PERIODIC SAFETY FACTOR ASSESSMENT 391-3-4-.10(4) and 40 C.F.R. PART 257.73 PLANT YATES ASH POND 2 (AP-2) GEORGIA POWER COMPANY

The Federal CCR Rule, and, for Existing Surface Impoundments where applicable, the Georgia CCR Rule (391-3-4-.10) require the owner or operator of a CCR surface impoundment to conduct initial and periodic safety factor assessments. *See* 40 C.F.R. § 257.73(e); Ga. Comp. R. & Regs. r. 391.3-4-.10(4)(b)¹. The owner or operator must conduct an assessment of the CCR unit and document that the minimum safety factors outlined in § 257.73(e)(1)(i) through (iv) for the critical embankment section are achieved. In addition, the Rules require a subsequent assessment be performed within 5 years of the previous assessment. *See* 40 C.F.R. § 257.73(f)(3); Ga. Comp. R. & Regs. r. 391.3-4-.10(4)(b)¹.

The CCR surface impoundment known as Plant Yates AP-2 is located on Plant Yates property, northwest of Newnan, Georgia. AP-2 is formed by an engineered cross-valley embankment. The critical section of AP-2 was previously determined to be at the midpoint of the cross-valley embankment. Under current conditions, the midpoint of the embankment remains the critical section. The Notification of Intent to Initiate Closure was placed in the Operating Record on 04/17/2019 and closure has been designed to have no negative impacts on the stability of the perimeter embankment. AP-2 is currently undergoing closure-by-removal, and all CCR has been removed from against the embankment and the unit no longer impounds water against the embankment on a regular basis, only containing periodic limited amounts of water after periods of rain. As a result, a long-term maximum storage pool analysis is no longer applicable.

The analyses used to determine the minimum safety factor for the critical section resulted in the following minimum safety factors:

Loading Condition	Minimum Calculated	Minimum Required
	Safety Factor	Safety Factor
Maximum Surcharge Pool (Static)	1.9	1.4
Seismic	1.7	1.0

The embankment of AP-2 is constructed of compacted clayey and silty sands that are not susceptible to liquefaction. Therefore, a minimum liquefaction safety factor determination was not required.

^[1] In a typographical error, 391.3-4.10(4)(b) references the "structural integrity criteria in 40 CFR 247.73," when the reference to such criteria should be 40 CFR 257.73.

This assessment is supported by appropriate engineering calculations which are attached.

I hereby certify that the safety factor assessment was conducted in accordance with 40 C.F.R. Part 257.73 (e)(1).

mes C. Pegues, P.E.

Technical and Project Solutions Calculation

Calculation Number: TV-YT-GPC1142841-001

Project/Plant: Plant Yates	Unit(s): 6-7	Discipline/Area:
		Env. Solutions
Title/Subject: Periodic Factor of Safety Assessr	ment for CCR Rule	
Purpose/Objective: Determine the Factor of Sa	fety of the Ash Pond 2	Dike
System or Equipment Tag Numbers: n/a	Originator: Jacob A.	Jordan, P.E.

Contents

Topic	Page	Attachments (Computer Printouts, Tech. Papers, Sketches, Correspondence)	# of Pages
Purpose of Calculation	2	Attachment A - Boring Location Plan	1
Summary of Conclusions	2	Attachment B - Boring and Piezometer Logs	9
Methodology	2	Attachment C - Laboratory Analyses	42
Criteria and Assumptions	2	Attachment D - Critical Section Profile Used in Analysis	1
Loading Conditions	4	·	
Design Inputs/References	4		
Body of Calculation	5-7		
Total # of pages including cover sheet & attachments:	64		

Revision Record

Rev. No.	Description	Originator Initial / Date	Reviewer Initial / Date	Approver Initial / Date
0	Issued for Information	JAJ/06-18-21	JCP/06-18-21	JCP/06-18-21

Notes:

Purpose of Calculation

The Eugene A. Yates Power Plant (Plant Yates) was once a seven-unit, coal fired, power generation facility. Units 1-5 have been demolished and Units 6 and 7 have been converted to natural gas. Ash Pond 2, constructed 1966 to 1967, was designed to receive and store coal combustion residuals produced during the electric power generating. Plant Yates ceased burning coal in 2015 and thus ceased sluicing ash to Ash Pond 2 at that time.

The purpose of this calculation is to provide an updated slope stability factor of safety assessment of the Plant Yates Ash Pond 2 dam under conditions prescribed by the EPA CCR rule.

Summary of Conclusions

The following table summarizes the factors of safety resulting from the slope stability analyses. The results indicate the safety factors of the Ash Pond 2 dam meet or exceed the minimum criteria set forth in the structural integrity criteria for existing CCR surface impoundments, 40 CFR 257.73.

Factor of Safety Summary Table

Loading Condition	Minimum Calculated Safety Factor	Minimum Required Safety Factor
Maximum Surcharge Pool (Static)	1.9	1.4
Seismic	1.7	1.0

Methodology

The calculation was performed using the following methods and software:

- GeoStudio 2021 R2 version 11.1.1.22085 Copyright 1991-2021, GEO-SLOPE International, Ltd.
- Strata (Version 0.8.0), University of Texas, Austin
- Morgenstern-Price analytical method

Criteria and Assumptions

The slope stability models were run using the following assumptions and design criteria:

• Seismic site response was determined using a one-dimensional equivalent linear site response analysis. The analysis was performed using Strata and utilizing random vibration theory. The input motion consisted of the USGS published 2014 Uniform Hazard Response Spectrum (UHRS) for Site Class B/C at a 2% Probability of Exceedance in 50 years. The UHRS was converted to a Fourier Amplitude Spectrum, and propagated through a representative one-dimensional soil column using linear wave propagation with strain-dependent dynamic soil properties. The input soil properties and layer thickness were

- randomized based on defined statistical distributions to perform Monte Carlo simulations for 100 realizations, which were used to generate a median estimate of the surface ground motions.
- The median surface ground motions were then used to calculate a pseudostatic seismic coefficient for utilization in the stability analysis using the approach suggested by Bray and Tavasarou (2009). The procedure calculates the seismic coefficient for an allowable seismic displacement and a probability exceedance of the displacement. For this analysis, an allowable displacement of 0.5 ft, and a probability of exceedance of 16% were conservatively selected, providing a seismic coefficient of 0.038g for use as a horizontal acceleration in the stability analysis.
- The current required minimum criteria (factors of safety) were taken from the Structural Integrity Criteria for existing CCR surface impoundment from 40 CFR 257.73, published April 17, 2015.
- During March 2010, seven borings and five piezometers were performed and installed, respectively, on the crest of the dam, on the middle bench of the dam and on the riverbank.
- The soil properties used for the analysis (unit weight, phi angle, and cohesion) were obtained from triaxial shear testing performed on undisturbed Shelby tube samples of the dam fill and foundation soils obtained during drilling. Soil testing was performed according to applicable ASTM standards
- The COE EM 1110-2-1902, October 2003, allows the use of the phreatic surface established for the maximum storage condition (normal pool) in the analysis for the maximum surcharge loading condition. This is based on the short-term duration of the surcharge loading relative to the permeability of the embankment and the foundation materials.
- The ash pond is no longer designed to store water; therefore the maximum storage condition was not evaluated for this analysis. Stormwater may pool behind the dike during periods of elevated rainfall amounts. The maximum surcharge condition was evaluated using a maximum pool elevation of EL 717.6 ft, based on the design storm.
- The critical section was selected at location having the apparent maximum dam height. The cross-section of the Ash Pond 2 dam was modeled using the following sources:
 - A 2010 level profile survey extending from the pond surface on the upstream face of the dam to the river surface on the downstream face of the dam performed by Southern Company Services (SCS)
 - Historical drawing H-183, showing the profile of the dam raise that created the current configuration of the AP-2 dam, was used to model the upstream face of the dam.
- All CCR has been removed from the area between the AP-2 embankment and the temporary cofferdam constructed at the approximate middle of AP-2. Therefore, there is no CCR included or considered in the analysis.

Input Data

Ash Pond

Two consolidated, undrained triaxial strength tests were performed on Shelby tube samples recovered from borings performed at Ash Pond 2 to provide total and effective shear strength values of embankment and foundation soils. Soil classification testing, unit weight, and moisture content determination were also performed on the samples. The results of the laboratory analysis are included in attachments to this calculation. The following effective stress values were used in the analyses.

Soil Properties Table

		Effective St	ress Parameters
Soil Description	Unit Weight, pcf	Cohesion, psf	Phi Angle, degrees
Dam Fill	125	144	32
Soft ML and MH	118	130	30
Medium Dense Residuum	125	144	35
Soft Clayey Sand	125	15	28

