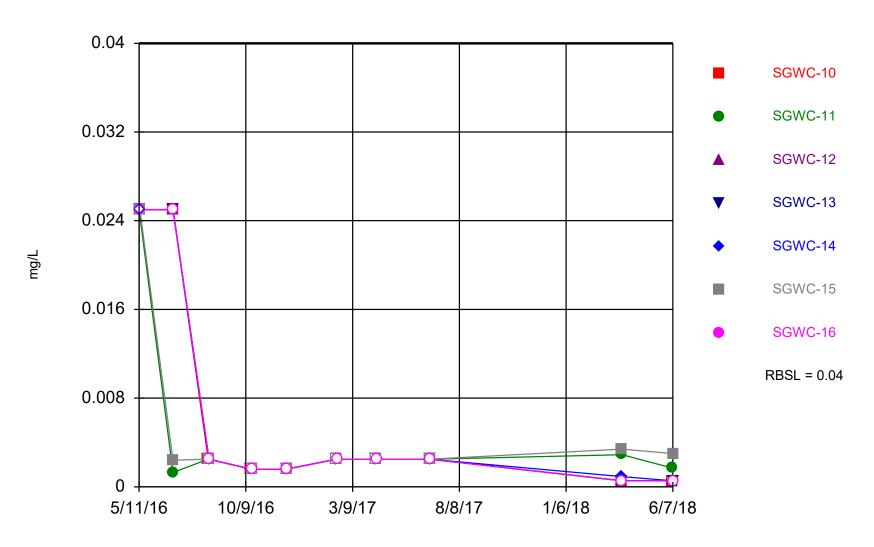

Constituent: Fluoride Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence Interval

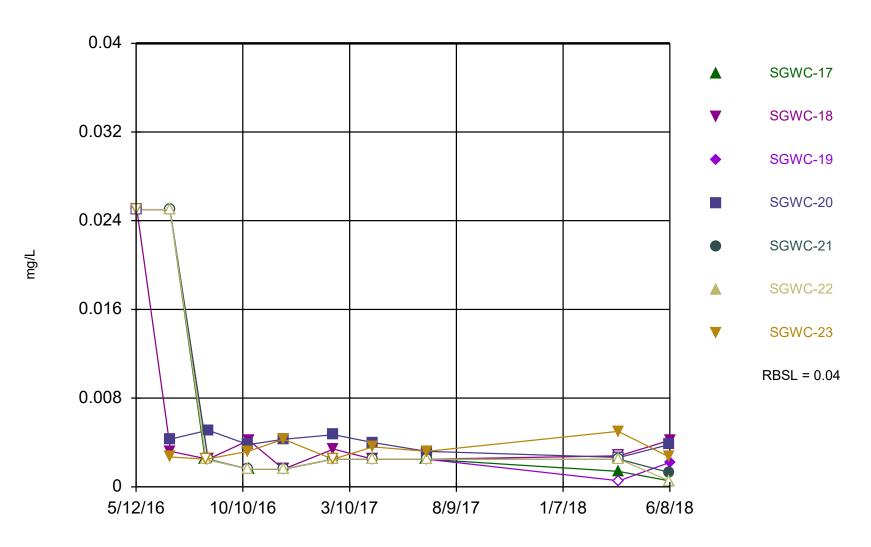

Constituent: Fluoride Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence Interval

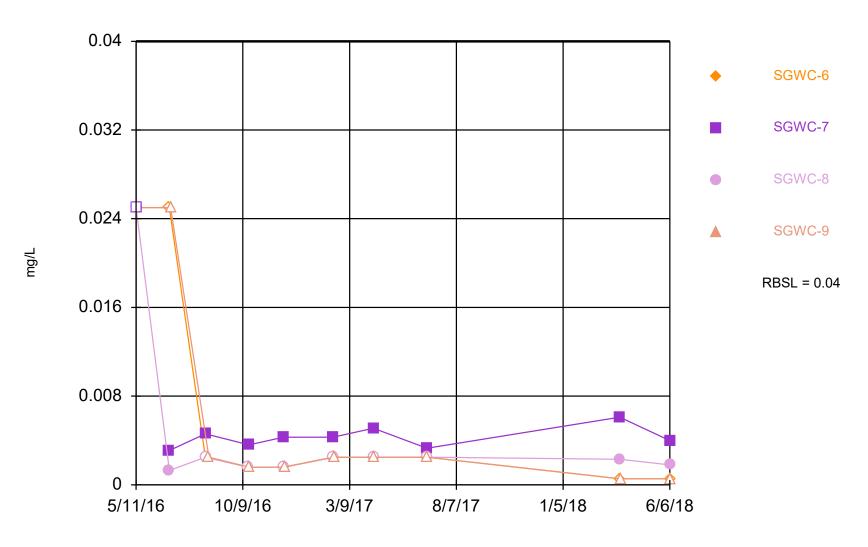

Constituent: Fluoride Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence Interval

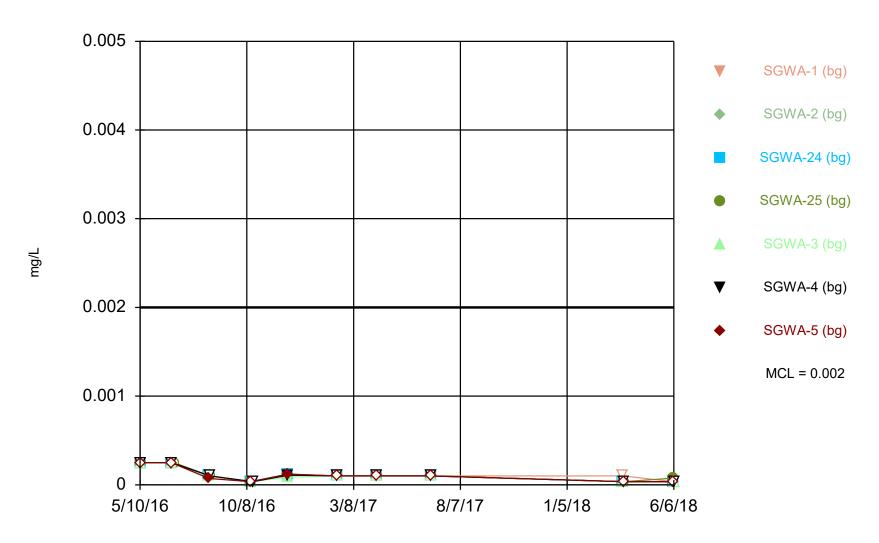

Constituent: Lead Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence Interval

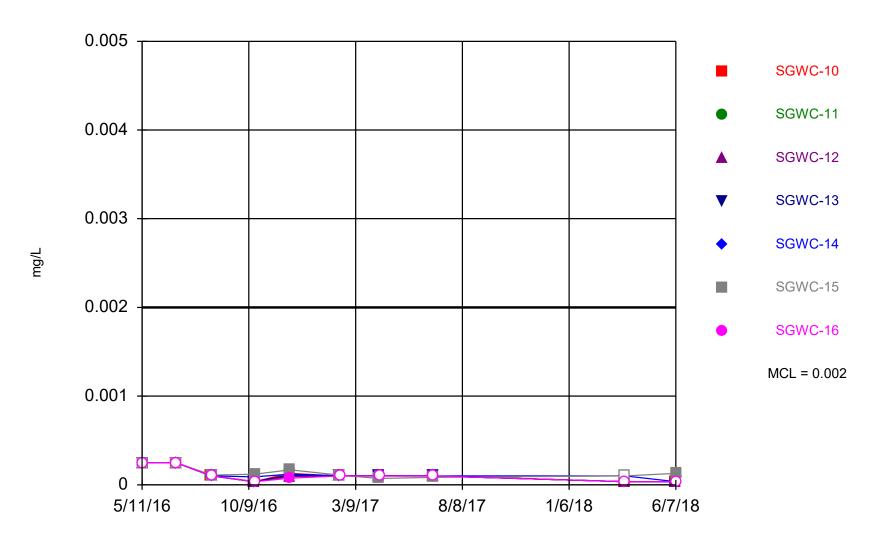

Constituent: Lead Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence Interval

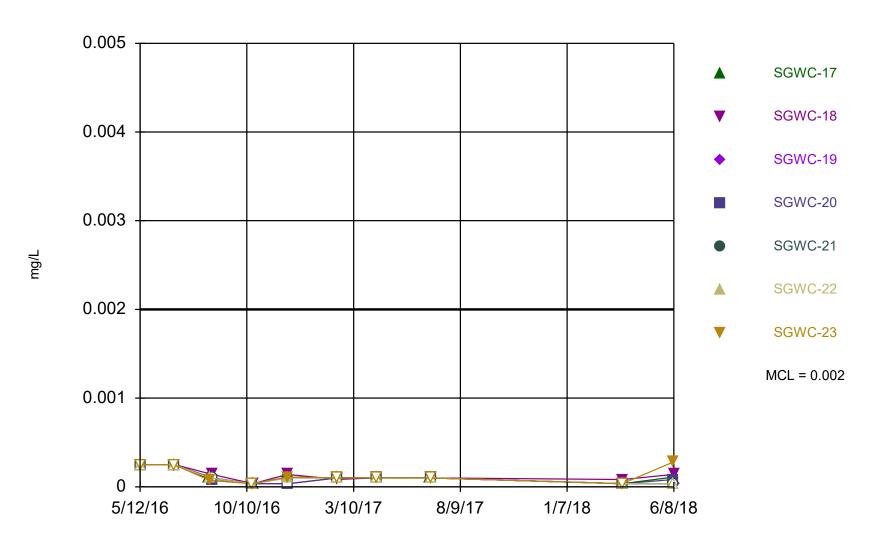

Constituent: Lead Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence Interval

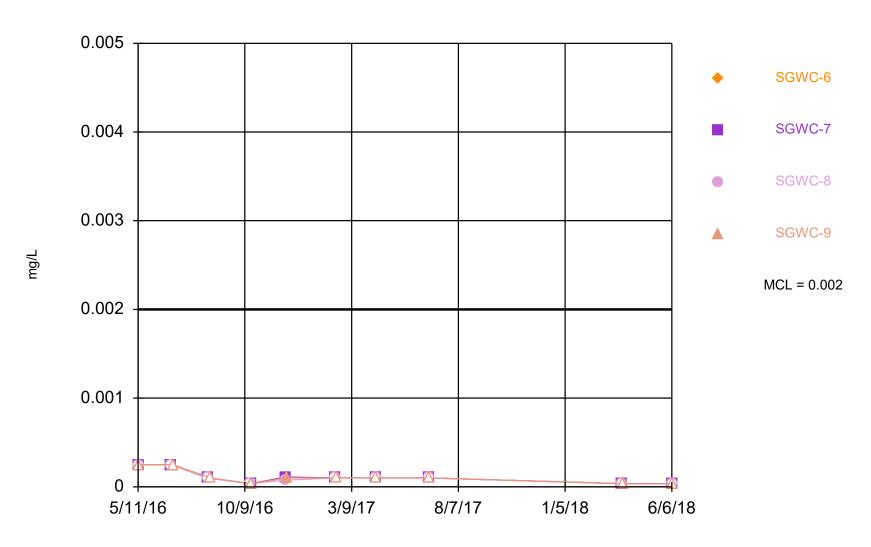

Constituent: Lead Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence Interval

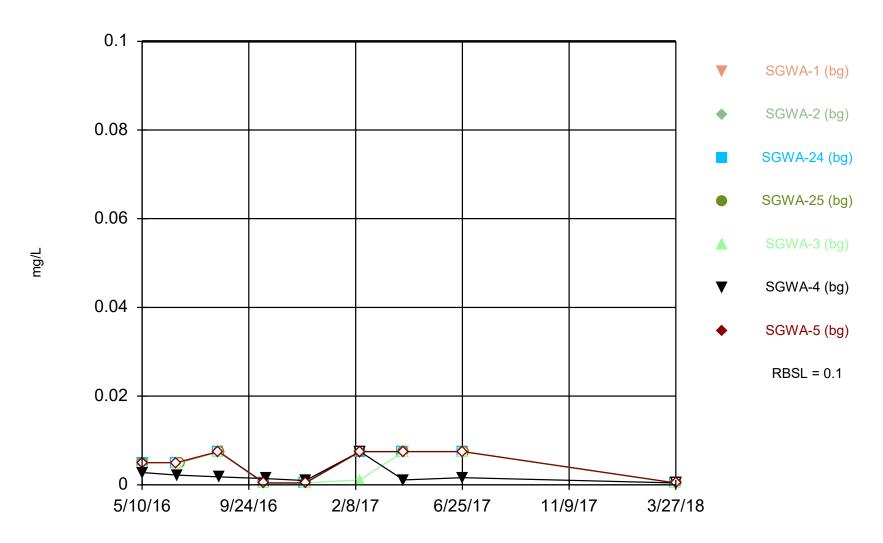

Constituent: Lithium Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence Interval

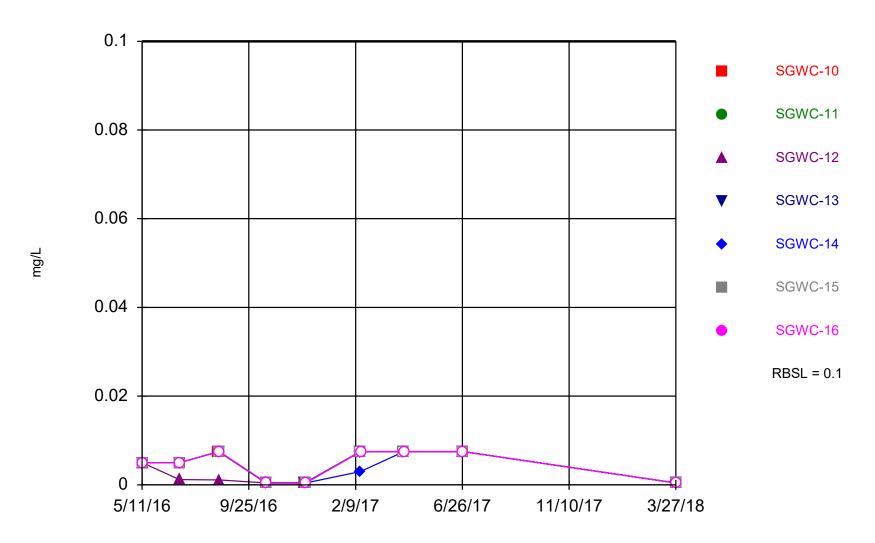

Constituent: Lithium Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence Interval

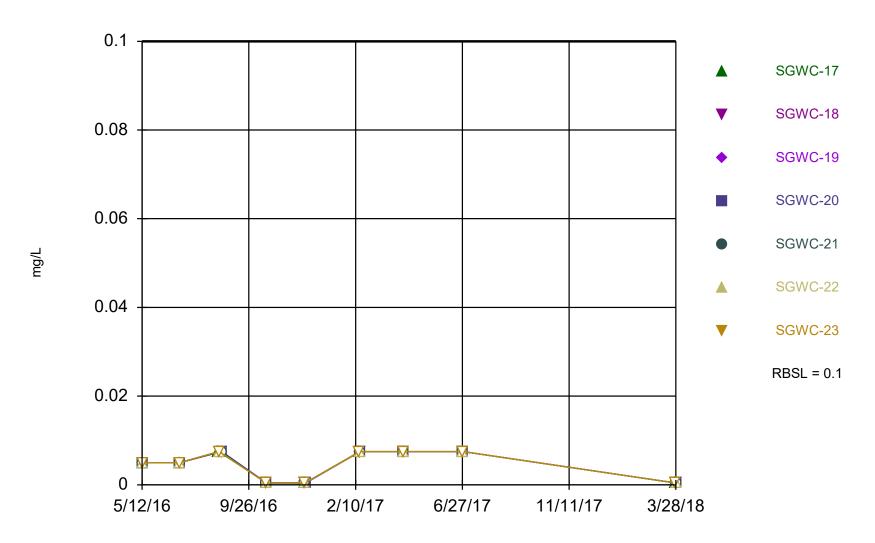

Constituent: Lithium Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence Interval

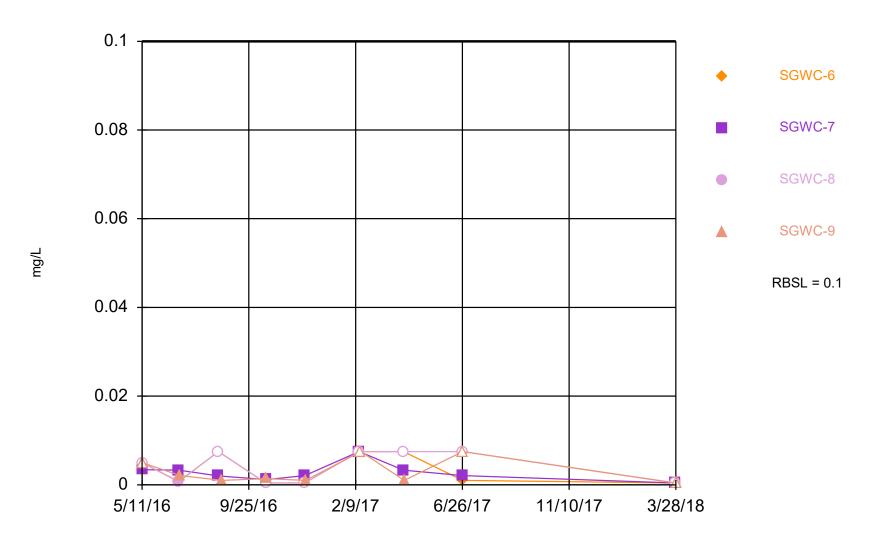

Constituent: Lithium Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence Interval

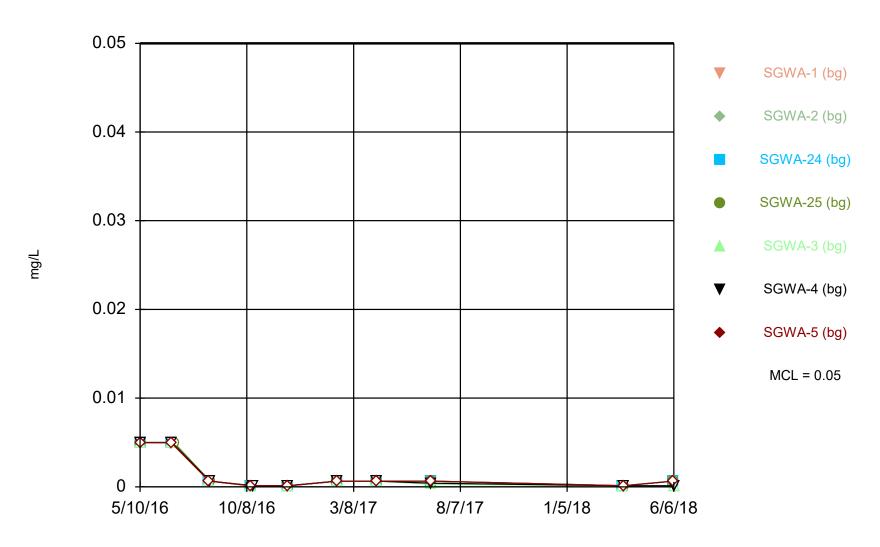

Constituent: Mercury Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence Interval

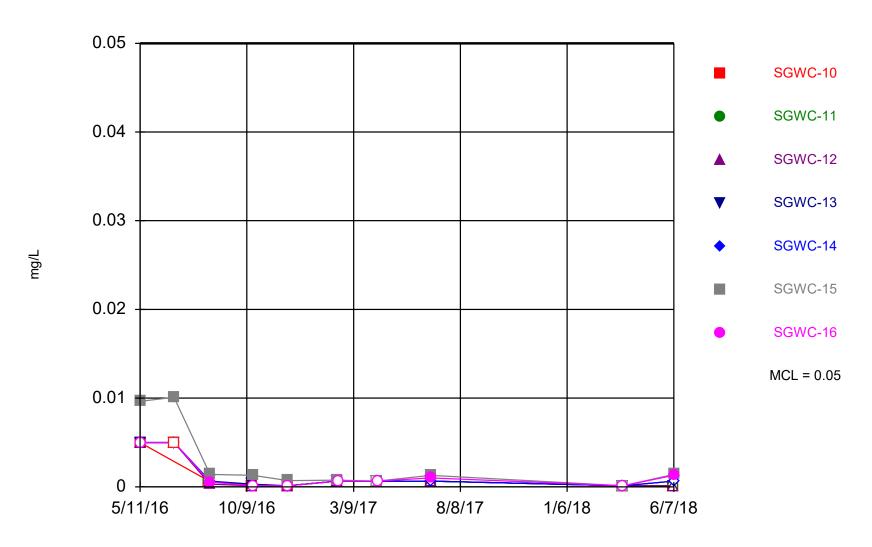

Constituent: Mercury Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence Interval

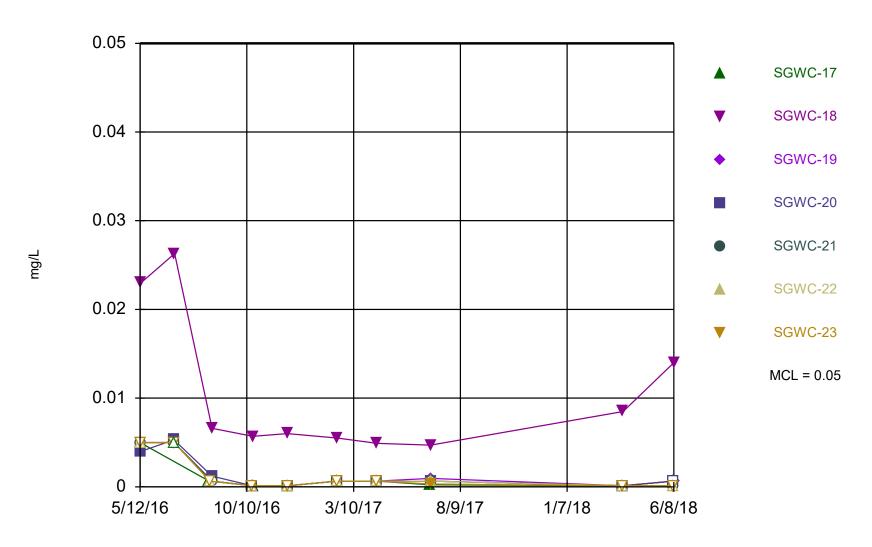


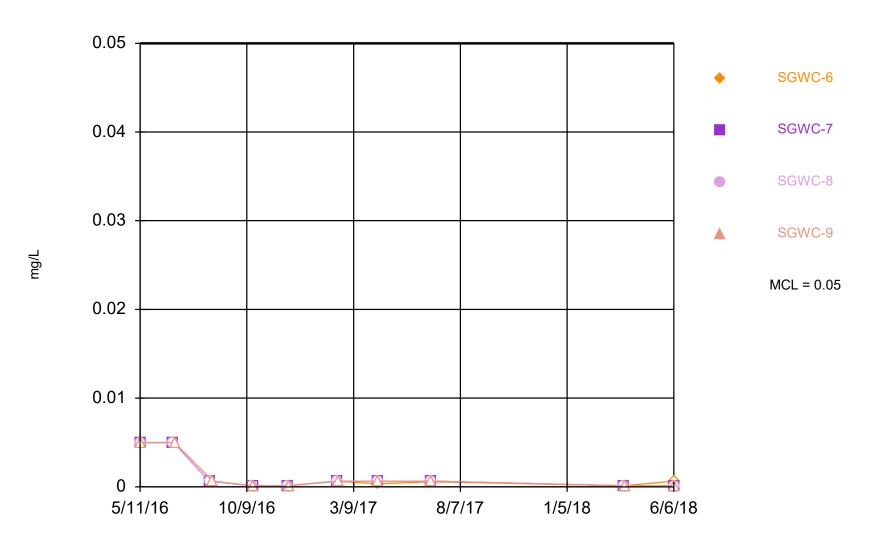

Constituent: Mercury Analysis Run 10/15/2018 9:39 AM View: Interwell Confidence Interval

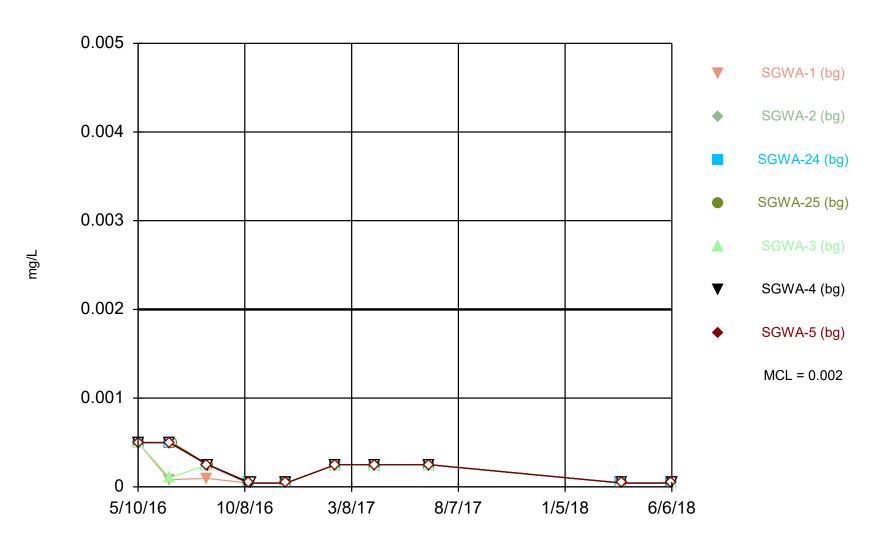


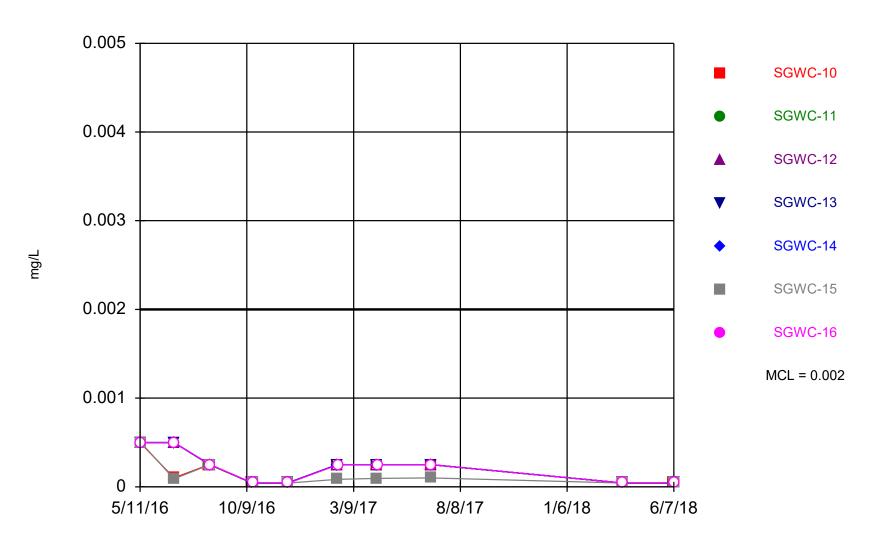

Constituent: Mercury Analysis Run 10/15/2018 9:40 AM View: Interwell Confidence Interval

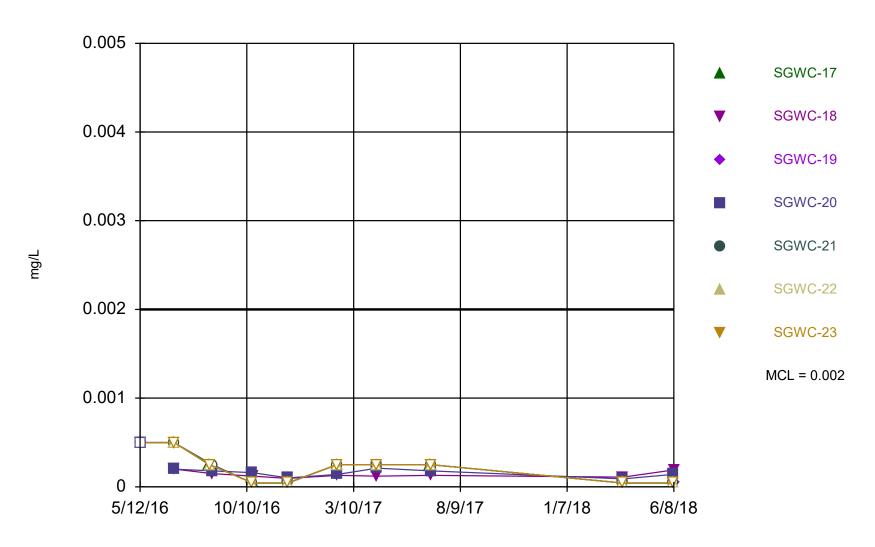


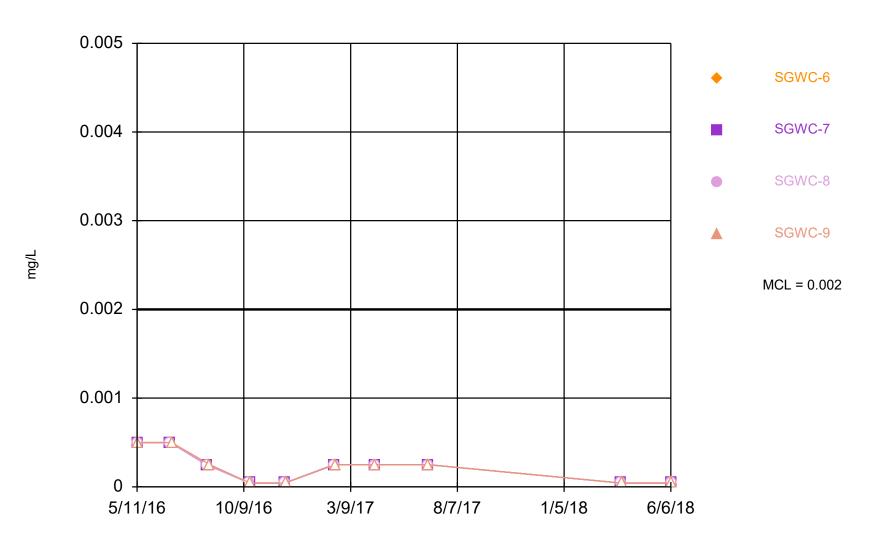











Constituent: Thallium Analysis Run 10/15/2018 9:40 AM View: Interwell Confidence Interval

Constituent: Thallium Analysis Run 10/15/2018 9:40 AM View: Interwell Confidence Interval

Constituent: Thallium Analysis Run 10/15/2018 9:40 AM View: Interwell Confidence Interval

Constituent: Thallium Analysis Run 10/15/2018 9:40 AM View: Interwell Confidence Interval

Appendix B Analytical Data

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238

Tel: (412)963-7058

TestAmerica Job ID: 180-85554-1

Client Project/Site: CCR - Plant Scherer

For:

Southern Company 241 Ralph McGill Blvd SE B10185 Atlanta, Georgia 30308

Attn: Joju Abraham

Authorized for release by: 1/10/2019 3:22:19 PM

ronce Bortot

Veronica Bortot, Senior Project Manager (412)963-2435

veronica.bortot@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 180-85554-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	6
Method Summary	7
Lab Chronicle	8
Client Sample Results	10
QC Sample Results	11
QC Association Summary	12
Chain of Custody	13
Receipt Checklists	

q

4

9

10

12

1:

Case Narrative

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 180-85554-1

Job ID: 180-85554-1

Laboratory: TestAmerica Pittsburgh

Narrative

Job Narrative 180-85554-1

Comments

No additional comments.

Receipt

The samples were received on 1/9/2019 9:10 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.6° C.

Receipt Exceptions

COC for these samples indicated no J flags; however as per client the lab was to report flagged results.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

6

0

9

10

. .

13

Definitions/Glossary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 180-85554-1

Qualifiers

Metals

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.				
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis				
%R	Percent Recovery				
CFL	Contains Free Liquid				
CNF	Contains No Free Liquid				
DER	Duplicate Error Ratio (normalized absolute difference)				
Dil Fac	Dilution Factor				
DL	Detection Limit (DoD/DOE)				
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample				
DLC	Decision Level Concentration (Radiochemistry)				
EDL	Estimated Detection Limit (Dioxin)				
LOD	Limit of Detection (DoD/DOE)				
LOQ	Limit of Quantitation (DoD/DOE)				
MDA	Minimum Detectable Activity (Radiochemistry)				

MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

Accreditation/Certification Summary

Client: Southern Company TestAmerica Job ID: 180-85554-1

Project/Site: CCR - Plant Scherer

Laboratory: TestAmerica Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Arkansas DEQ	State Program	6	88-0690	06-27-19
California	State Program	9	2891	04-30-19
Connecticut	State Program	1	PH-0688	09-30-20
Florida	NELAP	4	E871008	06-30-19
Illinois	NELAP	5	200005	06-30-19
Kansas	NELAP	7	E-10350	01-31-19
Louisiana	NELAP	6	04041	06-30-19
Nevada	State Program	9	PA00164	07-31-19
New Hampshire	NELAP	1	2030	04-04-19
New Jersey	NELAP	2	PA005	06-30-19
New York	NELAP	2	11182	03-31-19
North Carolina (WW/SW)	State Program	4	434	12-31-19
Oregon	NELAP	10	PA-2151	01-28-19
Pennsylvania	NELAP	3	02-00416	04-30-19
South Carolina	State Program	4	89014	04-30-19
Texas	NELAP	6	T104704528-15-2	03-31-19
US Fish & Wildlife	Federal		LE94312A-1	07-31-19
USDA	Federal		P330-16-00211	06-26-19
Utah	NELAP	8	PA001462015-4	05-31-19
Virginia	NELAP	3	460189	09-14-19
West Virginia DEP	State Program	3	142	01-31-19
Wisconsin	State Program	5	998027800	08-31-19

Sample Summary

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 180-85554-1

Lab Sample ID	Client Sample ID	Matrix	Collected Received
180-85554-1	B-102B	Water	01/08/19 15:10 01/09/19 09:1
180-85554-2	B-103B	Water	01/08/19 13:35 01/09/19 09:1
180-85554-3	B-104A	Water	01/08/19 13:25 01/09/19 09:1
180-85554-4	B-104B	Water	01/08/19 14:10 01/09/19 09:1
180-85554-5	FB	Water	01/08/19 16:10 01/09/19 09:1
180-85554-6	FD	Water	01/08/19 00:00 01/09/19 09:1

3

4

5

6

Q

9

10

Method Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 180-85554-1

Method	Method Description	Protocol	Laboratory
EPA 6020	Metals (ICP/MS)	SW846	TAL PIT
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PIT

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

6

9

10

TestAmerica Job ID: 180-85554-1

Client: Southern Company Project/Site: CCR - Plant Scherer

Client Sample ID: B-102B

Lab Sample ID: 180-85554-1

Matrix: Water

Date Collected: 01/08/19 15:10 Date Received: 01/09/19 09:10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			50 mL	50 mL	267420	01/09/19 11:13	NAM	TAL PIT
Total Recoverable	Analysis	EPA 6020		1			267572	01/09/19 21:48	WTR	TAL PIT
	Instrumer	nt ID: X								

Lab Sample ID: 180-85554-2

Matrix: Water

Date Collected: 01/08/19 13:35 Date Received: 01/09/19 09:10

Client Sample ID: B-103B

Batch Batch Dil Initial Final Batch Prepared Method Number **Prep Type** Туре Factor Amount Amount or Analyzed Analyst Run Lab 267420 Total Recoverable Prep 3005A 50 mL 50 mL 01/09/19 11:13 NAM TAL PIT Total Recoverable Analysis EPA 6020 267572 01/09/19 21:53 WTR TAL PIT Instrument ID: X

Lab Sample ID: 180-85554-3 Client Sample ID: B-104A

Date Collected: 01/08/19 13:25 **Matrix: Water**

Date Received: 01/09/19 09:10

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			50 mL	50 mL	267420	01/09/19 11:13	NAM	TAL PIT
Total Recoverable	Analysis	EPA 6020		1			267572	01/09/19 21:58	WTR	TAL PIT
	Instrumer	nt ID: X								

Client Sample ID: B-104B Lab Sample ID: 180-85554-4

Date Collected: 01/08/19 14:10 Date Received: 01/09/19 09:10

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			50 mL	50 mL	267420	01/09/19 11:13	NAM	TAL PIT
Total Recoverable	Analysis	EPA 6020		1			267572	01/09/19 22:13	WTR	TAL PIT
	Instrumer	nt ID· X								

Lab Sample ID: 180-85554-5 Client Sample ID: FB

Date Collected: 01/08/19 16:10 **Matrix: Water** Date Received: 01/09/19 09:10

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			50 mL	50 mL	267420	01/09/19 11:13	NAM	TAL PIT
Total Recoverable	Analysis	EPA 6020		1			267572	01/09/19 22:18	WTR	TAL PIT
	Instrument	ID: X								

Matrix: Water

Lab Chronicle

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 180-85554-1

Lab Sample ID: 180-85554-6

Matrix: Water

Date Collected: 01/08/19 00:00 Date Received: 01/09/19 09:10

Client Sample ID: FD

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			50 mL	50 mL	267420	01/09/19 11:13	NAM	TAL PIT
Total Recoverable	Analysis	EPA 6020		1			267572	01/09/19 21:22	WTR	TAL PIT
	Instrument	ID: X								

Laboratory References:

TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Analyst References:

Lab: TAL PIT

Batch Type: Prep

NAM = Nicole Marfisi

Batch Type: Analysis

WTR = Bill Reinheimer

TestAmerica Pittsburgh

Project/Site: CCR - Plant Scherer

Client: Southern Company

Client Sample ID: B-102B Date Collected: 01/08/19 15:10 Date Received: 01/09/19 09:10

Lab Sample ID: 180-85554-1

Matrix: Water

Method: EPA 6020 - Metals (ICP/MS) - Total Recoverable

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 01/09/19 11:13 01/09/19 21:48 Cobalt 0.00096 J 0.0025 0.000075 mg/L

Client Sample ID: B-103B Lab Sample ID: 180-85554-2 **Matrix: Water**

Date Collected: 01/08/19 13:35

Date Received: 01/09/19 09:10

Method: EPA 6020 - Metals (ICP/MS) - Total Recoverable Result Qualifier RL Analyte **MDL** Unit Prepared Analyzed Dil Fac Cobalt 0.0025 0.000075 mg/L 01/09/19 11:13 01/09/19 21:53 0.00021 J

Client Sample ID: B-104A Lab Sample ID: 180-85554-3

Date Collected: 01/08/19 13:25 **Matrix: Water**

Date Received: 01/09/19 09:10

Method: EPA 6020 - Metals (ICP/MS) - Total Recoverable

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Cobalt 0.00019 J 0.0025 0.000075 ma/L 01/09/19 11:13 01/09/19 21:58

Client Sample ID: B-104B Lab Sample ID: 180-85554-4 Date Collected: 01/08/19 14:10 **Matrix: Water**

Date Received: 01/09/19 09:10

Method: EPA 6020 - Metals (ICP/MS) - Total Recoverable

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Cobalt 01/09/19 11:13 01/09/19 22:13 <0.000075 0.0025 0.000075 mg/L

Lab Sample ID: 180-85554-5 Client Sample ID: FB

Date Collected: 01/08/19 16:10

Date Received: 01/09/19 09:10

Method: EPA 6020 - Metals (ICP/MS) - Total Recoverable Analyte Result Qualifier RL MDL Unit Prepared Analyzed 0.0025

0.000075 mg/L

Client Sample ID: FD Lab Sample ID: 180-85554-6

Date Collected: 01/08/19 00:00 Matrix: Water

Date Received: 01/09/19 09:10

Cobalt

Method: EPA 6020 - Metals (ICP/MS) - Total Recoverable

< 0.000075

Result Qualifier Analyte RL **MDL** Unit Prepared Analyzed Dil Fac Cobalt <0.000075 0.0025 0.000075 mg/L 01/09/19 11:13 01/09/19 21:22

Matrix: Water

01/09/19 11:13 01/09/19 22:18

QC Sample Results

Client: Southern Company

TestAmerica Job ID: 180-85554-1

Project/Site: CCR - Plant Scherer

Method: EPA 6020 - Metals (ICP/MS)

Matrix: Water

Analyte

Cobalt

Analysis Batch: 267572

Sample Sample

<0.000075

Result Qualifier

3

A

7

8

10

11

13

Prep Type: Total Recoverable

%Rec.

Limits

88

75 - 125

Prep Batch: 267420

RPD Limit

Lab Sample ID: MB 180-267	'420/1-A						CI		ple ID: Metho	
Matrix: Water								Prep Typ	e: Total Reco	
Analysis Batch: 267572									Prep Batch:	267420
		MB MB								
Analyte	Re	sult Qualifier	RL	I	MDL Unit		D	Prepared	Analyzed	Dil Fac
Cobalt	<0.000	0075	0.0025	0.000	0075 mg/L	=	01	/09/19 11:13	01/09/19 20:42	1
Lab Sample ID: LCS 180-26	7420/2-A					Cli	ent S	ample ID:	Lab Control	Sample
Matrix: Water								Prep Typ	e: Total Reco	verable
Analysis Batch: 267572									Prep Batch:	
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	[O %Rec	Limits	
Cobalt			0.500	0.464		mg/L		93	80 - 120	
- Lab Sample ID: 180-85554-0	6 MS								Client Sample	e ID: FD
Matrix: Water								Prep Typ	e: Total Reco	verable
Analysis Batch: 267572									Prep Batch:	
, , , , , , , , , , , , , , , , , , , ,	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		O %Rec	Limits	
Cobalt	<0.000075		0.500	0.432	-	mg/L		86	75 - 125	
Lab Sample ID: 180-85554-	6 MSD								Client Sample	ın· FD

Spike

Added

0.500

MSD MSD

0.438

Result Qualifier Unit

mg/L

QC Association Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 180-85554-1

Metals

Prep Batch: 267420

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-85554-1	B-102B	Total Recoverable	Water	3005A	
180-85554-2	B-103B	Total Recoverable	Water	3005A	
180-85554-3	B-104A	Total Recoverable	Water	3005A	
180-85554-4	B-104B	Total Recoverable	Water	3005A	
180-85554-5	FB	Total Recoverable	Water	3005A	
180-85554-6	FD	Total Recoverable	Water	3005A	
MB 180-267420/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-267420/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
180-85554-6 MS	FD	Total Recoverable	Water	3005A	
180-85554-6 MSD	FD	Total Recoverable	Water	3005A	

Analysis Batch: 267572

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-85554-1	B-102B	Total Recoverable	Water	EPA 6020	267420
180-85554-2	B-103B	Total Recoverable	Water	EPA 6020	267420
180-85554-3	B-104A	Total Recoverable	Water	EPA 6020	267420
180-85554-4	B-104B	Total Recoverable	Water	EPA 6020	267420
180-85554-5	FB	Total Recoverable	Water	EPA 6020	267420
180-85554-6	FD	Total Recoverable	Water	EPA 6020	267420
MB 180-267420/1-A	Method Blank	Total Recoverable	Water	EPA 6020	267420
LCS 180-267420/2-A	Lab Control Sample	Total Recoverable	Water	EPA 6020	267420
180-85554-6 MS	FD	Total Recoverable	Water	EPA 6020	267420
180-85554-6 MSD	FD	Total Recoverable	Water	EPA 6020	267420

3

5

7

9

12

Form No. CA-C-WI-002, Rev. 4.18, dated 9/5/2018 THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc. **TestAmerica** COCs 180-85554 Chain of Custody For Lab Use Only Walk-in Client: ab Sampling: Job / SDG No. ō Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Date/Time: Date/Time: Date/Time: S I COC No Therm ID No Company Company: Corrd Date: 1/8/2019 Carrier: Received by clilice Withou Cooler Temp. (°C): Obs'd: Chain of Custody Record Lab Contact: Veronica Bortot Site Contact: Karim Minkara Received in Laboratory by: | Other: □Non-Hazard □Flammable □Skin Irritant □Polson B □Unknown □Flammable Special Instructions/QC Requirements: Attorney Client Priviledge. Report to RL only, do not report J-flagged data × × × × × 90 - 0Z09 Received by DRCRA Perform MS / MSD (Y / N) Date Time 82 Filtered Sample (Y / N) z z ONPDES # of Cont. Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Date/Time: Date/Time: WORKING DAYS Matrix GW GW GW QW. GW 3 **Analysis Turnaround Time** Regulatory Program: Dow Type (C=Comp, G=Grab) TAT if different from Below O O O g O O Project Manager: Dawn Prell 2 weeks 1 week 2 days 60 lde Tel/Fax: 248-536-5445 1 day Sample 1510 1410 1610 1335 1325 Custody Seal No. CI CALENDAR DAYS Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other 1/8/2019 1/8/2019 1/8/2019 1/8/2019 1/8/2019 1/8/2019 Sample Date Company: Company: Company: 0000 Comments Section if the lab is to dispose of the sample. ON D Sample Identification Phone Pittsburgh, PA 15238-2907 phone 412.963.7058 fax 412.963.2468 Client Contact FAX Yes B-104B B-103B B-104A B-102B **TestAmerica Pittsburgh** 241 Ralph McGill Blvd SE B10185 Project Name: GPC Plant Scherer EB 5 sible Hazard Identification

Southern Company

301 Alpha Drive

Atlanta, GA, 30308

(404) 506-7239

Site: Ash Pond # O d Custody Seals Intact: Relinquished by: 2

Relinquished by: Relinquished by: Client: Southern Company Job Number: 180-85554-1

Login Number: 85554 List Source: TestAmerica Pittsburgh

List Number: 1

Creator: Watson, Debbie

Creator: watson, Debbie		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

TestAmerica Pittsburgh

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

TestAmerica Job ID: 180-85596-1

Client Project/Site: CCR - Plant Scherer

For:

Southern Company 241 Ralph McGill Blvd SE B10185 Atlanta, Georgia 30308

Attn: Joju Abraham

Authorized for release by: 1/11/2019 5:02:02 PM

nonce Bortot

Veronica Bortot, Senior Project Manager (412)963-2435

veronica.bortot@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 180-85596-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	6
Method Summary	7
Lab Chronicle	8
Client Sample Results	9
QC Sample Results	10
QC Association Summary	11
Chain of Custody	12
Receipt Checklists	13

q

4

0

9

4 4

12

Case Narrative

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 180-85596-1

Job ID: 180-85596-1

Laboratory: TestAmerica Pittsburgh

Narrative

Job Narrative 180-85596-1

Comments

No additional comments.