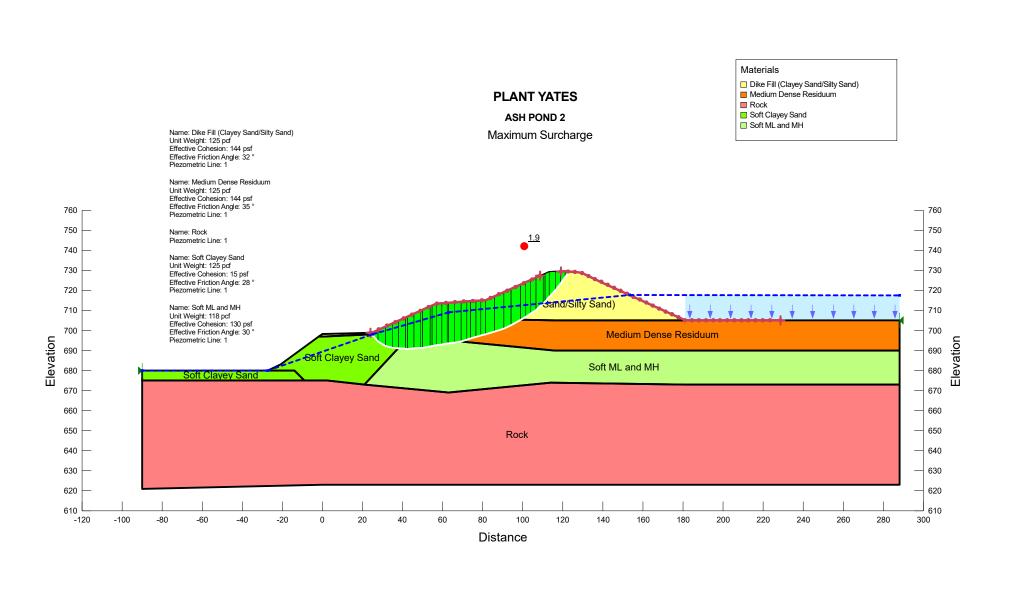
Phreatic Surface

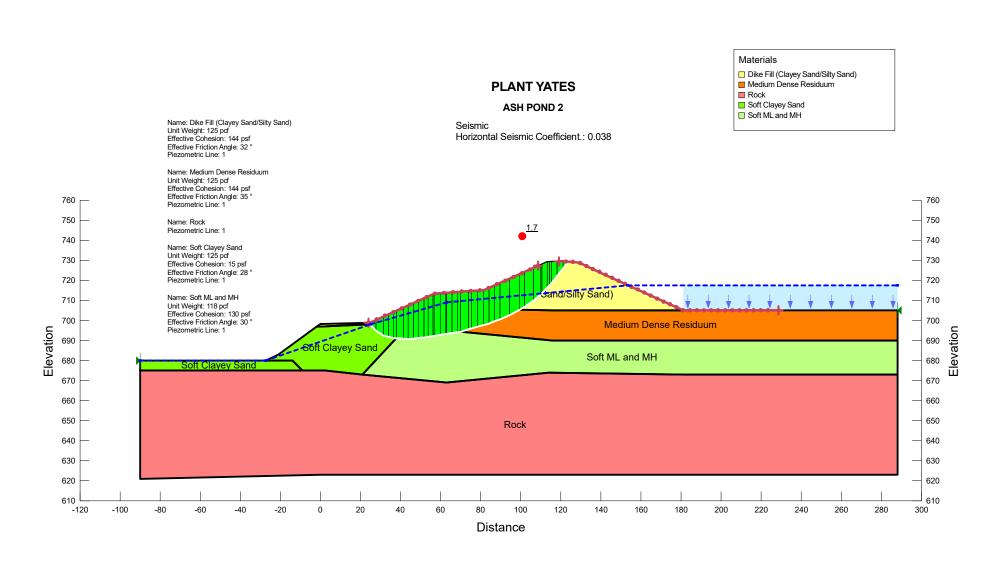
Piezometers were installed at the following locations:

- Dike Crest one was installed in the dam fill and one was installed in the foundation soils.
- Bench one was installed in the dam fill and one was installed in the foundation soils.
- Dike Toe one was installed in the foundation material.

Loading Conditions

The Plant Yates Ash Pond 2 Dike was evaluated for the maximum surcharge and seismic loading conditions.


Design Inputs/References


- SCS Calculation TV-YT-GPC603884-001
- Idriss and Boulanger, Semi-empirical procedures for evaluating liquefaction potential during earthquakes, 2004
- Youd and Idriss, Liquefaction Resistance of Soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF Workshops on evaluation of liquefaction resistance of soils, 2001

- Bray, J. D. and Travasarou, T., Pseudostatic Coefficient for Use in Simplified Seismic Slope Stability Evaluation, Journal of Geotechnical and Environmental Engineering, American Society of Civil Engineers, September 2009
- GPC Drawing H-183, Dike Addition Plan and Profile Sections
- SCS Drawing ES1836S1A Pond and Cross-section Layouts
- SCS Drawing ES1836S1B Plant Yates Ash Pond Dike Cross-Sections
- SCS ES1836S2 Piezometer and Boring Layout
- SCS 2010 Boring and Piezometer Logs
- GPC Drawing Yates Ash Pond No. 2, April 2014 Survey
- 2016 TRC-Yates Closures FINAL AP2 ash
- 2010 Laboratory Analyses

Body of Calculation

Slope/W analysis attached.

Attachment A

Boring Location Plan

Attachment B

Boring and Piezometer Logs

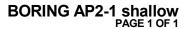
BORING AP2-1 deep PAGE 1 OF 2

LOG OF TEST BORING

PROJECT Plant Yates Ash Pond Dike Stability SOUTHERN COMPANY SERVICES, INC. EARTH SCIENCE AND ENVIRONMENTAL ENGINEERING **LOCATION** Whitesburg, Ga POND DIKES.GPJ DATE STARTED 3/8/2010 COMPLETED 3/8/2010 SURF. ELEV. 729.4 COORDINATES: N 1,259,231.10 E 2,070,344.54 **EQUIPMENT** CME 55 **METHOD** Hollow Stem Auger CONTRACTOR SCS Field Services DRILLED BY T. Milam CHECKED BY LOGGED BY R. Mudd **ANGLE BEARING** EPA ASH POND INSPECTIONS/BORING INFORMATION/YATES ASH ____ COMP. ______ DELAYED _ 30.8 ft. after 240 hrs. **BORING DEPTH** 54.9 ft. GROUND WATER DEPTH: DURING NOTES Top of Ash Pond 2, Deep well Well installed. Refer to well data sheet. SAMPLE TYPE NUMBER SAMPLE DEPTH (ft.) ELEVATION GRAPHIC LOG RECOVERY (RQD) DEPTH (ft) BLOW MATERIAL DESCRIPTION COMMENTS Silty Sand (SM) - red and dark brown, dry, fine to medium grain, fill, with 3-6-6 4.5-6.0 111 medium to large micaceous pebbles in sample (12)GEOTECH ENGINEERING LOGS - ESEE DATABASE.GDT - 09/20/10 10:41 - T:ESEE MAJOR PROJECTS/PROJECTS/YATES/YATES 2010/ES1836 111 10 (MC = 18.4%; LL=51; PI=10; - slightly moist, fill SS 9.5-2-3-5 FC = 29.3%; Gravel = 9.3%) 11.0 (8) 15 14.5-2-5-4 SS 16.0 (9)20 19.5-3-5-7 21.0 (12)Clayey Sand (SC) 4-11-17 24.5-26.0 (28)- gray and red, moist, dense, fine to medium grain, Top of sample is gray and red, while bottom is red. Probable fill to residuum transition. 699.9 (MC = 16.7%; LL=34; PI=11; Clayey Sand (SC) SS 29.5-4-9-9 FC = 32.9%; Gravel = 2.5%) -6 31.0 (18)- gray, very moist, medium dense, medium grain, residuum 35 SS 34.5-6-6-10 - micaceous, more clay than above

36.0

(16)


LOG OF TEST BORING

SOUTHERN COMPANY SERVICES, INC.

PROJECT Plant Yates Ash Pond Dike Stability

EARTH SCIENCE AND ENVIRONMENTAL ENGINEERING LOCATION Whitesburg, Ga Ξ %

					<u> </u>				
ОЕРТН (ft)	GRAPHIC	2	MATERIAL DESCRIPTION	ELEVATION	SAMPLE TYPE NUMBER	SAMPLE DEPTH (ft.)	BLOW COUNTS (N VALUE)	RECOVERY % (RQD)	COMMENTS
40	17	+		— -689.9		20.5	\A/ \A/ C		(MC = 30.7%: =45: DI=15:
40			Silt (ML)		SS -8	39.5- 41.0	WH-WH-2 (2)		(MC = 30.7%; LL=45; PI=15; FC = 87.6%)
			- reddish light brown, moist, soft, high plasticity			11.0	(=)		,
					UD	42.0-			
					-1	44.0		80	
45					UD	44.0-		100	
					-2	46.0		100	
				679.9					
50		\sqcap	Elastic Silt (MH)		SS -9	49.5-	WH-WH-2		(MC = 48.7%; LL=71; PI=24; FC = 79.1%)
			- dark black, wet, soft, medium to high plasticity		-9	51.0	(2)		FC = 79.1%)
	Ш								
	Ш								
	Ш	Щ.		<u>674.9</u> 674 .5					
55	40.0.	<u>'41</u>	√ (GW)	674 .5	SS -10	54.5- 54.9	50/5" (100+)	\vdash	Auger Refusal.
			Bottom of borehole at 54.9 feet.		(-10	04.0	(100.)	ı	
60									
60									
60									
60									
60									
60									
65									
65									
65									
65									
65									
65									
65									
65									
70									
70									
70 75									
70 75 80									
70 75									
70 75									
70									

PROJECT Plant Yates Ash Pond Dike Stability SOUTHERN COMPANY SERVICES, INC. EARTH SCIENCE AND ENVIRONMENTAL ENGINEERING **LOCATION** Whitesburg, Ga GEOTECH ENGINEERING LOGS - ESEE DATABASE GDT - 09/20/10 10:41 - T.:ESEE MAJOR PROJECTS/PATES/YATES 2010/ES1836 EPA ASH POND INSPECTIONS/BORING INFORMATION/YATES ASH POND DIKES. GPJ DATE STARTED 3/9/2010 COMPLETED 3/9/2010 SURF. ELEV. 729.5 COORDINATES: N 1,259,239.85 E 2,070,394.83 CONTRACTOR SCS Field Services EQUIPMENT CME 55 METHOD Hollow Stem Auger CHECKED BY _____ __ ANGLE _____ BEARING DRILLED BY T. Milam LOGGED BY R. Mudd BORING DEPTH 32 ft. GROUND WATER DEPTH: DURING COMP. DELAYED 7 ft. after 216 hrs. NOTES Top of Ash Pond 2, Shallow Well Well installed. Refer to well data sheet. SAMPLE DEPTH (ft.) SAMPLE TYPE NUMBER ELEVATION BLOW COUNTS (N VALUE) GRAPHIC LOG RECOVERY (RQD) DEPTH (ft) MATERIAL DESCRIPTION COMMENTS \mathbf{I} 10 UD 10.0-100 12.0 15 20 UD 20.0-100 22.0 UD attempted, material too dense UD 32.0for sampling, crushed Shelby 34.0 tube. 35

SOUTHERN COMPANY SERVICES, INC.
EARTH SCIENCE AND ENVIRONMENTAL ENGINEERING

PROJECT Plant Yates Ash Pond Dike Stability

LOCATION Whitesburg, Ga

	ים סו	T. Milam LOGGED BY R. Mudd	_ CHEC	KED BY	′		_ ANG	LE BEARING
BORING DEPTH 45.5 ft. GROUND WATER DEPTH: DURING COMP. DELAYED 17.4 ft. after 216 hrs.								
OTE	S Ash	Pond 2 Berm, Deep Well Well installed. Refer to well of	data sh	eet.				
(#)	GRAPHIC LOG	MATERIAL DESCRIPTION	ELEVATION	SAMPLE TYPE NUMBER	SAMPLE DEPTH (ft.)	BLOW COUNTS (N VALUE)	RECOVERY % (RQD)	COMMENTS
		Silty Sand (SM)						
5		- SM: orange, tan, gray, light gray and red, moist, medium to fine grain, <i>fill</i> , some small pebbles in sam micaceous	. [SS -1	4.5-6.0	3-5-12 (17)		(MC = 16.8%; FC = 24.9%; Gravel = 0.1%)
			<u>706.9</u>					Probable fill/residuum interface,
10		- SM: dark brown, moist, medium dense, medium gr residuum, white quartz angular pebbles in sample	rain,	SS -2	9.5- 11.0	2-8-10 (18)		cuttings turned from predominately red to predominately light brown. (MC = 16.2%; FC = 20%; Gravel = 2.2%)
15		- SM: greenish gray and white, very moist, medium dense, medium grain, <i>residuum</i> , some micaceous si angular pebbles in sample	mall	SS -3	14.5- 16.0	4-10-9 (19)		
			694.9					(MA) 40 00% LL 50 DL 00
20		Fat Clay (CH) - dark brown, very moist, soft, high plasticity, residue	um [SS -4	19.5- 21.0	1-2-1 (3)		(MC = 42.6%; LL=52; PI=26; FC = 93.3%)
		trace organics, SG = 2.774	,					Auger cuttings very wet
				UD -1	22.0- 24.0		100	Auger cuttings very wet.
25		- CH: orange-red, moist, medium stiff, medium to hig plasticity, <i>residuum</i>	gh	SS -5	24.5- 26.0	2-2-4 (6)		
30		Elastic Silt (MH)	<u>684.9</u>	▼ SS	29.5-	WH-1-2		(MC = 40.5%; LL=53; PI=20;
		- gray, moist, soft, medium to high plasticity, residuu alternates stiff and soft layers in spoon	ım,	-6	31.0	(3)		FC = 87.2%)
		anomates sun and soit layers in spoon	670.0					Auger cuttings appear to alternat between thicker, light gray/red-orange clay and dark
		Poorly-graded Sand (SP)	<u>679.9</u>	SS	34.5-	4-4-3		gray, "oozy" clay.
35		roony-graded Sand (Sr)	l.	X I				
35		 light and medium gray, very wet, loose, coarse gra residuum, top 6" of sample is possibly gray CH from 		-7	36.0	(7)		

SOUTHERN COMPANY SERVICES, INC.
EARTH SCIENCE AND ENVIRONMENTAL ENGINEERING

PROJECT Plant Yates Ash Pond Dike Stability

LOCATION Whitesburg, Ga

1	RTH SC	CIENCE AND ENVIRONMENTAL ENGINEERING	LO	CATION	Whites	burg, Ga		
(#) 40 45 55 55 55 55 55 55 55 55 55 55 55 55	GRAPHIC LOG	MATERIAL DESCRIPTION	ELEVATION	SAMPLE TYPE NUMBER	SAMPLE DEPTH (ft.)	BLOW COUNTS (N VALUE)	RECOVERY % (RQD)	
40		Silty Sand (SM) - dark brown and orange, moist, dense, fine grain, residuum, sapprolite, micaceous	- -674.9	SS -8	39.5- 41.0	11-18-23 (41)		foot, then more "oozy" clay. (MC = 16.1%; FC = 27.3%; Gravel = 1.4%)
45		Poorly-graded Sand (SP)	669.9 669.0	≥ SS	44.5-	50/5"		
	<u> </u>	- black, dark gray and white layers, moist, very den fine grain, <i>residuum</i> , weathered in place gneiss	ise,	SS -9	44.5- 44.9	(100+)	 	Auger Retusal.
=		Bottom of borehole at 45.5 feet.						
5								
50								
Ę								
55								
<u> </u>								
60	_							
8								
65								
70	1							
<u> </u>								
75								
<u></u>								
	-							
<u> </u>	+							
80								
	-							
85								

PROJECT Plant Yates Ash Pond Dike Stability SOUTHERN COMPANY SERVICES, INC. EARTH SCIENCE AND ENVIRONMENTAL ENGINEERING **LOCATION** Whitesburg, Ga POND DIKES.GPJ **DATE STARTED** 3/15/2010 **COMPLETED** 3/15/2010 **SURF. ELEV.** 715.2 **COORDINATES:** N 1,259,192.20 E 2,070,301.10 **EQUIPMENT** CME 55 **METHOD** Hollow Stem Auger CONTRACTOR SCS Field Services DRILLED BY T. Milam CHECKED BY ANGLE LOGGED BY R. Mudd **BEARING** EPA ASH POND INSPECTIONS/BORING INFORMATION/YATES ASH ___ COMP. _____ DELAYED <u>6.2 ft. after 72 hrs.</u> BORING DEPTH 21 ft. GROUND WATER DEPTH: DURING NOTES Ash Pond 2 Berm, Shallow Well Well installed. Refer to well data sheet. SAMPLE TYPE NUMBER SAMPLE DEPTH (ft.) ELEVATION GRAPHIC LOG RECOVERY (RQD) DEPTH (ft) BLOW MATERIAL DESCRIPTION COMMENTS Silty Sand (SM) - orange, gray and white, slightly moist, medium to fine grain, fill 6-7-8 4.5-6.0 (15)1111 GEOTECH ENGINEERING LOGS - ESEE DATABASE.GDT - 09/20/10 10:41 - T:ESEE MAJOR PROJECTS/PROJECTS/YATES/YATES 2010/ES1836 Cuttings changed from light red to 4-8-9 6.5-8.0 medium brown. (17)(MC = 15.4%; FC = 25.6%; Gravel = 1.3%) Very difficult drilling. 10 - dark brown and gray, Less clay, large white quartz in SS 9.5-5-7-9 11.0 (16)cuttings turned from medium brown to dark gray. 15 14.5-7-10-8 - light tan with orange and gray, fine grain, fill, First sample attempt had no recovery, second sample attempt 16.0 (18)111 appears "oozy" in spoon, with trace clay, small recovery probable fill/residuum interface, cuttings "oozed" from hole but quickly turned to balled up light 20 19.5-3-7-8 brown clay. - SP: gray and white, moist, dense, medium grain, SS residuum, Appears with CLAY (CH), dark brown, high694.2 -5 21.0 (15)plasticity and moist Bottom of borehole at 21.0 feet. 35

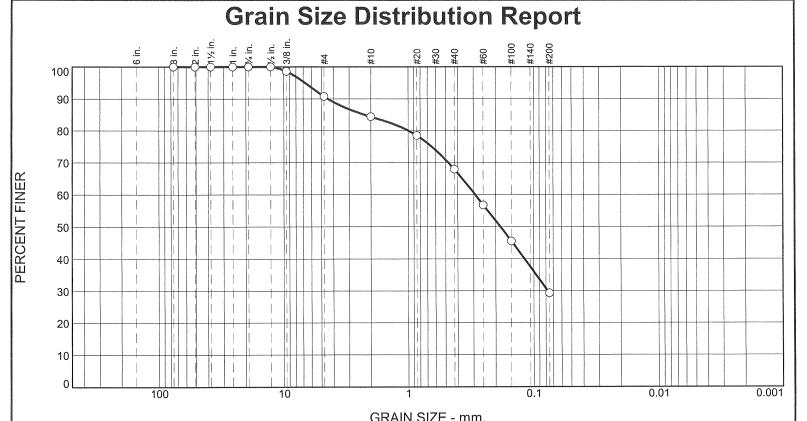
PROJECT Plant Yates Ash Pond Dike Stability SOUTHERN COMPANY SERVICES, INC. EARTH SCIENCE AND ENVIRONMENTAL ENGINEERING **LOCATION** Whitesburg, Ga POND DIKES.GPJ DATE STARTED 3/11/2010 COMPLETED 3/11/2010 SURF. ELEV. 698.5 COORDINATES: N 1,259,293.75 E 2,070,299.02 **EQUIPMENT** CME 55 **METHOD** Hollow Stem Auger CONTRACTOR SCS Field Services DRILLED BY T. Milam LOGGED BY R. Mudd CHECKED BY **ANGLE BEARING** EPA ASH POND INSPECTIONS/BORING INFORMATION/YATES ASH BORING DEPTH 23.9 ft. GROUND WATER DEPTH: DURING **COMP.** 3.2 ft. **DELAYED** 5.7 ft. after 168 hrs. NOTES Toe of Ash Pond 2, next to Chattahoochee River which was flowing 4' below top of boring at time of drilling (elevated due to recent rains) Well ins % SAMPLE TYPE NUMBER SAMPLE DEPTI (ft.) ELEVATION GRAPHIC LOG RECOVERY (RQD) DEPTH (ft) BLOW MATERIAL DESCRIPTION COMMENTS Surface material is very loose Silty Sand (SM) sand flood deposits. 111 411 - dark gray, wet, loose, fine grain 111 (MC = 33.5%; PL=NP;2-3-3 4.5-6.0 Ā FC = 45.5%; Gravel = 5.8%) (6) GEOTECH ENGINEERING LOGS - ESEE DATABASE.GDT - 09/20/10 10:41 - T:ESEE MAJOR PROJECTS/PROJECTS/YATES/YATES 2010/ES1836 +1+Silt (ML) - dark brown-red, wet, very loose, medium plasticity, fine 10 (MC = 35.6%; LL=35; PI=9; SS 9.5-WH-WH-WH FC = 55%-2 11.0 (0) UD contained no recovery, ST 13.0sample too loose to stay in tube. 15.0 -1 15 (MC = 41%; LL=34; PI=9; SS 15.0-WH-WH-WH - dark gray, very wet, very loose, fine grain FC = 62.8%) 16.5 (0)20 19.5-WH-1-13 678.0 21.0 (14)Poorly-graded Sand (SP) - dark gray and white, moist, medium dense, medium grain, angular, weathered rock in sample 674.6 Auger Refusal. Bottom of borehole at 23.9 feet. 25 35

PROJECT Plant Yates Ash Pond Dike Stability SOUTHERN COMPANY SERVICES, INC. EARTH SCIENCE AND ENVIRONMENTAL ENGINEERING **LOCATION** Whitesburg, Ga POND DIKES.GPJ DATE STARTED 8/9/2010 COMPLETED 8/9/2010 SURF. ELEV. 698.5 COORDINATES: N 1,259,225.40 E 2,070,256.89 CONTRACTOR SCS Field Services **EQUIPMENT** CME 55 **METHOD** Casing Advance with removable bit DRILLED BY T. Milam CHECKED BY **ANGLE BEARING** LOGGED BY R. Mudd GEOTECH ENGINEERING LOGS - ESEE DATABASE GDT - 09/20/10 10:41 - TIESEE MAJOR PROJECTSIPROJECTSIYATES 2010/ES1836 EPA ASH POND INSPECTIONS/BORING INFORMATIONIYATES ASH BORING DEPTH 23.2 ft. GROUND WATER DEPTH: DURING COMP. DELAYED NOTES AP2-4 and AP2-5 added after inspection for clarification of riverbank material characteristics; drilling method prevented groundwater reading SAMPLE DEPTH (ft.) SAMPLE TYPE NUMBER ELEVATION GRAPHIC LOG RECOVERY (RQD) DEPTH (ft) MATERIAL DESCRIPTION COMMENTS Clayey Sand (SC) - dark brown, medium dense, fine grain, micaceous 7-8-7 3.5-5.0 (15)Sandy Lean Clay (CL) 10 - dark brown, soft, low plasticity, with sand, micaceous SS 9.5-WH-WH-WH 11.0 (0) 15 WH-WH-WH 14.5-- more sand than above 16.0 (0)20 WH-8-7 SS 19.5-Clayey Sand (SC) 21.0 (15)- dark brown and black, medium dense, fine to medium grain, pieces of rock in sample, micaceous 675.3 Refusal. Bottom of borehole at 23.2 feet. 25 35