Receipt

The samples were received on 1/10/2019 9:15 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.3° C.

Metals

Method(s) 6020: The serial dilution performed for the following sample associated with batch 180-267636 was outside control limits for lithium: B-102A (180-85596-1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

6

6

9

4 4

12

Definitions/Glossary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 180-85596-1

Qualifiers

Metals

Qualifier Qualifier Description

Method Detection Limit

Minimum Level (Dioxin)

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Not Detected at the reporting limit (or MDL or EDL if shown)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

Not Calculated

Quality Control

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

MDL

ML

NC

ND

PQL

QC

RER

RPD

TEF

TEQ

RL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)

TestAmerica Pittsburgh

Accreditation/Certification Summary

Client: Southern Company

TestAmerica Job ID: 180-85596-1

Project/Site: CCR - Plant Scherer

Laboratory: TestAmerica Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Arkansas DEQ	State Program	6	88-0690	06-27-19
California	State Program	9	2891	04-30-19
Connecticut	State Program	1	PH-0688	09-30-20
Florida	NELAP	4	E871008	06-30-19
Illinois	NELAP	5	200005	06-30-19
Kansas	NELAP	7	E-10350	01-31-19 *
Louisiana	NELAP	6	04041	06-30-19
Nevada	State Program	9	PA00164	07-31-19
New Hampshire	NELAP	1	2030	04-04-19
New Jersey	NELAP	2	PA005	06-30-19
New York	NELAP	2	11182	03-31-19
North Carolina (WW/SW)	State Program	4	434	12-31-19
Oregon	NELAP	10	PA-2151	01-28-19 *
Pennsylvania	NELAP	3	02-00416	04-30-19
South Carolina	State Program	4	89014	04-30-19
Texas	NELAP	6	T104704528-15-2	03-31-19
US Fish & Wildlife	Federal		LE94312A-1	07-31-19
USDA	Federal		P330-16-00211	06-26-19
Utah	NELAP	8	PA001462015-4	05-31-19
Virginia	NELAP	3	460189	09-14-19
West Virginia DEP	State Program	3	142	01-31-19 *
Wisconsin	State Program	5	998027800	08-31-19

4

5

_

9

10

12

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

TestAmerica Pittsburgh

Sample Summary

Client: Southern Company Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 180-85596-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-85596-1	B-102A	Water	01/09/19 18:10	01/10/19 09:15
180-85596-2	B-103A	Water	01/09/19 16:50	01/10/19 09:15

2

4

6

8

9

10

10

Method Summary

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 180-85596-1

Method	Method Description	Protocol	Laboratory
EPA 6020	Metals (ICP/MS)	SW846	TAL PIT
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL PIT

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

4

7

10

11

Lab Chronicle

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 180-85596-1

Lab Sample ID: 180-85596-1

Matrix: Water

Date Collected: 01/09/19 18:10 Date Received: 01/10/19 09:15

Client Sample ID: B-102A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			50 mL	50 mL	267564	01/10/19 12:44	NAM	TAL PIT
Total Recoverable	Analysis	EPA 6020		1			267636	01/11/19 08:04	RSK	TAL PIT
	Instrument	ID: A								

Client Sample ID: B-103A Lab Sample ID: 180-85596-2 Date Collected: 01/09/19 16:50

Matrix: Water

Date Received: 01/10/19 09:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			50 mL	50 mL	267564	01/10/19 12:44	NAM	TAL PIT
Total Recoverable	Analysis	EPA 6020		1			267636	01/11/19 08:20	RSK	TAL PIT
	Instrument	tID: A								

Laboratory References:

TAL PIT = TestAmerica Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Analyst References:

Lab: TAL PIT

Batch Type: Prep

NAM = Nicole Marfisi

Batch Type: Analysis RSK = Robert Kurtz

Client Sample Results

Client: Southern Company Project/Site: CCR - Plant Scherer TestAmerica Job ID: 180-85596-1

Client Sample ID: B-102A Date Collected: 01/09/19 18:10

Lab Sample ID: 180-85596-1

Matrix: Water

Date Received: 01/10/19 09:15

Method: EPA 6020 - Metals (ICP/MS) - Total Recoverable Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac D Prepared Cobalt 0.0017 J 0.0025 0.000075 mg/L

Client Sample ID: B-103A Lab Sample ID: 180-85596-2

Date Collected: 01/09/19 16:50 **Matrix: Water**

Date Received: 01/10/19 09:15

Method: EPA 6020 - Metals (ICP/MS) - Total Recoverable

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Cobalt 0.00078 J 0.0025 0.000075 mg/L 01/10/19 12:44 01/11/19 08:20

QC Sample Results

Client: Southern Company

TestAmerica Job ID: 180-85596-1

Project/Site: CCR - Plant Scherer

Sample Sample

0.0017 J

Result Qualifier

Method: EPA 6020 - Metals (ICP/MS)

Analyte

Cobalt

3

Λ

6

8

10

11

%Rec.

Limits

75 - 125

D %Rec

96

13

Lab Sample ID: MB 180-2675 Matrix: Water Analysis Batch: 267636										ole ID: Metho e: Total Reco Prep Batch:	verable
		MB						_	_		
Analyte		Qualifier	RL			Unit			Prepared	Analyzed	Dil Fac
Cobalt	<0.000075		0.0025	0.000	0075	mg/L		01/	10/19 12:44	01/11/19 07:57	1
Lab Sample ID: LCS 180-267	564/2-A						Clie	ent Sa	mple ID:	Lab Control	Sample
Matrix: Water								F	Prep Type	e: Total Reco	verable
Analysis Batch: 267636										Prep Batch:	
, ,			Spike	LCS	LCS	;				%Rec.	
Analyte			Added	Result	Qua	lifier	Unit	D	%Rec	Limits	
Cobalt			0.500	0.486			mg/L		97	80 - 120	
Lab Sample ID: 180-85596-1	MS								Clien	t Sample ID:	B-102A
Matrix: Water										e: Total Reco	
Analysis Batch: 267636										Prep Batch:	
,, c.c = a.c 20, ccc										op Batom	

_											
Lab Sample ID: 180-85596	-1 MSD							Clie	nt Sampl	e ID: B	-102A
Matrix: Water							P	rep Ty	pe: Total l	Recove	rable
Analysis Batch: 267636									Prep Ba	atch: 20	67564
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cobalt	0.0017	J	0.500	0.461		mg/L		92	75 - 125	4	20

MS MS

0.480

Result Qualifier Unit

mg/L

Spike

0.500

Added

QC Association Summary

Client: Southern Company
Project/Site: CCR - Plant Scherer

TestAmerica Job ID: 180-85596-1

Metals

Prep Batch: 267564

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-85596-1	B-102A	Total Recoverable	Water	3005A	
180-85596-2	B-103A	Total Recoverable	Water	3005A	
MB 180-267564/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 180-267564/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
180-85596-1 MS	B-102A	Total Recoverable	Water	3005A	
180-85596-1 MSD	B-102A	Total Recoverable	Water	3005A	

Analysis Batch: 267636

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-85596-1	B-102A	Total Recoverable	Water	EPA 6020	267564
180-85596-2	B-103A	Total Recoverable	Water	EPA 6020	267564
MB 180-267564/1-A	Method Blank	Total Recoverable	Water	EPA 6020	267564
LCS 180-267564/2-A	Lab Control Sample	Total Recoverable	Water	EPA 6020	267564
180-85596-1 MS	B-102A	Total Recoverable	Water	EPA 6020	267564
180-85596-1 MSD	B-102A	Total Recoverable	Water	EPA 6020	267564

.

-

Δ

5

8

9

10

11

12

1:

Project Manager: Dawn Prelitation	Analysis Turnaround Time 48-536-5445 Analysis Turnaround Time Analysis Turnaround Time 2 weeks 2 days 1 day Sample Cacomp, Matrix Cont. Thime General 1650 G G W 1 1650 G W 1 1650 G W 1 1650 G W 1	DRORA Lab Contact: Karim Minkara Lab Contact: Karim Minkara Perform MS / MSD (Y / N) Perform MS / MSD (Y / N) X × 6020 - Co X × 6020 - Co		TestAmerica Laboratories, Inc. CoC No: Carrier: Sampler: For Lab Use Only: Walk-in Client: Lab Sampling: Lab Sampling: Lab Sampling: Coc No: Coc
Project Mark	nd Time VORKING DAYS low Bit GW GW GW	Site Contact: Karim Min Perform MS / MSD (Y / N) Perform MS / MSD (Y / N) Perform MS / MSD (Y / N) Site Contact: Karim Min A × 6020 - Co		Sample For Lab Walk-ir Job / S
Phone	The maround Time Sample (Topos Below	D		Sample For La Walk-ir Job / S
Phone CALENDA Sample Date A 119/20	X X X X	(N (Y) GSM \SM rmoheq	180-8558e C	Sample For Lab Walk-ir Job / S
6. 6A, 30308 Phone FAX I Name: GPC Plant Scherer Sh Pond B-102A 1/9/201 B-103A 1/9/201	Matrix GW GW	(N (Y) GZM\ZM moheq	180-8559e C	Valk-i
Phone Phone Phone FAX PAX PAX	Matrix GW GW	Perform MS/MSD (Y/N)	180-85586 C	Walk-ir
FAX t Name: GPC Plant Scherer sh Pond Sample Identification B-102A 1/9/2019 16 16 17 16 16 17 16 16 17 16 16	Sample Type (C=Comp.) Matrix G GW G GW	(Y) GSM \ SM moheq	180-8558e C	lab Sa
Sample Identification B-103A I N9/2019 16 B-103A	Sample Type (C=Comp.) G=Gmb) Matrix G GW) GRM / SM mnoheq	180-8558e	8/905
Sample Sar Sample Sar Sample Sar Sample Sar Date Ti B-102A 1/9/2019 16 B-103A 1/9/2019 16	Sample Type (C=Comp.) Matrix G GW G GW	SM / SM moheq	180-85586 C	S/ 400 S
Sample Identification Date Till B-102A 1/9/2019 16	Sample Type (C=Comp, Matrix G GW G GW	SM moheq	180-8558e C	
Sample Date 1/9/2019 1/9/2019	G GW	moheq	180-85596 C	
1/9/2019	M5 5		180-85596 C	hain of Custody
1/9/2019	MS 9		180-8559e C	hain of Custody
8102/8/1	2		180-85596	hain of Custody
			180-85596 C	hain of Custody
			180-85596 C	hain of Custody
				dell of Custody
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other	The state of the s	7		
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample.	odes for the sample in the	Sample Disposal (A	fee may be assessed if samples	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)
□Non-Hazard □Flammable □Skin Imtant □Polson B	□Unknown	DReturn to Clent	DDisposal by Lab	DArchive for Months
uctions/QC Requirements & Comments: Attorney				
Custody Seals Intact: ☐ Yes ☐ No Custody Seal No.:			Cooler Temp. (°C): Obs'd:C	Corr'd; Therm ID No.:
The Me L Company. Gol	Date/Time	83 Received by	Con	Company: 17 Date Time:
Relinquished by:	Date/Time:	Received by:	Com	Company: Date/Time:
Relinquished by:	Date/Time:	Received in Laboratory by:		Company: Date/Time:

Client: Southern Company Job Number: 180-85596-1

Login Number: 85596 List Source: TestAmerica Pittsburgh

List Number: 1

Creator: Say, Thomas C

Creator. Say, momas C			
Question		Answer	Comment
Radioactivity wasn't checked or is = backgr meter.</td <td>round as measured by a survey</td> <td>True</td> <td></td>	round as measured by a survey	True	
The cooler's custody seal, if present, is intact		True	
Sample custody seals, if present, are intact.		True	
The cooler or samples do not appear to have tampered with.	been compromised or	True	
Samples were received on ice.		True	
Cooler Temperature is acceptable.		True	
Cooler Temperature is recorded.		True	
COC is present.		True	
COC is filled out in ink and legible.		True	
COC is filled out with all pertinent information	l.	True	
Is the Field Sampler's name present on COC	?	True	
There are no discrepancies between the con-	tainers received and the COC.	True	
Samples are received within Holding Time (e HTs)	xcluding tests with immediate	True	
Sample containers have legible labels.		True	
Containers are not broken or leaking.		True	
Sample collection date/times are provided.		True	
Appropriate sample containers are used.		True	
Sample bottles are completely filled.		True	
Sample Preservation Verified.		True	
There is sufficient vol. for all requested analy MS/MSDs	ses, incl. any requested	True	
Containers requiring zero headspace have no <6mm (1/4").	o headspace or bubble is	True	
Multiphasic samples are not present.		True	
Samples do not require splitting or composition	ng.	True	
Residual Chlorine Checked.		N/A	

TestAmerica Pittsburgh

Quantitative X-Ray Diffraction by Rietveld Refinement

Report Prepared for: Golder Associates

Project Number/ LIMS No. CA20I-00000-211-17024-01 / MI7002-OCT18

Sample Receipt: October 3, 2018

Sample Analysis: October 13, 2018

Reporting Date: November 1, 2018

Instrument: Panalytical X'pert Pro Diffractometer

Test Conditions: Co radiation, 40 kV, 45 mA

Regular Scanning: Step: 0.033°, Step time:0.15s, 2θ range: 6-70°

Interpretations: HighScore Plus software using Crystallography Open Database (COD) and

Joint Committee on Powder Diffraction Standards -International Center for

Diffraction Data (JCPDS-ICDD).

Detection Limit: 0.5-2%. Strongly dependent on crystallinity.

Contents: 1) Method Summary

2) Summary of Mineral Assemblages

3) Quantitative XRD Results

4) XRD Pattern(s)

Lain Glossop H.B.Sc Senior Mineralogist Sarah Prout, Ph.D. Senior Mineralogist

Method Summary

Mineral Identification and Interpretation:

Mineral identification and interpretation involve matching the diffraction pattern of a test sample material to patterns of single-phase reference materials. The reference patterns from the Crystallography Open Database (COD) and the Joint Committee on Powder Diffraction Standards - International Center for Diffraction Data (JCPDS-ICDD).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds, except when internal standards have been added by request. Mineral proportions may be strongly influenced by crystallinity, crystal structure and preferred orientations. Mineral or compound identification and quantitative analysis results should be accompanied by supporting chemical assay data or other additional tests.

Quantitative Rietveld Analysis:

Panalytical Highscore Plus software was used to perform the quantitative Rietveld Analysis. This software uses a graphics based profile analysis program built around a non-linear least squares fitting system, to quantitatively determine the amount of different phases present in a multicomponent sample. Whole pattern analyses are predicated by the fact that the X-ray diffraction pattern is a total sum of both instrumental and specimen factors. Unlike other peak intensity-based methods, the Rietveld method uses a least squares approach to refine a theoretical line profile (shown as a blue pattern in the analyses plots) until it matches the obtained experimental patterns (shown as the coloured pattern in the analyses plots).

Rietveld refinement is completed with a set of minerals specifically identified for the sample. Zero values indicate that the mineral was included in the refinement calculations, but the calculated concentration was less than 0.5 wt%. Minerals not identified by the analyst are not included in refinement calculations for specific samples and are indicated with a dash.

DISCLAIMER: This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

Summary of Rietveld Quantitative Analysis X-ray Diffraction Results

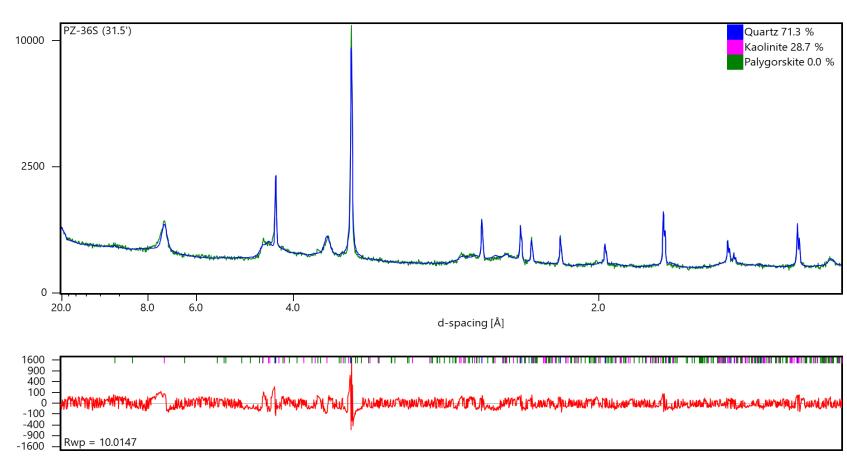
Quantitative X-ray Diffraction Results

	Sample ID 01	Sample ID 02	Sample ID 03	Sample ID 04	Sample ID 05	Sample ID 06
Mineral/Compound	PZ-36S (31.5')	PZ-36S (53.5')	PZ-9I (67.3')	PZ-40I (43.5')	PZ-40I (64.5')	PZ-40I (81')
	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)
Quartz	71.3	74.1	10.9	43.8	23.9	13.6
Plagioclase	-	2.0	39.6	-	36.1	37.3
Biotite	-	-	-	-	-	1.2
Kaolinite	28.7	23.9	-	56.2	0.9	0.0
Palygorskite	0.0	0.0	-	0.0	-	0.0
Amphibole	-	-	49.4	-	39.1	47.9
Jarosite	-	-	0.1	-	0.1	0.0
Sepiolite	-	-	-	-	-	0.0
Montmorillonite	-	-	-	-	-	-
Talc	-	-	-	-	-	-
Chlorite-Smectite	-	-	-	-	-	-
Goethite	-	-	-	-	-	-
TOTAL	100	100	100	100	100	100

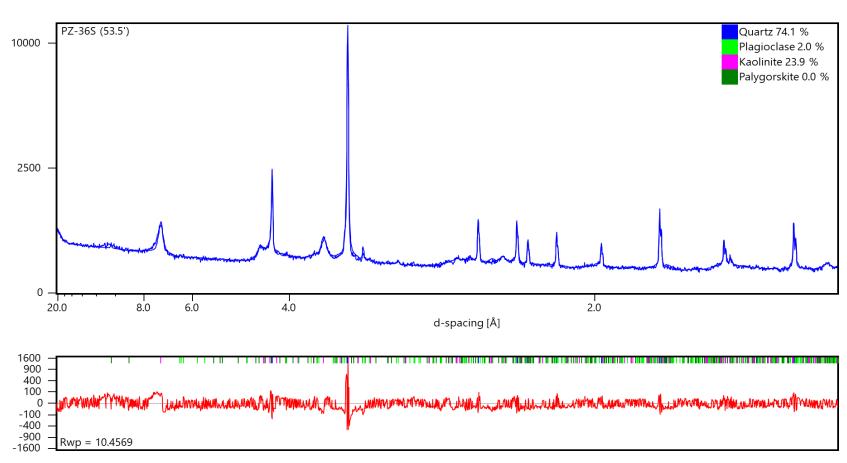
	Sample ID 07	Sample ID 08	Sample ID 09	Sample ID 10	Sample ID 11	Sample ID 12
Mineral/Compound	PZ-42I (37.5')	PZ-42I (52.5')	PZ-42I (92.0')	PZ-44I (29.5')	PZ-44I (51.5')	PZ-44I (106')
	(wt %)					
Quartz	42.2	3.5	49.2	39.1	41.5	15.0
Plagioclase	-	36.2	48.5	-	38.5	25.0
Biotite	-	-	2.4	-	-	0.0
Kaolinite	57.8	2.3	-	60.7	6.7	-
Palygorskite	-	0.0	-	-	-	-
Amphibole	-	55.3	0.0	-	13.1	60.0
Jarosite	-	-	-	-	-	0.0
Sepiolite	-	-	-	-	0.2	-
Montmorillonite	-	0.4	-	-	-	-
Talc	-	1.1	-	-	-	-
Chlorite-Smectite	-	1.2	-	-	-	-
Goethite	-	-	-	0.2	-	-
TOTAL	100	100	100	100	100	100

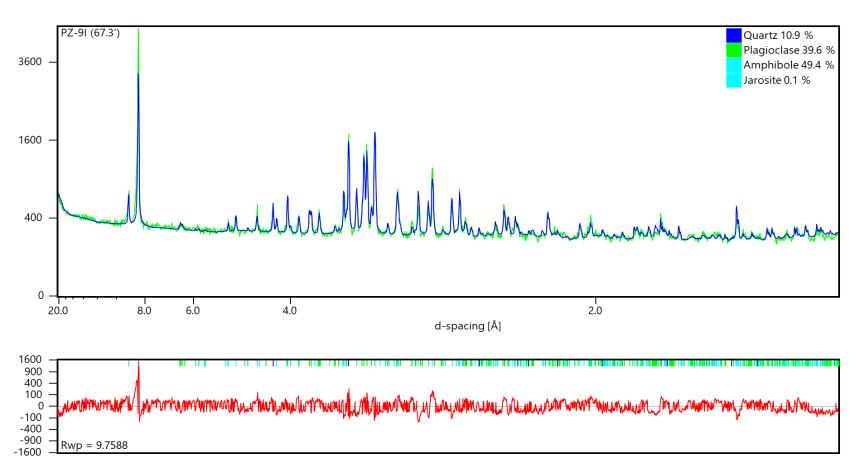
Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value.

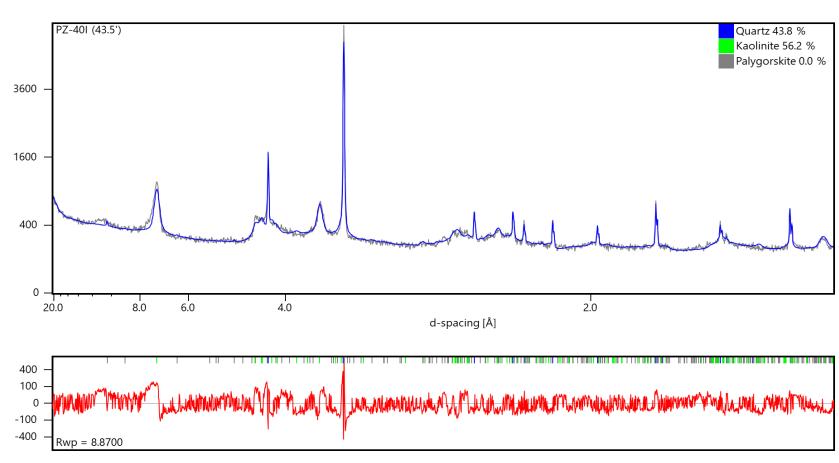
Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample.

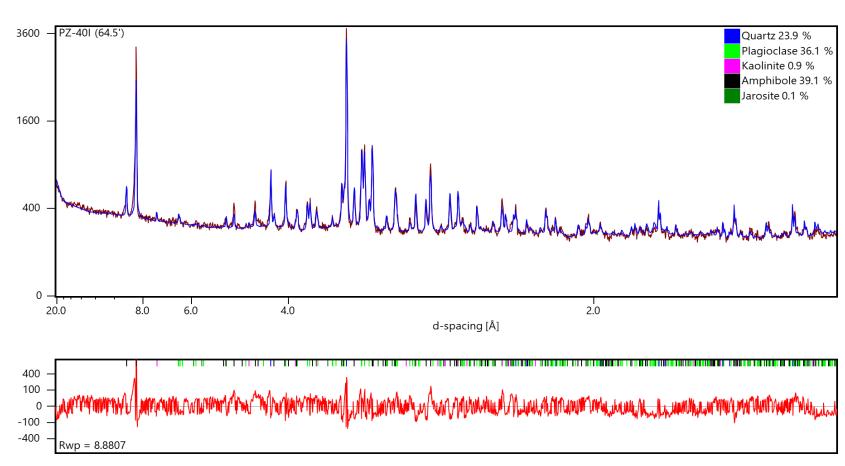

The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.

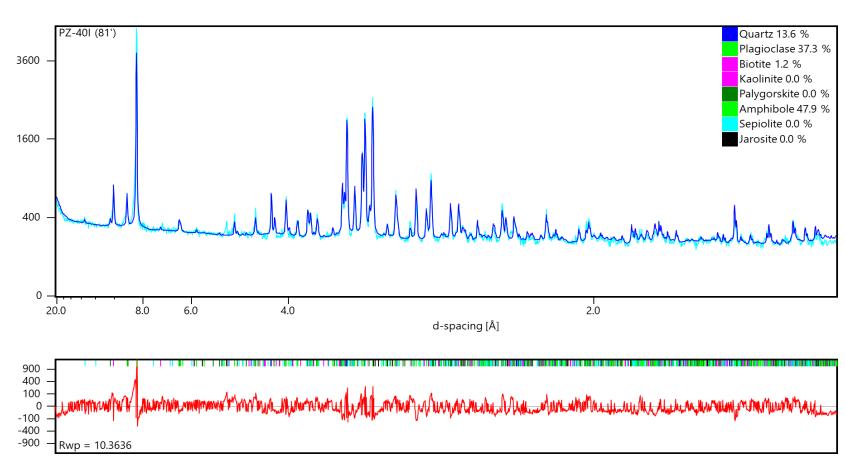
Mineral/Compound	Approximate Formula		
Quartz	SiO ₂		
Plagioclase	(Ca,Na)(AI,Si)4O8		
Biotite	$K(Mg,Fe)_3[AlSi_3O_{10}(OH,F)_2$		
Kaolinite	$Al_2Si_2O_5(OH)_4$		
Palygorskite	$(Mg,AI)_2Si_4O_{10}(OH)\cdot 4(H_2O)$		
Amphibole	Ca ₂ (Mg, Fe, Al) ₅ (Al, Si) ₈ O ₂₂ (OH) ₂		
Jarosite	$KFe_3(OH)_6(SO_4)_2$		
Sepiolite	$Mg_4Si_6O_{15}(OH)_2\cdot 6H_2O$		
Montmorillonite	$(Na,Ca)_{0.33}(AI,Mg)_2(Si_4O_{10})(OH)_2 \cdot nH_2O$		
Talc	$Mg_3Si_4O_{10}(OH)_2$		
Chlorite-Smectite	$(Mg_5AI)(AISi_3)O_{10}(OH)_8 - (Na,Ca)_{0.33}(AI,Mg)_2(Si_4O_{10})(OH)_2 \cdot nH_2O$		
Goethite	FeO(OH)		

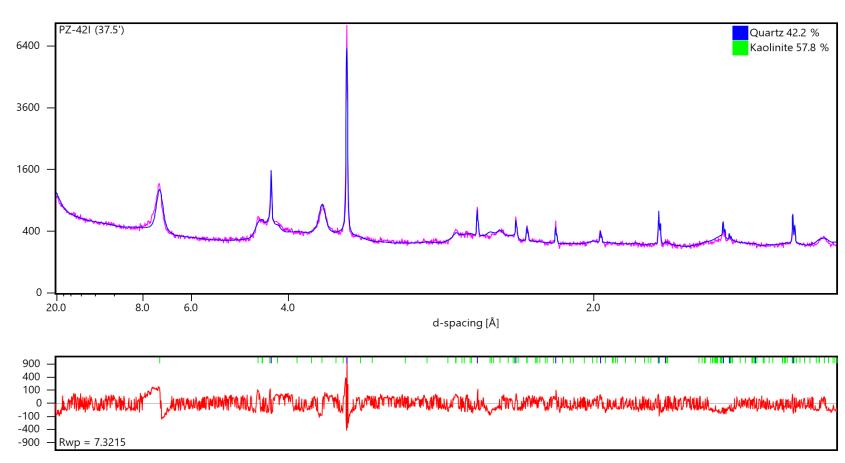


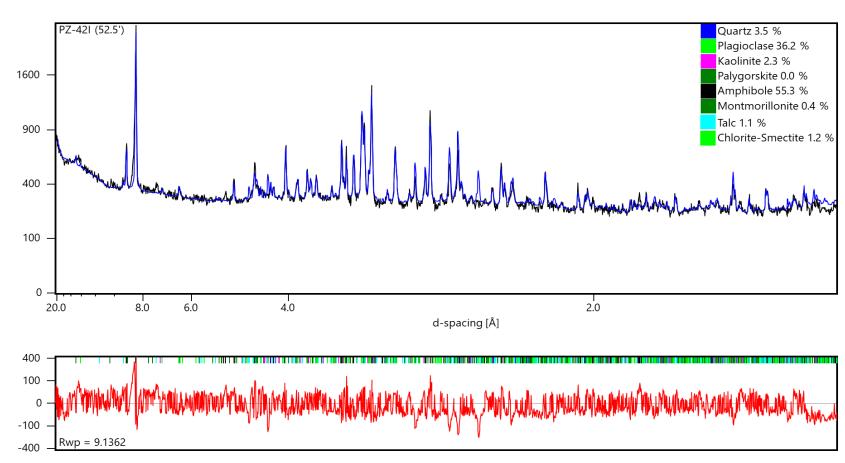


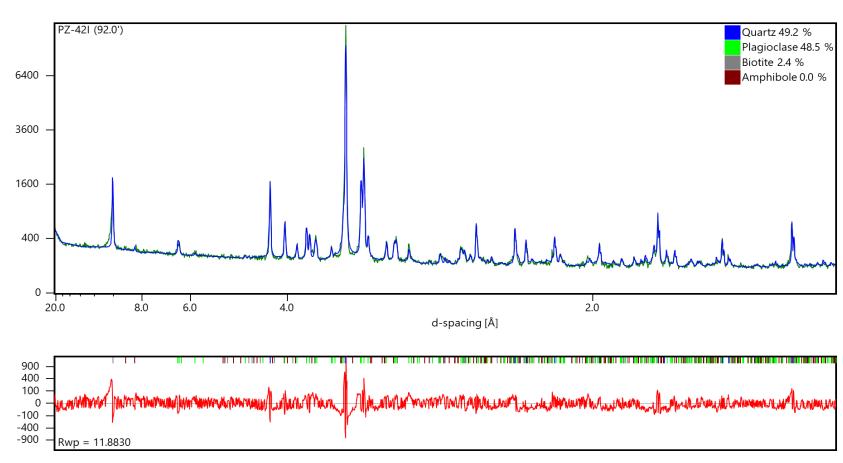


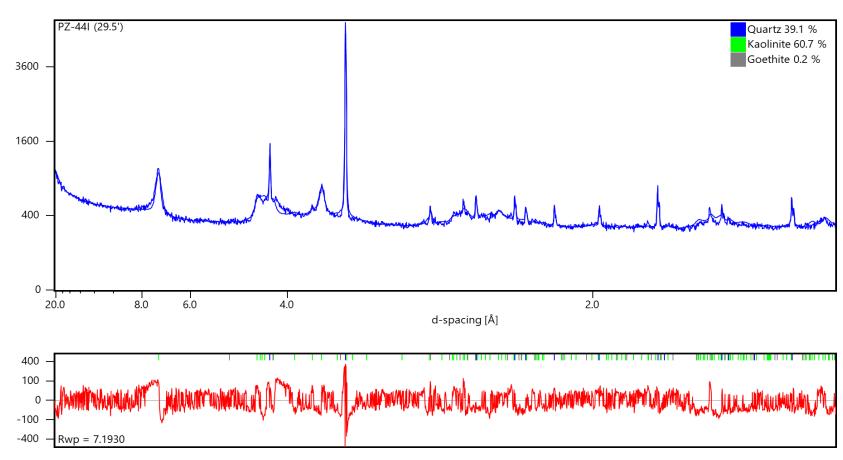


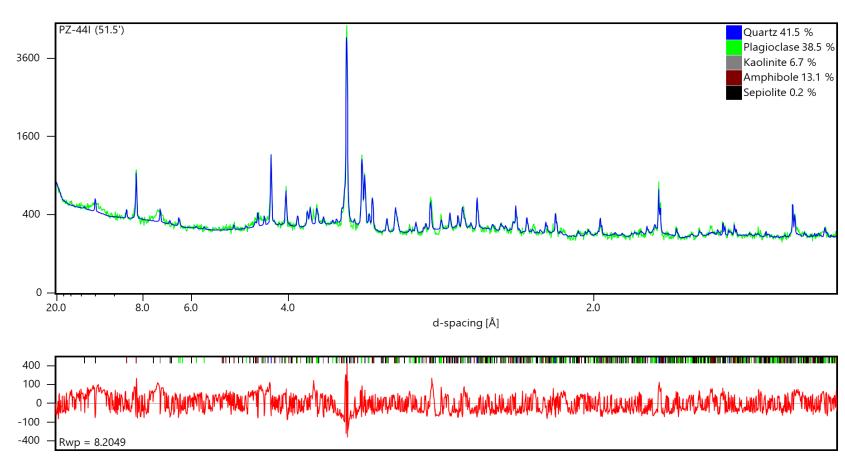


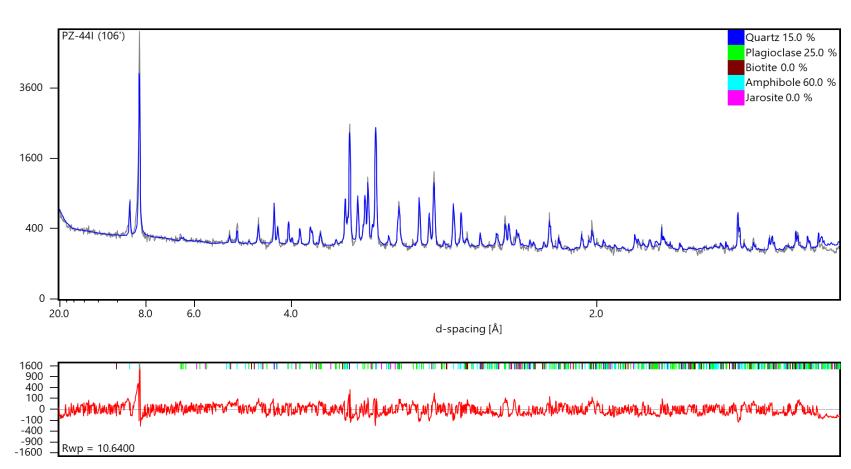






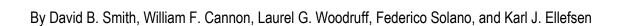





Counts

X-ray diffractogram. The upper pattern is the measured diffractogram, the blue curve is the calculated pattern from the Rietveld Refinement. The lower red curve is the difference plot with the weighted R profile value (Rwp).

Counts


X-ray diffractogram. The upper pattern is the measured diffractogram, the blue curve is the calculated pattern from the Rietveld Refinement. The lower red curve is the difference plot with the weighted R profile value (Rwp).

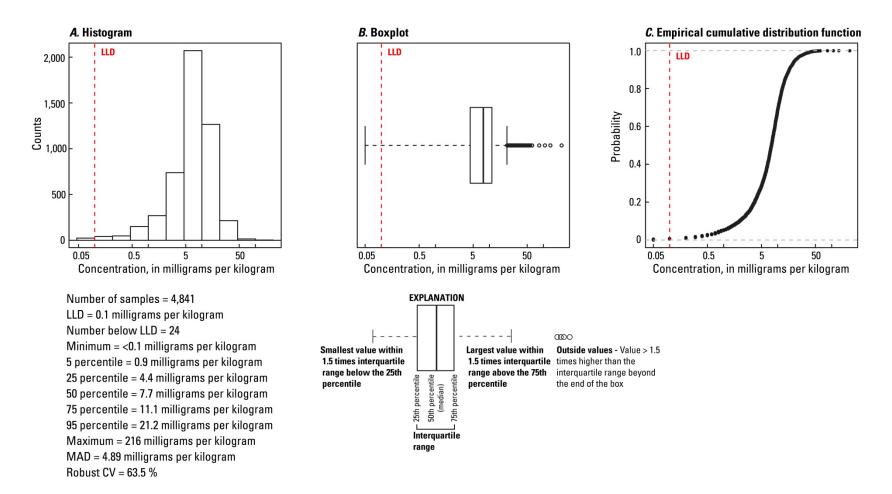
APPENDIX C

USGS Open-File Report

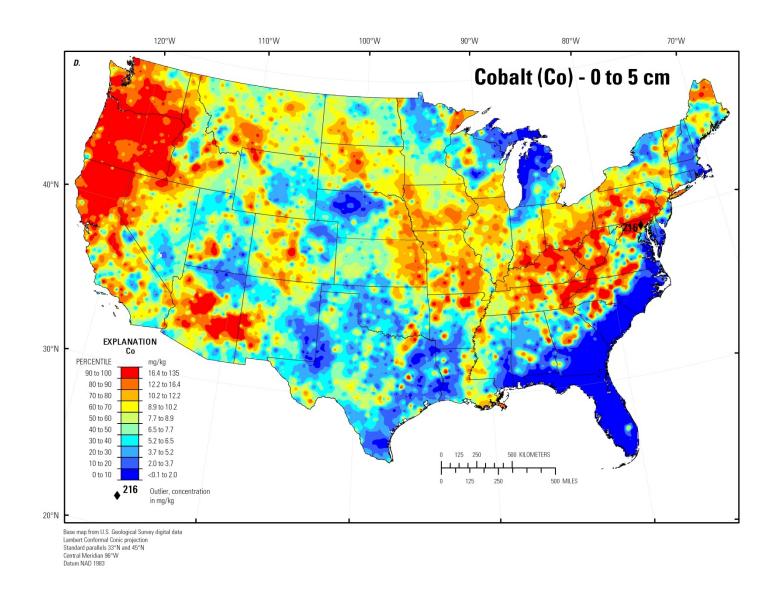
Geochemical and Mineralogical Maps for Soils of the Conterminous United States

Open-File Report 2014–1082

U.S. Department of the Interior U.S. Geological Survey


This is an excerpt from the original document.

It was downloaded from mrdata.usgs.gov/soilgeochemistry;


A link to download the full document (U.S. Geological Survey Open-File Report 2014-1082, 400 pages, 170 MB) can be found there or at http://pubs.usgs.gov/of/2014/1082.

These maps and statistical graphics were derived from data published in U.S. Geological Survey Data Series 801, downloadable from http://pubs.usgs.gov/ds/801.

Cobalt (Co) in soil collected from a depth of 0 to 5 centimeters

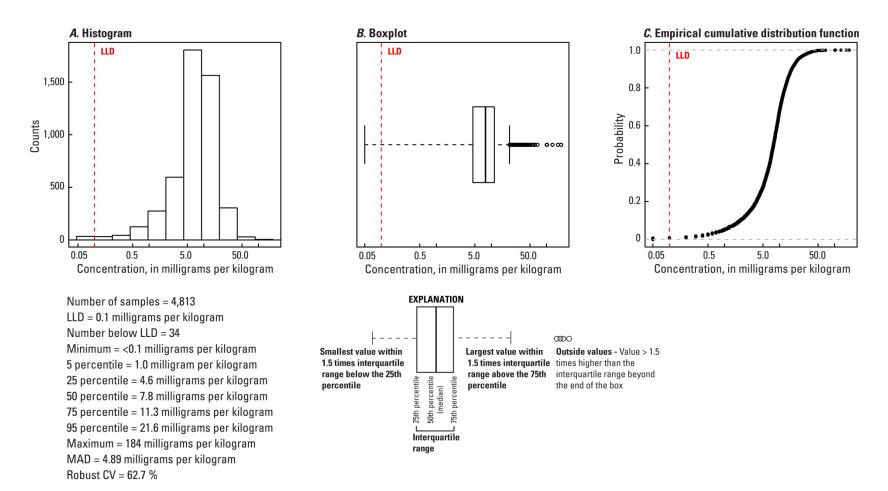


Figure 41. *A*, Histogram and summary statistics; *B*, Boxplot; *C*, Empirical cumulative distribution function; and *D*, Distribution of cobalt (Co) in surface soils collected from a depth of 0 to 5 centimeters, conterminous United States (LLD, lower limit of determination; MAD, median absolute deviation; CV, coefficient of variation; mg/kg, milligrams per kilogram; cm, centimeters).

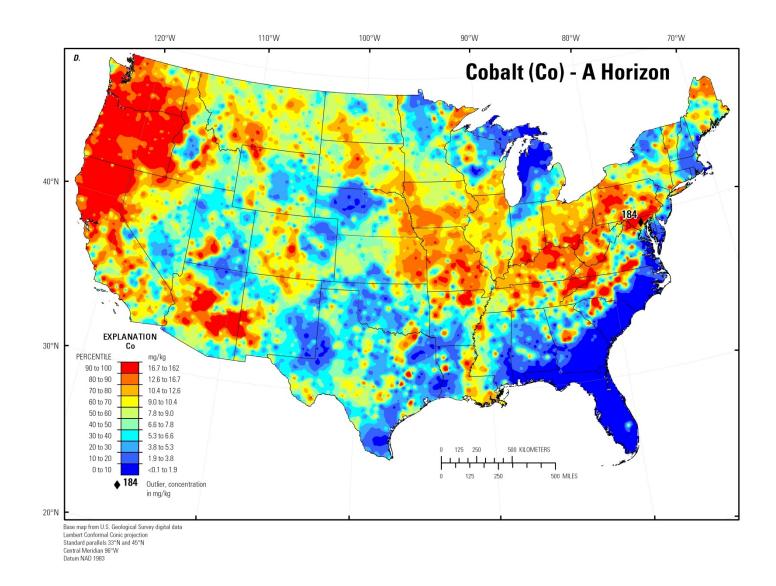


Figure 41. A, Histogram and summary statistics; B, Boxplot; C, Empirical cumulative distribution function; and D, Distribution of cobalt (Co) in surface soils collected from a depth of 0 to 5 centimeters, conterminous United States (LLD, lower limit of determination; MAD, median absolute deviation; CV, coefficient of variation; mg/kg, milligrams per kilogram; cm, centimeters).—Continued

Cobalt (Co) in soil A horizon

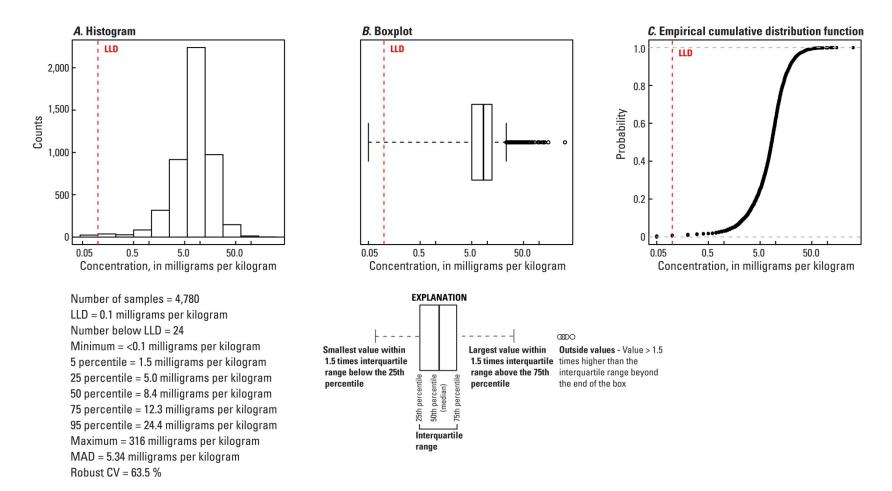


Figure 42. *A,* Histogram and summary statistics; *B,* Boxplot; *C,* Empirical cumulative distribution function; and *D,* Distribution of cobalt (Co) in the soil A horizon, conterminous United States (LLD, lower limit of determination; MAD, median absolute deviation; CV, coefficient of variation; mg/kg, milligrams per kilogram).

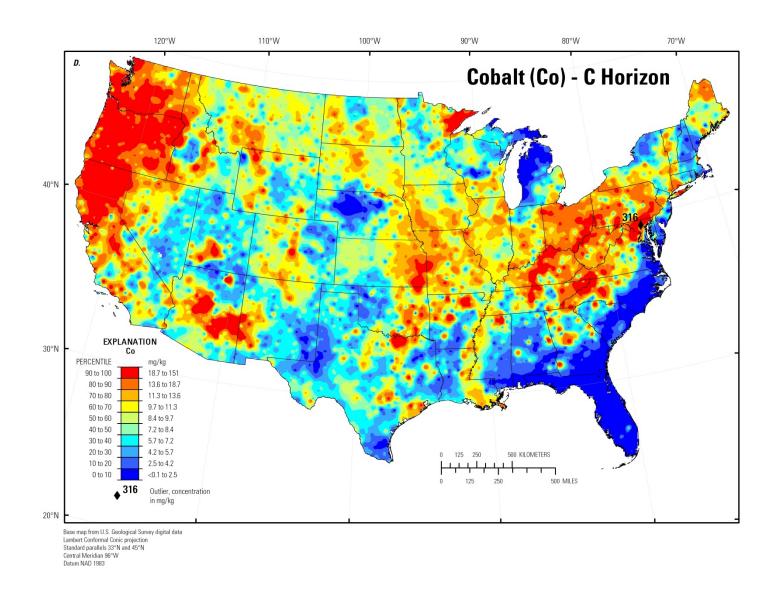
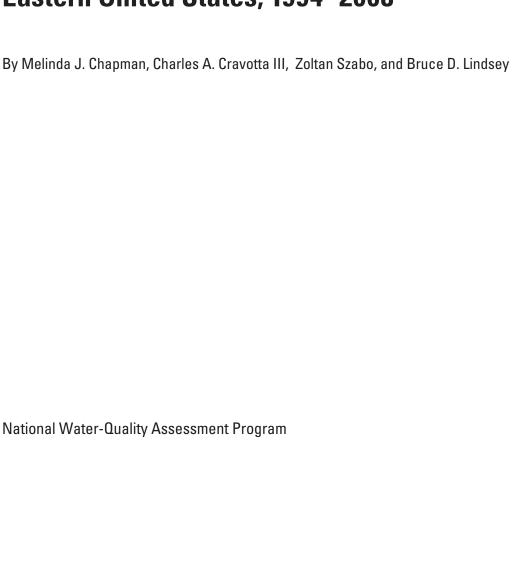


Figure 42. *A*, Histogram and summary statistics; *B*, Boxplot; *C*, Empirical cumulative distribution function; and *D*, Distribution of cobalt (Co) in the soil A horizon, conterminous United States (LLD, lower limit of determination; MAD, median absolute deviation; CV, coefficient of variation; mg/kg, milligrams per kilogram).—Continued

Cobalt (Co) in soil C horizon

Figure 43. *A*, Histogram and summary statistics; *B*, Boxplot; *C*, Empirical cumulative distribution function; and *D*, Distribution of cobalt (Co) in the soil C horizon, conterminous United States (LLD, lower limit of determination; MAD, median absolute deviation; CV, coefficient of variation; mg/kg, milligrams per kilogram).