PROJECT Plant Yates Ash Pond Dike Stability

SOUTHERN COMPANY SERVICES, INC. EARTH SCIENCE AND ENVIRONMENTAL ENGINEERING LOCATION Whitesburg, Ga GEOTECH ENGINEERING LOGS - ESEE DATABASE GDT - 09/20/10 10:41 - T.:ESEE MAJOR PROJECTS/PATES/YATES 2010/ES1836 EPA ASH POND INSPECTIONS/BORING INFORMATION/YATES ASH POND DIKES. GPJ DATE STARTED 8/9/2010 COMPLETED 8/9/2010 SURF. ELEV. 698.6 COORDINATES: N 1,259,369.42 E 2,070,343.20 CONTRACTOR SCS Field Services **EQUIPMENT** CME 55 **METHOD** Casing Advance with removable bit CHECKED BY DRILLED BY T. Milam **ANGLE BEARING** LOGGED BY R. Mudd BORING DEPTH 22.7 ft. COMP. _____ GROUND WATER DEPTH: DURING DELAYED NOTES AP2-4 and AP2-5 added after inspection for clarification of riverbank material characteristics; drilling method prevented groundwater reading; Hole SAMPLE DEPTH (ft.) SAMPLE TYPE NUMBER ELEVATION GRAPHIC LOG RECOVERY (RQD) DEPTH (ft) BLOW MATERIAL DESCRIPTION COMMENTS Clayey Sand (SC) - dark gray, transitioning to red-brown with depth, 8-5-5 4.5-6.0 medium dense, fine grain, micaceous (10)689.1 10 Lean Clay (CL) SS 9.5-WH-WH-WH 11.0 (0) - dark brown, soft, medium plasticity, a few twigs and pieces of grass in sample, slightly micaceous 684.1 15 Silty Sand (SM) SS 14.5-1-4-4 -3 16.0 (8) - light gray, loose, fine grain, large piece of wood in sample, micaceous 20 19.5-2-1-1 - No recovery, some small pieces of wood in spoon 21.0 (2) 675.9 Refusal Bottom of borehole at 22.7 feet. 25 35

Attachment C


Laboratory Analyses

Project: Project Number Date Performed Date Sampled

Plant Yates Ash Pond 6189-10-9008 4/2/2010

Moisture Content Calculation: (WetWt-DryWt)/(DryWt-can wt)

	Mo	isture Cont	ent Calcula	tion: (VV etV	v t-Dryvv t)/(Drywt-can	Wt)			
Boring Number	AP1-1	AP1-1	AP1-1	AP2-1	AP2-1	AP2-1	AP2-1	AP2-2 DEEP	AP2-2 DEEP	AP2-2 DEEP
Sample Number	2	4	6	2	6	8	10	1	2	4
Depth	9.5-11	19.5-21	29.5-31	9.5-11	29.5-31	39.5-41	49.5-51	4.5-6	9.5-11	19.5-21
Can Number				n kennyonahalining 1884 dia Nasa malahusi Agustung.						
Can Weight	55.76	54.25	50.83	50.42	51.67	55.88	54.96	53.73	53.15	55.21
Wet wt w/ Can	193.21	96.15	192.67	199.71	213.46	187.23	121.91	235.66	166.27	117.54
Dry wt. W/ Can	165.5	87.83	161.26	176.47	190.3	156.36	99.99	209.44	150.5	98.92
Percent Moisture	25.3%	24.8%	28.4%	18.4%	16.7%	30.7%	48.7%	16.8%	16.2%	42.6%
Boring Number	AP2-2 DEEP	AP2-2 DEEP	AP2-2 SHALLOW	AP2-3	AP2-3	AP2-3	APA-1	APA-1	APA-1	APA-1
Sample Number	6	8	2	1	2	3	3	4	5	. 7
Depth	29.5-31	39.5-41	6.5-8	4.5-6	9.5-11	15-16.5	14.5-16	19.5-21	24.5-26	37.5-39
Can Number										
Can Weight	53.26	49.04	49.97	50.19	49.76	54.75	49.13	49.84	55.54	50.17
Wet wt w/ Can	173.93	251.55	193.23	144.33	169.21	201.5	102.61	197.05	204.24	229.87
Dry wt. W/ Can	139.13	223.41	174.12	120.7	137.87	158.81	88.89	151.98	164.48	191.61
Percent Moisture	40.5%	16.1%	15.4%	33.5%	35.6%	41.0%	34.5%	44.1%	36.5%	27.1%

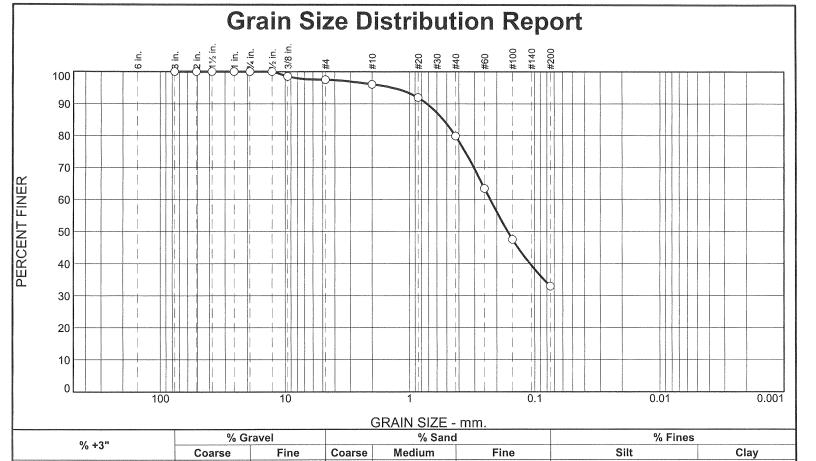
0/ - 01	% Gr	avel		% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Coarse Medium Fine		Silt Clay	
0.0	0.0	9.3	6.4	6.4 16.4 39.6		29.3	

ſ	Test Results (ASTM D 422 & ASTM D 1140)									
	Opening	Percent	Spec.*	Pass?						
	Size	Finer	(Percent)	(X=Fail)						
ſ	3"	100.0								
-	2"	100.0								
	1.5"	100.0								
	1"	100.0								
	3/4"	100.0								
	1/2"	100.0								
	3/8"	98.6								
	#4	90.7								
	#10	84.3								
	#20	78.5								
1	#40	67.9								
	#60	56.7								
	#100	45.5								
	#200	29.3								
1000										
l	*									

<u>Material Description</u>						
Light Reddish Brown Medium to Fine SAND with Silt						
Δtte	erberg Limits (ASTM I	D 4318)				
PL= 41	LL= 51	PI= 10				
	Classification					
USCS (D 2487)=		1 145)= A-2-5(0)				
	Coefficients					
D ₉₀ = 4.4266	$D_{85} = 2.2615$	D₆₀= 0.2906				
$D_{50} = 0.1836$	$D_{30} = 0.0772$	D ₁₅ =				
D ₁₀ =	C _u =	C _c =				
	Remarks					
Date Received:	4-2-10 Date Te	ested: 4-8-10				
Tested By:	MC					
Checked By:						
Title:						

* (no specification provided)

Source of Sample: Boring No.: AP2-1 **Sample Number:** 2


Depth: 9.5'-11.0'

Date Sampled:

MACTEC ENGINEERING. AND CONSULTING, INC.

Client: Southern CompanyProject: Plant Yates Ash Pond

Project No: 6189109008

16.2

46.9

Test R	lesults (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3"	100.0		
2"	100.0		
1.5"	100.0		
1"	100.0		
3/4"	100.0		
1/2"	100.0		
3/8"	98.5		
#4	97.5		
#10	96.0		
#20	91.9		
#40	79.8		
#60	63.5		
#100	47.5		
#200	32.9		
namenoonaanoonagemarorneennaanaanaanaanaanaan			

0.0

2.5

1.5

Material Description						
Light Brown Medi	Light Brown Medium to Fine SAND with Clay					
B.4.4.		D 4040)				
PL= 23	erberg Limits (ASTM LL= 34	PI= 11				
USCS (D 2487)=	SC Classification AASHTO (I	M 145)= A-2-6(0)				
D ₉₀ = 0.7201 D ₅₀ = 0.1640 D ₁₀ =	Coefficients D ₈₅ = 0.5321 D ₃₀ = C _u =	D ₆₀ = 0.2253 D ₁₅ = C _c =				
	Remarks					
Date Received:	4-2-10 Date T	ested: 4-8-10				
Tested By:	MC					
Checked By:						
Title:						

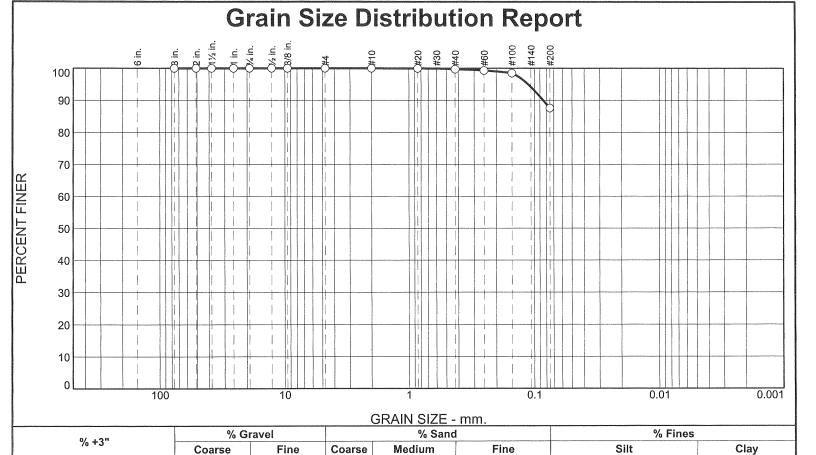
(no specification provided)

0.0

Source of Sample: Boring No.: AP2-1 **Sample Number:** 6

Depth: 29.5'-31.0'

Date Sampled:


32.9

MACTEC ENGINEERING. AND CONSULTING, INC.

Client: Southern Company

Project: Plant Yates Ash Pond

Project No: 6189109008

0.3

12.1

Test Results (ASTM D 422 & ASTM D 1140)						
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
3"	100.0					
2"	100.0					
1.5"	100.0					
1"	100.0					
3/4"	100.0					
1/2"	100.0					
3/8"	100.0					
#4	100.0					
#10	100.0					
#20	99.9					
#40	99.7					
#60	99.3					
#100	98.5					
#200	87.6					

0.0

0.0

0.0

	<u>Material</u>	Description	
Light Brown SILT	with Sand		
Atte	rberg Lim	its (ASTM D 4318)	1.5
PL= 30	LL= 4	5 PI=	15
USCS (D 2487)=		sification AASHTO (M 145)=	A-7-5(16)
	Coe	fficients	
$\mathbf{p_{90}} = 0.0848$	D ₈₅ =	D ₆₀ =	
D ₅₀ = D ₁₀ =	C _u =	D ₁₅ = C _c =	
	Re	emarks	
Date Received:	4-2-10	Date Tested:	4-8-10
Tested By:	MC		
Checked By:			
Title:			

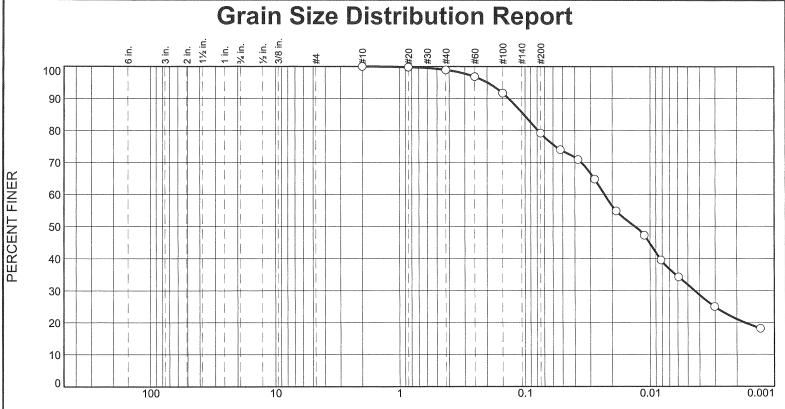
(no specification provided)

0.0

Source of Sample: Boring No.: AP2-1 **Sample Number:** 8

Depth: 39.5'-41.0'

Date Sampled:


87.6

MACTEC ENGINEERING. AND CONSULTING, INC.

Client: Southern Company

Project: Plant Yates Ash Pond

Project No: 6189109008

GRAIN SIZE - mm.

0/ 138	% Gravel		% Sand		% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.0	1.1	19.8	47.3	31.8

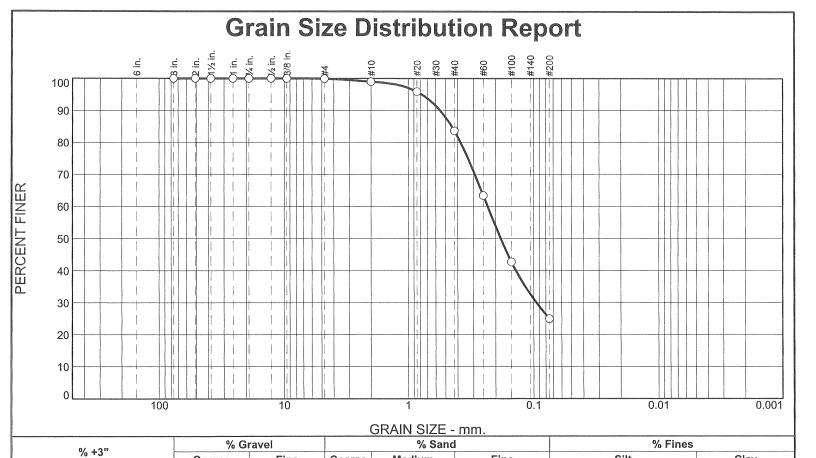
Opening	Percent	Spec.*	Pass?	
Size	Finer	(Percent)	(X=Fail)	
#10	100.0			
#20	99.8			
#40	98.9			
#60	96.8			
#100	91.7			
#200	79.1			
0.0521 mm.	73.9			
0.0376 mm.	70.9			
0.0277 mm.	64.7			
0.0185 mm.	54.8			
0.0111 mm.	47.2			
0.0082 mm.	39.5			
0.0059 mm.	34.2			
0.0030 mm.	24.9			
0.0013 mm.	18.1			

Material Description						
Dark Gray Elastic SILT with Sand						
Atte	rberg L	imits (ASTM E	0 4318) Pl= 24			
u 2000 1 /		**********				
USCS (D 2487)=		<u>assification</u> AASHTO (M	145)= A-7-5(25)			
		oefficients				
D₉₀= 0.1347 D₅₀= 0.0132	D ₈₅ =	0.1024 0.0044	D₆₀= 0.0231			
D ₅₀ - 0.0132 D ₁₀ =	C _u =	0.0044	D ₁₅ = C _c =			
		Remarks	-			
Assumed specific g	gravity: 2	.690				
Date Received: 4	1-2-10	Date Te	sted: 4-8-10			
Tested By: 1	MC					
Checked By:						
Title:						

* (no specification provided)

Source of Sample: Boring No.: AP2-1 **Sample Number:** 10

Depth: 49.5'-51.0'


Date Sampled:

MACTEC ENGINEERING. AND CONSULTING, INC.

Client: Southern Company

Project: Plant Yates Ash Pond

Project No: 6189109008

Medium

15.4

Fine

58.7

Test Results (ASTM D 422 & ASTM D 1140)						
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
3"	100.0	Co. 21				
2"	100.0					
1.5"	100.0					
1"	100.0					
3/4"	100.0					
1/2"	100.0					
3/8"	100.0					
#4	99.9					
#10	99.0					
#20	95.9					
#40	83.6					
#60	63.3					
#100	42.7					
#200	24.9					

Coarse

0.0

Fine

0.1

Coarse

0.9

Material Description					
Light Brown Med	ium to Fine SAND wit	h Silt			
A 44.	oubone limito (ACTI	M D 4240\			
PL=	<u>erberg Limits (ASTI</u> LL=	PI=			
	Classification				
USCS (D 2487)=	SM AASHTO	(M 145)=			
- O ##1#	Coefficients	0.0010			
D ₉₀ = 0.5515 D ₅₀ = 0.1823	D₈₅= 0.4465 D₃₀= 0.0948	D ₆₀ = 0.2313 D ₁₅ =			
D ₁₀ =	C _u =	Cc=			
	Remarks				
Date Received:		Tested: 4-8-10			
Tested By:	MC				
Checked By:					
Title:					

Silt

24.9

Clay

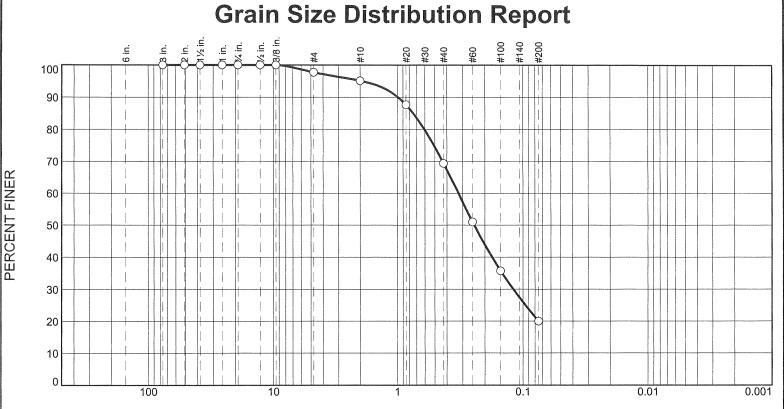
* (no specification provided)

0.0

Source of Sample: Boring No.: AP2-2 **Sample Number:** 1

Depth: 4.5'-6.0'

Date Sampled:


MACTEC ENGINEERING. AND CONSULTING, INC.

CPEII: 11.5 10.0

Client: Southern Company

Project: Plant Yates Ash Pond

Project No: 6189109008

GRAIN SIZE - mm.

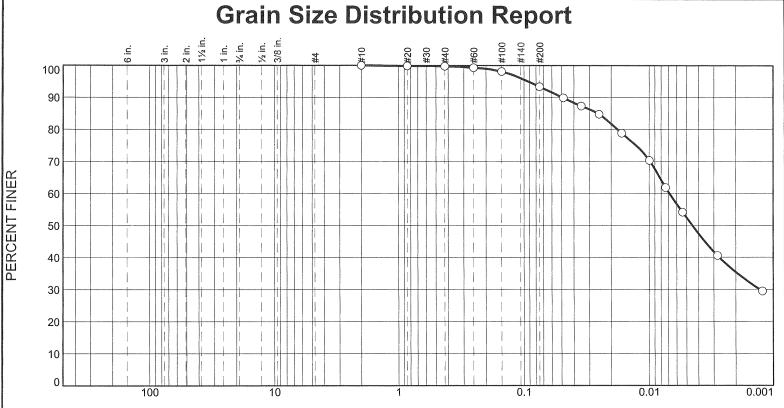
0/ ±2"	% Gravel		% Gravel % Sand		% Fines		
% T 3	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	2.2	2.7	25.8	49.3	20.0	

Test R	Test Results (ASTM D 422 & ASTM D 1140) Opening Percent Spec.* Pass?					
Opening	Percent	Pass?				
Size	Finer	(Percent)	(X=Fail)			
3"	100.0					
2"	100.0					
1.5"	100.0					
1"	100.0					
3/4"	100.0					
1/2"	100.0					
3/8"	100.0					
#4	97.8					
#10	95.1					
#20	87.7					
#40	69.3					
#60	51.0					
#100	35.7					
#200	20.0					

	Material De	scription	A CONTRACTOR OF THE CONTRACTOR
Light Brown Medi	um to Fine SAN	ND with Silt	
Δtte	erhera l imits	(ASTM D 4318	3)
PL=	LL=	PI=	21
USCS (D 2487)=	Classific SM AA	<u>cation</u> \SHTO (M 145)=	:
D ₉₀ = 0.9845 D ₅₀ = 0.2427 D ₁₀ =	Coeffic D ₈₅ = 0.7419 D ₃₀ = 0.1196 C _u =	ients 0 0 0 0 0 0 0 0 0 0 0 0 0	0.3244
	Rema	ırks	
Date Received:	4-2-10	Date Tested:	4-8-10
Tested By:	MC		
Checked By:			
Title:			

* (no specification provided)

Source of Sample: Boring No.: AP2-2 **Sample Number:** 2


Depth: 9.5'-11.0'

Date Sampled:

MACTEC ENGINEERING. AND CONSULTING, INC. Client: Southern Company

Project: Plant Yates Ash Pond

Project No: 6189109008

GRAIN SIZE - mm.