Figure 43. *A*, Histogram and summary statistics; *B*, Boxplot; *C*, Empirical cumulative distribution function; and *D*, Distribution of cobalt (Co) in the soil C horizon, conterminous United States (LLD, lower limit of determination; MAD, median absolute deviation; CV, coefficient of variation; mg/kg, milligrams per kilogram).—Continued


National Water-Quality Assessment Program

Naturally Occurring Contaminants in the Piedmont and Blue Ridge Crystalline-Rock Aquifers and Piedmont Early Mesozoic Basin Siliciclastic-Rock Aquifers, Eastern United States, 1994–2008

Scientific Investigations Report 2013–5072

Naturally Occurring Contaminants in the Piedmont and Blue Ridge Crystalline-Rock Aquifers and Piedmont Early Mesozoic Basin Siliciclastic-Rock Aquifers, Eastern United States, 1994–2008

U.S. Department of the Interior U.S. Geological Survey

Scientific Investigations Report 2013–5072

U.S. Department of the Interior SALLY JEWELL, Secretary

U.S. Geological Survey Suzette M. Kimball, Acting Director

U.S. Geological Survey, Reston, Virginia: 2013

For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS.

For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod

To order this and other USGS information products, visit http://store.usgs.gov

Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.

Suggested citation:

Chapman, M.J., Cravotta, C.A., III, Szabo, Z., and Lindsey, B.D., 2013, Naturally occurring contaminants in the Piedmont and Blue Ridge crystalline-rock aquifers and Piedmont Early Mesozoic basin siliciclastic-rock aquifers, eastern United States, 1994–2008: U.S. Geological Survey Scientific Investigations Report 2013–5072, 74 p.

Foreword

The U.S. Geological Survey (USGS) is committed to providing the Nation with reliable scientific information that helps to enhance and protect the overall quality of life and that facilitates effective management of water, biological, energy, and mineral resources (http://www.usgs. gov/). Information on the Nation's water resources is critical to ensuring long-term availability of water that is safe for drinking and recreation and is suitable for industry, irrigation, and fish and wildlife. Population growth and increasing demands for water make the availability of that water, measured in terms of quantity and quality, even more essential to the long-term sustainability of our communities and ecosystems.

The USGS implemented the National Water-Quality Assessment (NAWQA) Program in 1991 to support national, regional, State, and local information needs and decisions related to water-quality management and policy (http://water.usgs.gov/nawqa). The NAWQA Program is designed to answer: What is the quality of our Nation's streams and groundwater? How are conditions changing over time? How do natural features and human activities affect the quality of streams and groundwater, and where are those effects most pronounced? By combining information on water chemistry, physical characteristics, stream habitat, and aquatic life, the NAWQA Program aims to provide science-based insights for current and emerging water issues and priorities. From 1991 to 2001, the NAWQA Program completed interdisciplinary assessments and established a baseline understanding of water-quality conditions in 51 of the Nation's river basins and aquifers, referred to as Study Units (http://water.usgs.gov/nawqa/studies/study_units.html).

In the second decade of the Program (2001–12), a major focus is on regional assessments of water-quality conditions and trends. These regional assessments are based on major river basins and principal aquifers, which encompass larger regions of the country than the Study Units. Regional assessments extend the findings in the Study Units by filling critical gaps in characterizing the quality of surface water and groundwater, and by determining water-quality status and trends at sites that have been consistently monitored for more than a decade. In addition, the regional assessments continue to build an understanding of how natural features and human activities affect water quality. Many of the regional assessments employ modeling and other scientific tools, developed on the basis of data collected at individual sites, to help extend knowledge of water quality to unmonitored, yet comparable areas within the regions. The models thereby enhance the value of our existing data and our understanding of the hydrologic system. In addition, the models are useful in evaluating various resource-management scenarios and in predicting how our actions, such as reducing or managing nonpoint and point sources of contamination, land conversion, and altering flow and (or) pumping regimes, are likely to affect water conditions within a region.

Other activities planned during the second decade include continuing national syntheses of information on pesticides, volatile organic compounds (VOCs), nutrients, trace elements, and aquatic ecology; and continuing national topical studies on the fate of agricultural chemicals, effects of urbanization on stream ecosystems, bioaccumulation of mercury in stream ecosystems, effects of nutrient enrichment on stream ecosystems, and transport of contaminants to public-supply wells.

The USGS aims to disseminate credible, timely, and relevant science information to address practical and effective water-resource management and strategies that protect and restore water quality. We hope this NAWQA publication will provide you with insights and information to meet your needs, and will foster increased citizen awareness and involvement in the protection and restoration of our Nation's waters.

The USGS recognizes that a national assessment by a single program cannot address all water-resource issues of interest. External coordination at all levels is critical for cost-effective management, regulation, and conservation of our Nation's water resources. The NAWQA Program, therefore, depends on advice and information from other agencies—Federal, State, regional, interstate, Tribal, and local—as well as nongovernmental organizations, industry, academia, and other stakeholder groups. Your assistance and suggestions are greatly appreciated.

William H. Werkheiser USGS Associate Director for Water

Contents

Foreword	iii
Abstract	1
Introduction	2
Description of Study Area	2
Purpose and Scope	6
Geologic Setting and Aquifer Descriptions	6
Previous Studies	9
Geological and Geochemical Framework for Interpretations of Water Quality	14
Previous Lithochemical Classifications	14
Lithologic Groups	14
Lithochemical Subgroups	17
Geochemical Controls on Naturally Occurring Trace Elements and Radionuclides	
in Groundwater	20
Water-Quality Data and Methods	23
Graphical and Statistical Analyses	25
Geochemical Modeling	26
$Water-Quality\ Characteristics\ of\ Aquifers,\ Lithologic\ Groups,\ and\ Lithochemical\ Subgroups.$	
Exceedances of Drinking Water Criteria	
Correlations Among Major and Trace Constituents and Environmental Factors	41
Geochemical Conditions Associated with Elevated Concentrations of Naturally	
Occurring Constituents	
Trace Elements	
Arsenic	
Manganese	
Zinc	
Alkalinity, Hardness, and Dissolved Solids	
Antimony, Lead, Barium, and Molybdenum	
Radionuclides	49
Uranium	
Radon	
Radium	
Gross Alpha-Particle Activity	60
Potential for Detrimental Effects from Trace Elements, Radionuclides, and	
Associated Contaminants	
Summary and Conclusions	
Acknowledgments	
References Cited	64
Appendix 1. Tables (Excel spreadsheets available online at http://pubs.usgs.gov/sir/2013/5072/)	71
Appendix 2. Probability plots of principal components analysis (PCA) scores for ground-water of siliclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces: PC1 "Alkalinity-pH"; PC2 "Chloride-Nitrate"; PC3 " Redox";	;
PC4 "Temperature-Silica"; and "Radon-Potassium"	
Appendix 3. Analytical Issues Relating to Defining Radium Occurrence	/3

Figures

1.	Blue Ridge Physiographic Provinces	3
2.	Map showing 2007 land-use data for the Piedmont and Blue Ridge Physiographic Provinces and major metropolitan areas	5
3.	Map showing U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program study unit boundaries within the Piedmont and Blue Ridge Physiographic Provinces and sample-collection locations for groundwater-quality data collected from 1994–2008	7
4.	Block diagram showing the conceptual groundwater system, aquifers, and typical well types included as part of this study within the Piedmont and Blue Ridge Physiographic Provinces	8
5.	Map showing distribution of delineated lithologic groups and 1994–2008 sample locations within the study area, Piedmont and Blue Ridge Physiographic Provinces	.18
6.	Generalized schematic cross-section diagram across North Carolina physiographic provinces showing generalized geologic terranes and common lithologic groups delineated as part of this study	.19
7.	Chart showing an example division of the aquifers into lithologic groups, lithochemical subgroups, and corresponding geologic formations	.20
8.	Graphs showing equilibrium fractions of initial concentrations of ions that may be dissolved or adsorbed on a finite amount of hydrous ferric oxide at 25 degrees Celsius as a function of pH. Anions; cations	
9.	Chart showing uranium-238 and thorium-232 decay series	.24
10.	Graphs showing probability plots of groundwater-quality data for siliclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008. Total dissolved solids; specific conductance; alkalinity; hardness; calcium; magnesium; sodium; and potassium	.28
11.	Graphs showing probability plots of groundwater-quality data for siliclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008. Sulfate; chloride; nitrate; phosphate; bromide; fluoride; silica; and aluminum	.29
12.	Graphs showing probability plots of groundwater-quality data for siliclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008. pH; dissolved oxygen; iron; manganese; arsenic; selenium;	.30
13.	Graphs showing probability plots of groundwater-quality data for siliclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008. Cadmium; zinc; copper; lead; cobalt; nickel; chromium; and vanadium	
14.	Graphs showing probability plots of groundwater-quality data for siliclasti-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008. Barium; strontium; beryllium; antimony; uranium; tritium; radium; and radon	
15.	Boxplots showing groundwater-quality data by lithologic groups of siliclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008. Specific conductance; sulfate; chloride; nitrate; phosphate; silica; sodium; potassium; and magnesium	

10.	and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008. Calcium; alkalinity; pH; dissolved oxygen; iron; manganese; arsenic; selenium; and molybdenum	4
17.	Boxplots showing groundwater-quality data by lithologic group of siliclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008. Barium; copper; lead; nickel; zinc; tritium; uranium; radium 226+228; and radon-222	5
18.	Boxplots showing saturation indices (SI) for selected minerals in groundwater by lithologic group of siliciclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces. Calcite; dolomite; gypsum; fluorite; fluorapatite; manganese phosphate; strengite; ferrihydrite; and siderite	6
19.	Boxplots showing saturation indices (SI) for selected minerals in groundwater by lithologic group of siliclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces. Andularia; chlorite; kaolinite; gibbsite; chalcedony; barite; anglesite; cerrusite; and smithsonite	7
20.	Chart showing redox/pH matrix summarizing groundwater-quality samples by lithologic group of sliciclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008. All nine lithologic groups; clastic sedimentary; clastic lacustrine/evaporite; quartz-rich sedimentary; metamorphosed clastic sedimentary; quartz-rich metamorphic; felsic igneous or metamorphic; intermediate igneous or metamorphic; and ultramafic	8
21.	Chart showing redox-pH matrix summarizing groundwater-quality samples greater than or equal to the highest common reporting level (HCRL) or human health benchmark (HHB). Nitrate; manganese; sulfate; iron; phosphate; lead; arsenic; zinc; selenium; chromium; molybdenum; nickel; barium; cobalt; uranium; copper; radon-222; and radium-226+228	9
22.	Map showing areal occurrence of lithochemical subgroups having elevated arsenic concentrations (based on the Tukey mean rank test, table 6) in groundwater within the Piedmont and Blue Ridge Physiographic Provinces4	6
23.	Boxplots showing concentrations of selected metals and associated constituents in groundwater by casing type for wells in siliciclastic- and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces4	8
24.	Map showing areal occurrence of felsic lithologic groups within the Piedmont and Blue Ridge Physiographic Provinces	
25.	Map showing the areal occurrence of lithochemical subgroups having elevated uranium concentrations in groundwater (based on Tukey mean rank tests, table 6) within the Piedmont and Blue Ridge Physiographic Provinces	2
26.	Boxplot showing radon concentrations in groundwater samples related to composition of lithologic group5	4
27.	Map showing areal occurrence of lithochemical subgroups having elevated radon-222 concentrations in groundwater (based on the Tukey mean rank test, table 6) within the Piedmont and Blue Ridge Physiographic Provinces	5
28.	Map showing an overlay of areal occurrence of lithochemical subgroups having elevated radon-222 concentrations and U.S. Geological Survey National Uranium Resource Evaluation Program uranium measurements in groundwater within the Piedmont and Blue Ridge Physiographic Provinces	6
29.	Graph showing relations between concentrations of Radium-228 and Radium-226 in samples from bedrock aquifers of the Piedmont and Blue Ridge Physiographic Provinces	
	U	•

30.	Graph showing relations of concentrations of radium-226 plus radium-228 and	
	dissolved oxygen for samples from siliclastic-rock and crystalline-rock aquifers of	
	the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008	59
31.	Graph showing relations of concentrations of radium-226 plus radium-228 and uranium for samples from bedrock aquifers of the Piedmont and Blue Ridge	
	Physiographic Provinces	61

Tables

1.	NAWQA study units in the Piedmont and Blue Ridge Physiographic Provinces4
2.	Published reports from USGS NAWQA studies and other data sources conducted in the Piedmont and Blue Ridge Physiographic Provinces categorized by aquifer and constituents investigated
3.	Lithologic group, major rock types, and lithochemical subgroups for groundwater sites within the siliciclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–200815
4.	Summary of wells within siliciclastic and crystalline rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces (1994–2008) having chemical constituents in groundwater exceeding U.S. Environmental Protection Agency (2010) drinking water standards. (Table 4 is a excel spreadsheet available online at http://pubs.usgs.gov/sir/2013/5072/)
5.	Principal components analysis model of major factors controlling the chemistry of groundwater from siliciclastic-rock and crystalline-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces, 1994–200842
6.	Tukey test for difference in mean rank of arsenic concentration, pH, and concentrations of manganese, iron, uranium, and radon among lithochemical subgroups with a minimum of five values for arsenic or uranium. (Table 6 is a excel spreadsheet available online at http://pubs.usgs.gov/sir/2013/5072/)
7.	Number of samples with specified ranges of uranium and radium-226 concentrations for 99 water samples for which gross alpha-particle activity was determined60

Conversion Factors, Datums

Inch/Pound to SI

Multiply	Ву	To obtain
	Length	
foot (ft)	0.305	meter
mile (mi)	1.609	kilometer (km)
	Area	
square foot (ft²)	929	square centimeter (cm ²)
square foot (ft²)	0.093	square meter (m ²)
square mile (mi ²)	259	hectare (ha)
square mile (mi²)	2.59	square kilometer (km²)
	Volume	
cubic foot (ft³)	28.32	cubic decimeter (dm³)
cubic foot (ft³)	0.028	cubic meter (m³)
cubic mile (mi³)	4.168	cubic kilometer (km³)
acre-foot (acre-ft)	1,233	cubic meter (m³)
acre-foot (acre-ft)	0.001	cubic hectometer (hm³)
	Flow rate	
acre-foot per day (acre-ft/d)	0.014	cubic meter per second (m³/s)
acre-foot per year (acre-ft/yr)	1,233	cubic meter per year (m³/yr)
acre-foot per year (acre-ft/yr)	0.001	cubic hectometer per year (hm³/yr)
	Radioactivity	
picocurie per liter (pCi/L)	0.037	becquerel per liter (Bq/L)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Altitude, as used in this report, refers to distance above a vertical datum.

Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (µS/cm at 25 °C).

Concentrations of chemical constituents in water are given either in milligrams per liter (mg/L) or micrograms per liter (μ g/L).

[°]F=(1.8×°C)+32

[°]C=(°F-32)/1.8

Acronyms and Abbreviations

acfblusur1 Apalachicola-Chattahoochee Flint River Basin urban land-use study acfblusur2 Apalachicola-Chattahoochee Flint River Basin urban land-use study

Al aluminum

albesus8 Albemarle-Pamlico Drainages major aquifer study

AMCL alternative maximum contaminant level

ANOVA analysis-of-variance

Ba barium
C carbon
Ca calcium
CI chloride

CLSD clastic sedimentary rocks

CLSDF feldspar-rich clastic sedimentary rocks

CLSDLAC clastic lacustrine/evaporite sedimentary rocks
CLSDMT metamorphosed clastic sedimentary rocks

CLSDQ quartz-rich sedimentary rocks

CZmd Cambrian/Late Proterozoic metamudstone and meta-argillite

CZms Cambrian/Late Proterozoic mica schist

CZph Cambrian/Late Proterozoic phyllite and schist delrsus1 Delaware River Basin major aquifer study

DO dissolved oxygen

Fe iron

GEOLEX USGS National Geologic Map Database Geologic Names Lexicon

GIS geographic information system

H hydrogen

HHB human health benchmark
HBSL health-based screening level

HFO hydrous ferric oxide

HCRL highest common reporting limit

IGMTF felsic igneous and metamorphic rocks

IGMTI intermediate igneous or metamorphic rocks

IGMTM mafic igneous and metamorphic rocks

K potassium

KANA Kanawha/New River Basins
Lc critical level of detection

linjsus3 Long Island/New Jersey Study Unit major aquifer study

Isussus2 Lower Susquehanna River Basin agricultural land-use study

MCL maximum contaminant level

Mg magnesium

µg/L micrograms per liter
mg/L milligrams per liter

Mn manganese

MTQ quartz-rich metamorphic rocks

Na Sodium

NAD83 North American Datum of 1983

NAVD88 North American Vertical Datum of 1988

NAWQA U.S. Geological Survey National Water-Quality Assessment Program

NJDEP New Jersey Department of Environmental Protection

NLCD 1992 National Land Cover Dataset 1992

NURE U.S. Geological Survey National Uranium Resource Evaluation Program

NWQL U.S. Geological Survey National Water Quality Laboratory

OHSU Oregon Health and Science University

0 oxygen

P phosphorus

PBR Piedmont and Blue Ridge
PC principal components

PCA principal components analysis

Ra radium S sulfur

SC specific conductance

Si silica

SI mineral saturation index

SMCL secondary maximum contaminant level

SSMDC sample-specific minimum-detection concentration

TDS total dissolved solids
ULMAF ultramafic rocks

USEPA U.S. Environmental Protection Agency

USGS U.S. Geological Survey

Naturally Occurring Contaminants in the Piedmont and Blue Ridge Crystalline-Rock Aquifers and Piedmont Early Mesozoic Basin Siliciclastic-Rock Aquifers, Eastern United States, 1994–2008

By Melinda J. Chapman, Charles A. Cravotta III, Zoltan Szabo, and Bruce D. Lindsey

Abstract

Groundwater quality and aquifer lithologies in the Piedmont and Blue Ridge Physiographic Provinces in the eastern United States vary widely as a result of complex geologic history. Bedrock composition (mineralogy) and geochemical conditions in the aguifer directly affect the occurrence (presence in rock and groundwater) and distribution (concentration and mobility) of potential naturally occurring contaminants, such as arsenic and radionuclides, in drinking water. To evaluate potential relations between aquifer lithology and the spatial distribution of naturally occurring contaminants, the crystalline-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces and the siliciclastic-rock aguifers of the Early Mesozoic basin of the Piedmont Physiographic Province were divided into 14 lithologic groups, each having from 1 to 16 lithochemical subgroups, based on primary rock type, mineralogy, and weathering potential. Groundwater-quality data collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program from 1994 through 2008 from 346 wells and springs in various hydrogeologic and land-use settings from Georgia through New Jersey were compiled and analyzed for this study. Analyses for most constituents were for filtered samples, and, thus, the compiled data consist largely of dissolved concentrations. Concentrations were compared to criteria for protection of human health, such as U.S. Environmental Protection Agency (USEPA) drinking water maximum contaminant levels and secondary maximum contaminant levels or health-based screening levels developed by the USGS NAWQA Program in cooperation with the USEPA, the New Jersey Department of Environmental Protection, and Oregon Health & Science University. Correlations among constituent concentrations, pH, and oxidationreduction (redox) conditions were used to infer geochemical controls on constituent mobility within the aguifers.

Of the 23 trace-element constituents evaluated, arsenic, manganese, and zinc were detected in one or more water

samples at concentrations greater than established human health-based criteria. Arsenic concentrations typically were less than 1 microgram per liter (µg/L) in most groundwater samples; however, concentrations of arsenic greater than 1 μg/L frequently were detected in groundwater from clastic lacustrine sedimentary rocks of the Early Mesozoic basin aquifers and from metamorphosed clastic sedimentary rocks of the Piedmont and Blue Ridge crystalline rock aquifers. Groundwater from these rock units had elevated pH compared to other rock units evaluated in this study. Of the nine samples for which arsenic concentration was greater than 10 µg/L, six were classified as oxic and three as anoxic, and seven had pH of 7.2 or greater. Manganese concentrations typically were less than 10 µg/L in most samples; however, 8.3 percent of samples from the Piedmont and Blue Ridge crystalline-rock aquifers and 3.0 percent of samples from the Early Mesozoic basin siliciclastic rock aquifers had manganese concentrations greater than the 300-µg/L health-based screening level. The positive correlation of manganese with iron and ammonia and the negative correlation of manganese with dissolved oxygen and nitrate are consistent with the reductive dissolution of manganese oxides in the aquifer. Zinc concentrations typically were less than 10 μg/L in the groundwater samples considered in the study, but 0.4 percent and 5.5 percent of the samples had concentrations greater than the health-based screening level of 2,000 µg/L and one-tenth of the health-based screening level, respectively. The mean rank concentration of zinc in groundwater from the quartz-rich sedimentary rock lithologic group was greater than that for other lithologic groups even after eliminating samples collected from wells constructed with galvanized casing.

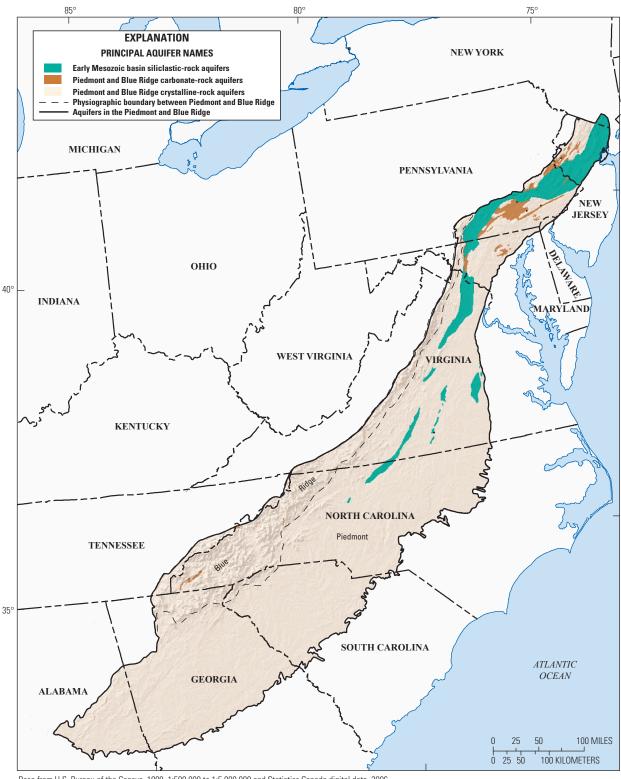
Approximately 90 percent of 275 groundwater samples had radon-222 concentrations that were greater than the proposed alternative maximum contaminant level of 300 picocuries per liter. In contrast, only 2.0 percent of 98 samples had combined radium (radium-226 plus radium-228) concentrations greater than the maximum contaminant level of 5.0 picocuries per liter, and 0.6 percent

of 310 samples had uranium concentrations greater than the maximum contaminant level of 30 µg/L. Radon concentrations were highest in the Piedmont and Blue Ridge crystalline-rock aguifers, especially in granite, and elevated median concentrations were noted in the Piedmont Early Mesozoic basin aquifers, but without the extreme maximum concentrations found in the crystalline rocks (granites). Although the siliciclastic lithologies had a greater frequency of elevated uranium concentrations, radon and radium were commonly detected in water from both siliciclastic and crystalline lithologies. Uranium concentrations in groundwater from clastic sedimentary and clastic lacustrine/evaporite sedimentary lithologic groups within the Early Mesozoic basin aquifers, which had median concentrations of 3.6 and 3.1 µg/L, respectively, generally were higher than concentrations for other siliciclastic lithologic groups, which had median concentrations less than 1 µg/L. Although 89 percent of the 260 samples from crystalline-rock aguifers had uranium concentrations less than 1 μg/L, 0.8 percent had uranium concentrations greater than the 30-µg/L maximum contaminant level, and 6.5 percent had concentrations greater than 3 µg/L.

Introduction

Since its inception in 1991, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program has collected and reported information about waterquality conditions and changes in those conditions over time. From 1991 to 2001 (Cycle I), the NAWQA Program was focused on describing water-quality conditions within 51 major river basins across the United States. Interdisciplinary assessments of water chemistry, hydrology, land use, stream habitat, and aquatic life established a baseline understanding of water-quality conditions within the 51 river basins and aquifers, referred to as study units (Gilliom and others, 1995).

A major focus of the NAWQA Program during its second decade (2002-13, Cycle II) is on regional- and national-scale assessments of groundwater-quality status and trends in about one-third of the 62 principal aquifers identified by the USGS Office of Groundwater (U.S. Geological Survey, 2003; Lapham and others, 2005). A goal of the Cycle II NAWQA Regional Assessments of Principal Aquifers is to address the effects of natural features on water quality of major aquifers, including soil, geology, mineral composition, and geochemistry, especially oxidation-reduction potential (oxygen-reducing, nitrate-reducing, manganese-reducing, and iron-reducing conditions) (Lapham and others, 2005).


This report focuses on naturally occurring contaminants in groundwater of the Piedmont and Blue Ridge crystallinerock aguifers and the Early Mesozoic basin siliciclastic-rock aquifers (fig. 1). The Piedmont and Blue Ridge crystallinerock aquifers are categorized as fractured igneous and metamorphic rock aquifers, and the Early Mesozoic basin aquifers are categorized as fractured sandstone aquifers (U.S. Geological Survey, 2003).

As a precursor to this study, Lindsey and others (2006) combined groundwater-quality analyses from 11 NAWQA Program studies in the Piedmont Physiographic Province to present findings on the occurrence of anthropogenic contaminants and naturally occurring radon. Lindsey and others (2006) categorized the aquifer lithologies into three groups: carbonate rock, crystalline rock, and siliciclastic rock. Compared to the carbonate-rock aquifers, the crystalline-rock and siliciclastic-rock aquifers had higher concentrations of radon and associated characteristics that implied naturally occurring contaminants could be widespread. The current report is a continuation of the effort by Lindsey and others (2006), evaluating the effects of lithologies and geochemical environment on the occurrence and distribution of radon and other naturally occurring contaminants in groundwater from the crystallinerock and siliciclastic-rock aguifers in the Piedmont and Blue Ridge Physiographic Provinces.

Description of Study Area

The Piedmont and Blue Ridge Physiographic Provinces extend from Alabama to New York in the eastern United States (Fenneman, 1938; Fenneman and Johnson, 1946) and have a collective area of 154,000 square miles (mi²) (fig. 1). This region includes three principal aquifers: (1) the Piedmont and Blue Ridge crystalline-rock aquifers; (2) the Piedmont and Blue Ridge carbonate-rock aquifers; and (3) the Piedmont Early Mesozoic clastic sedimentary rock aquifers, also referred to as "sandstone" aquifers (U.S. Geological Survey, 2003). In the study area, groundwater generally occurs in aquifer units that are local in scale because of complex geologic and topographic controls, but that are similar on a regional scale on the basis of major bedrock type and hydrogeologic properties. The aquifers are affected locally by geologic factors such as lithology and structure, particularly features such as fractures and joints, which provide secondary permeability for water movement within these "fractured-rock" aguifers.

The study area discussed in this report includes parts of 14 NAWQA study units (see "Network Code," table 1) where groundwater-quality data were collected for major aquifer, land-use, or drinking water studies in the Piedmont and Blue Ridge crystalline-rock and Piedmont Early Mesozoic basin siliciclastic-rock aquifers (table 1 and fig. 2). Regional and national assessments of the effects on water quality from natural environmental factors and human activities are possible because of the application of a consistent study design and uniform methods of data collection and analysis within the NAWQA Program (Gilliom and others, 1995; Lapham and others, 2005). The study area includes several large metropolitan areas (Atlanta, Ga., Charlotte, N.C., Raleigh, N.C., Richmond, Va., Washington, D.C., Baltimore, Md., Philadelphia, Pa., and Trenton, N.J.), rural or forested areas in the southern and mid-Atlantic sections, and agricultural areas in the northeast section (fig. 2). The geologic setting of the area is complex and includes a history of deposition, metamorphism, igneous intrusion, and extensive folding and faulting; a wide

Base from U.S. Bureau of the Census, 1990, 1:500,000 to 1:5,000,000 and Statistics Canada digital data, 2006 Albers Equal-Area Conic projection: Standard Parallels 29°30' N and 45°30' N,

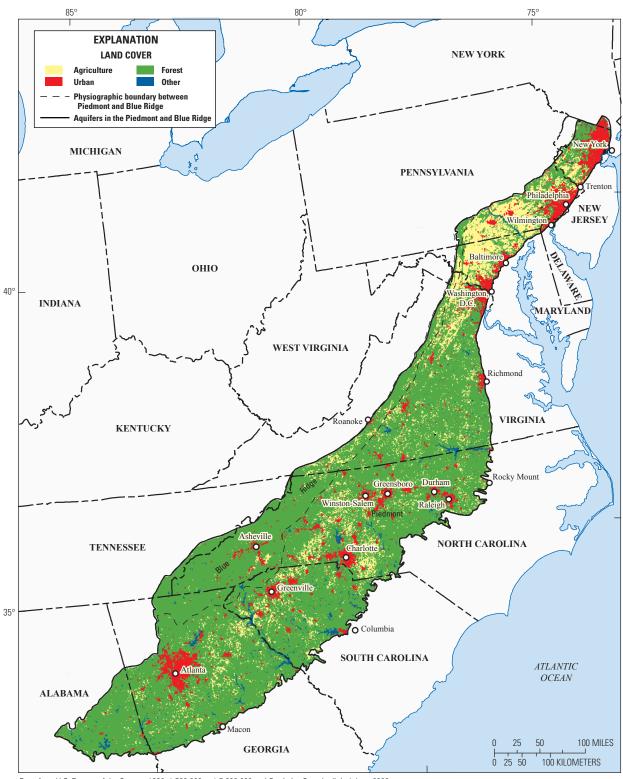

Central Meridian 96°00' W, Latitude of Origin 23°00' N National Elevation Data from U.S. Geological Survey, 1999 Principal Aquifers from U.S. Geological Survey, 2003

Figure 1. Boundaries for the three principal aquifers within the Piedmont and Blue Ridge Physiographic Provinces.

Table 1. NAWQA study units in the Piedmont and Blue Ridge Physiographic Provinces.

[PIED-CRY, Piedmont Physiographic Province crystalline-rock aquifer; PIED-EMZ, Piedmont Physiographic Province Early Mesozoic rock aquifer; BR-CRY, Blue Ridge Physiographic Province crystalline-rock aquifer]

Study unit name	Study unit code	Network code	Aquifer	Study type	Number of ground water samples	Year(s) sampled	State(s) sampled
Apalachicola-Chattahoochee- Flint River Basin	acfb	acfblusur1	PIED-CRY	Urban land-use study - shallow regolith wells only	21	1994–1995	Georgia
Apalachicola-Chattahoochee- Flint River Basin	acfb	acfblusur2	PIED-CRY	Urban land-use study - springs only	19	1994–1995	Georgia
Albemarle-Pamilico Drainages	albe	albesus8	PIED-CRY	Major aquifer study	55	2007	North Carolina; Virginia
Deleware River Basin	delr	delrsus1	PIED-EMZ	Major aquifer study	30	1999	New Jersey; Pennsylvania
Kanawha/New River Basins	kana	kanasus2	BR-CRY	Major aquifer study	30	1997	North Carolina; Virginia
Long-Island/New Jersey Coastal Drainages	linj	linjsus3	PIED-EMZ	Major aquifer study	21	1998	New Jersey
Lower Susquehanna River Basin	lsus	lsussus2	PIED-CRY	Agricultural land-use study	30	1994	Maryland; Pennsylvania
Potomac River Basin and Delmarva Penninsula	lpod	podldwgs1	PIED-CRY	Drinking water study	15	2003	Maryland; Virginia
Potomac River Basin and Delmarva Penninsula	lpod	podllusrc1	PIED-CRY	Urban land-use study - shallow wells only	30	2003	Maryland; Virginia
Potomac River Basin and Delmarva Penninsula	lpod	podlreffo2	PIED-CRY	Urban land-use study - reference network shallow wells	7	2003; 2005	Maryland; Virginia
Potomac River Basin	poto	potosus1	PIED-CRY	Major aquifer study	25	1994	Maryland; Virginia
Potomac River Basin	poto	potosus2	PIED-EMZ	Major aquifer study	23	1994	Maryland; Pennsylvania; Virginia
Santee River Basin and Coastal Drainages	sant	santdwgs1	PIED-CRY	Drinking water study	15	2008	South Carolina
Santee River Basin and Coastal Drainages	sant	santsus3	PIED-CRY	Major aquifer study	30	1998	North Carolina; South Carolina
				TOTAL	346		

Base from U.S. Bureau of the Census, 1990, 1:500,000 to 1:5,000,000 and Statistics Canada digital data, 2006 Albers Equal-Area Conic projection: Standard Parallels 29°30' N and 45°30' N, Central Meridian $96^\circ00'$ W, Latitude of Origin $23^\circ00'$ N

Land cover digital data from Nakagaki and others, 2007

Figure 2. 2007 land-use data for the Piedmont and Blue Ridge Physiographic Provinces and major metropolitan areas.

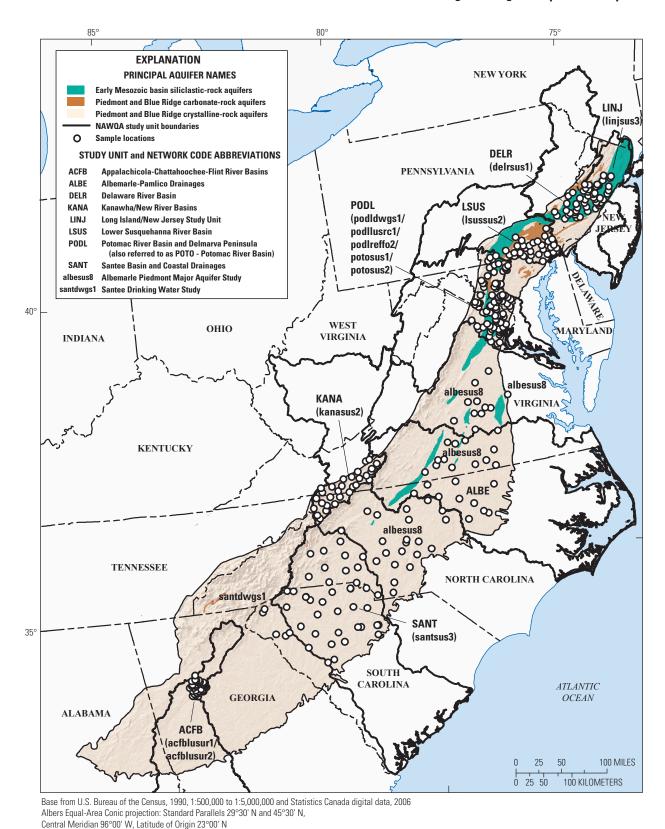
variety of bedrock lithologies ranging from quartz sandstone to black shale and from felsic-rich granite to ultramafic metamorphic rocks; and many rock types of intermediate composition, such as siltstones, gneisses, and schists. The weathering of minerals within the rock and the geochemical conditions within the aquifer directly affect groundwater quality in this region. Thus, in order to assess conditions in the aquifer and predict areas where specific contaminants may affect drinking water sources, it is important to understand the factors that control the release and transport of naturally occurring contaminants in groundwater.

Purpose and Scope

This report contains the results of an evaluation of the potential occurrence and distribution of naturally occurring contaminants in groundwater in the Piedmont and Blue Ridge crystalline-rock aquifers and the Piedmont Early Mesozoic basin siliclastic-rock aquifers in the eastern United States (fig. 1). Descriptions of the primary rock type and associated mineral assemblages for mapped bedrock in the region were used to delineate mappable lithologic groups and lithochemical subgroups that could influence groundwater quality. The focus is on trace elements, radionuclides, nutrients, and major ions in groundwater that have potential for human health effects when present at concentrations approaching or exceeding drinking water standards or other human health benchmarks.

Water-quality data collected as part of the NAWQA Program from 1994 through 2008 from 346 wells and springs in various hydrogeologic and land-use settings from Georgia through New Jersey were compiled and analyzed for this regional assessment. The sampled sites are from the following NAWQA study units (table 1): Apalachicola-Chattahoochee Flint River Basins (acfblusur1 and acfblusur2), Albemarle-Pamlico Drainages (albesus8), Delaware River Basin (delrsus1), Long Island/New Jersey Coastal Drainages (linjsus3), Lower Susquehanna River Basin (lsussus2), Potomac River Basin and Delmarva Peninsula (podldwgs1, podllusrc1, podlreffo2, potosus1, and potosus2), and Santee Basin and Coastal Drainages (santsus3 and sandwgs1) (fig. 3 and table 1).

Graphical and statistical techniques were used to compare constituent concentrations in groundwater to human health criteria for drinking water and to compare concentrations among different lithologies. Interactions between groundwater and lithologies in various settings were inferred through comparison of major and trace-ion chemistry. Implications of observations and conclusions for regional mapping of risk for elevated arsenic, radionuclides, and other naturally occurring contaminants on the basis of geologic mapping are discussed. Results and interpretations are compared to those from studies conducted by other Federal and State agencies throughout the Piedmont and Blue Ridge crystalline-rock and Piedmont Early Mesozoic siliclastic-rock aquifer systems in the eastern United States.


Geologic Setting and Aquifer Descriptions

The geologic setting within the Piedmont and Blue Ridge (PBR) Physiographic Provinces of the eastern United States (fig. 1) is complex as a result of diverse geologic factors including rock type, metamorphic and structural history, and weathering. Bedrock in the study area has undergone multiple periods of metamorphism, deformation, including folding and faulting resulting in superimposed fracturing, and igneous intrusion that has altered mineralogy as well as inherent bedrock fabric (foliation). These mineralogical and structural characteristics directly affect groundwater and surface-water flow, recharge to the aquifer system, and geochemical processes within the aquifer (Cranford and others, 1982).

Regional geologic units in the PBR Physiographic Provinces historically have been grouped into northeast-trending "belts" that described common assemblages of rock types grouped by metamorphic facies and broad structural features (North Carolina Geological Survey, 1985). More recently, Hibbard and others (2006) produced a lithotectonic map of the Appalachian Orogen in the eastern United States, grouping mapped units into "terranes" that better reflect geologic structural history. The geologic setting of the southern Blue Ridge and western Piedmont Physiographic Provinces from Virginia to Alabama is described in Clark (2008). Major rock types are described in terms of their respective geologic history, including depositional setting, metamorphism, and structural characteristics. Geologic structural terranes and rock assemblages typically strike northeast-southwest.

The Blue Ridge Physiographic Province, in the western part of the study area, is characterized by high relief, with mountain peaks rising more than 6,000 feet (ft) above the North American Vertical Datum of 1988 (NAVD 88) with steep slopes, and valleys generally near 2,000 ft in altitude. The Blue Ridge primarily is underlain by metamorphic and igneous crystalline rocks; however, some sedimentary rocks also are present in Maryland, Pennsylvania, Virginia, and North Carolina. The Piedmont Physiographic Province in the eastern part of the study area is characterized by a more subdued topography, with gently rolling hills and valleys and land-surface altitudes ranging from about 300 to 1,500 ft above NAVD 88. The Piedmont can be subdivided topographically into lowland and upland areas, where lowlands generally are underlain by carbonate rocks (Pennsylvania, Maryland, and New Jersey), and by clastic sedimentary rocks in the Early Mesozoic rift basins, as shown in a conceptual diagram (fig. 4).

Trapp and Horn (1997) describe bedrock aquifers in the PBR Physiographic Provinces in North Carolina, Virginia, Maryland, Delaware, Pennsylvania, and New Jersey as being dense and almost impermeable, yielding groundwater primarily from secondary porosity and permeability provided by fractures. Except for the carbonate rocks, which contain solution openings, joints and fractures are the only openings that

Figure 3. U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program study unit boundaries within the Piedmont and Blue Ridge Physiographic Provinces and sample-collection locations for groundwater-quality data collected from 1994–2008.

National Elevation Data from U.S. Geological Survey, 1999 Principal Aquifers from U.S. Geological Survey, 2003

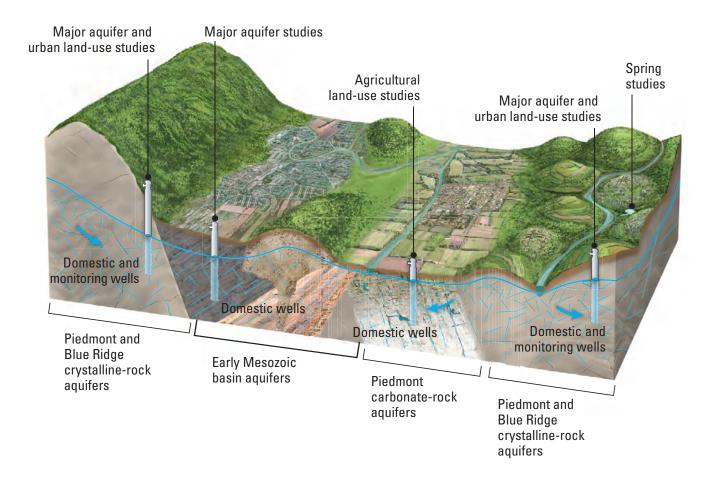


Figure 4. The conceptual groundwater system, aquifers, and typical well types included as part of this study within the Piedmont and Blue Ridge Physiographic Provinces.

store and transmit water. Despite this description, many wells completed in fractured bedrock aquifers of the PBR are sufficiently productive to be the main source of local water supplies. The carbonate rock units of the Piedmont typically are the most productive of the bedrock aquifers but are not widely distributed in the region, occurring primarily in Maryland, Pennsylvania, and New Jersey. The PBR bedrock aquifers in northeastern Pennsylvania and northern New Jersey locally are covered by glacial deposits, which include productive sand and gravel of the surficial aquifer system. Three principal bedrock aquifers underlie the northern PBR Provinces, in order of decreasing area: crystalline-rock and undifferentiated sedimentary-rock aquifers, clastic sedimentary-rock aquifers in Early Mesozoic basins, and carbonate-rock aquifers.

Miller (1990) describes the geologic setting of the PBR as consisting of many different types of metamorphic and igneous rocks that are complexly related. Main rock types are varieties of gneiss and schist and extremely fine-grained rocks such as phyllite and metamorphosed volcanic tuff and ash. Most of the metamorphic rocks were originally sediments

(metasediments), but some were originally igneous or volcanic materials (metagranites, granite gneiss, metavolcanics). The degree of heat and pressure to which the original rocks were subjected during metamorphism, as well as the degree of structural deformation (principally folding, foliation, jointing, and shearing) that they have undergone, has determined the final texture and mineralogy of the rocks. Most of the rocks have undergone several periods of metamorphism. The metamorphic rocks have been intruded by large to small bodies of igneous rock that vary in composition from felsic (lightcolored rocks that contain large quantities of silica as quartz and potassium as potassium-feldspar) to mafic (dark-colored rocks that contain large quantities of ferromagnesian minerals such as pyroxene, amphibole, or ferrous phyllosilicate mineral groups). Large igneous intrusions consist of granite, guartz monzonite, and gabbro that occur in plutons that cover many tens of square miles. Smaller igneous intrusions, such as dikes and sills, include felsic and mafic rocks, such as syenite, andesite, diabase, and pegmatite. Rocks in this region are displaced by several major fault zones, some of which extend

for hundreds of miles. Shearing along large fracture zones has produced siliceous, intensely fractured rocks, such as mylonite or phyllonite (Miller, 1990).

Trapp and Horn (1997) describe aquifers in Early Mesozoic basins that primarily are in three major basins—the Newark basin in New Jersey and Pennsylvania is the largest and is the basin from which the most groundwater is withdrawn; the Gettysburg basin of Pennsylvania and Maryland is second largest; and the Culpeper basin of Virginia is third largest. The Richmond basin in Virginia and the Dan River/Danville basin in Virginia and North Carolina are of intermediate size. Nine small early Mesozoic basins are located in Virginia. Sedimentary rocks in the basins consist predominately of interbedded shale, sandstone, and siltstone, all typically red, reddish brown, or maroon, but locally gray or black. Conglomerate, dolomite, lacustrine black mudstone, and coal are present locally. In many places, the sedimentary rocks are interbedded with basalt flows or have been intruded by diabase dikes and sills. Thicknesses of Triassic and Jurassic rocks in the large basins have been calculated to be more than 20,000 ft. Additional basins in North Carolina, including the Durham, Sanford, Wadesboro, and Davie County basins (Lindsey and others, 2006, fig. 10), were not considered to be important aquifers because they are more compact and more tightly cemented than those in the basins to the north and do not yield sufficient quantities of water to be considered principal aquifers.

Physically, the aquifer system in the PBR can be composed of one (bedrock only), two (regolith-bedrock), or three parts (regolith, transition zone, and bedrock), depending upon whether or not weathered material (regolith) overlies the bedrock and if a local transition zone has developed between the shallow regolith and deeper bedrock. In the Blue Ridge Physiographic Province, very little, if any, regolith may be present, and, if present, it is often debris flow, colluvium, or alluvium in stream valleys. In the Piedmont Physiographic Province, generally there is at least a two-part system with the weathered regolith overlying fractured bedrock as described by Heath (1984). The regolith consists of soil, residuum, saprolite, and possibly colluviums, alluvium, and debris flow. Residuum and saprolite are formed from in situ weathering of the bedrock and form a blanket of decomposed or partially decomposed rock that is usually thick and clayey. Saprolite retains the texture and structure of the parent bedrock from which it is derived. A third component, a transition zone between the regolith and bedrock (Harned and Daniel, 1992), has been more commonly delineated in recent years. The regolith is more porous and more permeable than the underlying bedrock everywhere. Because the crystalline bedrock formed under intense heat and pressure during metamorphism and igneous intrusion, the bedrock has few primary pore spaces, and the porosity and permeability of the unweathered and unfractured bedrock is extremely low (Miller, 1990). Groundwater in the bedrock is stored in and moves through secondary fractures and other discontinuities, which form the only effective porosity in the unweathered rock. Because of the absence of

substantial water storage (storativity) in the unweathered rock, a large amount of groundwater is found in the weathered and slightly porous overlying saprolite. Water slowly drains from the saprolite to the fractures in the underlying and hydraulically connected bedrock. Although there are considerable differences in the mineralogy, texture, and structure of the rocks composing the PBR aquifers, the overall hydraulic characteristics of the aquifers are similar in a regional context (Miller, 1990).

Previous Studies

Data on naturally occurring and manmade contaminants in groundwater in the PBR have been collected and reported through the NAWQA Program and other USGS studies, some of which are summarized in this section. Table 2 lists pertinent reports published for these studies, constituents analyzed, and major findings relevant to this study. Results from a few selected studies that are applicable to this report are summarized in this section.

One of the larger NAWQA data compilations for the Piedmont Physiographic Province was reported by Lindsey and others (2006) in a summary of groundwater-quality data collected from 11 of the 14 NAWQA studies listed in table 1 (all except albesus8, kanasus2, and santdwgs1). Lindsey and others (2006) grouped samples from 225 wells and 19 springs into 3 aquifer types: crystalline, siliciclastic, and carbonate. While the report focused on the detection and occurrence of anthropogenic contaminants, selected naturally occurring contaminants also were evaluated. Concentrations of radon were higher in areas underlain by felsic crystalline rocks and lower in areas underlain by mafic crystalline rocks. Groundwater from adjacent siliciclastic-rock aquifers had concentrations of radon lower than those in samples from felsic crystalline-rock aquifers. Ninety percent of the 205 samples analyzed for radon had concentrations that exceeded the proposed maximum contaminant level (MCL) of 300 picocuries per liter (pCi/L), and 13 percent of samples had concentrations that exceeded the proposed alternative maximum contaminant level (AMCL) of 4,000 pCi/L (Lindsey and others, 2006).

Fifty-five domestic wells in the Piedmont crystalline-rock aquifers were sampled for a major aquifer study in the Albemarle-Pamlico (ALBE) drainages of North Carolina and Virginia in 2007–08 (fig. 3 albesus8, table 1). The data for NAWQA samples were combined with other USGS data collected in the Piedmont and Blue Ridge of North Carolina for comparison of analytical results for 79 groundwater samples within the statewide geologic belt units, or geozones (Harden and others, 2009) (table 2). Results from this study suggest that the cationic and anionic composition of groundwater from within a particular geozone reflected differences in lithologic setting, hydrologic and geochemical conditions, and (or) land-use effects. Exceedances in Federal and State drinking water standards or proposed standards were noted for radon, pH, manganese, iron, and zinc. Radon had the most

Table 2. Published reports from USGS NAWQA studies and other data sources conducted in the Piedmont and Blue Ridge Physiographic Provinces categorized by aquifer and constituents investigated.

[PDX, Piedmont crystalline-rock aquifer; EMZ, Early Mesozoic basin aquifer; BRX, Blue Ridge crystalline-rock aquifer; VOCs, volatile organic compounds; PODL, Potomac River/Delmarva Peninsula; POTO, Potomac River; LSUS, Lower Susquehanna River; LINJ, Long-Island/New Jersey Coastal Drainages; SANT, Santee River Basin and Coastal Drainages; ACFB, Apalachicola-Chattahoochee-Flint River Basin; Mana, Kanawha-New River Basin; ALBE, Albemarle-Pamlico Drainages; USGS NC WSC, USGS North Carolina Water Science Center; USGS PA WSC, USGS Pennsylvania Water Science Center]

Report	Constituents studied	Aquifers	NAW0A study area	Data sources	Major findings relevant to current study
				USGS NAWQA Program	gram
Ator and Denis (1997)	Nitrate, phosphorus	PDX, EMZ	PODL, POTO	USGS NAWQA	
Ator and others (1998)	Radon, nitrate, pesticides, VOCs	EMZ	POTO, LSUS	USGS NAWQA	Radon from the EMZ rocks are similar in concentration to the PDX rocks
Ayers and others (2000)	Arsenic	EMZ	LINJ	USGS NAWQA	Arsenic higher in Early Mesozoic rocks
Ayotte and others (2007)	Radon, uranium	PDX, OTERS	LINI, DELR	USGS NAWQA	Uranium and radon higher in New England crystalline-rock aquifers
Carter and others (2010)	VOCs, pesticides	PDX, OTERS	SANT, PODL	USGS NAWQA	
Denver and others (2011)	Phosphorus, trace metals	PDX, EMZ	POTO, LSUS, ACFB, DELR, SANT, LINJ	USGS NAWQA	Phosphorus from natural sources reported in crystalline-rock aquifers with alkaline pH or iron-reducing conditions.
Fischer and others (2004)	Nitrate, pesticides, VOCs, radon, trace elements	EMZ, OTERS	DELR	USGS NAWQA	Arsenic and radon higher in Early Mesozoic rocks relative to other aquifer units
Frick and others (1998)	Pesticides, VOCs	PDX, OTERS	ACFB	USGS NAWQA	
Hughes and others (2000)	Nitrate, pesticides, VOCs, radon	PDX, OTERS	SANT (Santee Circular)	USGS NAWQA	Radon higher in crystalline-rock aquifers
Lapham and others (2005)	Radon, uranium, trace elements, VOCs, pesticides	PDX, BRX, OTERS		USGS NAWQA	Uranium and radon higher in New England crystalline-rock aquifers

Table 2. Published reports from USGS NAWQA studies and other data sources conducted in the Piedmont and Blue Ridge Physiographic Provinces categorized by aquifer and constituents investigated.—Continued

[PDX, Piedmont crystalline-rock aquifer; EMZ, Early Mesozoic basin aquifer; BRX, Blue Ridge crystalline-rock aquifer; VOCs, volatile organic compounds; PODL, Potomac River/Delmarva Peninsula; POTO, Potomac River; LSUS, Lower Susquehanna River; LINJ, Long-Island/New Jersey Coastal Drainages; SANT, Santee River Basin and Coastal Drainages; ACFB, Apalachicola-Chattahoochee-Flint River Basin; DELR, Delaware River Basin; KANA, Kanawha-New River Basin; ALBE, Albemarle-Pamlico Drainages; USGS NC WSC, USGS North Carolina Water Science Center; USGS PA WSC, USGS Pennsylvania Water Science Center]

Report	Constituents studied	Aquifers	NAWQA study area	Data sources	Major findings relevant to current study
			NSGS	USGS NAWQA Program—Continued	-Continued
Kozar and others (2002)	Radon	PDX, BRX, OTERS	KANA	USGS NAWQA	Noted high concentrations of radon in wells near fracture zones of crystalline rocks.
Lindsey and Ator (1996)	Radon	EMZ, PDX, OTERS	POTO, LSUS	USGS NAWQA	Noted high concentrations of radon in crystalline rocks; differences between concentrations in mafic and felsic lithologies.
Lindsey and others (1997)	Nitrate	PDX, OTERS	FSOS	USGS NAWQA	
Lindsey and others (2006)	Nitrate, pesticides, VOCs, radon	EMZ, PDX, OTERS	POTO, LSUS, ACFB, DELR, SANT, LINJ	USGS NAWQA	Radon higher in crystalline-rock aquifers
Paybins and others (2000)	Radon, nitrate, pesticides, VOCs	BRX	KANA	USGS NAWQA	Radon higher in crystalline-rock aquifers
				Other data sources	82
Campbell (2006)	Radon, radium, uranium, trace elements	BRX, PRX		NC DENR	Radon elevated in meta-igneous rocks (granites and gneisses) compared to meta-sedimentary rocks.
Harden and others (2009)	Radon, uranium, trace elements	PDBRX	ALBE	USGS NAWQA; USGS NCWSC; NC DENR	Correlation of Geozones (geologic belts) with radon, uranium, and trace elements
Pippin (2005)	Arsenic	PDX		NC DENR	Elevated arsenic associate with geologic formations in the Carolina Slate Belt in North Carolina. Rock types including meta-mudstone, meta-argillite, phyllite, schist, and mica schist of volcanic origin were associated with elevated arsenic concentrations in groundwater.
Senior and Vogel (1992)	Radium	PDX		PAWSC	Elevated radium concentrations correlated to pH conditions lower than 4.7.

Table 2. Published reports from USGS NAWQA studies and other data sources conducted in the Piedmont and Blue Ridge Physiographic Provinces categorized by aquifer and constituents investigated.—Continued

[PDX, Piedmont crystalline-rock aquifer; EMZ, Early Mesozoic basin aquifer; BRX, Blue Ridge crystalline-rock aquifer; VOCs, volatile organic compounds; PODL, Potomac River/Delmarva Peninsula; POTO, Potomac River; LSUS, Lower Susquehanna River; LINJ, Long-Island/New Jersey Coastal Drainages; SANT, Santee River Basin and Coastal Drainages; ACFB, Apalachicola-Chattahoochee-Flint River Basin; DELR, Delaware River Basin; KANA, Kanawha-New River Basin; ALBE, Albemarle-Pamlico Drainages, USGS NC WSC, USGS North Carolina Water Science Center; USGS PA WSC, USGS Pennsylvania Water Science Center]

Report	Constituents studied	Aquifers	NAWQA study area	Data sources	Major findings relevant to current study
			Other da	Other data sources—Continueed	utinueed
Senior and Sloto (2006)	Arsenic	EMZ	PA	PAWSC	Elevated arsenic correlated to pH conditions higher than 8.
Serfes (2004); Serfes and others (2010)	Arsenic	EMZ	ſΝ	NJGS	Elevated arsenic higher in EMZ black shale members of Lackatong and Passaic formations in New Jersey
Sloto and Senior (1998)	Radon	PDX, EMZ	SN	USGS PAWSC	Radon highest from areas underlain by a schist, phyllite, and quartzite rock types
Sloto (2002)	Radon	PDX, EMZ	SO	USGS PAWSC	Radon lowest in ultramafic serpentinite rocks and higher in the Wissahickon Schist.
Sloto (2000)	Uranium, radium, radon	PDX, EMZ	SN	USGS PAWSC	Radium elevated in the Chickies Quartzite formation. Radon higher in schist and quartzite rock types.

exceedances, with 61 of 69 wells sampled exceeding the U.S. Environmental Protection Agency's (USEPA's) proposed MCL of 300 pCi/L and with 18 of 69 sampled wells exceeding the USEPA's AMCL (requires treatment) of 4,000 pCi/L of radon (U.S. Environmental Protection Agency, 2010). Fifty percent of samples collected from the felsic intrusive rock geozone had radon concentrations greater than the AMCL. Statistically different median concentrations of calcium, silica, ammonia, aluminum, antimony, cadmium, and uranium were delineated between one or more geozone pairs (Harden and others, 2009).

The New England and Appalachian Piedmont region was highlighted for radon occurrence in groundwater by the reconnaissance assessment by the USEPA (U.S. Environmental Protection Agency, 1999). Radon and uranium occurrences in crystalline-rock aquifers in New York and New England were identified as an issue of concern by Lapham and others (2005) and Ayotte and others (2007). Granitic rocks, such as two-mica granites and other high-grade metamorphic rocks, were reported to be a source of uranium that is soluble under predominantly oxic to sub-oxic geochemical conditions. The median value of radon reported was 2,122 pCi/L from the New York and New England crystalline-rock aquifer group, with about 25 percent of samples exceeding the proposed AMCL (Ayotte and others, 2007).

Sloto (2000) presented the results of sampling groundwater from domestic wells in the Piedmont Physiographic Province in southeastern Pennsylvania for naturally occurring radionuclides, including uranium, radium-226, radium-228, and radon-222 (table 2). The results were analyzed according the underlying bedrock lithology, which included carbonate rock (limestone, dolomite, and marble), crystalline rock (gneiss, phyllite, quartzite, and schist), diabase, sedimentary rock of Paleozoic age (conglomerate, limestone, sandstone, siltstone, and shale), sedimentary rock of Triassic age (conglomerate, sandstone, siltstone, and shale), and unconsolidated sediments (clay, sand, and gravel). Of the more than 250 samples analyzed for radium isotopes, 46 percent of the wells located in the Chickies Quartzite had elevated radium activities that exceeded the USEPA MCL of 5 pCi/L for combined radium (radium-226 and radium-228 combined). Elevated radium values were correlated with water samples having a pH of less than 4.7 (Senior and Vogel, 1992) (table 2). Twenty-three percent of the 170 wells sampled in the Chickies Quartzite also had gross alpha-particle activities in water that exceeded the 15-pCi/L MCL and 46 percent of the wells sampled in the Chickies Quartzite had combined radium concentrations exceeding the 5-pCi/L MCL (Sloto, 2000). Water samples from 33 percent of the wells in the Chickies Quartzite also had gross beta particle activity exceeding the 15-pCi/L MCL. Samples from 13 wells in the Chickies Quartzite and nearby geologic units contained concentrations of radium-224 (a short-lived daughter product of radium-228) up to 265 pCi/L and gross alpha-particle activities up to 1,300 pCi/L (Senior and Sloto, 2000). Radon-222 activities differed among rock types, and of the more than 900 samples analyzed from the study area in southeastern Pennsylvania,

the greatest median values were in the schist (2,500 pCi/L) and quartzite (2,300 pCi/L) rock types (Sloto, 2000). About 89 percent of 534 wells sampled in 38 geologic formations in the Piedmont Physiographic Province in Chester County, southeastern Pennsylvania, had water with radon-222 concentrations greater than the proposed 300-pCi/L MCL that ranged up to 53,000 pCi/L (Senior, 1998).

Sloto (2002) described results from the analyses of 64 well samples collected in the Big Elk Creek Basin in Chester County, Pennsylvania, and Cecil County, Maryland, from 1925 through 1999 (table 2). Samples were categorized based on surface lithologies consisting of the Peters Creek Schist, serpentinite, Wissahickon Schist, pegmatite, and pelitic schist. The groundwater from wells located in the Wissahickon Schist had the lowest median pH of 5.9, while the samples from wells in the serpentinite rock type had the highest values ranging from 7.8 to 8.5. Groundwater from the serpentinite was categorized as magnesium-bicarbonate type, compared to samples from the other lithologies, which had no dominant cation to correspond with the dominant anion, bicarbonate. The three groundwater samples from the serpentinite unit also had the lowest concentrations of radon-222, with a maximum activity of 392 pCi/L, while wells in the other lithologic units were notably higher; samples from the Wissahickon Schist had a median value of 2,500 pCi/L. An assessment of groundwater quality and its relation to lithology and land use based on analyses of water samples from 82 wells in the Red Clay Creek Basin in the Piedmont Physiographic Province of Pennsylvania and Delaware (a hydrogeologic setting similar to that of Elk Creek) also indicated that concentrations of barium, lithium, and radon-222 differed among lithologies; radon-222 activities generally were highest (up to 10,000 pCi/L) in water from felsic gneiss and schist units and lowest in water from mafic gneiss and serpentinite units (Senior, 1996).

Radon concentrations documented by Kozar and others (2001) (table 2) for the Kanawha/New River Basins (KANA) study unit in the Blue Ridge Physiographic Province of Virginia and North Carolina were similar to those reported by Sloto (2000, 2002) for Pennsylvania, Maryland, and Delaware. Kozar and others (2001) noted that radon was detected in concentrations exceeding the proposed USEPA 300-pCi/L MCL for radon in 26 of 30 (87 percent) wells sampled. In 10 of 30 (33 percent) samples, radon exceeded the 4,000-pCi/L proposed AMCL. The median radon concentration detected was 2,080 pCi/L, and the maximum concentration detected was 30,900 pCi/L. Of 10 wells having radon concentrations greater than 4,000 pCi/L, 8 were on or adjacent to faults; this finding suggests that fault zones may be areas of uranium enrichment and that fault zones may allow radon migration upward along the fault (Kozar and others, 2001).

Pippin (2005) (table 2) presented results from a database of more than 10,000 analytical results for arsenic concentrations from groundwater samples collected primarily from domestic wells across North Carolina. A probability analysis using indicator kriging techniques was applied to the georeferenced dataset. Spatial correlation between the zone having

the highest probabilities for elevated arsenic concentrations in groundwater and rocks of the Carolina Slate Belt was evident. Common rock types associated with these areas of elevated arsenic were of volcanic origin, with the highest average arsenic concentrations estimated for the following lithologies: metamudstone and meta-argillite (CZmd; North Carolina Geological Survey, 1985), phyllite and schist (CZph, North Carolina Geological Survey, 1985), and mica schist (CZms, North Carolina Geological Survey, 1985).

Sources, mobilization, and transport of arsenic in ground-water in the Early Mesozoic basin aquifers of the Passaic and Lockatong Formations of the Newark basin, New Jersey, were documented by Serfes (2004) and Serfes and others (2010) (table 2). Elevated arsenic concentrations [greater than 10 micrograms per liter (μ g/L)] correlated with geochemical conditions, including dissolved oxygen (DO) less than 3 milligrams per liter (μ g/L) and pH from 7.5 to 8.0. For concentrations of arsenic greater than 40 μ g/L, DO was suboxic (less than 1.0 μ g/L) or nearly suboxic. The major source of arsenic was determined to be the mineral pyrite (FeS₂) within the black shale members of the Passaic Formation (Serfes, 2004).

An assessment of arsenic, boron, and fluoride in ground-water in the Newark basin in Pennsylvania included a review of available data (Senior and Sloto, 2006). About 10 percent of wells completed in the Early Mesozoic basin aquifers had water with arsenic concentrations greater than the MCL of $10~\mu g/L$. For data collected from 46 wells during that study, all groundwater samples with pH values greater than 8 had arsenic concentrations greater than $10~\mu g/L$; no samples with pH below 7 had arsenic concentrations greater than $10~\mu g/L$.

Geological and Geochemical Framework for Interpretations of Water Quality

Building on previous work linking aquifer lithology to the occurrence of radionuclides, arsenic, and other naturally occurring contaminants in groundwater, the primary purpose of this study was to determine if primary rock type and associated mineral assemblages described for published State geologic maps could be organized into mappable lithologic groups and lithochemical subgroups and related to the occurrence of natural contaminants in the crystalline-rock aguifers of the Piedmont and Blue Ridge Physiographic Provinces and the siliciclastic-rock aguifers in the Piedmont Physiographic Province. For this study, bedrock aquifers were divided into lithologic groups and lithochemical subgroups based on overall bedrock composition with regard to specific mineralogy and the potential for similar weathering characteristics. This classification of bedrock aguifer types follows the organization of lithochemical groups by McCartan and others (1998) and Peper and others (2001) in the Chesapeake Bay region of Maryland, Virginia, and the District of Columbia.

Previous Lithochemical Classifications

McCartan and others (1998) related regional geologic data (rock type and mineralogical characteristics) from geologic maps of Maryland and northern Virginia in the southern Chesapeake Bay watershed to water-quality data from shallow wells and streams collected from the region. The rock types within the region were first grouped with the three primary classes of rock—sedimentary, igneous, and metamorphic—then by acid-neutralizing capacity and weathering characteristics. Interest stemmed from the apparent mitigation of high-acidity surface- and groundwater-quality problems from contact with carbonate rock types and elevated nitrate problems in groundwater and surface water by rocks and sediments high in carbon and sulfur (peat and black shale). McCartan and others (1998) organized regional geologic map data within the southern Chesapeake Bay watershed into four groups: (1) "Sedimentary rocks and their metamorphic equivalents," which included carbonate-rich rocks, clastic sedimentary rocks, and metamorphosed clastic sedimentary rocks; (2) "Igneous rocks and their metamorphic equivalents," which included mafic igneous rocks and their metamorphic equivalents, ultramafic rocks, and felsic igneous rocks and their metamorphic equivalents; (3) "Unconsolidated sediments," such as sands, silts, clays, and organic-rich deposits; and (4) "Iron-rich sediment," such as greensand, magnetite and ferro-ilmenite beach sand, and bog iron ore. Lithologies in the study area were categorized into 30 lithologic-mineralogic equivalent, or "lithogeochemical," units (McCartan and others, 1998).

Peper and others (2001) modified the organization of McCartan and others (1998) to form three main geologic groups by including iron-rich sediments under the "Unconsolidated sediments" group, and then by classifying lithologies on the basis of potential rock-water interaction. Classes of rock types based on water-reactive minerals and their weathering reactions were regrouped by Peper and others (2001) into the following five classes of lithogeochemical units: (1) carbonate rocks and calcareous rocks and sediments, the most acid-neutralizing; (2) carbonaceous-sulfidic rocks and sediments, likely to be oxygen-depleting and reducing; (3) quartzofeldspathic rocks and siliciclastic sediments, mostly relatively weakly reactive with water; (4) mafic silicate rocks and sediments, likely to be oxygen consuming and high solute-load delivering; and (5) rare calcareous-sulfidic (carbonaceous) rocks that may be neutralizing and reducing.

Lithologic Groups

Fourteen lithologic groups (table 3) were delineated within the study area as an expansion of previous work by McCartan and others (1998) and Peper and others (2001) to southeastern and northeastern areas of the PBR Physiographic Provinces [(appendix 1, table 1-1 (appendix 1 available online at http://pubs.usgs.gov/sir/2013/5072/)]. The same principal

Table 3. Lithologic group, major rock types, and lithochemical subgroups for groundwater sites within the siliciclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008.

[Lithologic groups and lithochemical subgroups are described in detail in appendix table 1-1. Red font indicates units that lack groundwater-quality data. Na, not applicable]

Rock type	Lithologic group	Site	Abbreviation	Principal lithologies	Lithochemical subgroup number(s)
Carbonate	Carbonate-rich rocks	0	na	Limestone, dolostone, marble	11,12,13
Siliciclastic	Clastic sedimentary rocks	6	CLSD	Mudstone, shale	21, 21c
Siliciclastic	Quartz-rich sedimentary rocks	11	CLSDQ	Conglomerate, sandstone	22, 22c
Siliciclastic	Clastic lacustrine/evaporite sedimentary rocks	51	CLSDLAC	Argillite, fine-grained mixed clastic, mudstone, sandstone, shale, siltstone, arkose	22e
Siliciclastic	Feldspar-rich clastic sedimentary rocks	0	na	Arkose, graywacke	22f
Siliciclastic	Sulfidic clastic sedimentary rocks	0	na	Black shale, coal	23s, 24s
Crystalline	Metamorphosed clastic sedimentary rocks	96	CLSDMT	Slate, mica schist, pelitic schist, phyllite, quartz-feldspar schist, schist, metasedimentary rock, meta-argillite, paragneiss, gneiss, melange	31, 31s, 32al, 32c, 32g, 32m, 32s, 32u, 35, 35a, 35c, 35gn, 35gns, 35ml, 41bs
Crystalline	Quartz-rich metamorphic rocks	17	MTQ	Meta-conglomerate, metasedimentary rock, quartzite	33, 33c, 33my
Crystalline	Felsic igneous rocks and their metamorphic equivalents	71	IGMTF	Granite, quartz monzonite, tonalite, metamorphic rock, felsicmetavolcanic rock, metavolcanic rock, felsic volcanic rock,rhyolite, alkali syenite	61, 61c, 61m, 61mf, 61ml, 61mv, 61v, 62
Crystalline	Intermediate igneous rocks and their metamorphic equivalents	55	IGMTI	Biotite gneiss, gneiss, felsic gneiss	34agn, 34bg, 34f, 34fi, 34i, 34s

Table 3. Lithologic group, major rock types, and lithochemical subgroups for groundwater sites within the siliciclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008.—Continued

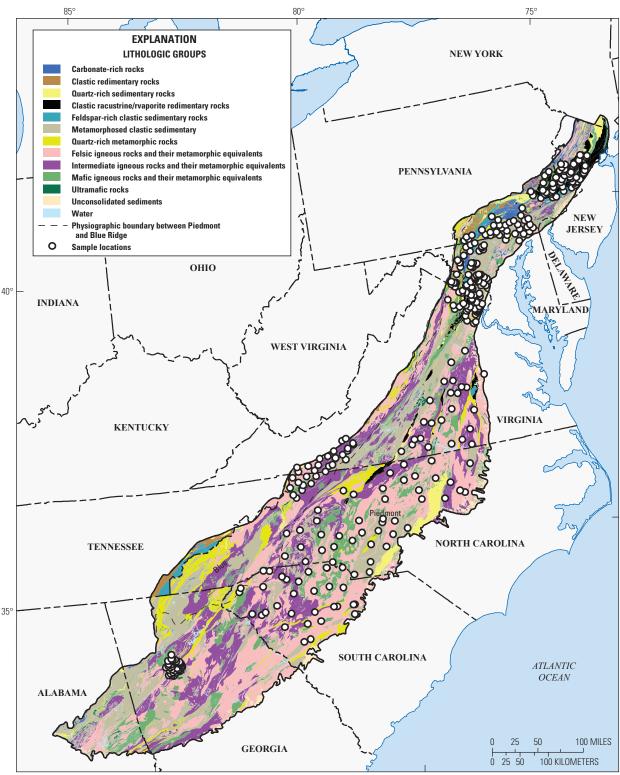
[Lithologic groups and lithochemical subgroups are described in detail in appendix table 1-1. Red font indicates units that lack groundwater-quality data. Na, not applicable]

Lithochemical subgroup number(s)	k, 41, 41c, 41mv, 41v, 42, 43, 43em, 44	50c	m, 71c, 72, 73, 74, 75, 76, 78, 79, 80	oeach 77	
Principal lithologies	Amphibolite, meta-basalt, intermediate metavolcanic rock, diabase, gabbro, mafic rock, metamorphic rock, norite, quartz diorite, basalt, diabase, mafic gneiss	Metamorphic rock, serpentinite	Sand, silt, clay, gravel, terrace (undifferentiated), alluvium, gravel, sand	Greensand, silty in places; magnetite and ferro-ilmenite beach sand; bog iron ore	
Abbreviation	IGMTM	ULMAF	na	na	
Site	34	7	0	0	346
Lithologic group	Mafic Igneous rocks and their Metamorphic equivalents	Ultramafic rocks	Unconsolidated sediments	Iron-Rich sediments	Total number of samples
Rock type	Crystalline	Crystalline	Sediment	Sediment	

aquifers are covered—the crystalline-rock aquifers of the Piedmont and Blue Ridge and the siliciclastic rocks in the Early Mesozoic aquifers of the Piedmont. As with McCartan and others (1998), the first step for this study was to translate information from each mapped geologic unit within the study area to lithologic-mineralogic equivalents based on descriptions for each State geologic map (see References Cited section and appendix 1, table 1-2). As a new approach for this study, further division of the geologic units under "Sedimentary rocks and their metamorphic equivalents" heading was made within the siliciclastic sedimentary rocks sequence by introducing clastic sedimentary (fine-grained), clastic lacustrine/evaporite sedimentary, feldspar-rich clastic sedimentary, quartz-rich sedimentary, and sulfidic clastic sedimentary as major lithologic groups in the study area (table 3 and appendix 1, table 1-1). The metamorphosed clastic sedimentary sequence was further divided in the study area by introduction of quartz-rich metamorphic and feldsparrich metamorphic lithologic groups. All other major lithologic groups used for this study followed McCartan and others (1998) (appendix 1, table 1-1). The 14 major lithologic groups delineated for this study and a listing of associated major rock types compiled from State geologic maps (Dicken and others, 2005a, 2005b; Nicholson and others, 2005, 2006) are described in table 3, based on classification schemes presented in appendix table 1-1. Representative geologic formations are listed in appendix table 1-1 and a detailed descriptions of geologic formations (including State abbreviations) are grouped by lithologic group and lithochemical subgroup number in appendix table 1-2. Abbreviations for the lithologic groups used in this report are listed in table 3 to simplify technical discussions and figure/table presentations. For example, the felsic igneous rocks and their metamorphic equivalents group is abbreviated as "IGMTF" (table 3). For more detailed descriptions and formation references, please see appendix 1, tables 1-1 and 1-2.

As a result of the classification of the lithologic groups for the purposes of this report, the metamorphic and igneous lithologic groups are associated primarily with the crystalline-rock aquifers in the PBR Physiographic Provinces, and the sedimentary or siliciclastic-rock groups are associated with the Early Mesozoic basin within the Piedmont Physiographic Province (fig. 1). Additionally, crystalline diabase rocks locally intrude the primary sedimentary rocks in the Early Mesozoic basins. The diabase dikes are mafic rocks with geochemical properties likely similar to rock types such as amphibolite. The carbonate-rich lithologic group is limited to the northeastern area of the Piedmont (fig. 1).

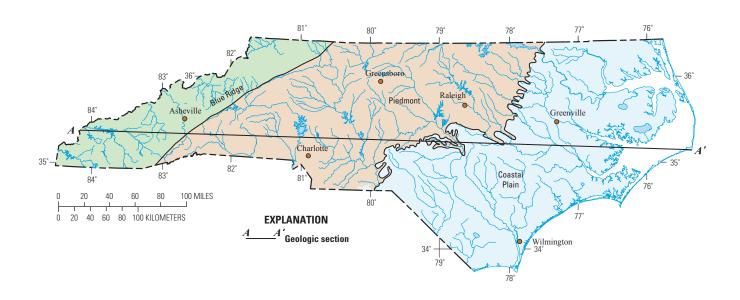
The distributions of lithologic groups, as delineated for this study, are shown in figure 5 along with available USGS NAWQA groundwater-quality sample locations. (Note: sulfidic clastic sedimentary and iron-rich sediments were not delineated in the study area.) For this report, NAWQA groundwater sample data were available for 9 of the 14 lithologic groups; samples were not available for the carbonaterich group, the feldspar-rich clastic sedimentary group, the

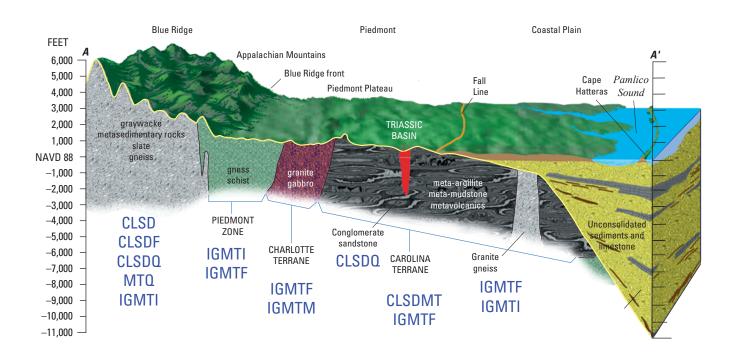

sulfide-rich sedimentary group, unconsolidated sediments, and iron-rich sediments (table 3). To illustrate the physical relations among different lithologic groups, representative lithologic groups within mapped geologic terranes in North Carolina are shown in figure 6.

Lithochemical Subgroups

As a starting point, rock type designations from the geographic information system (GIS) attributes for the State maps (appendix 1, table 1-1 "ROCK_TYPE1") (Dicken and others, 2005a, 2005b; Nicholson and others, 2005, 2006) were directly assigned to a particular subgroup number as listed in McCartan and others (1998). For example, the use of subgroup 32 (appendix 1, table 1-1) for schist rock types is continued in this study. Because some of the lithologic groups delineated as part of this study are large and contain several variable rock types, such as the metamorphosed clastic sedimentary, the mafic igneous and metamorphic equivalents, and the felsic igneous and metamorphic equivalent groups, the generalized rock types such as gneiss or schist, for example, were further divided to evaluate potential effects of mineralogical distinctions on geochemistry and thereby groundwater quality in the aquifers. Detailed descriptions of geologic units are available in the geographic information system (GIS) attributes for the State maps as compiled by Dicken and others (2005a, 2005b) and Nicholson and others (2005, 2006) (appendix 1, table 1-1). Where formation descriptions did not include mineralogy in the GIS attribute file, the USGS National Geologic Map Database Geologic Names Lexicon "GEOLEX" was used to obtain mineralogical descriptions of the formations (http://ngmdb.usgs.gov/Geolex/geolex home. html; accessed February 2011). Each lithologic group (with the exception of the unconsolidated sediments group) is categorized with regard to chemical composition as felsic, intermediate, mafic, carbonaceous, or sulfidic (appendix 1, table 1-1).

The metamorphosed clastic sedimentary lithologic group is subdivided into 16 lithochemical subgroups based on the presence of minerals that may affect aguifer geochemistry. For example, sulfidic characteristics [31s and 32s, following McCartan and others (1998)], graphitic content (32g and 35gns), the presence of calcareous minerals or rocks (35c), the presence of aluminuous minerals (32al), the presence of mafic minerals (chlorite and hornblende, 32m; biotite, 41bs). The subgroup "u" designation is simply "undifferentiated" because the description of the geologic unit or formation indicated mixed rock types. Other distinctions were made with regard to rock types that have similar geologic origin, structure, or textural characteristics (35gn and 35ml) (appendix 1, table 1-1). Figure 7 shows an example of the further division of lithologic groups into lithochemical subgroups and corresponding geologic formations.


A few lithologic groups have only minor modifications from McCartan and others (1998). The quartz-rich metamorphic group has an additional 33my lithochemical subgroup for mylonitic rocks associated with major fault zones (Brevard



Base from U.S. Bureau of the Census, 1990, 1:500,000 to 1:5,000,000 and Statistics Canada digital data, 2006 Albers Equal-Area Conic projection: Standard Parallels 29°30' N and 45°30' N, Central Meridian 96°00' W, Latitude of Origin 23°00' N Lithologic group data from Dicken and others, 2005a and

2005b and Nicholson and others, 2005 and 2006

Figure 5. Distribution of delineated lithologic groups and 1994–2008 sample locations within the study area, Piedmont and Blue Ridge Physiographic Provinces.

Figure 6. Generalized schematic cross-section diagram across North Carolina physiographic provinces showing generalized geologic terranes and common lithologic groups delineated as part of this study.

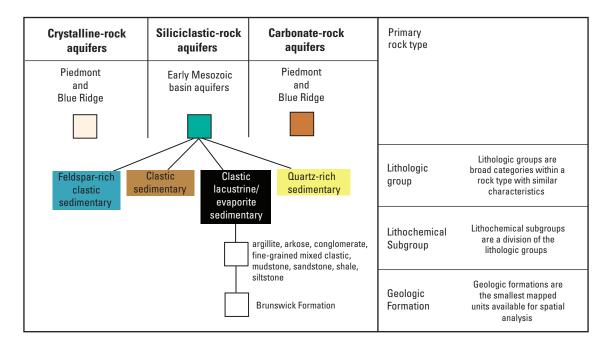


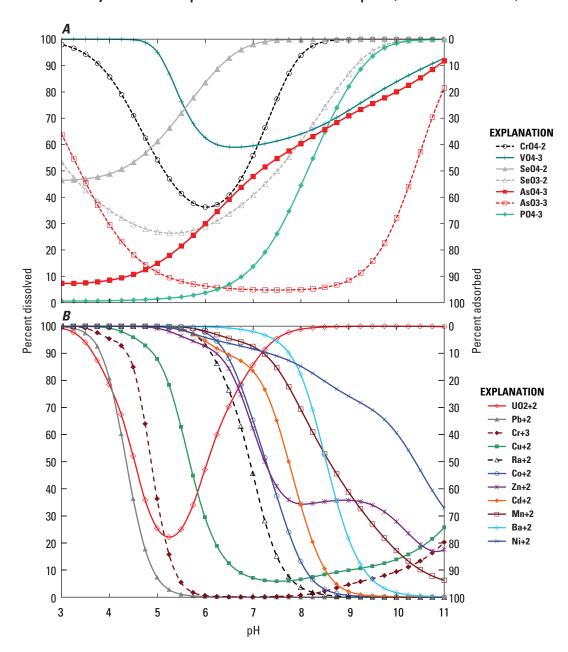
Figure 7. An example division of the aquifers into lithologic groups, lithochemical subgroups, and corresponding geologic formations.

fault zone, appendix 1, table 1-1). The intermediate igneous rocks and their metamorphic equivalents group includes distinctions for the more feldspathic subgroups (34f and 34fl) compared to the more intermediate composition groups (34i). This group also includes some rock type designations, including biotite gneiss (34bg) and augen gneiss (34agn), as well as mineralogical distinctions for sulfidic and graphitic rocks (34s). The mafic igneous and metamorphic equivalent rocks group has seven lithochemical subgroups, most of which follow McCartan and others (1998), with the addition of 41mv and 41v for metavolcanic and volcanic origin, respectively. A subgroup 44 was added for an undifferentiated mafic gneiss rock type. For the ultramafic rocks group, the subgroup 50gs was added to distinguish greenstones that did not contain carbonates. For the felsic igneous and metamorphic equivalent rocks group, the subgroup 61m is used to distinguish metamorphosed intrusive, while 61mf and 61mi distinguish compositional differences of felsic and intermediate, respectively. The subgroup 61v follows McCartan and others (1998) with the addition of 61mv for metavolcanic rocks. Where lithochemical subgroups were important to the interpretation and extrapolation of groundwater-quality data from this study for human health issues, the correlation of formations across State boundaries was reviewed. Geologic formations may be categorized differently based on the available geologic formation data and rock and mineral assemblage descriptions on the State maps (appendix 1, table 1-1, "ROCK TYPE1"; Dicken and others, 2005a, 2005b; Nicholson and others, 2005, 2006). Also, the USGS National Geologic Map Database, Geologic Names Lexicon "GEOLEX" searchable database was used to

obtain mineralogical descriptions of the formations (http://ngmdb.usgs.gov/Geolex/geolex_home.html; accessed October 2012).

Geochemical Controls on Naturally Occurring Trace Elements and Radionuclides in Groundwater

Dissolved chemicals in groundwater may be derived from rock weathering, biological processes, and anthropogenic sources. Dissolution of minerals in bedrock and overlying geologic materials commonly release naturally occurring constituents to the groundwater. Major cations (positively charged ions such as calcium, magnesium, sodium, and potassium), major anions (negatively charged ions such as sulfate, chloride, fluoride, and bicarbonate), and nonionic solutes (uncharged solutes such as silica and DO typically are present at concentrations greater than 1 mg/L, whereas trace constituents typically are present at concentrations less than 1 mg/L (Hem, 1985). However, dissolved concentrations of trace constituents can range widely depending on their occurrence in the rock or other source, the solubility of the constituent elements and interacting substances, and geochemical conditions such as pH and oxidation-reduction (redox) state that affect element form, mobility, and transport in the aqueous environment.


Groundwater from diverse environments may contain naturally occurring trace elements such as iron, manganese, zinc, lead, copper, nickel, vanadium, molybdenum, arsenic, radium, and uranium (Rose and others, 1979). Descriptions of the mineral assemblages in mapped geologic units may be useful when identifying potential geologic sources of dissolved constituents, although the mere presence of minerals containing such constituents may not lead to elevated concentrations in the associated groundwater. Elevated concentrations of trace constituents tend to be found locally or are associated with specific aquifer settings, particularly (1) under acidic conditions where the solubilities and mobilities of many element species are increased (Kirby and Cravotta, 2005; Cravotta, 2008a,b) or (2) under reducing conditions where the dissolution of ferric iron [Fe(III)] and manganese [Mn(III,IV)] to more soluble ferrous Fe(II) and dissolved manganese [Mn(III)] can release adsorbed and coprecipitated metals (Langmuir, 1997, p. 294–296; McMahon and Chapelle, 2008).

Although the release of trace elements through mineral weathering is a natural process, accelerated mineral decomposition that accompanies the development of strongly acidic or reducing conditions could be a consequence of human activities. For example, acidification can result from the excavation of sulfide minerals or the release of gaseous emissions containing sulfur or nitrogen oxides, and reduction can result from the disposal of organic wastes or over-fertilization. Furthermore, some constituents may originate from industrial sources, manmade materials, or land applications. Thus, in order to determine constituent concentrations that may have been added to groundwater as a consequence of land-use or waste-disposal practices, natural background concentrations for specific geologic settings need to be established. Additionally, in order to identify geochemical environments where elevated concentrations of constituents may be present, waterquality conditions such as pH and redox state and major ion composition need to be characterized.

Whether a dissolved constituent has originated from the weathering of rocks or from anthropogenic sources, its transport may be affected by its ionic charge, redox state, and tendency to interact with other dissolved elements (ion complexation) and solid surfaces (surface complexation or ion exchange). Redox-sensitive elements that commonly occur in more than one valence state under atmospheric conditions near the surface of the Earth include carbon (-4, +4), sulfur (-2, +6), nitrogen (-3, +3, +5), iron (+2, +3), manganese (+2, +3)+3, +4), arsenic (-3, +3, +5), selenium (-2, +4, +6), chromium (+3, +6), molybdenum (+4, +6), vanadium (+3, +4, +5), and uranium (+3, +4, +5, +6). Although these and many other elements can have a positive valence state or core charge, the predominant aqueous species may be positively or negatively charged ions, depending on the tendency of the charged element to hydrolyze and to form aqueous complexes. Generally, the highly positively charged valences are present as cations form oxyanions and, less commonly, oxycations (Turner and others, 1981; Stumm and Morgan, 1996; Langmuir, 1997; Hodge and others, 1998). For example, in a reducing groundwater environment, chromium in the +3 valence state may be present as a cation (Cr⁺³), whereas in a strongly oxidizing environment, chromium in the +6 valence state may be present as the oxyanion chromate (CrO_4^{-2}). Likewise, under oxidizing conditions, arsenic in the +3 or +5 valence states tends to form the oxyanions arsenite (AsO_3^{-3}) or arsenate (AsO_4^{-3}), respectively, and uranium in the +6 valence state tends to form the uranyl (UO_2^{+2}) oxycation. Furthermore, at the typical pH range of natural water, the uranyl ion may interact with carbonate and bicarbonate ions to form negatively charged carbonate complexes (Langmuir, 1997). The formation of such soluble ion complexes can increase the concentrations and transport of dissolved trace elements (Cravotta, 2008a, 2008b).

Concentrations of major cations and anions in natural waters generally are controlled by acid-base and precipitation-dissolution reactions; however, the concentration and mobility of most trace ions generally are controlled by surface-complexation (adsorption) reactions on hydrous Fe(III) oxides, Mn(III,IV) oxides, and aluminum oxides and silicates (Dzombak and Morel, 1990; Bowell, 1994; Stumm and Morgan, 1996; Drever, 1997; Langmuir, 1997). Consequently, the concentrations of trace elements in natural waters typically are far below the values that would be predicted for saturation with respect to a pure mineral phase (Drever, 1997; Cravotta, 2008b). For example, at the acidic pH range (5 to 6.5) of natural groundwater, dissolved oxyanions, such as chromate (CrO₄⁻²), phosphate (PO₄⁻³), selenite (SeO₃⁻²), selenate (SeO₄⁻²), arsenite (AsO₃⁻³), and arsenate (AsO₄⁻³), tend to be weakly sorbed and partly immobilized by hydrous ferric oxide (HFO) minerals (fig. 8, such as goethite (FeOOH) and ferrihydrite [Fe(OH)₃]. However, at the alkaline pH range (7.5 to 9) of natural water, sorption of these anions generally decreases with increasing pH and is accompanied by corresponding increases in their dissolved concentrations (fig. 7). In contrast, dissolved cations, such as chromium (Cr⁺³), copper (Cu⁺²), cadmium (Cd⁺²), nickel (Ni⁺²), and zinc (Zn⁺²), tend to be poorly adsorbed and are relatively mobile at acidic pH, whereas at alkaline pH, the cation concentrations tend to be attenuated by adsorption on HFO and other oxide surfaces (fig. 8).

The apparent opposite sorption behavior of the anions and cations (fig. 8) results from a progressive decrease in the effective charge on oxide surfaces from positive (attractive to anions) to negative (attractive to cations) as the pH increases from acidic to alkaline values (Dzombak and Morel, 1990; Stumm and Morgan, 1996; Langmuir, 1997). At alkaline pH values, negatively charged oxide atoms at mineral surfaces attract cations; however, at acidic pH, protons attached to the oxide atoms yield an effective positive charge at the mineral surface and thus attract anions. In addition, the sorbed cations or anions may be displaced by other charged ions such as magnesium (Mg⁺²), chloride (Cl⁻), and sulfate (SO₄⁻²) through ion exchange or competition for sorption sites. Thus, concentrations of trace elements in solution may increase with concentrations of total dissolved solids, not only because of the release of trace constituents with the major ions dissolved from minerals, but because of the displacement of trace ions from surface sorption sites by the major ions. For the trace

Figure 8. Equilibrium fractions of initial concentrations of ions that may be dissolved or adsorbed on a finite amount of hydrous ferric oxide at 25 degrees Celsius as a function of pH. *A*, anions; *B*, cations.

elements that form aqueous complexes, the increase in soluble major ion concentrations also increases the likelihood of the formation of soluble ion complexes.

Cations and anions that had been adsorbed or coprecipitated with Fe(III) or Mn(III,IV) compounds may be remobilized under anoxic, reducing conditions. The reducing conditions must be sufficient to reduce and dissolve iron and manganese but not to produce sulfide, which tends to form insoluble compounds with many trace cations (Korte, 1991; Welch and others, 2000; Kirk and others, 2004). The reductive dissolution of Fe(III) and Mn(III,IV) oxides typically is coupled with the oxidation of organic compounds after supplies of dissolved oxygen, nitrate (NO₃⁻), and nitrite (NO₂⁻)

have been depleted, but before the development of sulfate-reducing conditions (Ehrlich, 1990; Stumm and Morgan, 1996; Drever, 1997; McMahon and Chapelle, 2008). Under such reducing geochemical conditions, the concentrations of dissolved iron and manganese and associated sorbed trace anions and cations may become elevated. Thus, the presence of dissolved iron, manganese, and sulfate in anoxic groundwater that lacks nitrate and nitrite can be interpreted to indicate reducing geochemical conditions capable of mobilizing trace elements associated with Fe(III) or Mn(III,IV) oxides in the aquifer (McMahon and Chapelle, 2008).

Naturally occurring radionuclides in groundwater include isotopes of uranium (U-238), thorium (Th-232), radium

(Ra-224, Ra-226, Ra-228), and radon (Rn-222). Uranium-238 is the parent of radium-226 and radon-222; thorium-232 is the parent of radium-228 and radium-224 (fig. 9). Uranium, thorium, radium, and other radioisotopes in the decay chains tend to be present as dissolved ions that are affected by different geochemical speciation, solubility, and sorption processes (Ames and others, 1983a, 1983b). Consequently, the presence of uranium, thorium, or radium in groundwater requires a mineral source and geochemical conditions in the aquifer that are conducive to transport of those elements. The presence of radon (of which radon-222 is the most abundant isotope) in groundwater is directly related to the presence of a decaychain parent, such as uranium, in the aguifer because radon is a highly soluble noble gas that generally is not affected by chemical reactions. In addition, all radon isotopes have short half-lives and generally occur relatively near the parent source in the aquifer.