0/ ±2"	% Gı	% Gravel % Sand % Fines		% Sand			
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.0	0.3	6.4	40.9	52.4

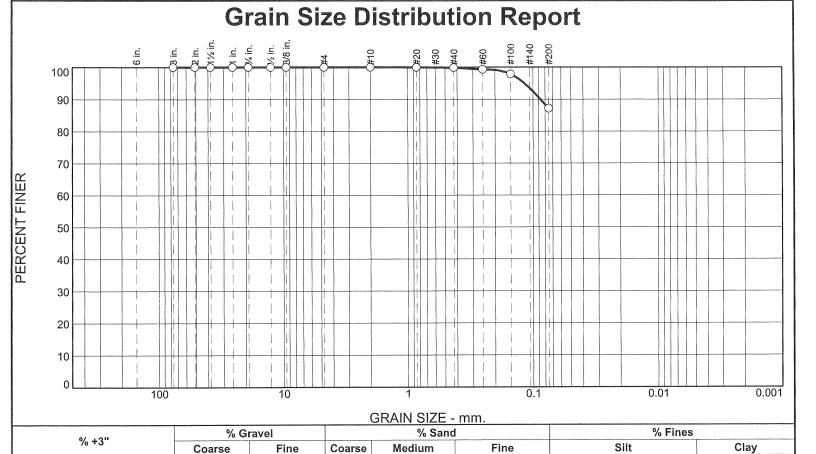
	esults (ASTM D	r	T
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
#10	100.0		
#20	99.8		
#40	99.7		
#60	99.3		
#100	98.1		
#200	93.3		
0.0484 mm.	89.8		
0.0348 mm.	87.3		
0.0250 mm.	84.7		
0.0164 mm.	78.8		
0.0100 mm.	70.2		
0.0073 mm.	61.8		
0.0054 mm.	54.1		
0.0028 mm.	40.5		
0.0012 mm.	29.4		

	Material Description	<u>1</u>
Light Brown Fat Cla	ay with Sand	
_	•	
Atter	berg Limits (ASTM D	4318)
PL= 26	LL= 52	PI= 26
	Classification	
USCS (D 2487)=		145)= A-7-6(28)
	Coefficients	
D₉₀= 0.0494 D₅₀= 0.0045	$D_{85} = 0.0257$	D₆₀= 0.0069
	$D_{30} = 0.0013$	D ₁₅ =
D ₁₀ =	c _u =	C _c =
	Remarks	
Specific gravity: 2.7	74	
Date Received: 4-	-2-10 Date Te :	sted: 4-8-10
Tested By: M		ear de ear sac e e e e e e e e e e e e e e e e e e e
Checked By: _		
Title:		
Managari .		

Source of Sample: Boring No.: AP2-2 **Sample Number:** 4

Depth: 19.5'-21.0'

Date Sampled:


MACTEC ENGINEERING. AND CONSULTING, INC.

Client: Southern Company

Project: Plant Yates Ash Pond

Project No: 6189109008

⁽no specification provided)

0.2

12.6

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3"	100.0		
2"	100.0		
1.5"	100.0		
1"	100.0		
3/4"	100.0		
1/2"	100.0		
3/8"	100.0		
#4	100.0		
#10	100.0		
#20	99.9		
#40	99.8		
#60	99.3		
#100	97.9		
#200	87.2		

0.0

0.0

0.0

0.0

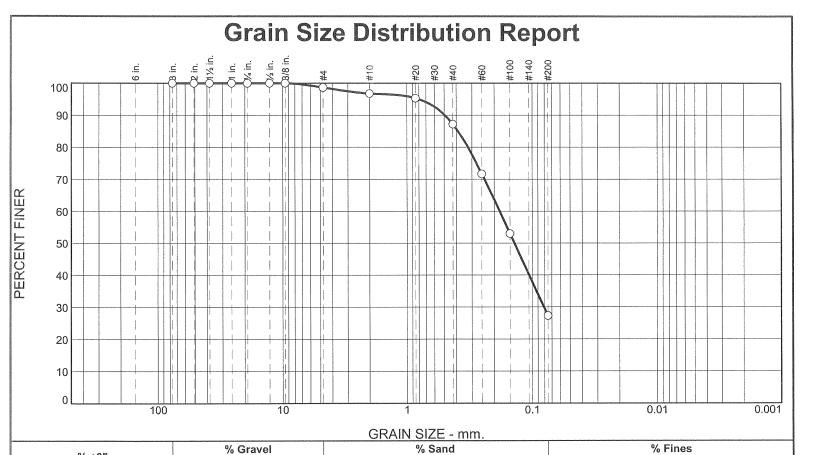
	Materi	al Description	
Light Brown Elast	ic SILT w	ith Sand	
PL= 33	erberg Li LL=	mits (ASTM D 4318)	
FL 33			20
UCCC (D 2407)		assification	A 7 5(21)
USCS (D 2487)=	MH	AASHTO (M 145)=	A-7-3(21)
	_	<u>oefficients</u>	
D 90= 0.0871	D ₈₅ =	D ₆₀ =	
D ₅₀ = D ₁₀ =	C _U =	D ₆₀ = D ₁₅ = C _c =	
	-	Remarks	
		i temai ka	
Date Received:	4-2-10	Date Tested:	4-8-10
Tested By:			1010
-	1410		
Checked By:			
Title:			

(no specification provided)

Source of Sample: Boring No.: AP2-2 **Sample Number:** 6

Depth: 29.5'-31.0'

Date Sampled:


87.2

MACTEC ENGINEERING. AND CONSULTING, INC.

Client: Southern Company

Project: Plant Yates Ash Pond

Project No: 6189109008

Medium

9.6

Fine

59.9

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3"	100.0		
2"	100.0		
1.5"	100.0		
1"	100.0		
3/4"	100.0		
1/2"	100.0		
3/8"	100.0		
#4	98.6		
#10	96.8		
#20	95.3		
#40	87.2		
#60	71.7		
#100	53.0		
#200	27.3		

Coarse

0.0

Fine

1.4

Coarse

1.8

	Material Descr	iption
Light Brown Medi	um to Fine SAND	with Silt
Λ 44 6	rhara l'imita (AS	TM D 4249)
PL=	erberg Limits (AS LL=	PI=
USCS (D 2487)=	Classificati SM AASH	on TO (M 145)=
D ₉₀ = 0.4925 D ₅₀ = 0.1385 D ₁₀ =	Coefficien D ₈₅ = 0.3870 D ₃₀ = 0.0807 C _u =	D ₆₀ = 0.1810 D ₁₅ = C _c =
	Remarks	
Date Received:		te Tested: 4-8-10
Tested By:	MC	
Checked By:		
Title:		

Silt

27.3

Clay

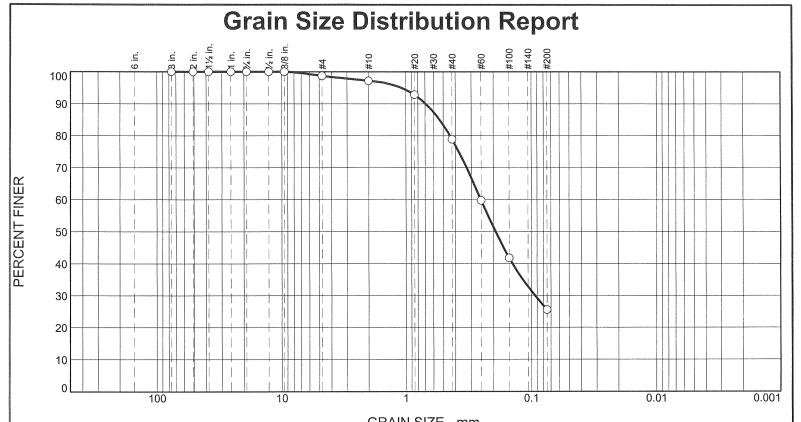
* (no specification provided)

Source of Sample: Boring No.: AP2-2 **Sample Number:** 8

% +3"

0.0

Depth: 39.5'-41.0'


Date Sampled:

MACTEC ENGINEERING. AND CONSULTING, INC.

Client: Southern Company

Project: Plant Yates Ash Pond

Project No: 6189109008

GRAIN SIZE - mm.

0/ 128	% Gravel			% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt Cla	
0.0	0.0	1.3	1.5	18.3	53.3	25.6	

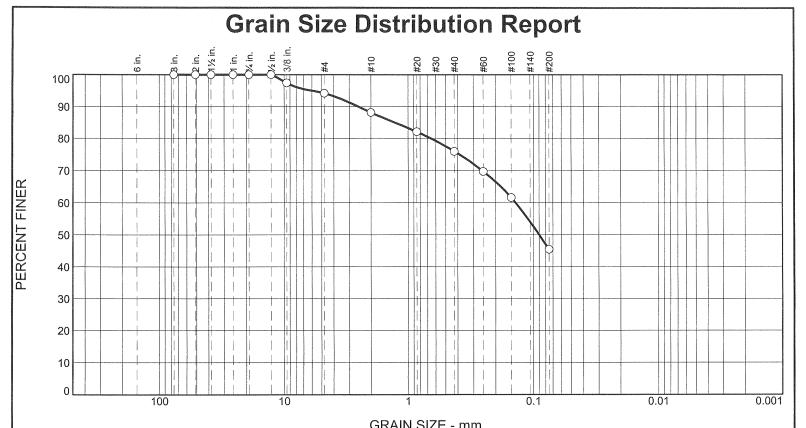
T		422 & ASTM D	T
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3"	100.0		
2"	100.0		
1.5"	100.0		
1"	100.0		
3/4"	100.0		
1/2"	100.0		
3/8"	100.0		
#4	98.7		
#10	97.2		
#20	92.8		
#40	78.9		
#60	59.8		
#100	41.8		
#200	25.6		

Material Description					
Light Brown Med	ium to Fine SAND with	Silt			
A 44	orbora Limita /ASTN	I D 4240\			
PL=	erberg Limits (ASTN LL=	PI=			
	Classification				
USCS (D 2487)=	SM AASHTO	(M 145)=			
	Coefficients				
D₉₀= 0.6908 D₅₀= 0.1924	D ₈₅ = 0.5344 D ₃₀ = 0.0932	D ₆₀ = 0.2515 D ₁₅ =			
D ₁₀ =	C _u =	C _c =			
	Remarks				
Date Received:	4 2 10 Pate 3				
Tested By:		1 ested. 4-0-10			
_	**** C				
Checked By:					
Title:					

(no specification provided)

Source of Sample: Boring No.: AP2-2 Sample Number: 2

Depth: 6.5'-8.0'


Date Sampled:

MACTEC ENGINEERING. AND CONSULTING, INC.

Client: Southern Company

Project: Plant Yates Ash Pond

Project No: 6189109008

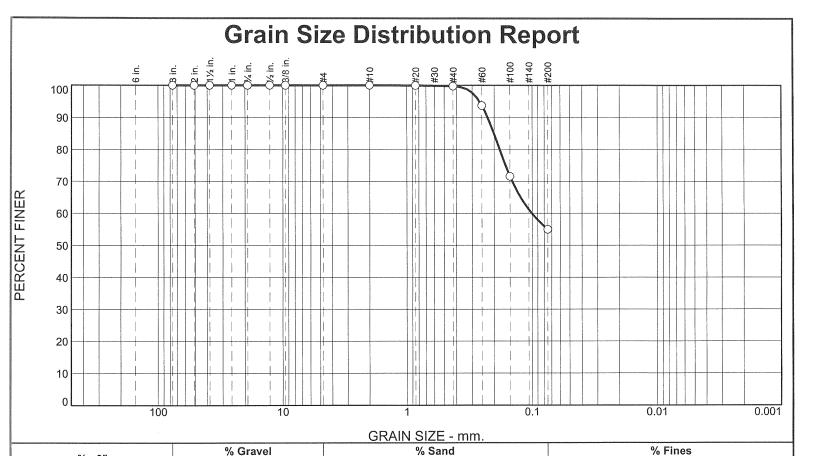
0/ . 25	% Gravel			% Sand		% Fine:	3
% +3"	Coarse	Fine	Coarse	Coarse Medium Fine		Silt	Clay
0.0	0.0	5.8	6.0	12.2	30.5	45.5	

Test Results (ASTM D 422 & ASTM D 1140)						
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
3"	100.0					
2"	100.0					
1.5"	100.0					
1"	100.0					
3/4"	100.0					
1/2"	100.0					
3/8"	97.4					
#4	94.2					
#10	88.2					
#20	82.1					
#40	76.0					
#60	69.7					
#100	61.6					
#200	45.5					

	Material Description						
	Dark Gray Fly Ash	Constitution of the Consti					
	Atterberg Limits (ASTM D 4318) PI = NP	n					
	1 con 11/1 c	r					
	USCS (D 2487)= SM Classification AASHTO (M 145)=	A-4(0)					
	<u>Coefficients</u>	***************************************					
	$D_{90} = 2.5327$ $D_{85} = 1.2784$ $D_{60} = 0.$	1386					
	D ₅₀ = 0.0899 D ₃₀ = D ₁₅ = D ₁₀ = C _c =						
	Remarks						
	Date Received: 4-2-10 Date Tested: 4-8-10						
Tested By: MC							
	Checked By:						
	Title:						
on the same of the	HIUG.						