Water-Quality Data and Methods

Groundwater-quality data collected by the USGS NAWQA Program (Gilliom and others, 1995) from wells in various hydrogeologic and land-use settings from Georgia through New Jersey were compiled to establish a regional database on water quality in the study area. The NAWQA design is discussed in Gilliom and others (1995) and Lapham and others (2005); protocols for collection of water-quality data are presented in Koterba and others (1995). The NAWQA groundwater sampling protocols specified prolonged flushing of the well to remove water stored in the well bore prior to sample collection (Koterba and others, 1995). Furthermore, field measurements of dissolved oxygen, pH, alkalinity, and other unstable constituents were routinely conducted without exposing samples to the atmosphere at the time of sample collection. Thus, the data used for this study are presumed to represent the in situ water-quality characteristics of the aquifer.

This report includes groundwater-quality data collected as part of 14 NAWQA studies across the eastern United States covering the Early Mesozoic basin principal aquifer and a variety of fractured felsic and mafic crystalline-rock aquifers of the Piedmont and Blue Ridge aquifer as described by Lapham and others (2005) (figs. 1 and 3). The compiled data are not distributed evenly throughout the study area and therefore are not spatially representative of all the aquifers. The dataset analyzed consists of 346 samples (appendix 1, tables 1-3 and 1-4) collected as part of land use, major aquifer, and drinking water studies (table 1). Each study involved a network of 20 to 30 wells to document and explain the occurrence and distribution of selected chemical compounds in groundwater in particular settings (Gilliom and others, 2006) (table 1; fig. 3; appendix 1, tables 1-3 and 14). Groundwater data from carbonate rock and glacial aquifers are not included in this study.

Data for physical characteristics and concentrations of dissolved chemical constituents in groundwater were compiled for the 346 sampled wells (appendix 1, tables 1-3 and 1-4). A variety of crystalline and siliciclastic bedrock types with associated lithologies were sampled at these well locations. Most of these data were collected during the late spring through the late summer. Although collected only once per site (from 1994 through 2008; appendix 1, table 1-4), the groundwater-quality data are assumed comparable for the purpose of evaluating spatial patterns in water quality for this study. Selected data from these compilations are presented in this report; all data compiled for this report are accessible on the World Wide Web at http://infotrek.er.usgs.gov/apex/f?p=NAWQA:HOME:0; accessed October 2012.

Analytical results for most samples were obtained for major ions, various trace elements (including iron, manganese, aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, chromium, cobalt, copper, lead, lithium, mercury, molybdenum, nickel, selenium, silver, strontium, thallium, vanadium, and zinc), selected nutrients (including phosphorus and nitrogen compounds), dissolved organic carbon, and radionuclides [including radon-222 (hereafter referred to as radon), radium isotopes, uranium, and tritium] as well as temperature, specific conductance (SC), pH, and concentrations of dissolved oxygen (DO). All analyses are for dissolved constituents in water samples that were filtered in the field, unless otherwise specified. The water temperature, SC, pH, and dissolved-oxygen concentrations were measured in the field immediately prior to sample collection. Other chemical analyses were conducted at the USGS National Water Quality Laboratory (NWQL) in Denver, Colorado (Patton and Truitt, 1992; Brenton and Arnett, 1993; Fishman, 1993; Werner and others, 1996).

To assess the potential for naturally occurring solutes to contaminate drinking water, the concentrations of chemical constituents are compared to criteria for protection of human health such as USEPA (2009) drinking water maximum contaminant levels (MCLs) and secondary maximum contaminant levels (SMCLs) or health-based screening levels (HBSLs). Because water quality at a given location will vary temporally owing to natural hydrologic processes and seasonality, and because samples were collected only once from each well, constituent concentrations also were compared to a value of one-tenth of the relevant human health criteria. Consideration of this lower threshold level increases the certainty that constituents will be acknowledged that could have human health implications under variable circumstances.

The reported water-quality data were used to compute mineral saturation indices (explained below), hardness, and groundwater redox classes. Hardness was calculated as the sum of calcium and magnesium concentrations and is expressed as calcium carbonate (Fishman, 1993). The redox class was determined on the basis of concentrations of dissolved oxygen, nitrate, manganese, iron, and sulfate using thresholds of McMahon and Chapelle (2008). The redox classifications used in this report were simplified to consider only

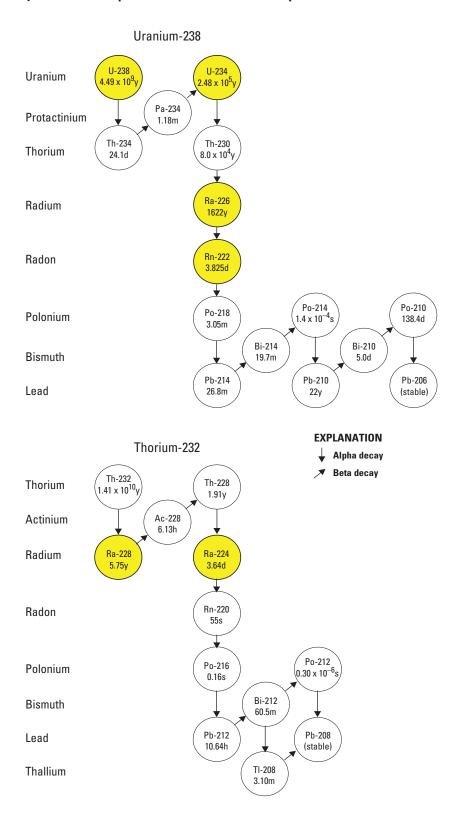


Figure 9. Uranium-238 and thorium-232 decay series.

three major classes: "anoxic" (DO < 0.5 mg/L, manganese $\geq 50~\mu g/L$, and iron $\geq 100~\mu g/L$); "mixed" (DO $\geq 0.5~mg/L$ and either manganese $\geq 50~\mu g/L$ or iron $\geq 100~\mu g/L$); and "oxic" (DO $\geq 0.5~mg/L$, manganese < 50 $\mu g/L$, and iron < 100 $\mu g/L$).

Ancillary geospatial data were compiled to describe the physical characteristics of the watersheds within the potential contributing areas of 1,640 ft (NAWQA buffer for ancillary data including land use, census data, nutrient sources, and point sources) of sampled wells. Each groundwater sample site was classified on the basis of the physiographic setting, bedrock type (crystalline or siliciclastic), lithologic group, and lithochemical subgroup (table 3). Land-cover data were compiled and used to compute the percentage of four major land uses (wetland, forested, agricultural, and urban) within 1,640 ft of sampled wells (appendix 1, table 1-3). Generalized land cover was modified from the National Land Cover Database 1992 (NLCD 1992) using historical land-use and land-cover data (Price and others, 2007) (fig. 2).

Graphical and Statistical Analyses

Various graphical and statistical techniques were used in this report to compare water-quality data for different aguifers or geologic settings, to estimate natural and anthropogenic sources of dissolved constituents, and to identify possible factors affecting the occurrence or transport of solutes in the aquifers in the study area. In general, nonparametric, rank-based statistical approaches were used to accommodate non-normally distributed and censored data typical of most environmental samples (Helsel and Hirsch, 2002). Data for individual continuous variables, such as chemical concentrations, were censored to a common level, and censored values were set to a common reporting limit before ranks were computed for use in statistical tests. Relations between continuous variables were evaluated with scatter plots and correlation coefficients (Spearman's rho); distributions of continuous variables were compared among different groups (such as lithology) using probability plots, boxplots, and rank-sum or rank-transform analysis-of-variance (ANOVA) (Helsel and Hirsch, 2002).

The data reported for trace element concentrations typically included "censored" values that were less than (<) the reporting limit. The reporting limit for a given constituent generally was not uniform for all samples. For example, 157 of 253 samples had censored values for arsenic concentration at five different reporting limits, in micrograms per liter, with count (n) indicated in parentheses: <0.06 (n = 11), <0.12(n = 15), <0.26 (n = 23), <1.0 (n = 106), or <2.0 (n = 2). However, the other 96 samples had reported trace element concentrations ranging from 0.036 to 57 µg/L (appendix 1, tables 1-4 and 1-5). Only 42 of these reported concentration values were greater than 2.0 µg/L, which was the highest common reporting limit (HCRL) for arsenic (appendix 1, tables 1-4 and 1-5). For statistical tests and other computations, the censored data and reported values less than the HCRL were considered equivalent to the HRCL at 0.99 times the HCRL for most

constituents; however, for several constituents (arsenic, zinc, iron, manganese, aluminum), where the HCRL applied to few samples and resulted in excessive censoring, the next highest common reporting limit was considered. In the case of arsenic, the next highest reporting limit is 1.0 μ g/L, which is one-tenth of the MCL and one-half of USEPA's health advisory level of 2.0 μ g/L (U.S. Environmental Protection Agency, 2001) (appendix 1, tables 1-4 and 1-5).

Probability plots and boxplots are used to illustrate univariate distributions for the different aquifers and associated lithologic groups or redox classes. Horizontal reference lines on the plots indicate the applicable values of drinking water or other human health benchmarks. Probability plots indicate the frequency (x-axis), or the proportion, of samples within the crystalline- and siliciclastic-rock aquifers that exceeded the constituent concentration (y-axis) or other plotted parameter values. For parameters without censored data (where all reported values exceeded the detection limits), the maximum and minimum reported values correspond to the 0.0 and 1.0 probability values, respectively, and the median value corresponds to the 0.5 probability value. Censored values are not displayed, but are counted to estimate the frequency of samples that exceeded the reported values. For parameters with censored data, the minimum plotted value corresponds to the lowest reported value greater than the detection limit. For some constituents, such as fluoride, cobalt, lead, and selenium, the minimum reported value has a frequency of exceedance less than 0.5, which indicates the median is a censored value.

Boxplots were used to show the water-quality concentration distributions for the three lithologic groups of the siliciclastic-rock aquifers and the six lithologic groups of the crystalline-rock aguifers that have water-quality data (table 3). The boxplots show the percentile distributions of samples with concentrations equal to or less than the associated value. All censored values were set to a common reporting limit. Where the median for a group is greater than the common reporting limit, it is displayed as a horizontal line within the box that is defined by the 25th and 75th percentiles for that group; otherwise, the median is displayed at the reporting limit. Along the top of each boxplot, the number of samples in each group is shown above a letter symbol. Groups with a different letter symbol have mean ranks that are significantly different on the basis of the nonparameteric Tukey test (Helsel and Hirsch, 2002) (appendix 1, table 1-6). Results were ranked and coded sequentially, with the group with the highest mean rank coded "A," the group with the next highest mean rank coded "B," then "C," and so on; overlapping groups were coded with letters for overlapping groups, "BC," for example, or "BD," representing overlap with groups B and C, and B, C, and D, respectively. Only the first and last letters of the range of overlapping groups are listed. The mean ranks of groups with one or more of the same letters are not significantly different. Although the mean ranks of groups may not differ, data

values greater than the 75th percentile are of particular interest because these values may exceed relevant benchmarks.

The frequency and number of samples within specified pH and redox classes are illustrated using a bivariate matrix. These pH-redox matrices are used in this report to indicate relations among aquifer lithology, geochemical environment, and probability of contaminant occurrence. Each matrix considers four general pH classes (x-axis—pH 4.5 to <5.5; 5.5 to <6.5; 6.5 to <7.5; 7.5 to <8.5) and the three simplified redox classes (y-axis—anoxic; mixed; oxic). The pH-redox matrices indicate the frequency of occurrence of the pH-redox classes by lithologic group and the frequency of occurrence of contaminant concentrations in relation to a specified reporting limit or human health benchmark for all the groups combined. The corresponding reporting limit or benchmark value and the total number of samples considered are indicated at the top of the matrix. The number of samples counted within each pHredox class is color-coded to highlight those pH-redox classes with the greatest frequency of samples exceeding relevant limits.

Principal components analysis (PCA), computed with SAS 9.2 (SAS Institute, Inc., 2008), was used to evaluate multivariate correlations among the elements in the regional groundwater dataset without prior classification. The goal was to identify important hydrochemical processes or master variables that could explain element associations and distributions (Joreskog and others, 1976; Drever, 1997; Thyne and others, 2004). The Spearman-rank correlation coefficient matrix for the groundwater dataset (appendix 1, table 1-7) provided the standardized input for the PCA. Because the PCA model would exclude the entire record for any sample with a missing value, those constituents that were missing or those that were censored in more than 40 percent of the samples, such as dissolved aluminum, fluoride, bromide, organic carbon, and many trace elements, were excluded. The PCA model was optimized with varimax rotation, and only principal components with eigenvalues greater than unity, equivalent to correlations with a probability greater than or equal to 0.999, were retained (Joreskog and others, 1976; Thyne and others, 2004). Loadings for each constituent included in the PCA model are equivalent to the Spearman-rank correlation coefficient between that constituent and the principal component. To aid in interpretations, the scores for each principal component in the PCA model were compiled and then evaluated by correlation or graphical analysis with additional variables that had been excluded from the PCA, such as lithology, land use, well depth, and chemical constituents. For simplification of displayed results, the loading values and Spearman-rank correlation coefficient values are multiplied by 100 and rounded. Significant correlation coefficients for the additional variables are displayed beneath the main PCA model results; only correlation coefficients with probability greater than or equal to 0.999 are considered significant.

Geochemical Modeling

Geochemical equilibrium models were developed to explain the occurrence of solutes in different geochemical environments and the relations among concentrations of dissolved constituents in the groundwater samples. Aqueous speciation computations with WATEQ4F (Ball and Nordstrom, 1991) and PHREEQC (Parkhurst and Appelo, 1999) using the WATEQ4F database were used to evaluate the potential for the concentrations of dissolved constituents to be limited by precipitation-dissolution and (or) adsorption-desorption processes. The computed mineral saturation index (SI) values for various major and trace minerals were used to indicate the potential for mineral dissolution and precipitation. If a mineral phase is undersaturated in groundwater (SI less than 0), that mineral phase (if present) has the potential to be dissolved by the groundwater. Likewise, if a mineral is supersaturated in groundwater (SI greater than 0), that mineral phase feasibly could precipitate, thus limiting the dissolved constituent concentrations. To illustrate potential differences in geochemical properties, the SI values for selected minerals were illustrated as boxplots by lithologic groups.

Adsorption and desorption of anions and cations on hydrous ferric-oxide-coated surfaces were evaluated using a diffuse double-layer modeling approach with PHREEQC (Parkhurst and Appelo, 1999), aqueous speciation data from WATEQ4F (Ball and Nordstrom, 1991), and surface complexation data from Dzombak and Morel (1990). Supplemental thermodynamic data for radium, chromium, cobalt, and vanadium were obtained from the ThermoChimie data base offered with PHREEQC (sit.dat), and surface-complexation constants for radium were estimated using empirical adsorption data presented by Benes and others (1984). For all of the sorption models, to be consistent with Dzombak and Morel (1990), the hydrous ferric oxide was specified as 90 mg/L, with a specific surface area of 600 square meters per gram consisting of 5 x 10⁻⁶ moles of strong binding sites and 2 x 10⁻⁴ moles of weak binding sites. Aqueous speciation and adsorption distribution for a range of pH values were computed, and the percentage of the total concentration distributed between the solution and sorbent was plotted as a function of pH. The sorption modeling results were illustrated as fractions of initial concentrations of ions that may be dissolved or adsorbed on a finite amount of hydrous ferric oxide at 25 degrees Celsius (°C) as a function of pH.

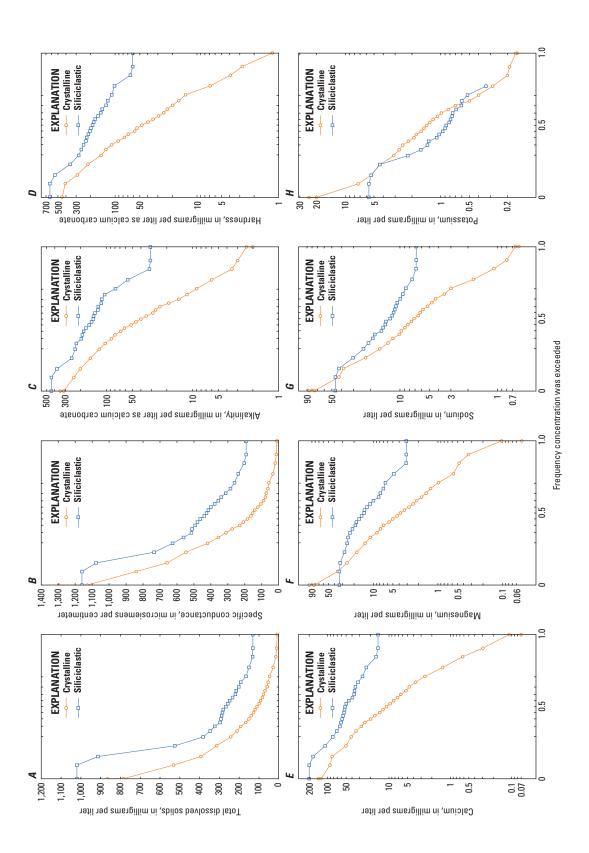
Water-Quality Characteristics of Aquifers, Lithologic Groups, and Lithochemical Subgroups

Descriptions of groundwater quality generally include concentrations of major ions, pH, dissolved oxygen, and other variables. In this report, these characteristics are described in order to explain naturally occurring contaminants in groundwater from different geologic settings and geochemical environments.

The groundwater quality for the PBR crystalline-rock aguifers generally differed from that for the Early Mesozoic siliciclastic-rock aquifers, considering the major ion and other constituent concentrations for the two bedrock types (figs. 10–14). Compared to the crystalline-rock aquifers, the groundwater from siliciclastic-rock aquifers had higher maximum and median concentrations of total dissolved solids, hardness, calcium, alkalinity (calcium carbonate), and sulfate (figs. 10–11). Although the median concentrations of magnesium, sodium, chloride, and nitrate in groundwater from siliciclastic aquifers also were higher than those medians for the crystalline-rock aquifers, the maximum concentrations of these constituents were present in groundwater from the crystalline-rock aquifers (figs. 10-11). Although median concentrations of silica were comparable for the two aquifer rock types, the crystalline-rock aquifers had a larger range for silica concentrations and larger ranges and higher medians for potassium and aluminum concentrations than the siliciclastic-rock aquifers (figs. 10-11).

The PBR crystalline-rock aguifers and the Early Mesozoic siliciclastic-rock aquifers also exhibited differences in the frequency distributions of minor and trace constituents in the groundwater (figs. 12-14). However, as explained previously and in more detail below, spatial and temporal variations in concentrations of these constituents may be attributed to variations in lithology within a particular rock type (lithologic group, lithochemical subgroup) and (or) geochemical environment (pH and redox conditions) within the aquifer (figs. 15–21). For example, the pH of the groundwater samples evaluated for this study ranged from 4.7 to 8.2 (fig. 12A, appendix 1, table 1-4). Although the highest and lowest pH values were recorded for groundwater from the PBR crystalline-rock aquifers, the groundwater from the Early Mesozoic siliciclastic-rock aquifers, particularly the clastic sedimentary (CLSD) and clastic lacustrine/evaporite sediments (CLSD-LAC), generally had higher mean rank pH values than the PBR crystalline-rock aquifers, particularly the felsic or intermediate igneous and metamorphic lithologic units (IGMTI) (fig. 16C). About 70 percent of groundwater samples from the siliciclastic-rock aguifers had pH greater than 7 compared to only about 10 percent from the crystalline-rock aquifers.

Although DO concentrations in the groundwater varied widely, a majority of samples for all the aquifer lithologies could be characterized as oxic, with DO greater than or equal


to 0.5 mg/L (fig. 12B). Seven redox classes were determined on the basis of concentrations of DO, nitrate, manganese, iron, and sulfate by using thresholds of McMahon and Chapelle (2008). Of the 346 groundwater samples evaluated for this study, 65.0 percent were classified as "oxic" (with DO greater than or equal to 0.5 mg/L); 18.2 percent were classified as "mixed" (with DO greater than or equal to 0.5 mg/L and manganese greater than or equal to 50 mg/L or iron greater than or equal to 100 mg/L); 14.2 percent were classified "anoxic" (with DO less than 0.5 mg/L); and the remaining 2.6 percent, which lacked data for DO, were classified as "unknown." Based on the Tukey analysis, DO concentrations in groundwater did not differ among lithologies (fig. 15). Of the anoxic samples, 3.2 percent were suboxic, 1.7 percent were nitratereducing, 1.7 percent were manganese-reducing, 5.8 percent were iron-reducing, and 0.3 percent were methanogenic. Because few samples could be characterized as strongly reducing, the anoxic samples were considered as a single class for evaluation of geochemical environment.

To evaluate the potential for aquifer lithology to affect contaminant concentrations, the water-quality data and saturation indices for selected minerals were considered in relation to the major bedrock type, lithologic groups, and lithochemical subgroups [tables 3 and 4 (table 4 available online at http://pubs.usgs.gov/sir/2013/5072/), figs. 10–17]. To evaluate potential for geochemical factors to affect the mobility of contaminants in the aquifer, the saturation indices for minerals that may be present in the aquifers and soil were summarized by lithologic group (figs. 18 and 19), and the frequency of contaminant detections and exceedances of human health benchmarks were evaluated with respect to the groundwater pH and redox characteristics (figs. 20 and 21) that may affect the adsorption and release of trace constituents by iron and manganese oxides.

Exceedances of Drinking Water Criteria

Constituents of potential concern were identified on the basis of drinking water exposure guidelines proposed by the USEPA for sources of public drinking water (U.S. Environmental Protection Agency, 2009, 2010), including MCLs, HBSLs, or other criteria such as SMCLs. HBSLs were developed by the USGS, USEPA, New Jersey Department of Environmental Protection (NJDEP), and Oregon Health and Science University (OHSU) as an interagency pilot effort beginning in 1998 to communicate the potential relevance of the water-quality findings of the USGS NAWQA Program in a human-health context (Toccalino and others, 2012).

Provisionally promulgated drinking water standards for radium (U.S. Environmental Protection Agency, 1976) became final with the Radionuclide Rule of 2000 (U.S. Environmental Protection Agency, 2000) when the other proposed standards for radionuclides were also finalized, or in the case of uranium, newly promulgated. Uranium, radium, and radon are radioactive elements that can increase human cancer risk

Probability plots of groundwater-quality data for siliclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008. A, total dissolved solids; B, specific conductance; C, alkalinity; D, hardness; E, calcium; F, magnesium; G, sodium; and H, potassium. Figure 10.

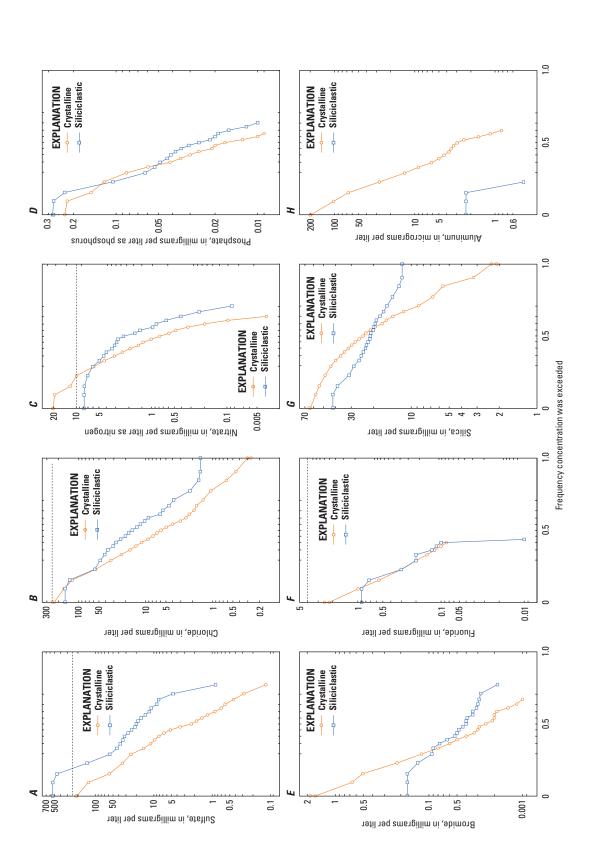
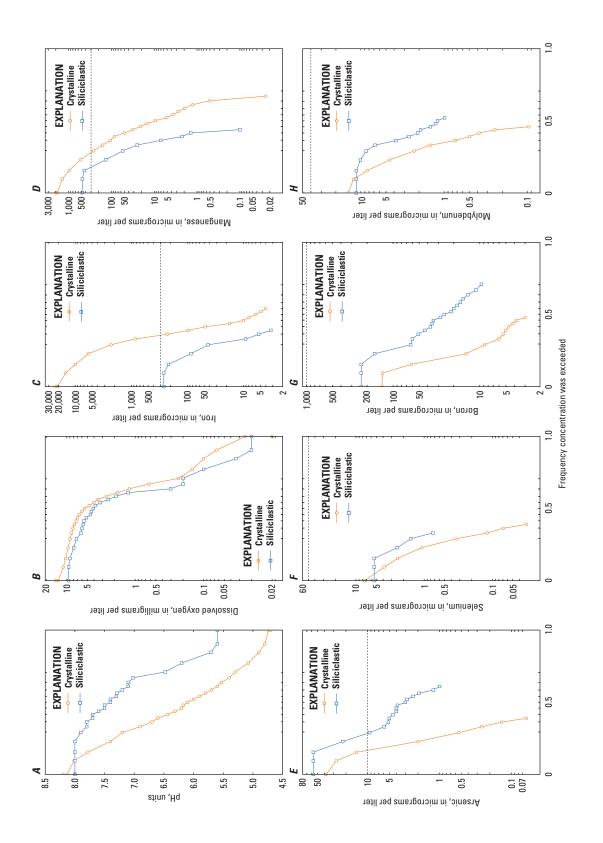
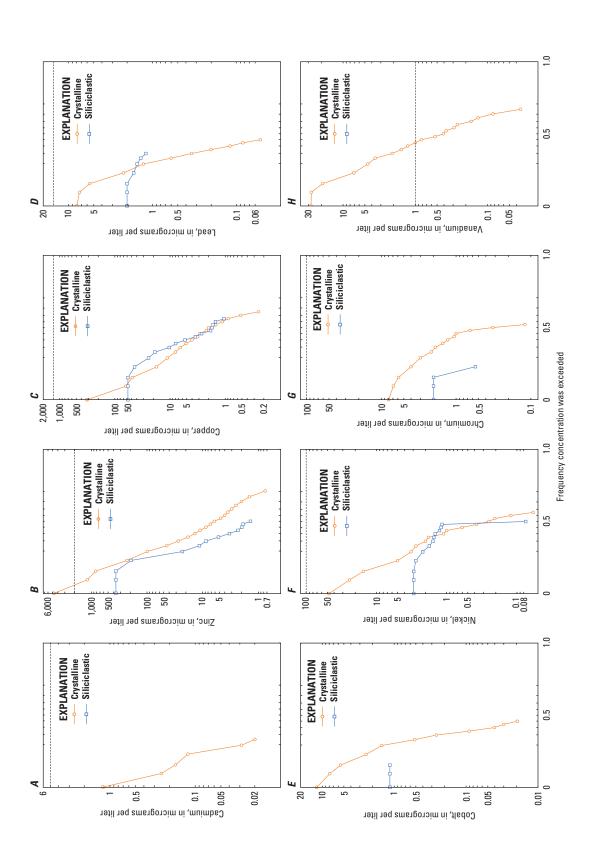
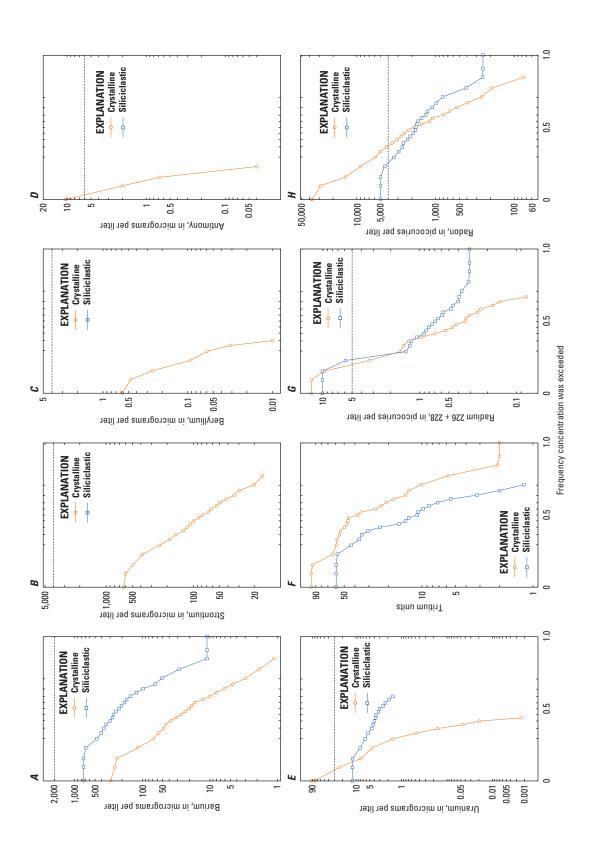
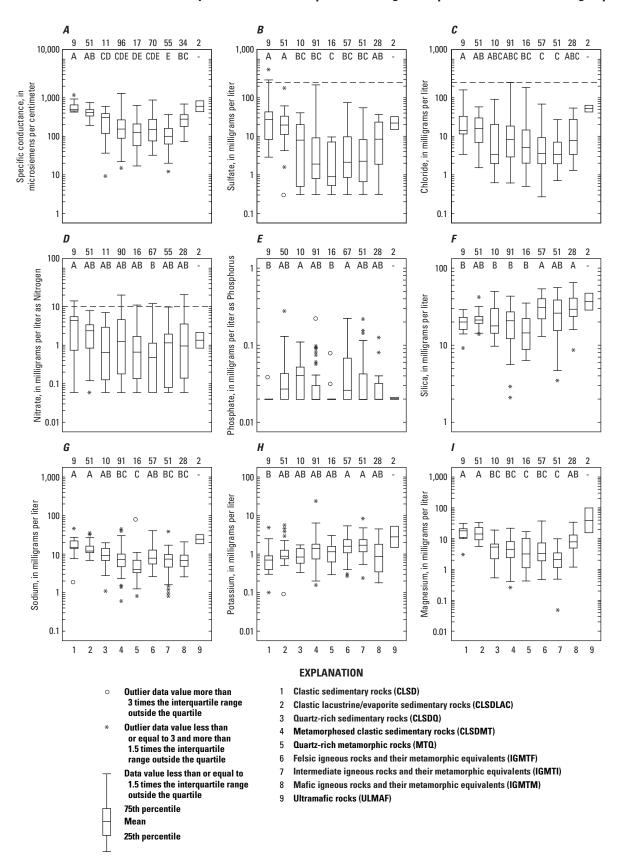
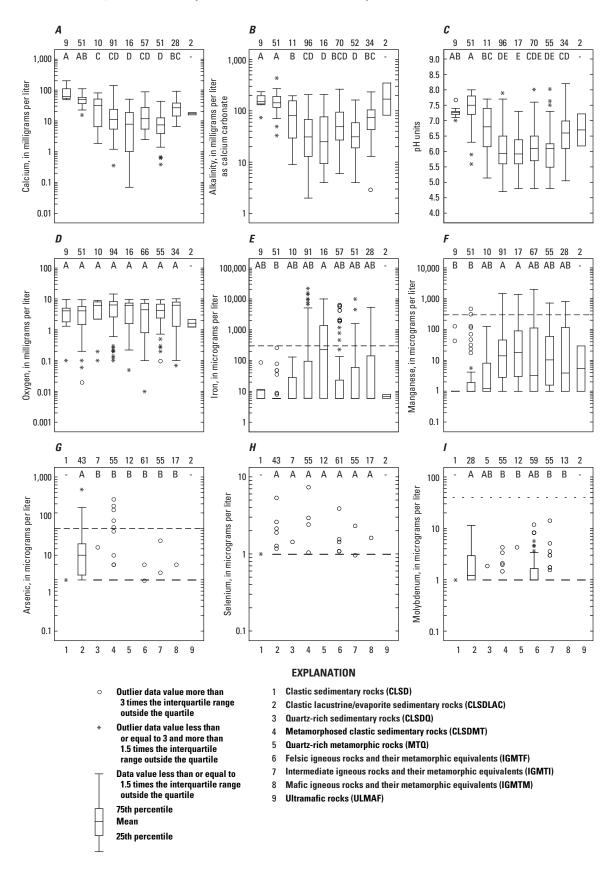
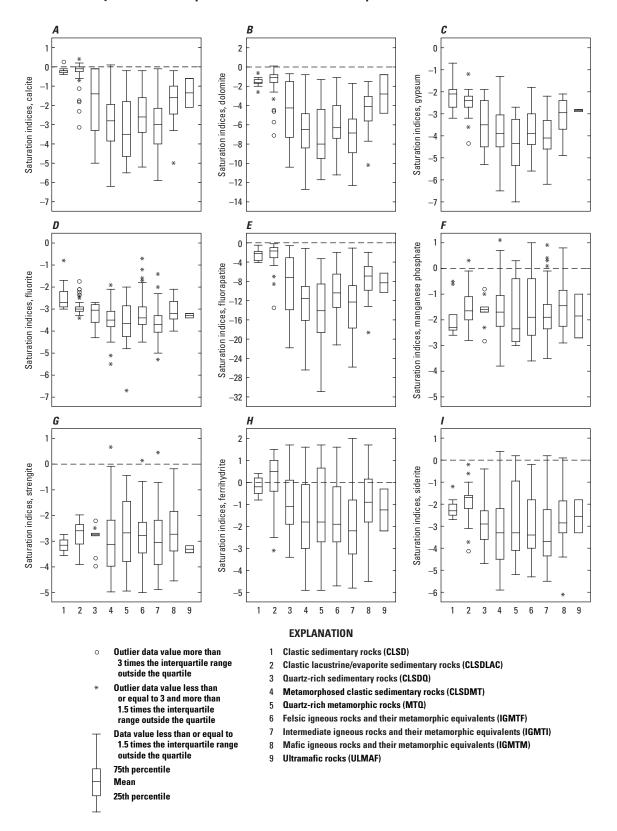



Figure 11. Probability plots of groundwater-quality data for siliclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008. A, sulfate; B, chloride; C, nitrate; D, phosphate; E, bromide; F, fluoride; G, silica; and H, aluminum.


Figure 13. Probability plots of groundwater-quality data for siliclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008. A, cadmium; B, zinc; C, copper; D, lead; E, cobalt; F, nickel; G, chromium; and H, vanadium.

Probability plots of groundwater-quality data for siliclasti-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008. **Figure 14.** Probability plots of groundwater-quality data for siliclasti-rock and crystalline-rock. A, barium; B, strontium; C, beryllium; D, antimony; E, uranium; F, tritium; G, radium; and H, radon.


Figure 15. Groundwater-quality data by lithologic groups of siliclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008. *A*, specific conductance; *B*, sulfate; *C*, chloride; *D*, nitrate; *E*, phosphate; *F*, silica; *G*, sodium; *H*, potassium; and *I*, magnesium.

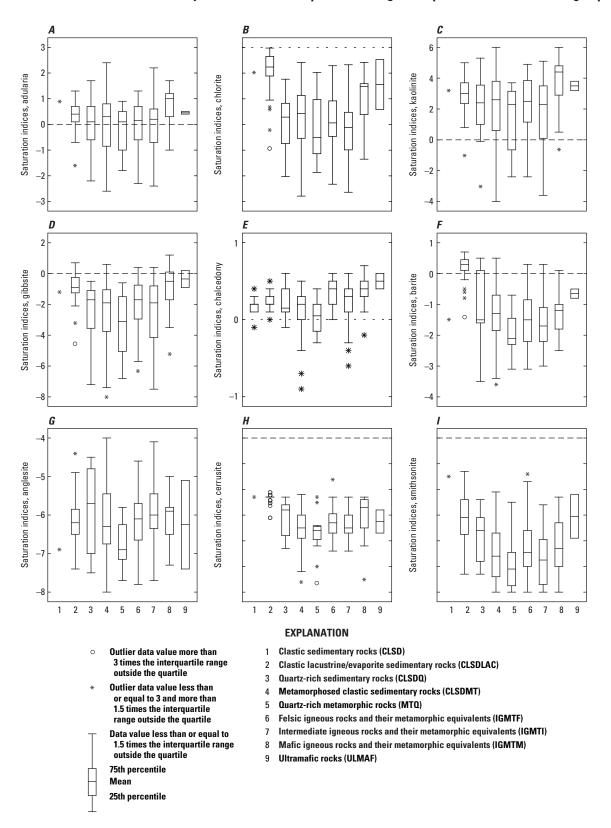

Figure 16. Groundwater-quality data by lithologic group of siliclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008. *A*, calcium; *B*, alkalinity; *C*, pH; *D*, dissolved oxygen; *E*, iron; *F*, manganese; *G*, arsenic; *H*, selenium; and *I*, molybdenum.

Figure 17. Groundwater-quality data by lithologic group of siliclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008. *A*, barium; *B*, copper; *C*, lead; *D*, nickel; *E*, zinc; *F*, tritium; *G*, uranium; *H*, radium 226+228; and *I*, radon-222.

Figure 18. Saturation indices (SI) for selected minerals in groundwater by lithologic group of siliciclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces. *A*, calcite; *B*, dolomite; *C*, gypsum; *D*, fluorite; *E*, fluorapatite; *F*, manganese phosphate; *G*, strengite; *H*, ferrihydrite; and *I*, siderite.

Figure 19. Saturation indices (SI) for selected minerals in groundwater by lithologic group of siliclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces. *A*, andularia; *B*, chlorite; *C*, kaolinite; *D*, gibbsite; *E*, chalcedony; *F*, barite; *G*, anglesite; *H*, cerrusite; and *I*, smithsonite.

A. All samples: 9 lithologic subgroups (n=337)

Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5
Anoxic	х	2.7 (9)	8.6 (29)	3.3 (11)
Mixed	3.9 (13)	9.8 (33)	4.7 (16)	0.3 (1)
0xic	9.2 (31)	33.2 (112)	15.1 (51)	9.2 (31)

B. CLSD: Clastic sedimentary (n=9)

Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5
Anoxic	х	х	11.1 (1)	х
Mixed	х	х	х	х
0xic	х	х	77.8 (7)	11.1 (1)

C. CLSDQ: Quartz-rich sedimentary (n=10)

Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5
Anoxic	х	х	х	10.0 (1)
Mixed	10.0 (1)	10.0 (1)	10.0 (1)	х
0xic	х	20.0 (2)	20.0 (2)	20.0 (2)

D. CLSDLAC: Clastic lacustrine (n=51)

Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5
Anoxic	х	х	7.8 (4)	13.7 (7)
Mixed	х	х	2.01 (1)	х
0xic	х	7.8 (4)	27.5 (14)	41.2 (21)

E. CLSDMT: Metamorphosed clastic sedimentary (n=94)

Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5
Anoxic	х	5.3 (5)	4.3 (4)	Х
Mixed	2.1 (2)	16.0 (15)	4.3 (4)	Х
0xic	14.9 (14)	35.1 (33)	13.8 (13)	4.3 (4)
			-	

F. MTQ: Quartz-rich metamorphic (n=16)

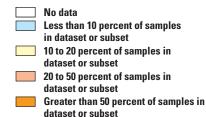
Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5
Anoxic	х	х	12.5 (2)	х
Mixed	18.8 (3)	18.8 (3)	х	х
0xic	6.3 (1)	37.5 (6)	6.3 (1)	Х

G. IGMTF: Felsic igneous or metamorphic (n=66)

	•			•
Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5
Anoxic	х	4.5 (3)	10.6 (7)	4.5 (3)
Mixed	3.0 (2)	13.6 (9)	6.1 (4)	х
0xic	9.1 (6)	43.9 (29)	4.5 (3)	х

H. IGMTI: Intermediate igneous or metamorphic (n=55)

Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5
Anoxic	х	1.8 (1)	7.3 (4)	х
Mixed	7.3 (4)	7.3 (4)	9.1 (5)	1.8 (1)
0xic	18.2 (10)	43.6 (24)	х	3.6 (2)


I. IGMTM: Mafic igneous or metamorphic (n=34)

Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5
Anoxic	х	х	17.6 (6)	х
Mixed	2.9 (1)	2.9 (1)	2.9 (1)	х
0xic	х	38.2 (13)	29.4 (10)	2.9 (1)

J. ULMAF: Ultramafic (n=2)

Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5
Anoxic	х	х	х	х
Mixed	х	х	х	х
0xic	х	50.0 (1)	50.0 (1)	х

EXPLANATION

Figure 20. Redox/pH matrix summarizing groundwater-quality samples by lithologic group of sliciclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008. *A*, all nine lithologic groups; *B*, clastic sedimentary; *C*, clastic lacustrine/evaporite; *D*, quartz-rich sedimentary; *E*, metamorphosed clastic sedimentary; *F*, quartz-rich metamorphic; *G*, felsic igneous or metamorphic; *H*, intermediate igneous or metamorphic; *I*, mafic igneous or metamorphic; and *J*, ultramafic.

when ingested (Mays and others, 1985; U.S. Environmental Protection Agency, 1999). The risk is presumed to be linearly proportional to exposure (amount and duration; U.S. Environmental Protection Agency, 1999) and was used to determine conservative standards (MCLs) designed to limit exposure. Because the standards for radionuclides are slightly different and somewhat more complex than those for other trace elements, they are listed here in detail. The MCLs promulgated for radionuclides in 2000 are as follows: gross alpha-particle activity (including radium-226 but excluding uranium and

radon), 15 pCi/L; gross beta-particle activity, 4 millirems per year (isotope-specific dose to be evaluated when a sample exceeds 50 pCi/L); uranium, 30 μg/L; and for radium [the sum of radium-226 and radium-228 (generally termed combined radium, and conveniently abbreviated as "Ra TOT") in selected tables and figures in this report, including table 4], 5 pCi/L (table 4). Gross alpha-particle activity had also been suggested for use as a compliance-monitoring "screen" for combined radium (Hess and others, 1985). In addition, radon has had a proposed (health-based) MCL of 300 pCi/L and a

<i>A.</i> Nitrate: HHB = 10 49.7% (159/320) > 0.1 HHB				B. Manganese: HHB = 300 32.1% (106/330) > 0.1 HHB							
Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5	Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5		
Anoxic	х	22.2 (9)	10.3 (29)	0 (11)	Anoxic	х	77.8 (9)	71.4 (28)	36.4 (11)		
Mixed	58.3 (12)	42.4 (33)	18.8 (16)	0 (1)	Mixed	100 (13)	93.9 (33)	100 (16)	100 (1)		
0xic	66.7 (30)	60.0 (100)	61.2 (49)	66.7 (30)	Oxic	6.7 (30)	7.0 (100)	4.0 (50)	3.3 (30)		
C. Sulfate: HHB = 250 14.9% (46/309) > 0.1 HHB				0.1 11110	000 00 50	((00 (000)	04111110				
			- ,		D. Iron: HHB						
Redox / pH	4.5 to <5.5				Redox / pH	4.5 to <5.5		6.5 to <7.5	7.5 to <8.5		
Anoxic	Х	22.9	24.0 (25)	72.7 (11)	Anoxic	Х	66.7 (9)	68.0 (25)	36.4 (11)		
Mixed	15.4 (13)	6.3 (32)	13.3 (15)	0 (1)	Mixed	53.8 (13)	78.1 (32)	80.0 (15)	100 (1)		
Oxic	0 (28)	8.3 (96)	20.4 (49)	20.0 (30)	Oxic	0 (28)	7.3 (96)	4.1 (49)	3.3 (30)		
E. Phosphate	: HCRL = 0.0	02 49.8% (1	59/319) > H	CRL	F. Lead: HCRL = 1 14.2% (36/253) > HCRL						
Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5	Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5		
Anoxic	х	44.9 (9)	42.9 (28)	27.3 (11)	Anoxic	х	0 (9)	15.0 (20)	20.0 (10)		
Mixed	33.3 (12)	15.2 (33)	37.5 (16)	100 (1)	Mixed	10.0 (10)	0 (28)	7.1 (14)	0 (1)		
0xic	30.0 (30)	63.0 (100)	67.3 (49)	63.3 (30)	0xic	50.0 (22)	14.7 (75)	10.0 (30)	11.1 (27)		
C A	ODI 0 47	40/ /40/040	·\		// 7: HODI	20 5 50/	/4.4./DED\ .	HODI			
G. Arsenic: H			-	7.5 to <8.5	H. Zinc: HCRL = 20 5.5% (14/253) > HCRL Redox / pH 4.5 to <5.5 5.5 to <6.5 6.5 to <7.5 7.5 to <8.5						
Redox / pH Anoxic	4.5 to <5.5	5.5 to <6.5			Redox / pH Anoxic	4.5 to <5.5			7.5 to <8.5		
	X 0. (40)	11.1 (9)	25.0 (20)	80.0 (10)		X (40)	44.4 (9)	35.0 (20)	0 (10)		
Mixed	0 (10)	0 (28)	7.1 (14)	0 (1)	Mixed	40.0 (10)	7.1 (28)	21.4 (14)	0 (1)		
Oxic	0 (22)	1.3 (75)	20.0 (30)	74.1 (27)	0xic	27.3 (22)	24.0 (75)	23.3 (30)	3.7 (27)		
I. Selenium: I	HCRL = 1 7.	7% (19/246) > HCRL		J. Chromium:	HCRL = 1	34.6% (84/2	43) > HCRL			
Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5	Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5		
Anoxic	х	11.1 (9)	10.0 (20)	10.0 (10)	Anoxic	х	33.9 (9)	15.0 (20)	20.0 (10)		
Mixed	20.0 (10)	0 (28)	0 (14)	0 (1)	Mixed	70.0 (10)	25.0 (28)	7.1 (14)	0 (1)		
Oxic	0 (22)	5.3 (75)	16.7 (30)	14.8 (27)	Oxic	54.5 (22)	55.4 (74)	17.2 (29)	11.5 (26)		
// M - l - l - l	!!OD!	4 94 40/ /4	0/224\ . 116	·DI	/ N:-11-110	DI 4.07.0	0/ /04/225\	HODI			
K. Molybdeni					L. Nickel: HC						
Redox / pH		5.5 to <6.5			Redox / pH	4.5 to <5.5		6.5 to <7.5	7.5 to <8.5		
Anoxic	X	11.1 (9)	26.3 (19)	100 (6)	Anoxic	X 70.0 (40)	66.7 (9)	26.3 (19)	50.0 (6)		
Mixed	0 (10)	3.6 (28)	50.0 (14)	0 (1)	Mixed	70.0 (10)	78.6 (28)	28.6 (14)	0 (1)		
Oxic	0 (21)	10.8 (74)	36.0 (25)	64.7 (17)	Oxic	40.9 (22)	29.7 (74)	24.0 (25)	0 (17)		
M. Barium: H	HB = 2,000	12.6% (31/	246) > 0.1 H	НВ	N. Cobalt: HCRL = 1 11.1% (25/225) > HCRL						
Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5	Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5		
Anoxic	х	0 (9)	15.0 (20)	10.0 (10)	Anoxic	х	33.3 (9)	5.3 (19)	0 (6)		
Mixed	20.0 (10)	0 (28)	7.1 (14)	0 (1)	Mixed	30.0 (10)	46.4 (28)	14.3 (14)	0 (1)		
Oxic	0 (22)	5.3 (75)	26.7 (30)	44.4 (27)	Oxic	9.1 (22)	1.4 (74)	0 (25)	0 (17)		
O. Uranium: H	ICDI _ 1 24	20/ (6/1/20	1\ , UCDI		P. Copper: HO	PI _ 1 6/1	00/_ (1E0/2/4	:/ > HCDI			
				7 E to -0 E					75 to .0.5		
Redox / pH					Redox / pH						
Anoxic	X 7.7 (42)	22.2 (9)	42.9 (28)	71.4 (7)	Anoxic	X 70.0 (40)	55.6 (9)	25.0 (20)	10.0 (10)		
Mixed	7.7 (13)	3.3 (33)	25.0 (16)	0 (1)	Mixed	70.0 (10)	46.4 (28)	21.4 (14)	0 (1)		
Oxic	3.3 (30)	5.1 (99)	40.0 (45)	75.0 (20)	0xic	95.5 (22)	85.3 (75)	70.0 (30)	66.7 (27)		
<i>Q.</i> Radon 222: HHB = 4,000 18.4% (49/267) > HHB <i>R.</i> Radium TOT: HHB = 5 23.4% (22/94) > 0.2 HHB						НВ					
Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5	Redox / pH	4.5 to <5.5	5.5 to <6.5	6.5 to <7.5	7.5 to <8.5		
Anoxic	х	14.3 (7)	7.4 (27)	0 (7)	Anoxic	х	66.7 (3)	42.9 (14)	66.7 (3)		
Mixed	30.0 (10)	21.1 (19)	16.7 (12)	0 (1)	Mixed	х	40.0 (5)	37.5 (8)	0 (1)		
Oxic	25.0 (28)	28.0 (93)	4.5 (44)	10.5 (19)	Oxic	0 (3)	15.4 (26)	12.5 (16)	6.7 (15)		
EXPLANATION X No data 10 to 20 percent of samples exceed HCRL or HHB All results below highest common reporting limit (HCRL) or human health benchmark (HHB) Greater than 50 percent of samples exceed HCRL or HHB											
		les exceed l			ureater than 5	o percent or	samples ex	Ceea HUNL 0	и ппр		

Figure 21. Redox-pH matrix summarizing groundwater-quality samples greater than or equal to the highest common reporting level (HCRL) or human health benchmark (HHB). *A*, nNitrate; *B*, manganese; *C*, sulfate; *D*, iron; *E*, phosphate; *F*, lead; *G*, arsenic; *H*, zinc; *I*, selenium; *J*, chromium; *K*, molybdenum; *L*, nickel; *M*, barium; *N*, cobalt; *O*, uranium; *P*, copper; *O*, radon-222; and *R*, radium-226+228 (TOT).

proposed AMCL of 4,000 pCi/L that may be used if airborne remediation or risk reduction approaches are implemented (U.S. Environmental Protection Agency, 1991); while proposed, the radon standards have yet to be adopted and fully implemented.

Five trace-element constituents (arsenic, antimony, iron, manganese, zinc) were detected in one or more water samples at concentrations greater than established human health-based benchmarks, and 10 additional constituents (barium, beryllium, cadmium, copper, lead, selenium, boron, molybdenum, nickel, and strontium) were detected at concentrations greater than a threshold of one-tenth the established health-based levels (table 4; figs. 12-17). Arsenic was detected at concentrations greater than the MCL of 10 µg/L in 9 of 253 samples, and antimony was detected at concentrations greater than the MCL of 6 µg/L in 1 of 232 samples. Manganese was detected at concentrations greater than the HBSL of 300 µg/L in 24 of 330 samples, and zinc was detected at concentrations greater than the HBSL of 2,000 µg/L in 1 of 253 samples. Iron was detected at concentrations greater than the SMCL of 300 µg/L in 46 of 315 samples.

The trace elements most frequently detected at concentrations greater than one-tenth of the MCL or HBSL were arsenic (47 of 253 samples > 1 $\mu g/L$), manganese (106 of 330 samples > 30 $\mu g/L$), zinc (14 of 253 samples > 200 $\mu g/L$), barium (31 of 253 samples > 200 $\mu g/L$), molybdenum (16 of 230 samples > 4 $\mu g/L$), and lead (23 of 253 samples > 1.5 $\mu g/L$). Additionally, iron (84 of 315 samples > 30 $\mu g/L$) commonly was present at concentrations greater than one-tenth of the SMCL. Considering concentrations greater than one-tenth of the relevant threshold, the crystalline lithologies of the PBR had a larger percentage of samples (by a factor of two) containing iron, manganese, or fluoride, whereas the siliciclastic lithologies of the Early Mesozoic basins had a larger percentage of water samples containing arsenic, barium, selenium, boron, molybdenum, uranium, chloride, or sulfate (table 4).

Of the radionuclides analyzed, radon-222 frequently was detected at concentrations greater than the proposed MCL of 300 pCi/L (248 of 275 samples) or the proposed AMCL of 4,000 pCi/L (51 of 275 samples) (table 4). Although rarely present at concentrations exceeding their respective MCLs, uranium (43 of 310 samples $> 3 \mu g/L$) and radium [Ra-226 plus Ra-228, abbreviated as (RaTOT)] (47 of 98 samples > 1.0 pCi/L) frequently were detected at concentrations greater than one-tenth and one-fifth of their MCLs. Although the siliciclastic lithologies had a greater frequency of elevated uranium concentrations, radon and radium were commonly detected in groundwater from siliciclastic and crystalline lithologies. Only 2.0 percent of 98 samples had combined radium [Ra-226 plus Ra-228, abbreviated as (RaTOT)] concentrations greater than the MCL of 5.0 pCi/L, and these detections were evenly split among siliciclastic and crystalline lithologies; 0.6 percent of 310 samples had uranium concentrations greater than the MCL of 30 μg/L, all from crystalline lithologies. Only 6 percent of 50 samples had

radon-222 concentrations greater than the proposed AMCL of 4,000 pCi/L among the siliciclastic lithologies, but 21 percent of 225 samples had concentrations greater than the proposed AMCL from crystalline lithologies, most commonly from granites.

Considering nutrients and major ions that may be derived from natural and human-related sources, few samples had concentrations of nitrate (12 of 329 samples) greater than the MCL of 10 mg/L as nitrogen (N) or sulfate (2 of 315 samples) greater than the SMCL of 250 mg/L, and none had concentrations of chloride greater than the SMCL of 250 mg/L (table 4). Nevertheless, many samples had concentrations of nitrate (161 of 329 samples), sulfate (47 of 315 samples), or chloride (56 of 315 samples) greater than one-tenth of the respective MCL or SMCL thresholds. Few samples exceeded this lower threshold for fluoride (10 of 315 samples) or nitrite (2 of 331 samples) (table 4). Generally, mineral weathering can be an important source of sulfate; however, elevated concentrations of nitrate and nitrite may be attributed to anthropogenic contamination. Likewise, although mineral weathering can be a source of background concentrations of chloride and fluoride, anthropogenic sources also can produce anomalous concentrations of these constituents.

The concentration of dissolved nitrate in groundwater for the study ranged from less than 0.1 to 20.5 mg/L as N, with a median of 0.96 mg/L as N (fig. 11*C*). The siliciclastic and crystalline lithologies had median concentrations of nitrate of 2.37 and 0.78 mg/L as N, respectively. Natural levels of nitrate in groundwater from rainfall and plant and animal sources generally are less than 1 mg/L as N in the eastern United States (Peters and Bonelli, 1982; Puckett, 1994; Holloway and others, 1998). Concentrations of nitrate that are greater than background concentrations are most commonly associated with agricultural and turf (lawns, golf courses) fertilizers and also with discharges from septic systems or sewage treatment plants (Denver and others, 2010).

The concentration of chloride in groundwater for the study ranged from 0.27 to about 250 mg/L with a median of 7.0 mg/L (fig. 11*B*). Groundwater from the siliciclastic-rock aquifers and crystalline-rock aquifers had median concentrations of chloride of 15.9 and 5.9 mg/L, respectively, which are significantly greater than background levels in atmospheric precipitation (Peters and Bonelli, 1982). Concentrations of chloride that are greater than background concentrations may be associated with agricultural applications of "potash" or potassium chloride (KCl) and manure and discharges of sewage effluent, although highest concentrations are associated with the application of road deicing salts such as sodium chloride (NaCl) and calcium chloride (CaCl₂) in urban areas of the northern part of the region (Denver and others, 2010). Although chloride transport is conservative, nitrate and other forms of nitrogen may be attenuated by denitrification (dissimilatory reduction) or biological uptake (assimilation). Hence, the relative abundances of nitrate and chloride may be useful with other chemical indicators to identify geochemical

conditions within the aquifer where naturally occurring contaminants may or may not be attenuated or mobilized.

The saturation index for selected minerals was evaluated to indicate the general corrosivity of the groundwater and the potential for specific major and trace minerals to dissolve or precipitate, thus increasing or decreasing concentrations of solutes in the groundwater. Most groundwaters from all lithologies were undersaturated (SI less than 0) with respect to common sulfides (pyrite, FeS₂), sulfates (gypsum, CaSO₄·2H₂O), carbonates [calcite, CaCO3; dolomite CaMg(CO3),], and aluminosilicates [adularia, KAlSiO₃; albite, NaAlSiO₃; anorthite, CaAl₂Si₂O₈; chlorite, Mg₅Al₂Si₃O₁₀(OH)₈] (figs. 18 and 19), indicating that weathering of major rock-forming minerals and trace minerals is a likely source of major and trace constituents in the groundwater. However, some groundwater samples, particularly those from the clastic sedimentary and clastic lacustrine/evaporite sedimentary lithologies of the Early Mesozoic basin aquifers, approached saturation or were saturated (SI approximately equal to 0) with respect to calcite and dolomite (figs. 18 and 19), indicating that their dissolution and precipitation could maintain or limit constituent concentrations. Likewise, most groundwater samples were supersaturated or saturated (SI greater than or equal to 0) with respect to kaolinite [Al₂Si₂O₅(OH)₄], gibbsite [Al(OH)₂], and ferrihydrite [amorphous Fe(OH)₃], indicating that the precipitation of these secondary phases feasibly could limit concentrations of silica, aluminum, and iron. Although concentrations of manganese and barium frequently were at saturation levels with respect to certain solid phases (manganese phosphate, MnHPO₄; barite, BaSO₄), most other trace elements, including arsenic, selenium, uranium, lead, zinc, copper, cadmium, and strontium, were undersaturated with respect to pure mineral phases, suggesting that mineral precipitation would not be likely to limit concentrations of these contaminants. However, some trace elements, particularly divalent cations, may substitute for major ions such as calcium and magnesium in minerals that are supersaturated, and thus be reduced in concentration in the aqueous phase compared to the solubility of the pure trace mineral phase.

The overall relations among bedrock lithology and water quality in the study area are consistent with different water-quality characteristics for major rock types described by Drever (1997). Specifically, in crystalline-rock aquifers, slow weathering of silicate minerals tends to produce natural groundwater with low concentrations of dissolved solids, alkalinity, and hardness (figs. 10–17). Consequently, most major carbonate, sulfate, and hydroxide minerals are undersaturated in these settings (figs. 18 and 19). In contrast, groundwater in the siliciclastic-rock aquifers commonly has greater concentrations of dissolved solids, alkalinity, and hardness than groundwater in adjacent crystalline-rock aquifers. The siliciclastic lithologies of the Early Mesozoic basins typically are cemented by carbonate minerals and in some places are cemented by sulfate minerals (Van Houten, 1965), and these minerals tend to dissolve rapidly (Van Houten, 1965; Langmuir, 1971). Concentrations of trace elements may increase

with concentrations of dissolved solids because of the release of trace constituents dissolved from major minerals and because of the displacement of trace ions from surface sorption sites by major ions. In some instances, natural constituent concentrations may exceed thresholds established to protect human health.

Correlations Among Major and Trace Constituents and Environmental Factors

Principal component analysis (PCA) provides insight on hydrochemical processes affecting groundwater chemistry in the study area by indicating intercorrelations among chemical constituents and environmental variables, such as land use and well depth. Five principal components (PCs) explain nearly 76 percent of the variance in the regional groundwater dataset and consist of 18 routinely detected constituent loadings (table 5). Associations of additional chemical and physical variables excluded from the model are indicated by the Spearman-rank coefficient of correlation of these variables with the principal component scores (table 5; appendix 1, table 1-7).

PC1 has positive loadings by alkalinity, pH, calcium, magnesium, sodium, sulfate, and specific conductance and negative loading by dissolved oxygen (table 5). These loadings are related to increasing dissolved solids associated with the weathering of carbonate-bearing and sulfur-bearing minerals. Scores on PC1 generally were greater for siliciclastic lithologies than for crystalline lithologies and were positively correlated with agriculture, latitude, well depth, and waterquality constituents excluded from the PCA model, including hardness, total dissolved solids, strontium, uranium, boron, arsenic, molybdenum, fluoride, and barium; scores were negatively correlated with aluminum, chromium, tritium, and copper (table 5). Positive correlations with hardness and trace constituents, such as strontium and barium, are consistent with the weathering of alkaline-earth carbonate and sulfate minerals that are present as cements, fracture filling, and clasts in siliciclastic rocks. As explained previously (fig. 7) and in more detail below, several of the positively correlated trace constituents, specifically arsenic, molybdenum, and uranium, tend to be mobile as anions under high-pH conditions (Hodge and others, 1998), whereas negatively correlated trace constituents, specifically aluminum, chromium, and copper, tend to be mobile as cations under low-pH conditions. The positive associations of PC1 with well depth and negative associations with tritium and dissolved oxygen are consistent with increased mineralization and age of groundwater along flow paths. Likewise, positive correlations with latitude could relate to less extensively weathered bedrock in northern areas compared to more deeply weathered (leached) saprolitic and lateritic horizons in the southern parts of the study area.

PC2 has positive loadings by chloride, bromide, sodium, magnesium, nitrate, dissolved organic carbon, and specific conductance (table 5). Although the constituents could

Table 5. Principal components analysis model of major factors controlling the chemistry of groundwater from siliciclastic-rock and crystalline-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008.

[Varimax rotation factor pattern for rank-transformed data (SAS, 1988); minimum eigenvalue >1; >, greater than; loading and correlation coefficient values multiplied by 100 and rounded; *, indicates significant loadings (p <0.001). PC, principal component]

	PC1	PC2	PC3	PC4 Temp- erature- silica	PC5 Radon- potassium	Commu- nalities
	Alkalinity- pH	kalinity- Chloride- pH nitrate	Redox			
	Constituent loadings					
Alkalinity	91 *	18	-3	19	-18	0.93
рН	89 *	-12	-4	6	-16	0.85
Calcium	88 *	37	-5	1	-6	0.92
Specific conductance	81 *	55 *	1	-3	-5	0.96
Magnesium	69 *	53 *	-5	-11	-6	0.78
Sulfate	67 *	35	22	-17	3	0.66
Dissolved oxygen	-64 *	-2	-46 *	-32	2	0.74
Chloride	30	86 *	-2	-15	13	0.86
Bromide	26	71 *	6	29	-7	0.67
Nitrate	-21	63 *	-43 *	-34	19	0.78
Sodium	55 *	59 *	-4	32	9	0.76
Dissolved organic carbon	20	58 *	10	0	-36	0.51
Manganese (>1)	-1	11	90 *	-1	-2	0.79
Iron (>6)	1	-11	82 *	-1	-12	0.67
Temperature	-18	15	8	86 *	-11	0.81
Silica	26	-13		77 *	11	0.69
Radon-222	-18	0	-19	_9	81 *	0.72
Potassium	-1	1	46 *	25	48 *	0.54
Eigenvalue:	6.61	2.76	1.66	1.57	1.05	13.64
Cumulative percent variance explained:	36.67	51.68	61.28	70.04	75.85	
Spearman Correlations	(only values significant at	p <0.05 are	reported):			
Latitude	37			-63		
Agricultural land-use percentage	27			-43		
Urban land-use percentage		22				
Forested land-use percentage		-43		35		
Wetland land-use percentage						
Well depth	25	-23				
Hardness	85	46				
Total dissolved solids	81	53				
Strontium	58	46				
Uranium	57					
Boron (>8)	56	43		-72		

Table 5. Principal components analysis model of major factors controlling the chemistry of groundwater from siliciclastic-rock and crystalline-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008.—Continued

[Varimax rotation factor pattern for rank-transformed data (SAS, 1988); minimum eigenvalue >1; >, greater than; loading and correlation coefficient values multiplied by 100 and rounded; *, indicates significant loadings (p <0.001). PC, principal component]

	PC1	PC2	PC3 Redox	PC4 Temp- erature- silica	PC5 Radon- potassium	Commu- nalities
	Alkalinity pH	Chloride- nitrate				
Spearman Correlations	only values significant at p <0.0	5 are repor	ted):—Co	ntinued		
Arsenic (>1)	50	26				
Molybdenum	47					
Fluoride	38					
Barium	28	53		-27		
Chromium	-35					
Copper	-47		-28			
Tritium	-58			-45		
Aluminum (>1.6)	-62					
Nickel		45	33			
Radium-226			54			
Radium-226 plus radium-228			41			
Cobalt			26			
Ammonia			26			
Phosphate			-37	39		
Vanadium			-76			
Lithium					47	
Silver						
Beryllium						
Cadmium						
Lead						
Radium-228						
Antimony						
Selenium						
Thalium						
Zinc (>1)						

originate from natural sources, their corresponding positive associations are interpreted to indicate anthropogenic sources of contamination, such as road-deicing salt, fertilizer, and sewage. Scores on PC2 were negatively correlated with well depth and forest area and positively correlated with urban area, hardness, total dissolved solids (TDS), barium, strontium, nickel, boron, and arsenic. Although PC2 scores ranged more widely for crystalline lithologies compared to siliciclastic lithologies, the median score for siliciclastic lithologies was larger

than that for crystalline lithologies. The land use overlying the siliciclastic lithologies tends more frequently to be urban and less frequently to be forested than that for the more steep terrains associated with the crystalline-rock lithologies (figs. 2 and 4).

PC3 has positive loadings by manganese, iron, and potassium and negative loadings by dissolved oxygen and nitrate (table 5). High scores on PC3 are interpreted to indicate isolation from the atmosphere and the development of reducing

conditions. Scores on PC3 generally were larger for crystalline lithologies than siliciclastic lithologies and were not correlated with land use. Scores on PC3 were positively correlated with radium-226, combined radium (Ra-226+Ra-228), cobalt, nickel, and ammonia and negatively correlated with vanadium, phosphate, and copper. Nitrate is stable under oxidizing conditions where iron and manganese concentrations may be limited by precipitation of iron and manganese oxides; ammonia is stable under reducing conditions. The positive associations of potassium and radium on PC3 and potassium and radon on PC5 (described below) are consistent with felsic, granitic, or arkosic rocks as a source of radioactive elements in groundwater. As explained previously (figs. 8 and 9) and in more detail below, radon is a highly mobile noble gas, whereas radium, cobalt, and other cations can be adsorbed by iron and manganese oxides. Subsequent dissolution of the iron and manganese oxides under reducing conditions will mobilize the sorbed constituents, such as radium and cobalt. The negative correlations of vanadium, phosphate, and copper with PC3 could indicate greater mobility of these constituents under oxidizing conditions, where the concentrations of iron and manganese are low.

PC4 has positive loadings by temperature and silica (table 5). Scores on PC4 were positively correlated with forest and phosphate and negatively correlated with latitude, agriculture, boron, tritium, and barium. Denver and others (2010) explained that co-occurrence of phosphate and silica in groundwater from forested areas could result from the weathering of common silicate minerals containing phosphorus as a trace constituent. Generally, the mean annual temperature of groundwater decreases with latitude, and tritium concentration decreases with groundwater age. Thus, these associations on PC4 may indicate that increased temperature or longer residence time in the aquifer promotes greater rates and extent of weathering of silicate minerals. The range of and median PC4 scores for crystalline lithologies, which predominate in southern latitudes, were larger than those for siliciclastic lithologies (appendix 2).

PC5 has positive loadings by radon and potassium and positive correlations with lithium (table 5). Although the range of PC5 scores for crystalline lithologies is greater than that for siliciclastic lithologies, the median scores for the two lithologies are comparable. As explained in more detail below, these associations and distributions are consistent with the emanation of radon from felsic, granitic, or arkosic rocks that tend to be rich in uranium, potassium, and lithium (Speer and others, 1981; Michel, 1984). Radon, potassium, and lithium tend to be mobile in a wide range of groundwater environments compared to other constituents that tend to be affected by variations in pH and (or) redox conditions.

Geochemical Conditions Associated with Elevated Concentrations of Naturally Occurring Constituents

The associations of certain trace elements and radionuclides in groundwater may be explained by similar rock sources and (or) geochemical processes. These constituents are discussed separately below, however, because of differences in monitoring frequency, reporting protocols, and human-health thresholds.

Trace Elements

Arsenic, manganese, and zinc were identified as trace elements of concern in groundwater of the study area on the basis of their relatively high frequencies of exceedance of human health benchmarks for drinking water (table 4). Additionally, lead, barium, antimony, and molybdenum were noteworthy because of relatively high frequencies of detection of these constituents at concentrations greater than one-tenth of their respective health-based thresholds. Specific settings and geochemical conditions associated with anomalous concentrations of these constituents are described in more detail below.

Arsenic

Although arsenic concentrations were less than 1 µg/L in nearly 80 percent of the 253 groundwater samples analyzed in the study, 8.5 percent of sampled wells in the Early Mesozoic basin aguifers and 2.4 percent of the sampled wells in the Piedmont and Blue Ridge aquifers had arsenic concentrations greater than the USEPA MCL of 10 µg/L (table 4). Arsenic concentrations greater than 1 µg/L were detected in samples from wells from all lithologies in these aquifers, but all concentrations greater than the MCL were present in groundwater from clastic lacustrine sedimentary rocks of the Early Mesozoic basin aguifers and from metamorphosed clastic sedimentary rocks of the PBR aquifers (fig. 16G). Maximum arsenic concentrations in water samples from these aquifers were 57 and 38 μg/L, respectively (tables 1-3 and 1-4). Both lithologic groups are composed of fine-grained sedimentary rocks, such as mudstone, shale, siltstone, and their metamorphic equivalents.

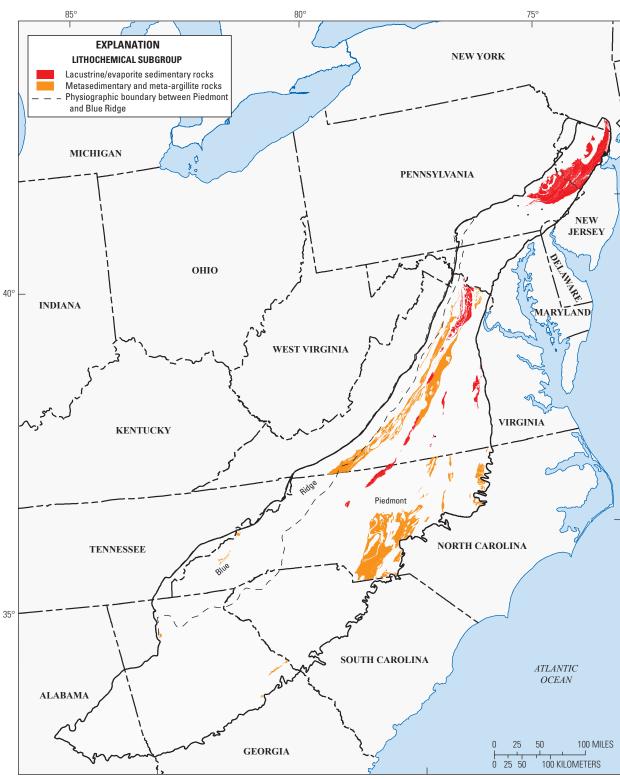
Although redox conditions typically control the mobility of arsenic in groundwater (Smedley and Kinniburgh, 2002; Welch and Stollenwerk, 2003; Serfes and others, 2010), the dominant factor controlling arsenic mobility in the study area appears to be pH, with elevated arsenic concentrations associated with alkaline pH conditions (fig. 21*G*). Arsenate and arsenite, which are the predominant forms of arsenic in groundwater, tend to adsorb to iron-oxide surfaces at acidic to neutral pH, but not at alkaline pH conditions (fig. 8). Thus, arsenic concentrations greater than 1 µg/L were associated with a range of oxic to anoxic redox conditions, primarily where pH values were greater than 7.5 (fig. 21*G*). Of the nine samples for which arsenic concentrations were greater than

10 μg/L, six were classified as oxic and three as anoxic, and seven had a pH of 7.2 or greater (maximum pH, 8.0). The clastic lacustrine/evaporite sedimentary and metamorphosed clastic sedimentary lithologic groups and associated lithochemical subgroups that had the highest mean ranks of arsenic on the basis of Tukey tests also had the highest mean ranks of pH [fig. 16C and G; table 6 (table 6 available online at http://pubs.usgs.gov/sir/2013/5072/)]. One other factor that supports the concept that the arsenic mobility is controlled by sorption processes is the consistent correlation of arsenic concentrations with other oxyanions, including boron, uranium, antimony, and molybdenum (appendix 1, table 1-7). The mobility of these oxyanions also is primarily controlled by adsorption at acidic to neutral pH and desorption at alkaline pH conditions (figs. 8 and 21).

The spatial distribution pattern for elevated arsenic concentrations indicates locations with elevated levels of arsenic in the rock and geochemical conditions favoring transport of arsenic. Although 72 percent of the 47 samples from the Early Mesozoic basin aquifers had arsenic concentrations greater than 1 µg/L, only 6.3 percent of the 206 samples from the PBR crystalline-rock aguifers had arsenic concentrations greater than 1 µg/L (table 4). However, 46 percent of the samples from two crystalline-rock lithologies, metasedimentary rocks and meta-argillite, had concentrations greater than 10 µg/L. The results for the samples from the Early Mesozoic basin aguifers with respect to arsenic obtained in this study are consistent with results of previous studies for these aquifers (Serfes, 1994, 2004; Lindsey and others, 2006; Senior and Sloto, 2006; Harden and others, 2009; Serfes and others, 2010). Although the overall exposure of the population in the study area to arsenic is low, arsenic concentrations are likely to be elevated in some areas that are densely populated in Pennsylvania and New Jersey (figs. 2 and 22). Even in these areas of possible elevated arsenic concentrations in groundwater, the frequency for exceeding the MCL was less than 15 percent.

Manganese

Manganese concentrations were greater than or equal to 4 μg/L in 75 percent of the 330 groundwater samples analyzed in the study; 7.3 percent and 32.1 percent of the samples had concentrations greater than the HBSL of 300 µg/L and onetenth of the HBSL, respectively (table 4). Manganese concentrations generally were elevated in groundwater from the PBR crystalline-rock aquifers (figs. 12D and 16F) where the bedrock and overlying geologic materials contain manganesebearing minerals and geochemical conditions in the aquifer facilitate manganese transport. Only the clastic sedimentary rocks and quartz-rich sedimentary rocks of the Early Mesozoic basin aquifers had concentrations of manganese less than 300 µg/L in all samples (fig. 16F). On the basis of Tukey tests, the mean rank manganese concentrations for the metamorphosed clastic sedimentary and quartz-rich metamorphic lithologic groups of the PBR crystalline-rock aquifers were greater than those for the clastic sedimentary and clastic lacustrine/evaporate sedimentary lithologic groups of the


Early Mesozoic basin aquifers (fig. 16F). The lithochemical subgroup 43 of the mafic igneous and metamorphic lithologic group had the greatest median concentration of manganese (54 μ g/L) of all lithochemical subgroups (table 6). Lithochemical subgroup 43 consists of massive mafic rocks including diorite, gabbro, monzodiorite, diabase, and basalt (table 3 and appendix 1, table 1-1).

The concentration of manganese in groundwater was positively correlated with iron, cobalt, nickel, aluminum (censored at 10 µg/L), and ammonia and negatively correlated with dissolved oxygen, nitrate, phosphate, and vanadium (appendix 1, table 1-7). The relations between dissolved oxygen, manganese, iron, nitrate, and ammonia are consistent with elevated mobility of the reduced forms of manganese (Mn^{+2}) and iron (Fe^{+2}) under reducing conditions (fig. 21B). The positive correlations between manganese, iron, nickel, and cobalt could be attributed to the reductive dissolution of Mn(III-IV) and Fe(III) oxides and the consequent release of sorbed cations (Loganathan and Burau, 1973; Kooner, 1993), whereas the negative correlations between manganese, phosphate, and vanadium could be attributed to the precipitation of Mn(II)-phosphate and associated vanadate compounds under reducing conditions as indicated by the saturation indices for MnHPO₄ and Mn₃(PO₄)₂ (appendix 1, table 1-7). Hence, the frequencies of elevated concentrations of manganese, iron, cobalt, and nickel generally are the opposite of those of nitrate, phosphate, and vanadium as functions of pH and redox conditions (fig. 21*B*).

Although reductive dissolution of Mn(III-IV) oxides could be a primary source of dissolved manganese and associated trace elements in many groundwater samples, it is noteworthy that the highest concentrations of dissolved manganese are associated with low to intermediate values of pH and high concentrations of aluminum (fig. 21 and appendix 1, table 1-7). Low pH can promote the dissolution of various potential sources of manganese, including manganese oxides, common aluminosilicate minerals, such as chlorite, and carbonate minerals, such as calcite and siderite. The carbonate and aluminosilicate minerals, in which Mn⁺² and Fe⁺² commonly substitute for magnesium (Mg⁺²), would tend to be stable under reducing conditions, but not under acidic conditions. Because of incongruent dissolution, the weathering of chlorite and other aluminosilicates may preferentially leach magnesium, iron, manganese, and, to a lesser extent, aluminum, relative to silica (Drever, 1997).

Zinc

Zinc concentrations were greater than or equal to $20 \mu g/L$ in 21 percent of the 253 groundwater samples analyzed in the study; 0.4 percent and 5.5 percent of the samples had concentrations greater than the HBSL of 2,000 $\mu g/L$ and one-tenth of the HBSL, respectively (table 4). Although the highest zinc concentrations were recorded for groundwater samples from the PBR crystalline-rock aquifers (figs. 13*B* and 17*E*), the quartz-rich sedimentary lithologic group of the Early Mesozoic basin siliciclastic-rock aquifers had a higher mean rank

Base from U.S. Bureau of the Census, 1990, 1:500,000 to 1:5,000,000 and Statistics Canada digital data, 2006
Albers Equal-Area Conic projection: Standard Parallels 29°30' N and 45°30' N,
Central Meridian 96°00' W, Latitude of Origin 23°00' N
Lithologic group data from Dicken and others, 2005a and

2005b and Nicholson and others, 2005 and 2006

Figure 22. Areal occurrence of lithochemical subgroups having elevated arsenic concentrations (based on the Tukey mean rank test, table 6) in groundwater within the Piedmont and Blue Ridge Physiographic Provinces.

zinc concentration than all other lithologic groups (fig. 17*E*). In some parts of the study area, this lithologic unit is a local host of zinc ore minerals (Smith, 1977) and, regionally, may have elevated background concentrations of zinc.

Various natural and anthropogenic materials can be important sources of dissolved zinc in groundwater. Zinc may be present as a trace mineral, such as sphalerite (ZnS) or smithsonite (ZnCO₃), or as a trace substitution for calcium, magnesium, or other divalent cations in common carbonate and silicate minerals in aquifers of the study area (Smith, 1977; Hanshaw and Back, 1979). Furthermore, dissolved zinc concentrations and transport can be affected by sorption reactions with carbonate minerals and iron and aluminum oxides (Zachara and others, 1991; Kooner, 1993; Coston and others, 1995). As described previously, dissolved cations, such as Zn⁺², tend to be poorly adsorbed and are relatively mobile at acidic pH, whereas at alkaline pH, the cation concentrations tend to be attenuated by adsorption on HFO and other oxide surfaces (fig. 8). Additionally, zinc can be derived from the corrosion of galvanized casing and pipes used for well construction and water distribution.

The concentration of zinc in groundwater was positively correlated with concentrations of copper, lead, and aluminum and with percentage of forested land use and negatively correlated with pH, concentrations of calcium, magnesium, alkalinity (as calcium carbonate), sulfate, arsenic, and total dissolved solids, percentage of urban land use, and saturation index of calcite and many other minerals (appendix 1, table 1-7). These correlations are consistent with elevated mobility of zinc under acidic, corrosive conditions associated with low pH and low ionic strength. Samples with oxic to anoxic redox conditions and pH less than 7.5 had a higher frequency of elevated zinc concentrations (greater than 10 mg/L) than samples with alkaline pH (fig. 21H). Likewise, concentrations of chromium, copper, lead, cobalt, and nickel were more frequently detected in groundwater samples with low to moderate pH than in groundwater samples with alkaline pH conditions (fig. 21). Low-pH conditions may mobilize zinc and other metals from natural mineral sources or plumbing and inhibit its adsorption by Fe(III), Mn(III-IV), and aluminum-oxides in the aquifer.

Zinc, iron, copper, lead, chromium, nickel, and other metals are commonly used materials for the construction of wells and associated plumbing systems. Different casing types may be used for different hydrogeological conditions. For example, steel and galvanized casing typically are used for small bore, deep wells in fractured bedrock, whereas concrete and plastic casing typically are used for larger bore, shallow wells in regolith or unconsolidated materials or where the water may be corrosive.

To evaluate the ability of plumbing materials to contribute dissolved metals to groundwater samples, boxplots were generated on the basis of the well-casing type (steel, galvanized, concrete, plastic, other) identified with each groundwater sample, and Tukey tests were conducted to evaluate differences among the mean rank concentration values for these sample groups (fig. 23). Although concentrations of

iron and dissolved oxygen were similar for the five different casing types, indicating comparable redox conditions among the groups, the maximum and mean rank zinc concentrations were greatest for samples from wells constructed using galvanized casing, and the mean rank copper concentration was greater for samples from wells constructed using concrete casing (fig. 23). Increased concentrations of zinc may be related to higher pH in deeper bedrock wells with steel or galvanized steel casing, whereas the more acidic pH in shallow wells (generally regolith material) may increase copper concentrations (table 5). Furthermore, the pH was higher for the samples associated with galvanized casing than for the samples associated with concrete casing. These water-quality differences suggest that the aquifer characteristics affect the type of well construction and (or) that the casing type affects the water chemistry.

To evaluate the apparent effect of galvanized casing on zinc concentrations, the 24 samples identified with galvanized casing were eliminated from the dataset before recreating the boxplots and the Tukey tests for the nine major lithologic groups. Although fewer samples were associated with each of the lithologic groups, the boxplots and Tukey test results did not differ from the original results. Despite eliminating samples associated with galvanized well casing, the quartzrich sedimentary lithologic group of the Early Mesozoic basin siliciclastic-rock aquifers had a higher mean rank zinc concentration than all other lithologic groups (fig. 17*E*). The concentration of zinc in groundwater from the ultramafic lithologic group also was elevated, but this group only had a sample size of two, so the data could not be rigorously evaluated.

Alkalinity, Hardness, and Dissolved Solids

Calcite clasts, fracture filling, and cements in some sedimentary-rock aquifers can dissolve easily and lead to high levels of alkalinity, hardness, and TDS. High alkalinity in such aquifers helps to maintain stable, near neutral pH (6 to 8). Thus, corrosivity, pH, hardness, and TDS generally are related by the calcite saturation index, which is equal to the Langelier index of corrosivity (Drever, 1997). In general, the samples from the clastic sedimentary and clastic lacustrine/ evaporite sedimentary lithologic units had the highest overall saturation indices for calcite, dolomite, and other carbonate minerals (fig. 18).

Only a few wells sampled from the Early Mesozoic basin siliciclastic-rock aquifers had groundwater that was classified as hard (calcium carbonate equivalent 150 to 300 mg/L) or very hard (calcium carbonate equivalent greater than 300 mg/L) (fig. 10*D*). Samples of water from the PBR crystalline-rock aquifers frequently were characterized as soft and had pH values less than the recommended pH of 6.5 (fig. 12*A*). Moderate hardness with neutral pH is considered desirable because soft water with low pH can corrode plumbing and facilitate the dissolution of various aquifer minerals, whereas hard water with high pH can lead to scaling and clogged plumbing (encrustation) (Hem, 1985).

Figure 23. Concentrations of selected metals and associated constituents in groundwater by casing type for wells in siliciclastic- and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces.

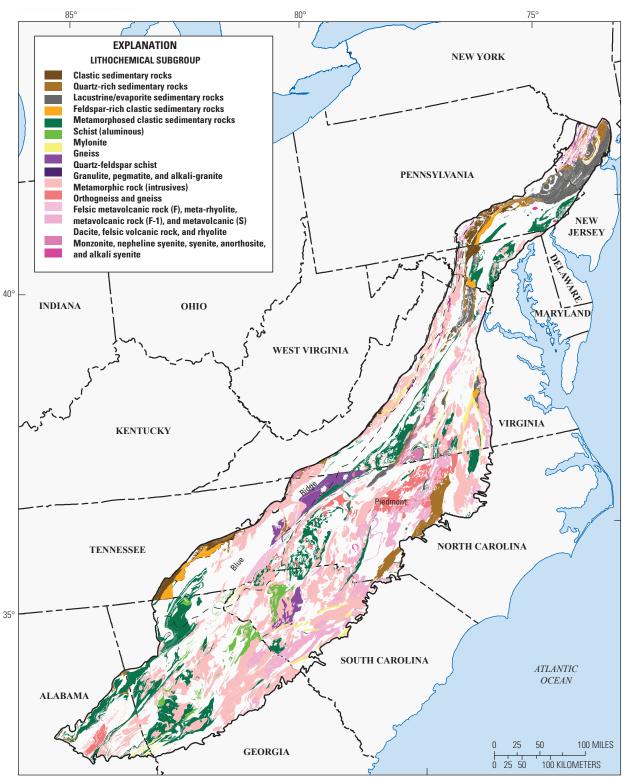
Antimony, Lead, Barium, and Molybdenum

Antimony was detected in only 11 of 202 samples from crystalline-rock aquifers; none of the 30 samples from siliciclastic-rock aquifers had detectable concentrations of antimony (table 4, fig. 14D). One sample from the metamorphosed clastic sedimentary lithologic group of the crystalline-rock aquifers had a concentration of antimony of 10.4 μ g/L, which exceeded the MCL of 6 μ g/L; four samples had concentrations greater than one-tenth of the MCL (table 4).

None of the samples evaluated for this study had concentrations of lead, barium, or molybdenum greater than their respective MCLs (table 4). However, 23 of 253 samples analyzed for lead had concentrations greater than one-tenth of the 15-µg/L MCL (9.0 percent of samples had concentrations greater than 1.5 µg/L); 31 of 253 samples analyzed for barium had concentrations greater than one-tenth of the 2,000-µg/L MCL (12.3 percent of samples had concentrations greater than 200 μg/L); and 16 of 230 samples analyzed for molybdenum had concentrations greater than one-tenth of the 40-µg/L HBSL (7.0 percent of samples had concentrations greater than 4 μg/L). A greater frequency of elevated barium concentrations was observed for groundwater samples from siliciclasticrock aguifers compared to those from crystalline-rock aguifers (table 4, figs. 14A and 17A), whereas lead concentrations were more frequently elevated in samples from the crystalline-rock aquifers (table 4, figs. 13D and 17C).

Lead and barium generally occur as divalent cations in carbonate, sulfate, and sulfide minerals and associated groundwater. These trace cations commonly substitute for calcium or magnesium in major carbonate and sulfate minerals in aquifers (Back and others, 1979). The sulfate minerals anglesite (PbSO₄) and barite (BaSO₄) and the carbonate minerals cerrusite (PbCO₂) and witherite (BaCO₂) can be stable in surficial environments where concentrations of sulfate or alkalinity (dissolved carbonate) are elevated (Cravotta, 2008b). For example, barite saturation index values greater than 0 for many samples from the clastic lacustrine/evaporite sedimentary lithologic group and for one or more samples from several other lithologic groups indicate potential for barite precipitation to limit the concentration of barium. Generally, samples that were saturated with barite had elevated concentrations of sulfate and barium (figs. 15 and 17), which were positively correlated for the dataset as a whole (appendix 1, table 1-7). However, negative values of saturation indices for witherite for all samples and for barite for a majority of samples indicate that these minerals feasibly could dissolve, under most of the geochemical conditions under which these samples were collected, if present in the aquifer (fig. 19). Likewise, all the groundwater samples analyzed in this study were undersaturated with respect to anglesite, cerrusite, and other lead minerals, indicating that such minerals could feasibly dissolve (fig. 19).

Iron oxides can adsorb lead at relatively low pH values, with increasing potential for adsorption as pH increases; however, iron oxides are not strong adsorbents of barium at pH values less than 8 (fig. 8). Consequently, groundwater


samples with low pH (4.5 to 5.5) had the greatest frequency of lead concentrations greater than the 1- μ g/L HCRL (fig. 21F), whereas groundwater with neutral to alkaline pH had the highest frequency of barium concentrations greater than one-tenth of the 2,000- μ g/L MCL (fig. 21M). In contrast with lead and barium, molybdenum tends to occur in groundwater as the oxyanion molybdate, with characteristics similar to chromate and tungstate ions (Cotton and others, 1999). As for other oxyanions with decreased adsorption at neutral to alkaline pH (fig. 8), groundwater with pH greater than or equal to 6.5 had the greatest frequency of molybdenum concentrations greater than the 1- μ g/L HCRL (fig. 21K).

Radionuclides

The presence of uranium and radium in water requires a uranium source (parent of radium) in the host rock (fig. 9) and geochemical conditions in the aquifer that are conducive to transport of these elements. Radon, however, is highly soluble and is related primarily to the abundance of uranium in the rock. The variation in uranium content in rocks is generally understood, and this provides key background information on the potential sources of uranium, and thus radium and radon, its progeny. Overall, a comparison of the aquifers in the study area suggests that the elevated concentrations of the various radionuclides are distributed in ways that are consistent with their lithological sources and their chemical and radiological properties. Thorium is the source of two isotopes of radium, but it is insoluble in common water geochemical types found in the natural environment, except in those representing the most extreme geochemical environments (strongly acidic or strongly alkaline; Langmuir and Herman, 1980) that are not found in the aguifers in the study area.

For some radionuclide contaminants, knowledge of specific lithology (for example, felsic compared to mafic rocks or lacustrine compared to quartzose siliciclastic rocks) is needed to explain differences in occurrence that gross lithology (siliciclastic compared to crystalline) cannot. The lithogeochemical framework developed for the PBR crystalline-rock aquifers and the Early Mesozoic basin aquifers discussed in earlier sections of this report was used to identify specific lithologic groups with greater potential for radiochemical contaminants. Uranium is present in trace amounts in all rock types but can become enriched relative to background concentrations in certain rock types because of its high solubility in certain water types and because of the wide variety of chemical reactions in which it can participate (Langmuir, 1978; Turner-Peterson, 1980; Hodge and others, 1998).

Water from areas underlain by more felsic crystalline bedrock (fig. 24) is assumed to be more likely to contain elevated concentrations of these naturally occurring radionuclides; however, differential weathering of specific minerals and rock types (Speer and others, 1981; Michel, 1984) may control the geochemical environment and thereby the concentrations of radionuclides and associated constituents in

Base from U.S. Bureau of the Census, 1990, 1:500,000 to 1:5,000,000 and Statistics Canada digital data, 2006 Albers Equal-Area Conic projection: Standard Parallels 29°30' N and 45°30' N, Central Meridian 96°00' W, Latitude of Origin 23°00' N Lithologic group data from Dicken and others, 2005a and

2005b and Nicholson and others, 2005 and 2006

Figure 24. Areal occurrence of felsic lithologic groups within the Piedmont and Blue Ridge Physiographic Provinces.

groundwater. Transport characteristics of uranium, radium, and radon differ; thus, areas underlain by rocks with the highest uranium content, which are the felsic rocks in the PBR crystalline-rock aquifers, do not always have the highest concentrations of all three of these radionuclides.

Uranium

Less than 1 percent of the samples from the aquifers exceeded the 30-µg/L MCL for uranium (table 4). Although the highest single measurement of uranium of 97 µg/L was in a sample taken from paragneiss from the metamorphosed clastic sedimentary lithologic group in the PBR crystalline-rock aquifers, samples from the Early Mesozoic basin aquifers had statistically higher concentrations of uranium than the samples from the PBR crystalline-rock aquifers (table 6; fig. 17). Previous studies indicate that these two areas have a combination of sources of uranium in or near the aquifer, with conditions conducive to mobilization and transport of uranium (Turner-Petersen, 1980; Szabo and Zapecza, 1991).