* (no specification provided)

Source of Sample: Boring No.: AP2-3 **Sample Number:** 1


Depth: 4.5'-6.0'

Date Sampled:

MACTEC ENGINEERING. AND CONSULTING, INC. Client: Southern Company

Project: Plant Yates Ash Pond

Project No: 6189109008

Medium

0.3

Fine

44.7

Test Results (ASTM D 422 & ASTM D 1140)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
3"	100.0						
2"	100.0						
1.5"	100.0						
1"	100.0						
3/4"	100.0						
1/2"	100.0						
3/8"	100.0						
#4	100.0						
#10	100.0						
#20	99.9						
#40	99.7						
#60	93.7						
#100	71.6						
#200	55.0						
*							

Coarse

0.0

Fine

0.0

Coarse

0.0

	Material Description					
Light Brown SILT with Sand						
PL= 26	LL= 35 PI=					
USCS (D 2487)=	ML Classification AASHTO (M 145)=	A-4(3)				
D ₉₀ = 0.2254 D ₅₀ = D ₁₀ =	$\begin{array}{c} {\color{red} \textbf{Coefficients}} \\ \textbf{D_{85}} = 0.2010 \\ \textbf{D_{30}} = \\ \textbf{C_{u}} = \\ \end{array} \begin{array}{c} \textbf{D_{60}} = 0 \\ \textbf{D_{15}} = 0 \\ \textbf{C_{c}} = \\ \end{array}$	0.1004				
Remarks						
Date Received: 4		4-8-10				
Checked By:						
Title:						

Silt

55.0

* (no specification provided)

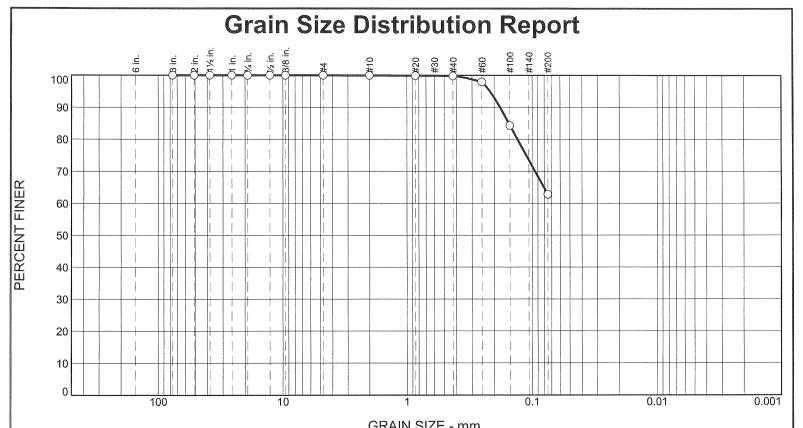
Source of Sample: Boring No.: AP2-3

Sample Number: 2

% +3"

0.0

Depth: 9.5'-11.0'


Date Sampled:

Clay

MACTEC ENGINEERING. AND CONSULTING, INC. Client: Southern Company

Project: Plant Yates Ash Pond

Project No: 6189109008

	GIVAIN SIZE - IIIII.							
% +3"	% Gravel		% Sand		% Fines			
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	0.0	0.1	0.1	37.0	62.8		

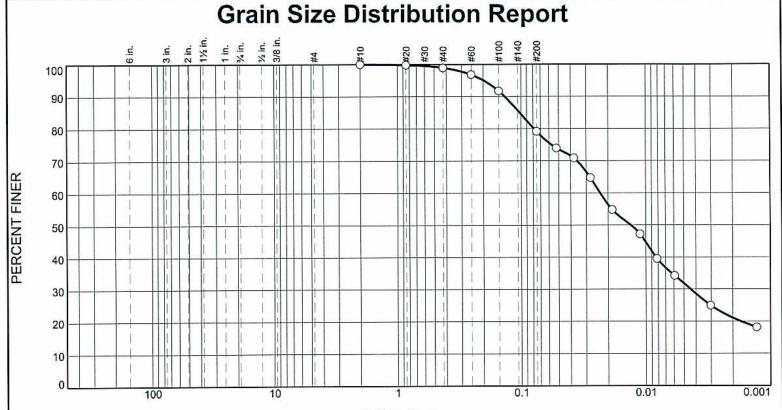
Test R	esults (ASTM D	A22 & ASTM D 1140) Spec.* Pass? (Percent) (X=Fail)			
Opening	Percent	Spec.*	Pass?		
Size	Finer	(Percent)	(X=Fail)		
3"	100.0				
2"	100.0				
1.5"	100.0				
1"	100.0				
3/4"	100.0				
1/2"	100.0				
3/8"	100.0				
#4	100.0				
#10	99.9				
#20	99.9				
#40	99.8				
#60	97.9				
#100	84.3				
#200	62.8				

Light Gray SILT with Fine Sand						
Atterberg Limits (ASTM D 4318)						
PL= 25						
Classification						
USCS (D 2487)= ML AASHTO (M 145)= A-4(4)						
Coefficients						
D ₉₀ = 0.1796 D ₈₅ = 0.1532 D ₆₀ =						
$D_{50} = D_{30} = D_{15} = D$						
D_{10} = C_u = C_c =						
Remarks						
Date Received: 4-2-10 Date Tested: 4-8-10						
Tested By: MC						
Checked By:						
Title:						

(no specification provided)

Source of Sample: Boring No.: AP2-3 **Sample Number:** 3

Depth: 15.0'-16.5'


Date Sampled:

MACTEC ENGINEERING. AND CONSULTING, INC.

Client: Southern Company

Project: Plant Yates Ash Pond

Project No: 6189109008

GRAIN SIZE - mm.

600 8000	% Gr	% Gravel		% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.0	1.1	19.8	47.3	31.8

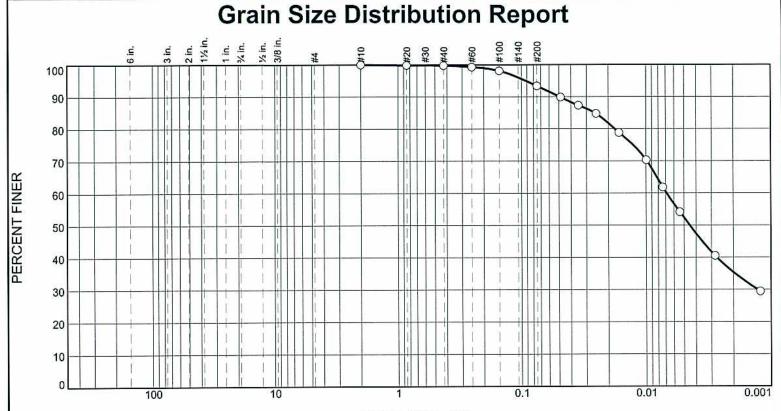
Opening Size	Percent Finer	Spec.* (Percent)	Pass? (X=Fail)
#10	100.0		
#20	99.8		
#40	98.9		
#60	96.8		
#100	91.7		
#200	79.1		
0.0521 mm.	73.9		
0.0376 mm.	70.9		
0.0277 mm.	64.7		
0.0185 mm.	54.8		
0.0111 mm.	47.2		
0.0082 mm.	39.5	1	
0.0059 mm.	34.2		
0.0030 mm.	24.9		
0.0013 mm.	18.1		
			1

	Material Description						
Dark Gray Elastic SILT with Sand							
Att	erberg Limits (ASTM D 4318)						
PL= 47	LL= 71 PI= 24						
	Classification						
USCS (D 2487)=	MH AASHTO (M 145)= A-7-5(25)					
D 01247	Coefficients						
D ₉₀ = 0.1347 D ₅₀ = 0.0132	D ₈₅ = 0.1024 D ₃₀ = 0.0044 D ₁₅ = 0.0231						
D ₁₀ =	cu ⁼ c _c ⁼						
	Remarks						
Assumed specific	gravity: 2.690						
Date Received:	4-2-10 Date Tested: 4-8-10						
Tested By:	MC						
Checked By:							
Title:							

(no specification provided)

Source of Sample: Boring No.: AP2-1 Sample Number: 10

Depth: 49.5'-51.0'


Date Sampled:

MACTEC ENGINEERING. AND CONSULTING, INC.

Client: Southern Company Project: Plant Yates Ash Pond

Project No: 6189109008

Jax FL

GRAIN SIZE - mm.