Clastic sedimentary and lacustrine clastic sedimentary lithologic groups within the Early Mesozoic basin aquifers had elevated median concentrations of uranium (greater than 1 μg/L) (fig. 17). The highest median uranium concentration values of 3.6 and 3.1 μg/L were for the clastic sedimentary (CLSD group, subgroup 21) and clastic lacustrine (CLSD-LAC group, subgroup 22e) lithologic groups, respectively, of the Early Mesozoic basin (tables 3, 6, and 1-1). Of 50 water samples from Early Mesozoic basin sedimentary-rock aquifers analyzed for uranium, the concentrations were greater than 4 µg/L in about 26 percent (13 samples) and were greater than 3 µg/L in 46 percent of the samples (appendix 1, tables 1-3 and 1-4). For these rock types, only 22 percent of the samples contained uranium concentrations that were less than 1 µg/L; however, only 2 percent of the samples had uranium concentrations that exceeded 10 µg/L, and the maximum uranium concentration was 12 µg/L.

The uranium concentration distribution was more bimodal for the water samples from most crystalline-rock aguifers, especially the granites, metasediments, biotite gneisses, and paragneisses, which have sedimentary origin and had the highest individual uranium concentrations (tables 3 and 1-1). A few water samples (1.1 percent) from these crystalline-rock aguifers contained uranium concentrations in excess of 10 μ g/L, and a few samples (0.8 percent) contained uranium concentrations in excess of the 30-µg/L MCL; however, the majority of samples (89 percent) contained concentrations less than 1 µg/L (appendix 1, table 1-4). Of water samples from the crystalline-rock aguifers, only about 6 percent contained uranium concentrations greater than 4 μg/L, and about half of those samples (7), were from granite and granite gneiss. The two highest uranium concentrations, 97 and 39 µg/L, were detected from paragneiss (sedimentary origin, now metamorphosed) and granite, respectively.

The geographic distribution of these clastic sedimentary (CLSD group, subgroup 21, appendix 1, tables 1-3 and 1-1)

and clastic lacustrine sedimentary (CLSDLAC group, subgroup 22e) lithochemical subgroups is shown in figure 25. Common lithologies for these siliciclastic groups are argillite, arkose, conglomerate, fine-grained mixed clastic, mudstone, sandstone, shale, siltstone, and greywacke. Common lithologies for the crystalline groups are granite, biotite gneiss, gneiss, and other metasediments. (Note that some clastic sedimentary rocks are mapped in the Blue Ridge Physiographic Province; fig. 25). The clastic sedimentary and lacustrine clastic sedimentary lithologic subgroups of the Early Mesozoic basin aquifers and the PBR crystalline-rock aquifers have a source of uranium and geochemical characteristics conducive to transport of uranium.

Uranium in the PBR crystalline-rock aquifers and Early Mesozoic basin aquifers occurs most commonly in groundwater that has higher values of pH under oxic geochemical conditions. Of the 29 water samples with the highest uranium concentrations (>4 µg/L), 16 (55 percent) had pH values greater than or equal to 7.3. In the grouping of samples in which the concentrations of uranium exceeded 1 µg/L, 73.4 percent (47 of 64 samples) had pH values that were neutral to alkaline (greater than or equal to 7.0), and 32.8 percent (21 of 64 samples) had a pH greater than or equal to 7.5. Conversely, in samples where uranium concentrations were low (less than 1 μg/L), the samples were overwhelmingly acidic, with pH less than 7.0 in 211 (86.8 percent) of 243 samples with pH measurement. For samples with pH less than 7.0, the samples with near-neutral pH (6.5–7.0) had the greatest frequencies for exceeding 1 µg/L highest common reporting level (fig 21.0). The strong correlation between uranium concentrations and pH in groundwater is not surprising because of the important role pH and alkalinity (carbonate complexation) play in the geochemical mobilization of uranium. Uranium concentrations were positively correlated with pH, specific conductance, and concentrations of alkalinity, calcium, sodium, sulfate and several trace elements. The trace elements having the strongest positive correlations with pH and alkalinity were arsenic, boron, and molybdenum, all of which form oxyanions (Hodge and others, 1998) that tend to be mobile in alkaline environments (tables 5 and 1-7).

Higher concentrations of arsenic and uranium tend to occur in water with elevated pH conditions; this association is indicative of increased weathering processes (PC1, table 5). The high concentrations are consistent with the hypothesized increase in the mobility of the oxyanions under high-pH conditions, as the calculated adsorption/desorption model profiles for uranium and arsenic indicate (fig. 8). Laboratory experiments have repeatedly shown that while uranium sorbs strongly to iron-hydroxides and clays, uranium is readily desorbed from iron hydroxides and clays with increasing pH, especially in the presence of carbonate alkalinity (Hsi and Langmuir, 1985; Echevarria and others, 2001; Logue and others, 2004). Uranium concentrations are negatively correlated with concentrations of DO and iron (appendix 1, table 1-7), which is a constituent whose occurrence is strongly affected by redox conditions. These correlations are consistent with

Base from U.S. Bureau of the Census, 1990, 1:500,000 to 1:5,000,000 and Statistics Canada digital data, 2006 Albers Equal-Area Conic projection: Standard Parallels 29°30' N and 45°30' N, Central Meridian 96°00' W, Latitude of Origin 23°00' N
Lithologic group data from Dicken and others, 2005a and

2005b and Nicholson and others, 2005 and 2006

Figure 25. Areal occurrence of lithochemical subgroups having elevated uranium concentrations in groundwater (based on Tukey mean rank tests, table 6) within the Piedmont and Blue Ridge Physiographic Provinces.

the thermodynamic property of uranium—the more oxidized species form oxyanions that are much more soluble than the reduced species (Langmuir, 1978), especially with more alkaline pH. Uranium concentrations also are negatively correlated with concentrations of aluminum. Aluminum is not a redox-sensitive constituent, but its solubility increases with decreasing pH (more acidic conditions); uranium solubility is optimal in the opposite conditions (with increasing pH or more alkaline conditions).

The general lack of correlation between radon and uranium concentrations among the water samples, previously noted for sediments of the Early Mesozoic basins by Szabo and Zapecza (1991), indicates that geochemical environment more strongly controls the dissolution of uranium than that of radon. A favorable geochemical environment (high pH and alkalinity) is critical for mobilizing uranium, whereas radon is readily soluble in any type of water (either acidic or alkaline). Previous sampling and analysis of the Early Mesozoic basin sediments have similarly shown that uranium concentrations tend to be highest (uranium is most mobile) in oxidizing alkaline water (Szabo and Zapecza, 1991). Previous sampling efforts for granites and gneisses of the Blue Ridge also indicate the lack of correlation between radon and uranium concentrations but indicate that high pH and alkalinity tend to be the favorable geochemical conditions for uranium occurrence (Vinson and others, 2009).

Radon

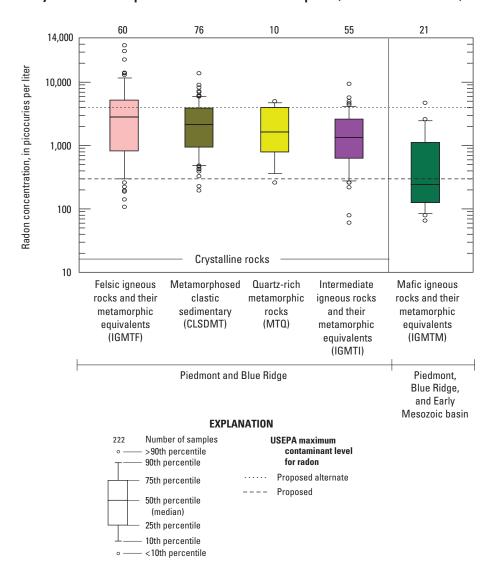
Concentrations of radon-222 exceeded the proposed AMCL of 4,000 pCi/L in 19 percent of the samples from the PBR crystalline-rock aquifers and from the Early Mesozoic basin siliciclastic-rock aquifers (table 4). Concentrations exceeded 3,250 pCi/L in 25 percent of samples, and 30 percent of the samples had a concentration greater than 3,000 pCi/L. Overall, 90 percent of the samples had radon concentrations greater than the proposed MCL of 300 pCi/L. The overall median for the entire sample set is 1,800 pCi/L, thereby exceeding the proposed MCL by a factor of 6. Median concentrations are substantially greater than the proposed MCL of 300 pCi/L, except for the those samples from the combined set of mafic igneous and metamorphic rocks and ultramafic-rock lithologic groups (IGMTM median 355 pCi/L and ULMAF median, 240 pCi/L; tables 3 and 1-1; fig. 17). Median radon concentrations for all of the lithologic groups of aquifers start at about 1,200 pCi/L for the quartz-rich sedimentary and metamorphosed clastic sedimentary lithologic groups and increase substantially for other lithologic groups. The maximum radon concentration was 38,000 pCi/L in a sample from felsic biotite gneiss. Six of the seven wells with the next highest radon concentrations, all greater than 10,000 pCi/L, were from granite.

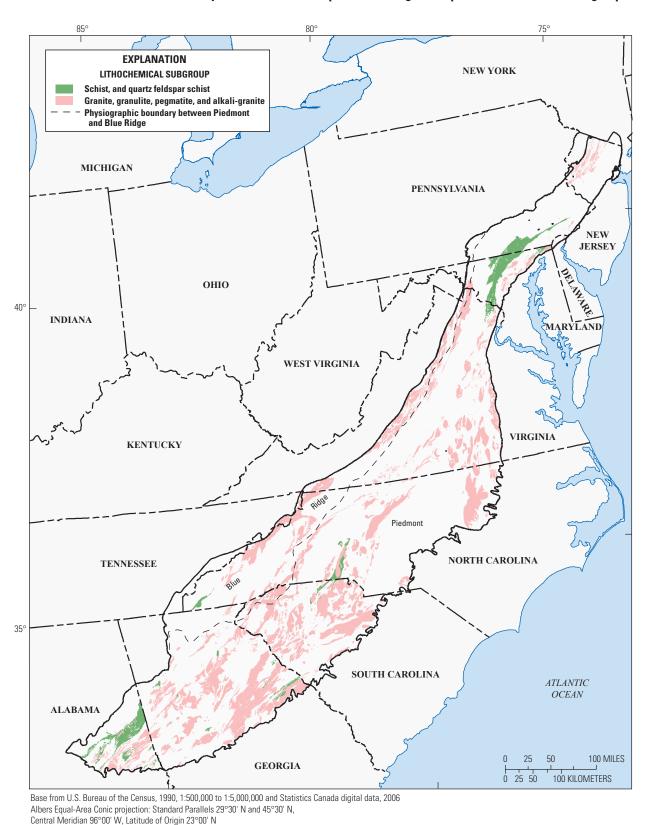
Within the PBR crystalline-rock aquifers, the highest median concentrations of radon were detected in samples from wells completed in the felsic igneous and the metamorphosed clastic sedimentary lithologic groups (fig. 26). Although radon

had similar mean rank and median concentrations for many lithologic groups in the PBR crystalline-rock aquifer (table 6), each of the lithologic groups had large ranges in concentrations. The mafic/ultramafic lithologies had notably lower concentrations of radon, had the lowest mean rank, and had the lowest median concentration of 240 pCi/L (fig. 17). Half of all samples with radon concentrations less than 200 pCi/L were from the mafic igneous and metamorphic and ultramafic lithologic groups, which is consistent with findings from previous studies in areas of the PBR (Senior, 1998; Sloto, 2000). The median concentrations of 3,530 pCi/L for granite (felsic igneous and metamorphic lithogy) and 3,600 pCi/L for schist (metamorphosed clastic sedimentary lithology) were the highest among all of the rock-aquifer types, and these two groups had the statistically highest radon concentrations (table 6; fig. 27). Within the felsic igneous and metamorphic crystalline-rock lithologic group (IGMTF group, tables 3 and A1), samples from areas underlain by a specific rock type (granite, subgroup 61, appendix 1, table 1-1) had concentrations of radon exceeding 4,000 pCi/L in 47 percent of the samples, a frequency that was twice as great as that from any of the other rock types. About 24 percent of samples from the gneiss and schist metasediments had concentrations of radon exceeding 4,000 pCi/L.

The Early Mesozoic basin siliciclastic lithologic groups had radon concentrations that generally are comparable to those of the PBR crystalline-rock aguifer lithologic groups (table 6; fig. 17). The Early Mesozoic basin lacustrine siliciclastic lithologic group within the Piedmont also had a median value that was about 1,800 pCi/L, and a small percentage of samples (about 8 percent) had a concentration greater than 4,000 pCi/L (table 6; fig. 17), with a maximum of 5,000 pCi/L. Concentrations of radon exceeded 8,000 pCi/L in 21 percent of samples from granitic aquifers (IGMTF lithologic group, lithochemical subgroup 61) and in 6 percent of samples from schistose aquifers (CLSDMT group, lithochemical subgroup 32u). The remaining Early Mesozoic basin siliciclastic lithologic groups within the Piedmont also had median concentrations of radon greater than 1,000 pCi/L, but less than 3,000 pCi/L (table 6).

Radon is highly soluble and generally is not affected by chemical reactions because it is a noble gas. Radon gas was ubiquitous, and concentrations exceeded the proposed MCL of 300 pCi/L in samples collected under all geochemical conditions encountered during this study, including pH ranging from 4.5 to 8.5 and oxic and anoxic conditions. The higher proposed AMCL of 4,000 pCi/L was also exceeded in samples collected from all types of geochemical conditions (fig. 210). Radon concentrations generally were higher in water that was classified as oxic as opposed to waters that were classified as anoxic. Acidic to neutral groundwater with oxic or mixed redox characteristics had the greatest frequency of samples with concentrations exceeding the 4,000-pCi/L AMCL for radon (fig. 21Q). Radon concentrations were highest where water was most corrosive and substantial rock (mineral) weathering was likely occurring. These geochemical




Figure 26. Radon concentrations in groundwater samples related to composition of lithologic group.

conditions are consistent with those noted for granites, which tend to yield the highest radon concentrations. The positive corresponding loading of radon and potassium together in PCA (PC5 in table 5 and 1-7) is also consistent with the highest occurrence of radon in felsic rocks, especially granites, which generally contain potassium feldspar and potassium-bearing mica minerals, such as muscovite, biotite, or phlogopite.

Because radon is highly soluble in waters of all geochemical types encountered in the region, the occurrence of radon is related primarily to the abundance of uranium in the rock. Gamma-ray spectral emission maps constructed from measurements during aerial overflights of the United States in the late 1970s as part of the USGS National Uranium Resource Evaluation (NURE) Program (Duval and Riggle, 1999) reveal a broad range of radionuclide contents. These data include the equivalent uranium-238 content interpolated on the basis of

gamma emissions in the upper 25 centimeters of soil, surface sediments, or rock, which can indicate the general presence of radionuclide-enriched rock as shown in figure 28. Results from the Tukey mean rank test suggest that only the granitic rocks (61) and undifferentiated schist (32u) lithochemical subgroups had statistically higher concentrations of radon in groundwater compared to other lithochemical subgroups; however, other areas shown in warm colors in figure 28, such as the eastern Piedmont of North Carolina, suggest that other felsic rocks, including metavolcanics (lithochemical subgroup 61mv), may also be important sources of radon.

Uranium is present in trace amounts in all the rock types from the region but is strongly enriched relative to background concentrations in some of the bedrock types. Overall, a comparison of the aquifers in the study area suggests that elevated concentrations of uranium in bedrock most commonly were noted in the PBR crystalline-rock aquifers, especially granite

Figure 27. Areal occurrence of lithochemical subgroups having elevated radon-222 concentrations in groundwater (based on the Tukey mean rank test, table 6) within the Piedmont and Blue Ridge Physiographic Provinces.

Lithologic group data from Dicken and others, 2005a and 2005b and Nicholson and others, 2005 and 2006

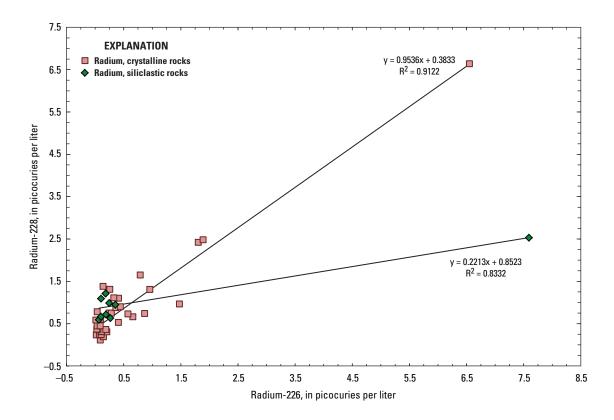
Base from U.S. Bureau of the Census, 1990, 1:500,000 to 1:5,000,000 and Statistics Canada digital data, 2006 Albers Equal-Area Conic projection: Standard Parallels 29°30' N and 45°30' N, Central Meridian 96°00' W, Latitude of Origin 23°00' N

Lithologic group data from Dicken and others, 2005a and 2005b and Nicholson and others, 2005 and 2006;

Uranium gamma counts from National Uranium Resource Evaluation (NURE) database

Figure 28. An overlay of areal occurrence of lithochemical subgroups having elevated radon-222 concentrations and U.S. Geological Survey National Uranium Resource Evaluation Program uranium measurements in groundwater within the Piedmont and Blue Ridge Physiographic Provinces.

and gneiss (metasediment), but high values are also present in most of the region underlain by the Early Mesozoic basin sediments, especially the lacustrine siliciclastic sediments. The variation in uranium content in the rock types of the region provides the key background upon which the concentrations of radon can be overlain and interpreted. The intersecting distribution of elevated uranium concentrations in bedrock and elevated radon concentrations in groundwater demonstrates that bedrock uranium distribution is the source, and thus is the most useful potential explanatory factor for radon concentrations (fig. 28). There is a large difference in the concentration of uranium in the granites relative to concentrations in the mafic rock or in some of the quartz-rich sediment. Thus, the large differences in concentrations of radon-222 that are observed regionally among these rock types is to be expected. based on the variable bedrock uranium contents.


Theoretically, the concentration of radon-222 in groundwater is directly proportional to the concentration of uranium in the rock-aguifer matrix (Wanty and others, 1992). The distribution of radon in water on the basis of the collected concentration data from the sampled well sites from the Piedmont Early Mesozoic basin and PBR crystalline-rock aquifers is consistent with the distribution of uranium in the bedrock, with the most extreme radon values corresponding to the most uraniferous lithologic types. The differences in possible concentrations of uranium among the various rock types may be relatively large, as much as a full order of magnitude or more for granites relative to mafic rocks; hence, the lithologic control on radon-222 concentrations is predominant in the PBR crystalline-rock aguifer. Concentrations of radon-222 in groundwater and concentrations of uranium in the rock-aquifer matrix were crudely correlated also for felsic crystalline rock and for the thin glacial sand and gravel aguifer systems in the northeastern United States (Avotte and others, 2007). Many other factors can affect the radon-222 concentrations to some degree, however, including porosity and the efficiency of radon-222 emanation (Wanty and others, 1992). In the crystalline-rock aguifer types, the common occurrence of the uranium-bearing minerals along grain margins is well documented (Speer and others, 1981; Michel, 1984; Davis and others, 1987), again emphasizing the importance of granites and similar crystalline-rock types for yielding the highest radon concentrations. The variability in emanation can be affected by geochemistry and other associated factors because the geochemistry may directly affect the fate of the radium-226 parent of the radon; for example, sorption of radium to grain surfaces may be enhanced or minimized. Thus, variability in emanation may have a small effect on the overall radon-222 concentrations in the PBR crystalline-rock aguifer. The emanation effect is likely too small to be notable on the regional scale in comparison to the large variability of bedrock uranium concentrations, but may be one minor factor that further explains some of the local-area variation noted within a single rock type. Further evaluation of such local-area variation is outside of the scope of this study.

Radium

Only 2 percent of the samples analyzed for radium had concentrations that exceeded the 5-pCi/L MCL for combined radium-226 and radium-228. Three percent of samples from the Early Mesozoic basin aquifers had concentrations that exceeded the MCL (table 4). [Radium data were not analyzed from some of the lithologic groups, and the number of samples per group was often small (fig. 17H).] Of the aquifers that had radium data, the siliciclastic-rock lacustrine aquifers had the highest median concentrations of radium. The only lithologic groups within the Piedmont that contained samples with concentrations greater than the 5-pCi/L MCL for combined radium-226 and -228 were the felsic igneous and metamorphic lithologic group (IGMTF, tables 3, 4, and 1-1) in the PBR crystalline-rock aguifers (sample from granite with a concentration of 13.19 pCi/L) and the clastic lacustrine/ evaporate sedimentary groups of the Early Mesozoic basin aquifers (sample from lacustrine siltstone with a concentration of 10.12 pCi/L; tables 1-3 and 1-4). In two additional samples, the combined radium concentration exceeded 4 pCi/L; one of those samples was from biotite gneiss (IGMTI group, subgroup 34bg), and the other was from granite gneiss, which is derived from granite (IGMTF group, subgroup 61). The mean rank of concentrations was not significantly different among many of the lithologic groups because of the small range in concentrations for each lithochemical subgroup, the large number of samples for which the concentrations of the radium isotopes were low or not detected, and the limited number of samples available for each group (appendix 1, table 1-6 and fig. 17H). Additional issues with regard to the detection of the radium isotopes are briefly discussed in appendix 3.

A few samples collected in areas underlain by uranium-rich sandstone or siltstone in the Early Mesozoic basin aquifers had concentrations of radium-226 that were substantially higher than the associated concentrations of radium-228. In general, the concentration ratios of radium-226 to radium-228 were highly variable among the siliclastic lithologic groups; however, the concentrations of these two radionuclides were nearly equal (about 1:1 ratio) in most samples from the felsic igneous and metamorphic crystalline-rock lithologic group (fig. 29).

Concentrations of radium isotopes exceeded the 5-pCi/L MCL and the 1-pCi/L common detection threshold more frequently in samples with anoxic or mixed geochemical conditions than did concentrations in samples with oxic geochemical conditions, usually with neutral to alkaline pH (fig. 21*R*). The effect of enhanced solubility of radium in the anoxic-type waters is the most important factor explaining the occurrence of the occasionally elevated concentrations of radium in the PBR bedrock aquifers, in terms of statistical significance (as illustrated by the correlation with dissolved oxygen; PC3; appendix 1, table 1-7 and table 5) and in terms of occurrence of the highest concentration values. For the two samples that had a combined radium concentration that exceeded the MCL of 5 pCi/L, the DO concentration was less than 0.5 mg/L and

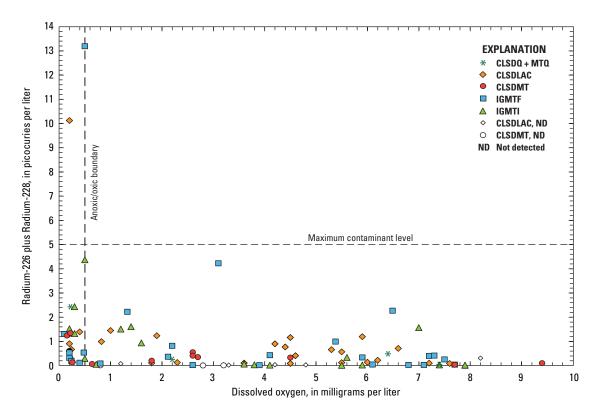


Figure 29. Relations between concentrations of radium-228 and radium-226 in samples from bedrock aquifers of the Piedmont and Blue Ridge Physiographic Provinces.

the concentration of manganese (an element far more soluble in anoxic than in oxic waters) was greater than 0.05 mg/L in both. Of the seven samples in which the combined radium concentration exceeded the level of 2 pCi/L, five samples had DO concentrations less than 0.5 mg/L, and six samples had concentrations of manganese greater than 0.05 mg/L. The frequency of occurrence for concentrations of combined radium to be greater than or equal to 1 pCi/L was evaluated among samples of water from three Ra-bearing rock aquifer groups [felsic igneous and metamorphic lithologic group in the PBR crystalline-rock aquifers, including granite; the lacustrine clastic sedimentary groups of the Early Mesozoic basins aguifers; and biotite gneiss (IGMTI group, subgroup 34bg, tables 3 and 1-1)]. Combined radium was greatest when DO was less than or equal to 1 mg/L (anoxic). Four of the five highest concentrations of radium-226 occurred when DO concentrations were less than 0.5 mg/L.

Concentrations of combined radium are negatively correlated with DO concentration (appendix 1, table 1-7). Concentrations of combined radium with respect to DO are shown in figure 30; the relation is nearly hyperbolic, indicating that radium concentrations are high when DO is absent and lower or absent when DO is abundant. Combined radium-228 and radium-226 (total radium) concentrations also have positive

correlations with iron and manganese concentrations (appendix 1, table 1-7, abbreviated as RaTOT). The indirect correlations of concentrations of radium with concentrations of DO coupled with the direct correlations with the concentrations of iron and manganese are indicative of the ongoing geochemical processes that allow for the most common mobility of radium: lack of adsorption to iron- and manganese-hydroxides and oxyhydroxides in anoxic environments. Laboratory studies have shown that radium is readily adsorbed by clay minerals (Ames and others, 1983a), but has an even stronger pattern of preferential adsorption to amorphous iron- and manganeseoxyhydroxides (Moore and Reid, 1973; Ames and others, 1983b; Benes and others, 1984). A consequence of this strong adsorption pattern for radium is that natural iron-oxyhydroxide samples have shown that they contain much more radium than the surrounding rock matrix (Korner and Rose, 1977). Reductive dissolution of the iron oxyhydroxides in anoxic conditions releases radium to the water as demonstrated by dissolving such oxyhydroxides from sediments and observing the sharp increase in the amount of radium in solution (Landa and others, 1991). The adsorption properties of radium with respect to iron oxyhydroxides (hydrous ferric oxide) under variable pH conditions are illustrated in figure 8. In neutral and alkaline waters, nearly complete adsorption of radium to

Figure 30. Relations of concentrations of radium-226 plus radium-228 and dissolved oxygen for samples from siliclastic-rock and crystalline-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces, 1994–2008.

iron oxyhydroxides is indicated. In anoxic conditions with reductive dissolution of iron oxyhydroxides, the aquifer loses a considerable sink for radium from the solid phase, thus allowing for a greater amount of radium to be in solution.

The nearly hyperbolic trend among the concentrations of radium and dissolved oxygen observed in the Appalachian PBR crystalline-rock aquifers is consistent with similar trends observed in other principal aquifers of the United States (Szabo and others, 2012a, fig. 3). The somewhat greater frequency of occurrence of radium in anoxic conditions is the most important factor controlling radium in aquifers used for drinking water supply in the United States (Szabo and others, 2012b). The occurrence pattern, whether in the Appalachian PBR crystalline-rock aquifers or in the larger setting of the continental United States, reflects the critical role that sorption processes, specifically to iron (and manganese) oxyhydroxides, play in controlling the concentration of radium in dilute groundwaters.

Data from this study show that among the Appalachian PBR siliciclastic-rock and crystalline-rock aquifers, oxic groundwater is more common than anoxic groundwater, causing a greater frequency of elevated uranium concentrations relative to radium-226. These findings are consistent with results from previous studies (Szabo and Zapecza, 1991; Vinson and others, 2009). Dissolved oxygen was usually present

in detectable amounts for most, though not all, samples that contained uranium; however, dissolved oxygen was usually not present, or was present in very low amounts, for most samples that contained radium. Concentrations of uranium correlated directly and strongly with pH, indicating a lithochemical relation in occurrence patterns to rock types with the presence of bicarbonate-rich, near-neutral to alkaline waters (table 5, PC1).

For samples with oxic characteristics, radium concentrations tended to be low, but exceeded the 1-pCi/L threshold most frequently for low-pH conditions. Low concentrations of radium generally are consistent with the high potential for adsorption of the divalent radium cation by iron oxides under neutral to alkaline conditions, but not under acidic conditions in which radium tends to desorb (fig. 21R). Groundwater in the study area is not usually acidic, but in the adjoining Coastal Plain (fig. 6), pH is commonly less than 5.0, and combined radium concentrations exceed the MCL in about 20 to 30 percent of sampled wells (Szabo and others, 2005, 2012b). Data from other studies indicate that elevated radium-226 and radium-228 concentrations more frequently occur in groundwater in acidic formations in the PBR crystalline-rock aquifers (such as the Chickies Quartzite, Senior and Vogel, 1992). Because of the limited radium data collected for the current study, results of the assessment should not be considered

strictly representative of the probability of elevated radium in the PBR crystalline-rock aquifers in all lithochemical subroups, which have great diversity in lithochemical composition and geochemical environments.

Gross Alpha-Particle Activity

Approximately 8 percent of the samples analyzed for gross alpha-particle activity from the entire dataset exceeded the MCL of 15 pCi/L. For the measured gross alpha-particle activity to exceed the USEPA drinking water MCL, the activity, excluding that from uranium (all isotopes of uranium emit alpha particles), must exceed 15 pCi/L. Only 2 percent of the samples exceed the gross alpha-particle activity MCL if presumed uranium activity is excluded from the measured gross alpha-particle activity. Perhaps equally important is the concept that gross alpha-particle activity might be of use as a compliance-monitoring "screen" for combined radium (Hess and others, 1985) or as an indicator for the presence of high concentrations of uranium, radium, or both. The measured gross alpha-particle activity is further examined in light of this concept.

Most samples with the highest values of gross alphaparticle activity greater than 15 pCi/L (table 7), contained elevated concentrations of alpha-particle-emitting radium-226 or uranium, and on some occasions, both. The MCL for combined radium or uranium was exceeded in some, but not all, samples with gross alpha-particle activity greater than 15 pCi/L. The maximum uranium concentration among the samples was 97.4 μ g/L, and this sample (from paragneiss rock type, appendix 1, tables 1-1 and 1-3; CLSDMT group, subgroup 35gn) had the highest gross alpha-particle activity of 78.3 pCi/L. Similarly, the sample with the second highest uranium concentration (39.3 µg/L) from granite (IGMTF subgroup 61; appendix 1, tables 1-1 and 1-3) had the second highest gross alpha-particle activity (33.1 pCi/L). The two samples with the highest radium-226 concentrations [7.6] and 6.6 pCi/L, respectively, from the siliciclastic lacustrine/ evaporite sedimentary rock group (CLSDLAC tables 3 and appendix 1, table 1-1) and the felsic igneous lithologic group (granite rock type; appendix tables 1-1 and 1-3, IGMTF group, subgroup 61)] had gross alpha-particle activity of about 30 pCi/L. Samples with moderate gross alpha-particle activities (5 to 14.99 pCi/L) occasionally contained moderate concentrations of radium-226 (0.95-1.9 pCi/L) or uranium (4–13 μ g/L), but the MCL itself was not exceeded for either of these radioactive constituents. Of five samples with radium-226 concentrations greater than 1 pCi/L, all had measured gross alpha-particle activity greater than 5 pCi/L (tables 7 and 1-4). Most of these samples with moderate gross alpha-particle activities were from the siliciclastic-rock clastic lacustrine/evaporite sedimentary lithologic group (CLSDLAC tables 3 and 1-1) within the Early Mesozoic basin aquifers and from the granite (IGMTF group, subgroup 61) and biotite gneiss (intermediate igneous and metamorphic rocks, tables 3 and 1-1 IGMTI group, subgroup 34bg) PBR crystalline-rock

aquifers. The samples from these lithologic groups also had the highest frequency of occurrence of gross alpha-particle activity, radium-226, and uranium, with concentrations above their respective MCLs, and had among the highest median concentrations for uranium or radium or both. Low gross alpha-particle activities (less than 5 pCi/L) corresponded with low concentrations of radium-226 (all samples less than 1 pCi/L) and mostly low concentrations of uranium; less than 10 percent of the samples had concentrations of uranium that were greater than 4 μ g/L. However, one sample with 13 μ g/L of uranium had less than 5 pCi/L of measured gross alphaparticle activity; such a low gross alphaparticle activity in a sample with that amount of uranium is unusual and implies an atypical uranium isotopic ratio (Osmond and Cowart, 1976) or low analyte recovery.

Table 7. Number of samples with specified ranges of uranium and radium-226 concentrations for 99 water samples for which gross alpha-particle activity was determined.

[pCi/L, picocuries per liter; μ g/L, micrograms per liter; MCL, maximum contaminant level; <, less than; >, greater than;--, not detected]

Uranium concentration (µg/L)	Gross alpha activities, in pCi/L			
	<5	5–14.99	>15 (MCL)	
>30 (MCL)			2	
10-29.99	1			
4.0-9.99	6	7	3	
1.0-3.99	18	6		
<1	52	2	2	
Totals	77	15	7	
Radium-226	Gross alpha activities, in pCi/L			

Radium-226 concentration (pCi/L)	Gross alpha activities, in pCi/L			
	<5	5–14.99	>15 (MCL)	
>5 (MCL)			2	
1.0-4.99		3		
0.5-0.99	4	3		
0.3-0.49	6	2		
< 0.3	67	7	5	
Totals	77	15	7	

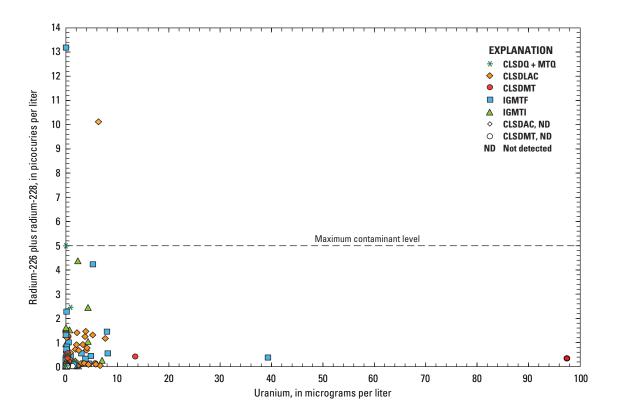


Figure 31. Relations of concentrations of radium-226 plus radium-228 and uranium for samples from bedrock aquifers of the Piedmont and Blue Ridge Physiographic Provinces.

Conventional measurements of the general amount of radioactivity in the water, such as measurements of gross alpha-particle activity, did not prove to be reliable for identifying specifically where concentrations might exceed the combined radium MCL or the uranium MCL. Elevated gross alpha-particle activity indicates the presence of at least one or the other of these alpha-particle-emitting radioactive constituents in relatively high concentrations, but the identity of which of these nuclides is predominant and contributes the most to the radioactivity of the water sample cannot be established on the basis of the gross alpha-particle activity measurement alone. Sample geochemistry (oxic or anoxic) could be helpful in estimating the likelihood of which radionuclide is predominant (fig. 21). The geochemistry of radium and uranium differ, and either one or the other tends to predominate in most, but not all, cases. The adsorption properties of the two elements tend to differ, with uranium most likely to desorb at high pH and radium most likely to desorb at low pH (fig. 8) or in the presence of anoxic water (fig. 21R). The samples with the highest concentrations of radium typically had among the lowest concentrations of uranium, and the converse was also true, regardless of the lithologic group (fig. 31).

Potential for Detrimental Effects from Trace Elements, Radionuclides, and Associated Contaminants

The trace elements arsenic, manganese, and zinc and the radionuclides uranium, radon, and radium are among the most frequently occurring elements that exceed drinking water standards in the United States. The frequencies of occurrence of uranium and arsenic are 1.7 and 6.8 percent, respectively, in samples from domestic wells nationally (DeSimone, 2009). For uranium, combined radium, and arsenic, the frequencies of occurrence in excess of the respective MCLs are 0.65, 2.0, and 3.56 percent, respectively, in the samples from the wells throughout the PBR crystalline-rock aguifers and Early Mesozoic basin aquifers. All of the samples collected from the PBR crystalline-rock and Piedmont Early Mesozoic basin siliciclastic-rock aquifers that were analyzed in this study are generally consistent with the broader national occurrence frequency as reported by DeSimone (2009). Although the frequencies of occurrence for uranium, radium, and arsenic for this region were similar to the national frequencies in general,

the frequency of occurrence for radon concentrations greater than the AMCL was substantially higher for the PBR crystal-line-rock aquifers and Early Mesozoic basin aquifers than that for the Nation as a whole. The proposed AMCL was exceeded more often in the PBR crystalline-rock aquifers than in the Early Mesozoic basin aquifers, and granite is the specific rock type in the felsic igneous and metamorphic lithologic groups in which the highest percentage (47 percent) of the samples exceed 4,000 pCi/L. This relation of radon occurrence with lithology represents a readily mapable lithologic target that could be useful in prioritizing monitoring activity for radon.

Summary and Conclusions

The following key findings are from the analyses of 346 groundwater samples collected from wells examined as part of 14 U.S. Geological Survey National Water Quality Assessment (NAWQA) Program studies conducted from 1994 to 2008. These key findings are related to lithologic groups and lithochemical subgroups delineated as part of this study:

- Certain naturally occurring trace elements (arsenic, manganese, zinc) and radionuclides (uranium, radon, radium) in groundwater from wells used as domestic water supplies exceeded public drinking water standards, and 10 additional constituents (barium, beryllium, cadmium, copper, lead, selenium, boron, molybdenum, nickel, and strontium) were detected at concentrations greater than a threshold of one-tenth of the established health-based levels.
- Naturally occurring contaminants, such as arsenic, radon, uranium, and radium, had geographic occurrence patterns that generally were associated with certain mappable lithologic groups (categorized based on primary rock type and mineral assemblages). Although there was some spatial overlap, some lithologic groups associated with the presence of radionuclides were different from others affected by arsenic or other trace elements.
- Arsenic concentrations typically were less than 1 μg/L in groundwater of the study area. Concentrations of arsenic exceeding the 10-μg/L drinking water maximum contaminant level were detected in 8.5 percent of the sampled wells in the Piedmont Early Mesozoic basin siliclastic-rock aquifers and in 2.4 percent of sampled wells in the Piedmont and Blue Ridge crystal-line-rock aquifers. The elevated arsenic concentrations were predominantly in groundwater samples from clastic lacustrine sedimentary rocks and metamorphosed clastic sedimentary rocks (meta-mudstone and metaargillite) and frequently were associated with alkaline pH (measured values of 7.2 to 8.0), under oxic to anoxic geochemical conditions. Although arsenic can be attenuated by adsorption on iron oxides at acidic pH

- (less than 6.5), alkaline pH can facilitate the desorption and mobilization of arsenic from iron-oxide surfaces.
- Manganese concentrations typically were less than 10 μg/L in groundwater of the study area. Concentrations of manganese exceeding the Health-Based Screening Level of 300 μg/L were detected in 7.3 percent of the wells sampled. Elevated concentrations of manganese were associated with groundwaters from crystalline-rock aquifers that contained less than 0.5 mg/L of dissolved oxygen and more than 100 μg/L of dissolved iron. Many anoxic samples with elevated concentrations of manganese also had acidic pH. Anoxic conditions and (or) low pH can promote the dissolution of manganese oxides and common aluminosilicate minerals, such as chlorite, that contain manganese.
- A small number of the samples from crystalline-rock aguifers contained high uranium concentrations; only 2 of 256 samples (0.8 percent) had concentrations exceeding the 30-µg/L Maximum Contaminant Level (MCL), but the majority (89 percent) contained concentrations less than 1 µg/L. The highest concentration of uranium was 97 µg/L and was detected in a groundwater sample from the Piedmont and Blue Ridge crystalline-rock aquifers (paragneiss from the metamorphosed clastic sedimentary lithologic group). Clastic sedimentary and lacustrine clastic sedimentary lithologic groups within the Piedmont Early Mesozoic basin siliclastic-rock aguifers had elevated median concentrations of uranium (greater than the detection limit of 1 µg/L). The median uranium concentration was 3.6 µg/L for the siliciclastic lacustrine siltstones of the Early Mesozoic basin.
- Radon exceeded proposed drinking water standards with a greater frequency than all other naturally occurring constituents, particularly in groundwater from the crystalline-rock aquifers. Concentrations in 19 percent of the samples from the these aguifers exceeded the Alternative Maximum Contaminant Level (AMCL) of 4,000 pCi/L for radon, and 90 percent of the samples had radon concentrations greater than the proposed MCL of 300 pCi/L. At least one sample in all of the aquifer lithologic groups except for the mafic and ultramafic rocks (which are known to have low uranium concentrations in the rock matrix) had elevated concentrations of radon. Granites from the felsic igneous lithologic group in the Piedmont and Blue Ridge crystalline-rock aquifers had the greatest frequency of radon occurrence greater than the AMCL at about 46.5 percent.
- Uranium and radium rarely exceeded their respective MCLs (about 1 and 2 percent, respectively). Nevertheless, elevated concentrations of uranium, radium, and radon followed predictable geologic distribution pat-

terns. The geologic patterns of occurrence were somewhat different for each of these radionuclides despite the fact that radium-226 is a progeny of uranium, which emphasizes the importance of aquifer geochemistry for occurrence patterns.

- · Radium was typically highest in anoxic waters that contained less than 0.5 mg/L of dissolved oxygen and more than 50 µg/L of manganese and on occasion more than 100 µg/L of iron, but the number of samples that exceeded the MCL of 5 pCi/L was small, only 2 of 98 samples. Both exceedences, along with most of the highest concentrations, were from anoxic waters. The occurrence of radium was most notable among the clastic sedimentary and clastic lacustrine (lakebed silt and feldspathic sand) sediments of the Piedmont Early Mesozoic basin siliclastic-rock aquifers and in the granites of the crystalline-rock aquifers in the Piedmont and Blue Ridge, especially in anoxic conditions in each of these aguifers. The number of elevated occurrences of radium in the granite and gneiss crystalline-rock aquifers (felsic igneous and metamorphic equivalents lithologic group) was small because these rocks commonly tended to have oxic waters.
- Uranium and arsenic generally were elevated in specific aquifers with alkaline pH conditions, especially those with clastic sedimentary and clastic lacustrine (lakebed silt and feldspathic sand) sediments. Concentrations of uranium were elevated in a few samples from the granite and gneiss crystalline-rock aquifers, but in about 89 percent of the samples from the crystalline rocks, the concentration of uranium was less than or equal to 1 μg/L.
- The geographic distributions of samples with elevated concentrations of uranium and of samples with elevated concentrations of radium differed except for a small number of samples. The radium-226 radionuclide was more frequently detected at elevated concentrations in waters from the siliciclastic rocks of the Early Mesozoic basin than was the radium-228 radionuclide; however, in waters from the granites and gneisses, the concentrations of the two radium isotopes were nearly equal in almost all cases.
- In addition to their presence in aquifer bedrock and associated geologic materials, the occurrence of most trace elements and radiochemicals was related to the pH and redox characteristics of the groundwater. Anoxic conditions and elevated concentrations of iron and manganese were correlated with concentrations of radium isotopes in nearly all of the lithochemical subroups of the study. Alkaline pH was correlated with concentrations of uranium and arsenic, and acidic pH was correlated with elevated concentrations of zinc.

The identification of geologic and geochemical factors affecting trace-element and radionuclide occurrence can be

useful to owners of domestic wells because these water systems generally are not monitored regularly for trace elements or radionuclides. Millions of people in the Piedmont and Blue Ridge region consume water from private domestic wells that are not regulated or monitored and could pose a source of exposure to contaminants such as arsenic or radon. Domestic well owners rarely test for these constituents, but should be aware of their potential occurrence in groundwater and the health risks of exposure to concentrations that exceed drinking water standards. A better understanding of these issues and the geochemical environments that are associated with high levels of contaminants allows water managers to focus on the most important problems in specific geographic areas. The trace-element and radionuclide data compiled in this and other large-scale regional studies or measured locally for publicsupply wells could be informative to private-well owners and municipal authorities in identifying where potential risks of naturally contaminated groundwater may be highest and provide information for prioritization of testing private wells in these areas. For example, the general knowledge that water from crystalline-rock aquifers tends to have higher levels of radon than water from other aquifer types can be further focused to a specific geographic area because water from rocks in felsic (specifically those of igneous origin and granitic rock types) or metamorphic sedimentary lithologic groups (specifically schist rock types) has the highest radon levels within the crystalline-rock aquifers. Results of this study also may provide information that would be useful in designing future studies, such as prioritizing the radium-226 isotope for analysis where water is withdrawn from uranium-rich sandstone or siltstone in the Early Mesozoic basins, in order to increase the timeliness of results and perhaps minimize analytical costs for local monitoring programs.

Additional testing of domestic wells and continued public education are important, particularly considering the large areas of potential occurrence of naturally occurring inorganic chemicals and radionuclides. Some of the lithologic groups and subgroups identified for comparison with the water-quality data compiled for this study lacked the corresponding waterquality data. Sampling of these aquifer units, particularly for those lithologies with source minerals associated with radionuclide occurrence could fill these data gaps. Of the potential greatest concern are the granite and biotite gneiss and other intermediate igneous and metamorphic rocks of the Piedmont and Blue Ridge crystalline-rock aquifers and the lacustrine sedimentary and feldspar-rich (arkosic) sedimentary lithologic groups within the Piedmont Early Mesozoic basin siliciclastic aquifers, as well as similar metasediments found among the Piedmont and Blue Ridge crystalline-rock aquifers. In addition to the direct measure of contaminants, additional measurements to indicate redox characteristics and pH would be useful to document the geochemical environments of contaminant occurrence.

Acknowledgments

The authors wish to thank all of the participating well owners in the study area who so graciously allowed access to facilitate the collection of groundwater-quality samples as part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program.

Much appreciation is extended to dedicated USGS field personnel who collected the samples according to comprehensive study requirements. Special thanks to Eliza Gross of the USGS Pennsylvania Water Science Center for assistance with the geographic information data layers and associated report figure and table preparation. Guidance from James W. Horton, Jr., USGS, Reston, Va., toward the categorization of the lithologic groups and lithochemical subgroups is much appreciated. Thanks are extended to Lisa Senior of the USGS Pennsylvania Water Science Center and Mark Kozar of the USGS Washington Water Science Center for their reviews and suggestions toward the content of this report.

References Cited

- Ames, L.L., McGarrah, J.E., and Walker, B.A., 1983a, Sorption of trace constituents from aqueous solutions onto secondary minerals. II. Radium: Clays Clay Minerals, v. 31, p. 335–342.
- Ames, L.L., McGarrah, J.E., Walker, B.A., and Salter, F., 1983b, Uranium and radium sorption on amorphous ferric oxyhydroxide: Chemical Geology, v. 40, p. 135–148.
- Ator, S.W., Blomquist, J.D., Brakebill, J.W., Denis, J.M., Ferrari, M.J., Miller, C.V., and Zappia, Humbert, 1998, Water quality in the Potomac River Basin, Maryland, Pennsylvania, Virginia, West Virginia, and the District of Columbia, 1992–96: U.S. Geological Survey Circular 1166, 38 p., accessed May 2011 at http://pubs.usgs.gov/circ/circ1166/.
- Ator, S.W., and Denis, J.M., 1997, Relation of nitrogen and phosphorus in ground water to land use in four subunits of the Potomac River Basin: U.S. Geological Survey Water-Resources Investigations Report 96-4268, 26 p.
- Ayers, M.A., Kennen, J.G., and Stackelberg, P.E., 2000, Water quality in the Long Island–New Jersey coastal drainages, New Jersey and New York, 1996–98: U.S. Geological Survey Circular 1201, 40 p., accessed May 2011 at http://pubs.water.usgs.gov/circ1201/.
- Ayotte, J.D., Flanagan, S.M., and Morrow, W.S., 2007, Occurrence of uranium and ²²²radon in glacial and bedrock aquifers in the northern United States, 1993–2003: U.S. Geological Survey Scientific Investigations Report 2007-5037, 84 p., accessed August 2011 at http://pubs.usgs.gov/sir/2007/5037/.

- Back, W., Hanshaw, B.B., Pyle, T.E., Plummer, L.N., and Weidie, A.E., 1979, Geochemical significance of groundwater discharge to the formation of Caleta Zel Ha, Quintana Roo, Mexico: Water Resources Research, v. 15, no. 6, p. 1521–1535.
- Ball, J.W., and Nordstrom, D.K., 1991, User's manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters: U.S. Geological Survey Open-File Report 91-183, 189 p.
- Benes, P., Streic, P., and Lukavec, Z., 1984, Interaction of radium with freshwater sediments and their mineral components—1. Ferric hydroxide and quartz: Journal of Radioanalytical and Nuclear Chemistry, Articles 82/2, p. 275–285.
- Bowell, R.J., 1994, Sorption of arsenic by iron oxides and oxyhydroxides in soils: Applied Geochemistry, v. 9, p. 279–286.
- Brenton, R.W., and Arnett, T.L., 1993, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of dissolved organic carbon by UVpromoted persulfate oxidation and infrared spectrometry: U.S. Geological Survey Open-File Report 92-480, 12 p.
- Campbell, T.R., 2006, Radon-222 and other naturally-occurring radionuclides in private drinking water wells and radon in indoor air in selected counties in western North Carolina, 2005: North Carolina Department of Environment and Natural Resources Division of Water Quality Ground Water Circular 2006-01, 27 p., accessed August 2011 at http://portal.ncdenr.org/c/document_library/get_file?uuid=630840d1-d035-482c-a7b3-82f09cf89ae9&groupId=38364.
- Clark, S.H.B., 2008, Geology of the Southern Appalachian Mountains: U.S. Geological Survey Scientific Investigations Map 2830, 1 two-sided sheet, accessed May 2011 at http://pubs.usgs.gov/sim/2830/.
- Coston, J.A., Fuller, C.C., and Davis, J.A., 1995, Pb²⁺ and Zn²⁺ adsorption by a natural aluminum- and iron-bearing surface coating on an aquifer sand: Geochimica et Cosmochimica Acta, v. 59, p. 3535–3547.
- Cotton, F.A., Wilkinson, Geoffrey, Murillo, C. A., and Bochmann, Manfred, 1999, Advanced inorganic chemistry (6th ed.): New York, Wiley-Interscience, 1355 p.
- Cranford, S.L., Bobyarchick, A.R., Pavlides, Louis, and Wier, Karen, 1982, Stream control by foliation, joints, and folds in the Rappahannock River drainage system near Fredericksburg, Virginia: U.S. Geological Survey Miscellaneous Investigations Series Map I-1285, scale 1:48,000.

- Cravotta, C.A., III, 2008a, Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA—1. Constituent concentrations and correlations: Applied Geochemistry, v. 23, p. 166–202.
- Cravotta, C.A., III, 2008b, Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA—2. Geochemical controls on constituent concentrations: Applied Geochemistry, v. 23, p. 203–226.
- Currie, L.A., 1968, Limits for qualitative detection and quantitative determination: Application to radiochemistry. Analytical Chemistry 20, 586–593.
- Davis, N.M., Hon, Rudolph, and Dillon, Peter, 1987, Determination of bulk radon emanation rates by high resolution gamma-ray spectroscopy, *in* Graves, Barbara, ed., 1987,
 Radon in ground water—Hydrogeologic impact and indoor air contamination. Conference on radon, radium, and other radioactivity—Hydrogeologic impact and application to indoor airborne contamination, Somerset, N.J., April 7–9, 1987: Chelsea, Mich., Lewis Publishers Inc., p. 111–128.
- Denver, J.M., Cravotta, C.A., III, Ator, S.W., and Lindsey, B.D., 2010, Contributions of phosphorus from groundwater to streams in the Piedmont, Blue Ridge, and Valley and Ridge Physiographic Provinces, eastern United States: U.S. Geological Survey Scientific Investigations Report 2010-5176, 38 p., accessed May 2011 at http://pubs.usgs.gov/sir/2010/5176/.
- DeSimone, L.A., 2009, Quality of water from domestic wells in principal aquifers of the United States, 1991–2004: U.S. Geological Survey Scientific Investigations Report 2008-5227, 139 p. (Also available at http://pubs.usgs.gov/sir/2008/5227/.)
- Dicken, C.L., Nicholson, S.W., Horton, J.D., Foose, M.P., and Mueller, J.A.L., 2005a, Integrated geologic map databases for the United States—Alabama, Florida, Georgia, Mississippi, North Carolina, and South Carolina: U.S. Geological Survey Open-File Report 2005-1323, accessed October 2008 at http://pubs.usgs.gov/of/2005/1323/.
- Dicken, C.L., Nicholson, S.W., Horton, J.D., Kinney, S.A., Gunther, G., Foose, M.P., and Mueller, J.A.L., 2005b, Integrated geologic map databases for the United States: Delaware, Maryland, New York, Pennsylvania, and Virginia: U.S. Geological Survey Open-File Report 2005-1325, accessed October 31, 2008, at http://pubs.usgs.gov/of/2005/1325/.
- Drever, J.I., 1997, The geochemistry of natural waters—Surface and groundwater environments (3d ed.): Upper Saddle River, N.J., Prentice Hall, 436 p.

- Duval, J.S., and Riggle, F.E., 1999, Profiles of gamma-ray and magnetic data from aerial surveys over the conterminous United States: U.S. Geological Survey Data Series Report 31 (release 2).
- Dzombak, D.A., and Morel, F.M.M., 1990, Surface complexation modeling—Hydrous ferric oxide: New York, John Wiley & Sons, Inc., 393 p.
- Echevarria, Guillame, Sheppard, M.I., and Morel, J.L., 2001, Effect of pH on the sorption of uranium in soils: Journal Environmental Radioactivity, v. 53, p. 257–264.
- Ehrlich, H.L., 1990, Geomicrobiology (2d ed.): New York, Marcel-Dekker, Inc., 646 p.
- Faure, Gunter, 1986, Principles of isotope geology (2d ed.): New York, John Wiley and Sons, Inc., 589 p.
- Fenneman, N.M., 1938, Physiography of the eastern United States: New York, McGraw-Hill, 714 p.
- Fenneman, N.M., and Johnson, D.W., 1946, Physical divisions of the United States: U.S. Geological Survey, scale 1:7,000,000, 1 sheet.
- Fischer, J.M., Riva-Murray, Karen, Hickman, R.E., Chichester, D.C., Brightbill, R.A., Romanak, K.M., and Bilger, M.D., 2004, Water quality in the Deleware River Basin, Pennsylvania, New Jersey, New York, and Deleware, 1998–2001: U.S. Geological Survey Circular 1227, 38 p., accessed May 2011 at http://pubs.usgs.gov/circ/2004/1227/.
- Fishman, M.J., 1993, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of inorganic and organic constituents in water and fluvial sediments: U.S. Geological Survey Open-File Report 93-125, 217 p.
- Frick, E.A., Hippe, D.J., Buell, G.R., Couch, C.A., Hopkins, E.H., Wangsness, D.J., and Garrett, J.W., 1998, Water quality in the Apalachicola-Chattahoochee-Flint River Basin, Georgia, Alabama, and Florida, 1992–95: U.S. Geological Survey Circular 1164, 38 p., accessed May 2011 at http://pubs.usgs.gov/circ/circ1164/.
- Gilliom, R.J., Alley, W.M., and Gurtz, M.E., 1995, Design of the National Water-Quality Assessment Program—Occurrence and distribution of water-quality conditions: U.S. Geological Survey Circular 1112, 33 p.
- Gilliom, R.J., Barbash, J.E., Crawford, C.G., Hamilton,
 P.A., Martin, J.D., Nakagaki, Naomi, Nowell, L.H., Scott,
 J.C., Stackelberg, P.E., Thelin, G.P., and Wolock, D.M.,
 2006, Pesticides in the Nation's streams and ground water,
 1992–2001: U.S. Geological Survey Circular 1291, 172 p.

- Hall, F.R., Donahue, P.M., and Eldridge, A.L., 1985, Radon gas in ground water in New Hampshire: National Water Well Association Proceedings of Second Annual Eastern Regional Ground Water Conference, Worthington, Ohio, p. 86–100.
- Hanshaw, B.B., and Back, William, 1979, Major geochemical processes in the evolution of carbonate-aquifer systems: Journal of Hydrology, v. 43, p. 287–312.
- Harden, S.L., Chapman, M.J., and Harned, D.A., 2009, Characterization of groundwater quality based on regional geologic setting in the Piedmont and Blue Ridge Physiographic Provinces, North Carolina: U.S. Geological Survey Scientific Investigations Report 2009–5149, 32 p., accessed May 2011 at http://pubs.usgs.gov/sir/2009/5149/.
- Harned, D.A., and Daniel, C.C., III, 1992, The transition zone between bedrock and regolith—Conduit for contamination? *in* Daniel, C.C., III, White, R.K., and Stone, P.A., eds., Ground water in the Piedmont, Proceedings of a Conference on Ground Water in the Piedmont of the Eastern United States, Charlotte, N.C., Oct. 16–18, 1989: Clemson, S.C., Clemson University, p. 336–348.
- Heath, R.C., 1984, Ground-water regions of the United States: U.S. Geological Survey Water-Supply Paper 2242, 78 p., accessed May 2011 at http://pubs.usgs.gov/wsp/wsp2242/pdf/wsp2242.pdf.
- Helsel, D.R., and Hirsch, R.M., 2002, Statistical methods in water resources: U.S. Geological Survey Techniques of Water-Resources Investigations 04-A3, 523 p.
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water (3d ed.): U.S. Geological Survey Water-Supply Paper 2254. (Also available at http://pubs.usgs.gov/wsp/wsp2254/.)
- Hess, C.T., Michel, J., Horton, T.R., Prichard, H.M., and Coniglio, W.A., 1985, The occurrence of radioactivity in public water supplies in the United States: Health Physics, v. 48, p. 553–586.
- Hibbard, J.P., van Staal, C.R., Rankin, D.W., and Williams,H., 2006, Lithotectonic Map of the Appalachian OrogenCanada–United States of America: Geological Survey ofCanada "A" Series Map 2096A, 1:1500000.
- Hodge, V.F., Stetzenbach, K.J., and Johannesson, K.H., 1998, Similarities in the chemical composition of carbonate ground waters and seawater: Environmental Science & Technology, v. 32, p. 2481–2486.
- Holloway, J.M., Dahlgren, R.A., Hansen, B., and Casey, W.H., 1998, Contributions of bedrock nitrogen to high nitrate concentrations in stream water: Nature, v. 395, p. 785–788.

- Hsi, C.D., and Langmuir, Donald, 1985, Adsorption of uranyl onto ferric oxyhydroxides—Application of the surface-complexation site-binding model: Geochimica et Cosmochimica Acta, v. 49, p.1931–1941.
- Hughes, W.B., Abrahamsen, T.A., Maluk, T.L., Reuber, E.J., and Wilhelm, L.J., 2000, Water quality in the Santee River Basin and Coastal Drainages, North and South Carolina, 1995–98: U.S. Geological Survey Circular 1206, 32 p., accessed January 2011 at http://pubs.water.usgs.gov/circ1206/.
- Joreskog, K.G., Klovan, J.E., and Reyment, R.A., 1976, Geological factor analysis: New York, Elsevier, 178 p.
- Kirby, C.S., and Cravotta, C.A., III, 2005, Net alkalinity and net acidity 2—Practical considerations: Applied Geochemistry, v. 20, p. 1941–1964.
- Kirk, M.F., Holm, T.R., Park, J., Qusheng, J., Sanford, R.A., Fouke, B.W., and Bethke, C.M., 2004, Bacterial sulfate reduction limits natural arsenic contamination in groundwater: Geology, v. 32; p. 953–956.
- Kooner, Z.S., 1993, Comparative study of adsorption behavior of copper, lead, and zinc onto goethite in aqueous systems: Environmental Geology, v. 21, p. 242–250.
- Korner, L.A., and Rose, A.W., 1977, Radon in streams and ground waters of Pennsylvania as a guide to uranium deposits: U.S. Energy Research and Development Assoc. Open-File Report GJBX-60(77), Grand Junction, Colo.
- Korte, Nic, 1991, Naturally occurring arsenic in groundwaters of the midwestern United States: Environmental Geology and Water Science, v. 18, no. 2, p. 137–141.
- Koterba, M.T., Wilde, F.D., and Lapham, W.W., 1995, Ground-water data-collection protocols and procedures for the National Water-Quality Assessment Program—Collection and documentation of water-quality samples and related data: U.S. Geological Survey Open-File Report 95-399, 113 p.
- Kozar, M.D., Sheets, C.J., and Hughes, C.A., 2001, Ground-water quality and geohydrology of the Blue Ridge Physiographic Province, New River Basin, Virginia and North Carolina: U.S. Geological Survey Water-Resources Investigations Report 00-4270, 36 p.
- Krauskopf, K.B., 1979, Introduction to geochemistry: New York, McGraw-Hill, 617 p.
- Landa, E.R., Phillips, E.J.P., and Lovely, D.R., 1991, Release of ²²⁶Ra from uranium mill tailings by microbial Fe(III) reduction: Applied Geochemistry, v. 6, p. 647–652.

- Langmuir, Donald, 1971, The geochemistry of some carbonate ground water in waters in central Pennsylvania: Geochimica et Cosmochimica Acta, v. 35, p. 1023–1045.
- Langmuir, Donald, 1978, Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta v. 42, p. 547–569.
- Langmuir, Donald, 1997, Aqueous environmental geochemistry: New Jersey, Prentice-Hall, 600 p.
- Langmuir, Donald, and Herman, J.S., 1980, The mobility of thorium in natural waters at low temperatures: Geochimica et Cosmochimica Acta, v. 44, p. 1753–1766.
- Lapham, W.W., Hamilton, P.A., and Myers, D.N., 2005, National Water-Quality Assessment Program—Cycle II Regional Assessment of Aquifers: U.S. Geological Survey Fact Sheet 2005-3013, 4 p., accessed February 2011 at http://pubs.usgs.gov/fs/2005/3013/pdf/PAS for Web.pdf.
- Lindsey, B.D., and Ator, S.W., 1996, Radon in ground water of the Lower Susquehanna and Potomac River Basins: U.S. Geological Survey Water-Resources Investigations Report 96-4156, 7 p., accessed May 2011 at http://pa.water.usgs.gov/reports/wrir_96-4156/report.html.
- Lindsey, B.D., Berndt, M.P., Katz, B.G., Ardis, A.F., and Skach, K.A., 2009, Factors affecting water quality in selected carbonate aquifers in the United States, 1993–2005:
 U.S. Geological Survey Scientific Investigations Report 2008-5240, 117 p., accessed May 2011 at http://pubs.usgs.gov/sir/2008/5240/.
- Lindsey, B.D., Falls, W.F., Ferrari, M.J., Zimmerman, T.M., Harned, D.A., Sadorf, E.M., and Chapman, M.J., 2006, Factors affecting occurrence and distribution of selected contaminants in ground water from selected areas in the Piedmont Aquifer System, eastern United States, 1993–2003, U.S. Geological Survey Scientific Investigations Report 2006-5104, 40 p., accessed May 2011 at http://pubs.usgs.gov/sir/2006/5104/pdf/sir2006-5104.pdf.
- Lindsey, B.D., Loper, C.A., and Hainly, R.A., 1997, Nitrate in ground water and stream base flow in the lower Susquehanna River Basin, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 97-4146, 66 p., accessed May 2011 at http://pa.water.usgs.gov/reports/wrir_97-4146.pdf.
- Loganathan, P., and Burau, R.G., 1973, Sorption of heavy metal ions by a hydrous manganese oxide: Geochimica et Cosmochimica Acta, v. 37, p. 1277–1293.

- Logue, B.A., Smith, R.W., and Westall, J.C., 2004, U(VI) adsorption on natural iron-coated sands—Comparison of approaches for modeling adsorption on heterogeneous environmental materials: Applied Geochemistry, v. 19, p. 1937–1951.
- Maupin, M.A., and Arnold, T.L., 2010, Estimates for self-supplied domestic withdrawals and population served for selected Principal Aquifers, calendar year 2005: U.S. Geological Survey Open-File Report 2010-1223, 10 p.
- Mays, C.W., Rowland, R.E., and Stehney, A.F., 1985, Cancer risk from the lifetime intake of Ra and U isotopes: Health Physics, v. 48, no. 5, p. 635–647.
- McCartan, Lucy, Peper, J.D., Bachman, L.J., and Horton, J.W., Jr., 1998, Application of geologic map information to water quality issues in the southern part of the Chesapeake Bay watershed, Maryland and Virginia, eastern United States: Journal of Geochemical Exploration, v. 64, p. 355–376.
- McCurdy, D.E., Garbarino, J.R., and Mullin, A.H., 2008, Interpreting and reporting radiological water-quality data: U.S. Geological Survey Techniques and Methods, book 5, chap. B6, 33 p.
- McMahon, P.B., and Chapelle, F.H., 2008, Redox processes and water quality of selected principal aquifer systems: Ground Water, v. 46, p. 259–271.
- Michel, J., 1984, Redistribution of uranium and thorium series isotopes during isovolumetric weathering of granite: Geochimica et Cosmochimica Acta, v. 48, p. 1249–1255.
- Miller, J.A., 1990, Ground water atlas of the United States, Segment 6—Alabama, Florida, Georgia, and South Carolina: U.S. Geological Survey Hydrologic Investigations Atlas 730-G, 28 p.
- Moore, W.S., and Reid, D., 1973, Extraction of radium from natural waters using manganese-impregnated acrylic fibers: Deep Sea Research, v. 23, p. 647–651.
- Nathwani, J.S., and Phillips, C.R., 1979, Adsorption of ²²⁶Ra by soils in the presence of Ca⁺² ions—Specific adsorption (II): Chemosphere, v. 8, no. 5, p. 293–299.
- Nicholson, S.W., Dicken, C.L., Horton, J.D., Foose, M.P., Mueller, J.A.L., and Hon, R., 2006, Preliminary integrated geologic map databases for the United States—Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, Rhode Island, and Vermont, Version 1.1: U.S. Geological Survey Open-File Report 2006-1272, accessed October 31, 2008, at http://pubs.usgs.gov/of/2006/1272/.

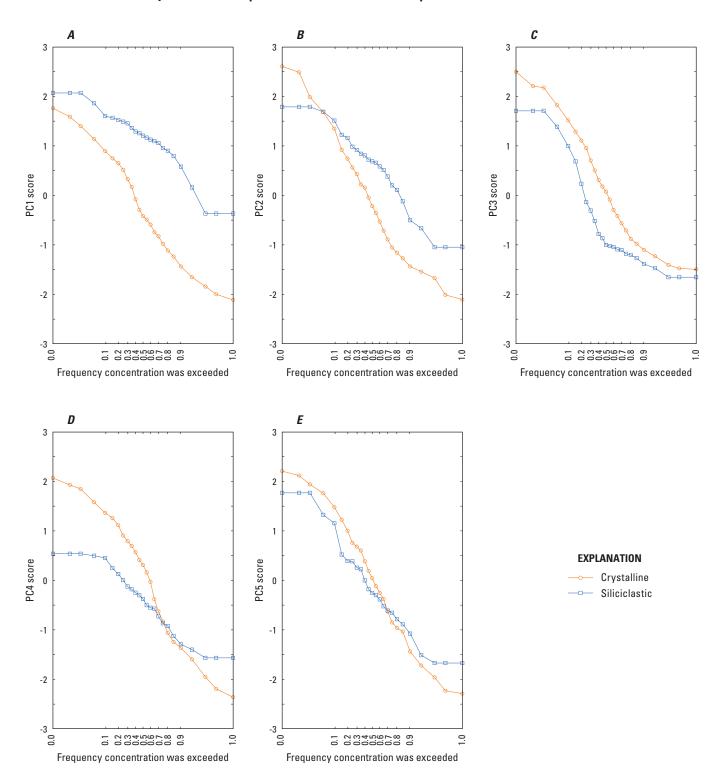
- Nicholson, S.W., Dicken, C.L., Horton, J.D., Labay, K.A., Foose, M.P., and Mueller, J.A.L., 2005, Preliminary integrated geologic map databases for the United States—Kentucky, Ohio, Tennessee, and West Virginia: U.S. Geological Survey Open-File Report 2005-1324, accessed October 31, 2008, at http://pubs.usgs.gov/of/2005/1324/.
- North Carolina Geological Survey, 1985, Geologic map of North Carolina: Raleigh, North Carolina Geological Survey, scale 1:500,000.
- Osmond, J.K., and Cowart, J.B., 1976, The theory and uses of natural uranium isotopic variations in hydrology: Atomic Energy Review, v. 14, p. 621–679.
- Parkhurst, D.L., and Appelo, C.A.J., 1999, User's guide to PHREEQC (Version 2)—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 99-4259, 312 p.
- Patton, C.J., and Truitt, E.P., 1992, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of total phosphorus by a Kjeldahl digestion method and an automated colorimetric finish that includes dialysis: U.S. Geological Survey Open-File Report 92-146, 39 p.
- Paybins, K.S., Messinger, Terence, Eychaner, J.H., Chambers, D.B., and Kozar, M.D., 2000, Water quality in the Kanawha–New River Basin West Virginia, Virginia, and North Carolina, 1996–98: U.S. Geological Survey Circular 1204, 32 p., accessed May 2011 at http://pubs.water.usgs.gov/circ1204/.
- Peper, J.D., McCartan, L.B., Horton, J.W., Jr., and Reddy, J.E., 2001, Preliminary lithogeochemical map showing near-surface rock types in the Chesapeake Bay watershed, Virginia and Maryland: U.S. Geological Survey Open-File Report 01-187, 26 p., 1 pl., accessed May 2011 at http://pubs.usgs.gov/of/2001/of01-187/.
- Peters, N.E., and Bonelli, J.E., 1982, Chemical composition of bulk precipitation in the north-central and northeastern United States, December 1980 through February 1981: U.S. Geological Survey Circular 874, 63 p.
- Pippin, C.G., 2005, Distribution of total arsenic in ground-water in the North Carolina Piedmont, *in* National Groundwater Association Naturally Occurring Contaminants Conference on Arsenic, Radium, Radon, and Uranium, February 24–25, 2005, Charleston, S.C., p. 89–102, accessed May 2011 at http://portal.ncdenr.org/c/document_library/get_file?uuid=4636eff5-6e44-4949-a19d-fb4778d393a9&groupId=38364.

- Price, C.V., Nakagaki, N., Hitt, K.J., and Clawges, R.M., 2007, Enhanced historical land-use and land-cover data sets of the U.S. Geological Survey: USGS Data Series 240 [digital data], accessed May 2012 at http://pubs.usgs.gov/ds/2006/240.
- Puckett, L.J., 1994, Nonpoint and point sources of nitrogen in major watersheds of the United States: U.S. Geological Survey Water-Resources Investigations Report 94-4001, 9 p.
- Roden, E.F., and Zachara, J.M., 1996, Microbial reduction of crystalline iron(III) oxides—Influence of oxide surface area and potential for cell growth: Environmental Science Technology, v. 30, p. 1618–1628.
- Rose, A.W., Hawkes, H.E., and Webb, J.S., 1979, Geochemistry in mineral exploration: New York, Academic Press, 657 p.
- SAS Institute, Inc., 2008, SAS 9.2 for Windows: Cary, N.C.
- Senior, L.A., 1996, Ground-water quality and its relation to hydrogeology, land use, and surface-water quality in the Red Creek Basin, Piedmont Physiographic Province, Pennsylvania and Delaware: U.S. Geological Survey Water-Resources Investigations Report 96-4288, 122 p.
- Senior, L.A., 1998, Radon-222 in the ground water of Chester County, Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 98-4169, 79 p.
- Senior, L.A., and Sloto, R.A., 2000, Radium-224 and its relation to gross-alpha-particle, radium-226, and radium-228 activities in ground water from rocks of the Piedmont Physiographic Province, southeastern Pennsylvania [abstract]: Geological Society of America Abstracts with Programs, Northeastern Section, v. 32, no. 1, p. A-73.
- Senior, L.A., and Sloto, R.A., 2006, Arsenic, boron, and fluoride concentrations in groundwater in and near diabasse intrusions, Newark Basin, southeastern Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2006-5261, 105 p.
- Senior, L.A., and Vogel, K.L., 1992, Radium and radon in ground water in the Chickies Quartzite, southeastern Pennsylvania: U.S. Geological Survey Water-Resources Investigations Report 92-4088, 145 p.
- Serfes, M.E., 1994, Natural ground-water quality in bedrock aquifer of the Newark Basin, New Jersey: New Jersey Geological Survey Geological Survey Report GSR 35, 34 p.

- Serfes, M.E., 2004, Arsenic in New Jersey ground water: New Jersey Geological Survey Information Circular, 2 p., accessed August 23, 2012, at http://www.state.nj.us/dep/ njgs/enviroed/infocirc/arsenic.pdf
- Serfes, M.E., Herman, G.C., Spayd, S.E., and Reinfelder, J., 2010, Sources, mobilization, and transport of arsenic in groundwater in the Passaic and Lockatong Formations of the Newark Basin, New Jersey, Chapter E, *in* Herman, G.C., and Serfes, M.E., eds., Contributions to the geology and hydrogeology of the Newark Basin: Trenton, N.J., New Jersey Geological Survey Bulletin 77, p. E1–E40.
- Sloto, R.A., 2000, Naturally occurring radionuclides in ground water of southeastern Pennsylvania: U.S. Geological Survey Fact Sheet 012-00. (Also available at http://pa.water.usgs.gov/reports/fs012-00.html.)
- Sloto, R.A., 2002, Geohydrology and ground-water quality, Big Elk Creek basin, Chester County, Pennsylvania, and Cecil County, Maryland: U.S. Geological Survey Water-Resources Investigations Report 2002-4057, 81 p., accessed August 2011 at http://pubs.er.usgs.gov/publication/wri024057.
- Sloto, R.A., and Senior, L.A., 1998, Radon in ground water of Chester County, Pennsylvania: U.S. Geological Survey Fact Sheet 120-98, 4 p., accessed August 2011 at http://pubs.er.usgs.gov/djvu/FS/fs 98 120.djvu.
- Smedley, P.L., and Kinniburgh, D.G., 2002, A review of the source, behaviour and distribution of arsenic in natural waters: Applied Geochemistry, v. 17, no. 5, p. 517–568.
- Smith, R.C., II, 1977, Zinc and lead occurrences in Pennsylvania: Pennsylvania Geological Survey Mineral Resource Report 72, 318 p.
- Speer, J.A., Solberg, T.N., and Becker, S.W., 1981, Petrography of the uranium-bearing minerals of the Liberty Hill Pluton, South Carolina—Phase assemblages and migration of uranium in granitoid rocks: Economic Geology, v. 76, p. 2162–2175.
- Stumm, W., and Morgan, J.J., 1996, Aquatic chemistry— Chemical equilibria and rates in natural waters (3d ed.): New York, John Wiley & Sons, Inc., 1022 p.
- Szabo, Zoltan, Fischer, J.M., and Hancock, Tracy, 2012a, Principal aquifers can contribute radium to drinking water under certain geochemical conditions: U.S. Geological Survey Fact Sheet 2010-3113, 6 p. (Also available at http://pubs.usgs.gov/fs/2010/3113/.)
- Szabo, Zoltan, dePaul, V.T., Fischer, J.M., Kraemer, T.F., and Jacobsen, Eric, 2012b, Occurrence and geochemistry of radium in aquifers used for drinking water in the United States: Applied Geochemistry, v. 27, p. 729–752. [doi:10.1016/j.apgeochem.2011.11.002]

- Szabo, Zoltan, dePaul, V.T., Kraemer, T.F., Parsa, Bahman, 2005, Occurrence of radium-224, radium-226 and radium-228 in water from the unconfined Kirkwood-Cohansey Aquifer System, southern New Jersey: U.S. Geological Survey Scientific Investigations Report 2004-5224, 92 p. (Also available at http://pubs.usgs.gov/sir/2004/5224/.)
- Szabo, Zoltan, and Zapecza, O.S., 1991, Geologic and geochemical factors controlling uranium, radium-226, and radon-222 in ground water, Newark Basin, New Jersey, *in* Gundersen, L.C.S., and Wanty, R.B., eds., Field studies of radon in rocks, soils, and water: U.S. Geological Survey Bulletin 1971, p. 243–266.
- Thyne, Geoffrey, Guler, Cuneyt, and Poeter, Eileen, 2004, Sequential analysis of hydrochemical data for watershed characterization: Ground Water, v. 42, p. 711–723.
- Toccalino, P.L., Norman, J.E., Booth, N.L., Thompson, J.L., and Zogorski, J.S., 2012, Health-based screening levels—Benchmarks for evaluating water-quality data: U.S. Geological Survey, accessed August 23, 2012, at http://water.usgs.gov/nawqa/HBSL/.
- Trapp, Henry, Jr., and Horn, M.A., 1997, Ground water atlas of the United States, Segment 11—Delaware, Maryland, New Jersey, North Carolina, Pennysylvania, Virginia, West Virginia: U.S. Geological Survey Hydrologic Investigations Atlas 730-L, 24 p., accessed May 2011 at http://pubs.usgs.gov/ha/ha730/ch l/index.html.
- Tricca, A., Wasserburg, G.J., Porcelli, D., and Baskaran, M., 2001, The transport of U- and Th-series nuclides in a sandy unconfined aquifer: Geochimica et Cosmochimica Acta, v. 65, p. 1187–1210.
- Turner, D.R., Whitfield, M., and Dickson, A.G., 1981, The equilibrium speciation of dissolved components in freshwater and seawater at 25°C and 1 atm pressure: Geochimica et Cosmochimica Acta, v. 45, p. 855–881.
- Turner-Peterson, C.E., 1980, Sedimentology and uranium mineralization in the Triassic-Jurassic Newark Basin, Pennsylvania and New Jersey, *in* Turner-Peterson, C.E., ed., Uranium in sedimentary rocks—Application of the facies concept to exploration: Society of Economic Paleontologists and Mineralogists, Rocky Mountain Section, Short Course Notes, Denver, Colo., p. 149–175.
- U.S. Environmental Protection Agency, 1976, Drinking water regulations; radionuclides: Federal Register, v. 41, p. 28402.
- U.S. Environmental Protection Agency, 1991, Primary drinking water regulations, Radionuclides, proposed rules: Federal Register, v. 56, July 18, 1991, p. 33050.
- U.S. Environmental Protection Agency, 1999, Environmental Radiation Guidance Document No. 13: Washington, D.C., Office of Water Supply, U.S. Environmental Protection Agency Report EPA-2501/10-99-013.

- U.S. Environmental Protection Agency, 2000, National Primary Drinking Water Regulations; Radionuclides; Final rule, 40 CFR, parts 141 and 142: Washington, D.C., Federal Register, v. 65, no. 236.
- U.S. Environmental Protection Agency, 2001, National Primary Drinking Water Regulations; Arsenic and clarifications to compliance and new source contaminants monitoring; Final rule, 40 CFR, parts 141 and 142: Washington, D.C., Federal Register, v. 66, no. 14, p. 6975–7066.
- U.S. Environmental Protection Agency, 2009, 2009 Edition of the drinking water standards and health advisories (fall 2009): Washington, D.C., U.S. Environmental Protection Agency EPA 822-R-09-011, 12 p., accessed May 2011 at http://water.epa.gov/drink/contaminants/upload/mcl-2.pdf.
- U.S. Environmental Protection Agency, 2010, Proposed radon in drinking water regulation, accessed January 2011 at http://water.epa.gov/lawsregs/rulesregs/sdwa/radon/regulations.cfm.
- U.S. Geological Survey, 2003, Principal aquifers of the 48 conterminous United States, Hawaii, Puerto Rico, and the U.S. Virgin Islands: U.S. Geological Survey, accessed May 2011 at http://nationalatlas.gov/atlasftp.html.
- Van Houten, F.B., 1965, Composition of Triassic Lockatong and associated formations of Newark Group, central New Jersey and adjacent Pennsylvania: American Journal of Science, v. 263, no. 10, p. 825–863.


- Vinson, D.S., Vengosh, A., Hirschfeld, D., and Dwyer, G., 2009, Relationship between radium and radon occurrence and hydrochemistry in fresh groundwater from fractured crystalline rocks, North Carolina (USA): Chemical Geology, v. 260, p. 159–171.
- Wanty, R.B., Lawrence, E.P., and Gunderson, L.C.S., 1992, A theoretical model for the flux of radon from rock to ground water, *in* Gates, A.E., and Gunderson, L.C.S., eds., Geologic controls on radon: Boulder, Colo., Geological Society of America Special Paper 271, p. 73–78.
- Welch, A.H., and Stollenwerk, K.G., eds., 2003, Arsenic in ground water—Geochemistry and occurrence: Kluwer Academic Publishers.
- Welch, A.H., Westjohn, D.B., Helsel, D.R., and Wanty, R.B., 2000, Arsenic in ground water of the United States—Occurrence and geochemistry: Ground Water, v. 38, p. 589–604.
- Werner, S.L., Burkhardt, M.R., and DeRusseau, S.N., 1996, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory—Determination of pesticides in water by Carbopak-B solid-phase extraction and high-performance liquid chromatography: U.S. Geological Survey Open-File Report 96-216, 42 p.
- Zachara, J.M., Cowan, C.E., and Resch, C.T., 1991, Sorption of divalent metals on calcite: Geochimica et Cosmochimica Acta, v. 55, p. 1549–1562.

Appendixes 1, 2, and 3

Appendix 1. Tables. (Excel spreadsheets available online at http://pubs.usgs.gov/sir/2013/5072/)

Appendix 2. Probability plots of principal components analysis (PCA) scores for groundwater of siliclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces: *A*, PC1 "Alkalinity-pH"; *B*, PC2 "Chloride-Nitrate"; *C*, PC3 "Redox"; *D*, PC4 "Temperature-Silica"; and *E*, "Radon-Potassium".

Appendix 3. Analytical Issues Relating to Defining Radium Occurrence.

Appendix 2. Probability plots of principal component analysis (PCA) scores for groundwater of siliclastic-rock and crystalline-rock aquifers in the Piedmont and Blue Ridge Physiographic Provinces: *A*, PC1 "Alkalinity-pH"; *B*, PC2 "Chloride-Nitrate"; *C*, PC3 "Redox"; *D*, PC4 "Temperature-Silica"; and *E*, PC5 "Radon-Potassium". The PCA model is described in table 5 and appendix table 1-7.

Appendix 3. Analytical Issues Relating to Defining Radium Occurrence

Interpreting radiological results requires understanding the concepts of detectability and quantification unique to radiochemistry measurements. For measurements of radionuclides in this study, these concepts primarily are important for measurements of radium concentrations. Uranium concentrations were determined by measuring the mass of the uranium-238 isotope present; therefore, issues unique to radiochemistry measurements were not considered. Concentrations of radon-222 were so high that issues regarding detectability and quantification were again not of consideration. Concentrations of radium (Ra) isotopes, however, while showing considerable ranges, were for many samples at or below detection, or if detected, were low enough that guidelines for quantification could not be met. Furthermore, analytical techniques for radium isotopes underwent considerable changes during the period of study as did reporting requirements. A measured (uncensored) concentration value was reported for nearly all the samples (tables 4 and 1-4), although issues relating to analysis, detection, quantification, and reporting of the measured radium isotope concentrations affect understanding of the radium occurrence. Additional information provided with many of the analyses can be useful in determining the statistical likelihood of detection and quantification.

Random radioactive decay, variable radioactive background noise, and other measurement uncertainties cause measurement signal to vary. For a background blank or an environmental sample, a nonzero signal may be produced even when no radionuclide is present. For this reason, the laboratory analyzes an instrument background or blank sample and subtracts the response signal from the gross signal of the measured environmental sample to obtain the net signal. The critical level (L_c) is the smallest measured concentration that is statistically different from the instrument background (blank). It is the threshold of detection for whether the radionuclide is actually present. The statistical computation is set to minimize the statistical likelihood of a false detection. Because of the random variability in the background signal, the issue of detection of radioactivity in an individual sample result is not in all cases best represented by the general reporting level, therefore, but rather by comparison with the L_c. The sample-specific minimum detectable concentration (ssMDC) is a slightly higher (concentration) value than the L_c that is adequate to distinguish the sample result from that of the blank with statistical confidence. For each sample, the sample-specific parameters such as yield, detector efficiency, and sample aliquot size are used in the formula to determine the SSMDC. In the truly simplest case, the SSMDC is about twice the L_c (Currie, 1968). Reported negative values are possible when the result of a sample is less than that of the blank representing background; these values represent non-detection in the case of a single measurement. The precision estimate of the radiological result is the square root of the sum of

variances of the factors that affect measurement precision. For radionuclides, a large component of the measurement precision is defined by the random decay rate of the radionuclide at any instant in time. Though the average rate of decay conforms to that associated with the half life (the time in which half of the radionuclides would decay), at any instant in time, the rate may randomly be greater or lesser than this average rate, resulting in imprecision in the measurement. A sample result implies true detection if the result is greater than the L_c, but confidence that the value of the result is statistically significantly different from the background is achieved if the value is also greater than the SSMDC, and the sample may still have poor precision. For radionuclide samples analyzed for this study before mid-2003, sample-specific critical levels (ssL_c) were not reported (McCurdy and others, 2008). Comparisons of detectability are reliant on the assumption that the reported SSMDCs were indeed twice the values of the ssL_os (Currie, 1968). Importantly, the sensitivities of the analyses were such that concentrations great enough to be considered of concern to human health could readily be detected and quantified.

The concentrations of Ra-226 were greater than the individual SSMDCs (when reported, see table 1-4) or L_cs (stored in USGS databases but not reported in table 1-4) in 85 samples, and the reported raw values were greater than zero in all but one sample. The concentrations of Ra-226 were less than the individual SSMDCs in eight samples from the siliclastic lacustrine siltstones of the Early Mesozoic basin sediments, a frequency greater than in the other rock types, even though the highest Ra-226 concentration was also detected in this rock type. The concentrations of Ra-226 in samples collected from the Early Mesozoic basin aguifer were determined by using alpha spectrometry, whereas the radon-emanation method was used for analysis of Ra-226 from samples collected from the remaining aquifers. Alpha spectrometry had a higher detector background than did the radon-emanation method, resulting in the higher SSMDCs (or L_cs). This difference in methodology likely explains why so many sample results were reported as less than the SSMDC for samples collected from the Early Mesozoic basin aguifer, but not from samples collected from the remaining aquifers. Of the remaining rock types, the concentrations of Ra-226 were less than the individual SSMDCs or ssL_cs in only one or two samples, except for the metasediments (CLSDMT, table 3) for which three samples had concentrations less than the L_c. Concentrations of Ra-226 in 53 samples were greater than 0.1 picocurie per liter (pCi/L), but of those, only 1 had a concentration (0.126 pCi/L) that was less than the corresponding SSMDC (0.145 pCi/L) (table 1-4). The high frequency of detection in samples relative to that of Ra-228 is partly attributable to the great sensitivity of the radon emanation technique used for detecting Ra-226.

The concentrations of Ra-228 were greater than the individual SSMDCs (when reported, see table 1-4) or L_c s (stored in USGS databases but not reported in table 1-4) in 48 samples, and reported raw values were greater than zero in all but 9 samples (table 4). The SSMDCs for the beta-particle

emitting Ra-228 (maximum and 75th-percentile values, 0.906 and 0.569 pCi/L, respectively) were higher than those for either of the other Ra isotopes, which are alpha-particle emitters (table 1-4) and have lower background values. A maximum measured Ra-228 concentration of 0.71 pCi/L in one sample, however, was still less than the respective SSMDC, illustrating the difficulty in interpreting the distribution of Ra-228 concentrations that are less than about 0.7 to 0.9 pCi/L (representing the maximum SSMDC). The concentrations of Ra-228 were greater than 0.9 and 1 pCi/L in 17 and 14 samples, respectively, and were generally found at these concentrations in both siliclastic and crystalline rock aquifers. An additional 22 samples with concentrations ranging from 0.19 to 0.71 pCi/L were considered as detectable in quantifiable amounts because the concentration was greater than the associated SSMDC or L_C. The minimum Ra-228 concentration that was greater than the associated SSMDC was 0.593 pCi/L (table 1-4) and that was greater than the associated L_c that was 0.19 pCi/L.

Ra-224 concentrations were measured in samples only from the sedimentary rock aquifers of the Early Mesozoic basin and were not present at concentrations greater than 1 pCi/L in any of the samples analyzed for this isotope. The median concentration value of 0.10 pCi/L is uncertain (an estimate at best) because it is less than the value of the median of the associated SSMDCs (0.24 pCi/L). The concentrations of Ra-224 for the samples collected from this aguifer were determined by alpha spectrometry, and this technique has high enough SSMDCs to make detection in many samples questionable. The concentrations of Ra-224 were greater than or equal to the individual SSMDCs in 5 samples, and the reported raw values were greater than zero in all but 3 samples (table 4). A maximum measured Ra-224 concentration of 0.47 pCi/L in one sample, however, was still less than the respective SSMDC, illustrating that alpha spectrometry may have performance issues up to a value of about 0.5 pCi/L.

Concentrations of Ra-226 plus Ra-228 (termed combined Ra, the quantity that is specifically considered in drinking water regulations) were quantifiable at about the 1 pCi/L level and could be compared to the 5 pCi/L standard. The concentrations of both these Ra radionuclides were greater than the respective SSMDC or ssL_C for 44 percent of the samples, with

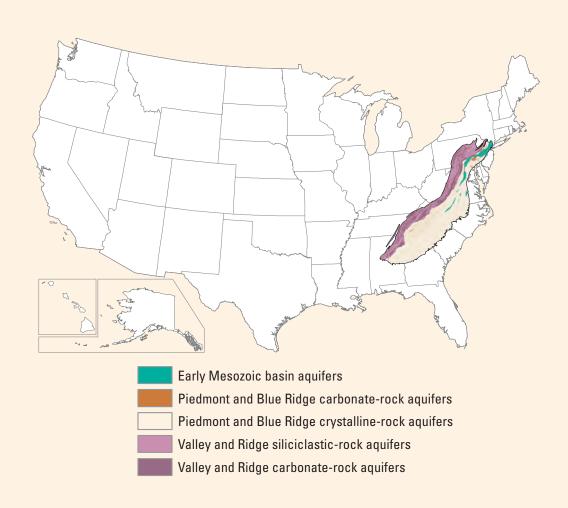
concentrations of combined radium (Ra-226 plus Ra-228) for these samples about equal to or greater than 1.0 pCi/L (fig. 14). At least one of these two Ra radionuclides was detected with respect to the SSMDC or the $\mathrm{ssL}_{\mathrm{C}}$ for 88 percent of the samples; the SSMDC in all cases when it was reported was less than 1 pCi/L (table 1-4). All samples had at least one of these two Ra radionuclides reported with a value greater than zero (table 4).

For purposes of statistical calculation, and for plots illustrating population distribution characterization, such as probability plots or boxplots (figs. 14, 17, and 21; tables 1-4 and 1-5), the distribution of the raw reported laboratory results were displayed to provide the sense of the distribution of the raw (uncensored) measured values. Values less than zero were censored for descriptive purposes in table 4. This approach eliminated the need for statistical approaches to estimate low concentration values (such as those described by Helsel and Hirsch, 2002). For scatter diagrams (figs. 29, 30, and 31), when only one Ra radionuclide concentration, Ra-226 or Ra-228, was detectable or quantifiable with the prescribed level of statistical certainty, the concentration of that one isotope was used as the concentration to represent the value of combined Ra. When neither Ra radionuclide concentration, Ra-226 or Ra-228, was detectable or quantifiable with the prescribed level of statistical certainty, the lower of the two reported concentrations was used to represent the value of the combined Ra concentration. As detailed above, all samples had at least one of these two Ra radionuclides reported with a value greater than zero (table 4). For purposes of graphical representation in the latter case, when neither Ra radionuclide concentration, Ra-226 or Ra-228, was detectable, the value of either the combined Ra concentration or the individual Ra radionuclide was represented as an open rather than as a closed symbol. For purposes of the simplest description of the distribution, the use of 1 pCi/L as an approximate cutpoint separating concentrations detected with greatest statistical certainty from those concentrations detected with slightly lesser statistical certainty or those not detected at all is reasonably justified by the distribution of the ssMDCs or L_cs. In terms of the human health benchmark (HHB) of 5 pCi/L, this value represents the 20th percentile, and can be described as 0.2 HHB (fig. 21R; table 4).

Prepared by:

USGS Science Publishing Network Raleigh Publishing Service Center 3916 Sunset Ridge Road Raleigh, NC 27607

USGS Publishing Service Center staff:


Kimberly A. Waltenbaugh, Editor Jeffery L. Corbett, Illustrator Gregory L. Simpson, layout

For additional information regarding this publication, contact:

Director USGS North Carolina Water Science Center 3916 Sunset Ridge Road Raleigh, NC 27607 email: dc_nc@usgs.gov

Or visit USGS North Carolina Water Science Center at:

http://nc.water.usgs.gov/

golder.com

golder.com