The action and	% Gr	% Gravel		% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.0	0.3	6.4	40.9	52.4

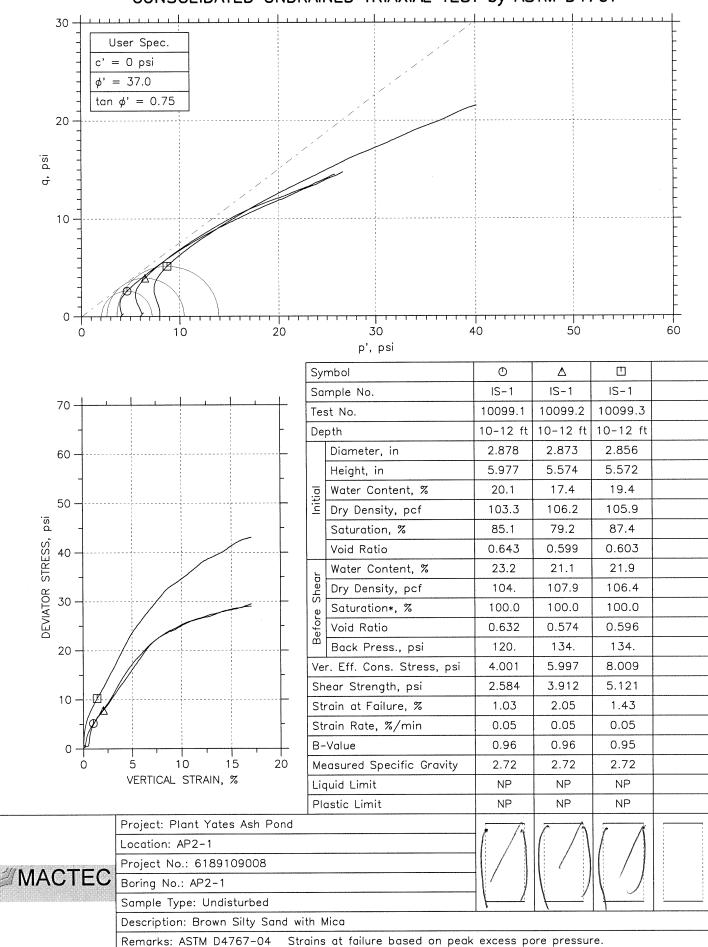
Opening Size	Percent Finer	Spec.* (Percent)	Pass? (X=Fail)
#10	100.0		<i>5</i>
#20	99.8		
#40	99.7		
#60	99.3		
#100	98.1		
#200	93.3		
0.0484 mm.	89.8		
0.0348 mm.	87.3		
0.0250 mm.	84.7		
0.0164 mm.	78.8		
0.0100 mm.	70.2		
0.0073 mm.	61.8		
0.0054 mm.	54.1		
0.0028 mm.	40.5		
0.0012 mm.	29.4		

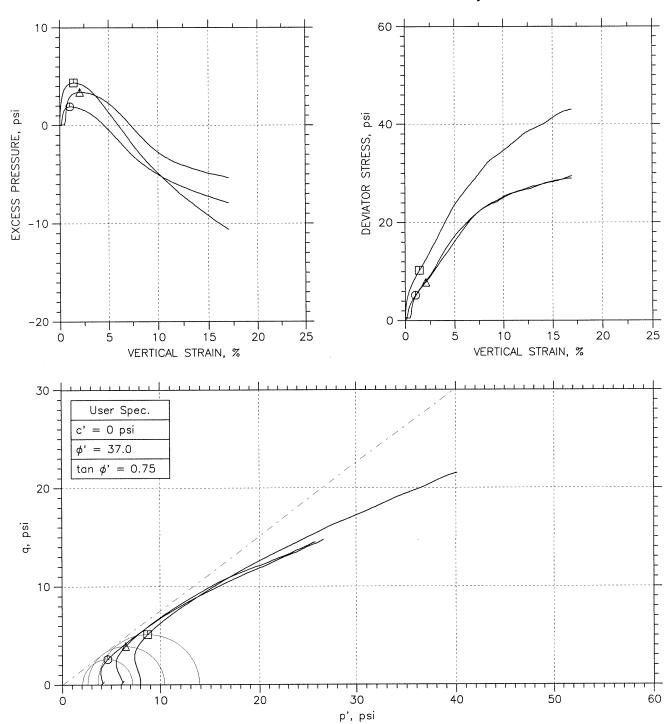
	<u>cription</u>	
erberg Limits (A LL= 52	ASTM D 4318) PI= 2	26
		A-7-6(28)
Coefficie D ₈₅ = 0.0257 D ₃₀ = 0.0013 C _u =	D ₆₀ = 0 D ₁₅ = C _c =	0.0069
Remark	s	
	ate Tested:	4-8-10
	clay with Sand crberg Limits (A LL= 52 Classifica CH AAS Coefficie D ₈₅ = 0.0257 D ₃₀ = 0.0013 C _u = Remark	Classification

(no specification provided)

Source of Sample: Boring No.: AP2-2 Sample Number: 4

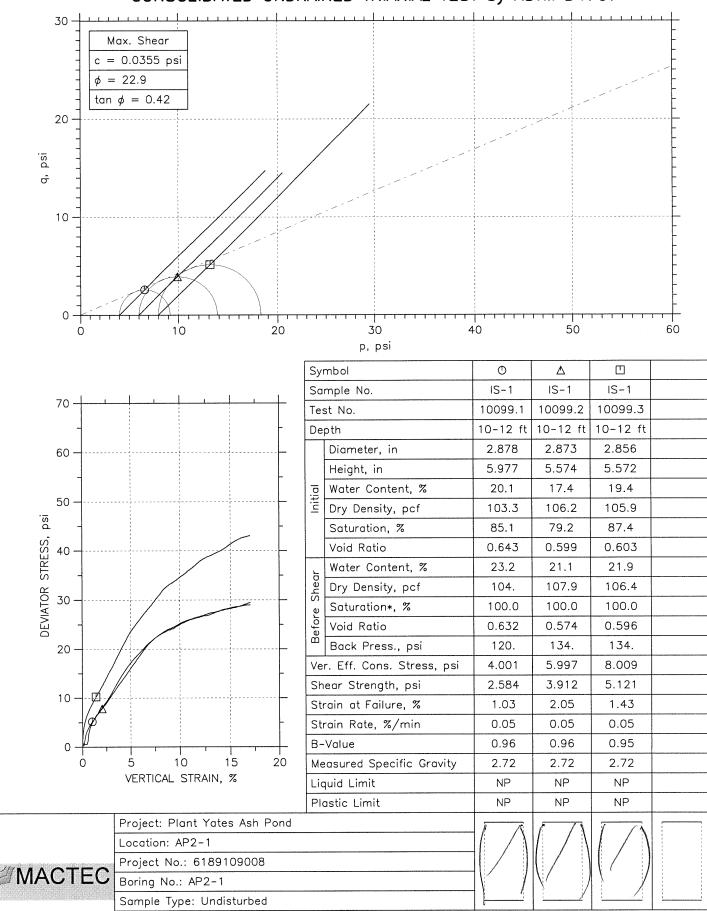
Depth: 19.5'-21.0'


Date Sampled:


MACTEC ENGINEERING. AND CONSULTING, INC.

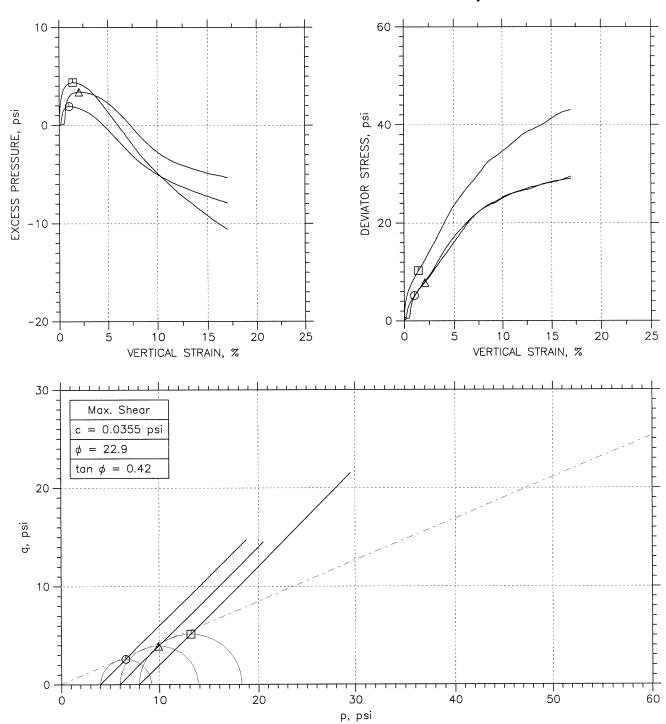
Client: Southern Company Project: Plant Yates Ash Pond

Project No: 6189109008


Jax FL

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0	IS-1	10099.1	10-12 ft	JW	3/26/10			10099.1_2547.dat
Δ	IS-1	10099.2	10-12 ft	JW	3/26/10			10099.2_2580.dat
	IS-1	10099.3	10-12 ft	JW	3/26/10			10099.3_2546.dat

/// A A OTEO							
	Project: Plant Yates Ash Pond	Location: AP2-1	Project No.: 6189109008				
MACTEC	Boring No.: AP2-1	Sample Type: Undisturbed					
	Description: Brown Silty Sand with Mica						
	Remarks: ASTM D4767-04 Strains at failure based on peak excess pore pressure.						

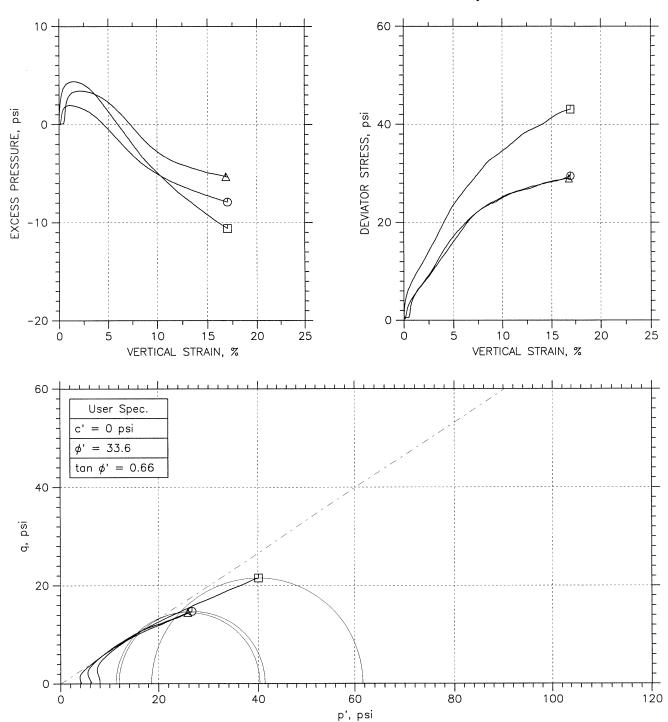


Strains at failure based on peak excess pore pressure.

Phase calculations based on start and end of test.

Description: Brown Silty Sand with Mica

Remarks: ASTM D4767-04



0 IS-1	10099.1	10-12 ft	JW	3/26/10		10099.1_2547.dat
					1	10000.1_2017.ddt
△ IS-1	10099.2	10-12 ft	JW	3/26/10		10099.2_2580.dat
□ IS-1	10099.3	10-12 ft	JW	3/26/10		10099.3_2546.dat

#MACTEC	Project: Plant Yates Ash Pond	Location: AP2-1	Project No.: 6189109008				
	Boring No.: AP2-1	Sample Type: Undisturbed					
	Description: Brown Silty Sand with Mica						
	Remarks: ASTM D4767-04 Strains at failure based on peak excess pore pressure.						

CONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D4767 User Spec. = 0 psi= 33.6 $\tan \phi' = 0.66$ 40 psi ò 20 80 100 120 20 40 60 p', psi Symbol Δ IS-1 IS-1 IS-1Sample No. 70 10099.2 10099.3 Test No. 10099.1 Depth 10-12 ft 10-12 ft 10-12 ft Diameter, in 2.878 2.873 2.856 60 5.977 5.574 Height, in 5.572 17.4 Water Content, % 20.1 19.4 50 Dry Density, pcf 103.3 106.2 105.9 psi. 87.4 Saturation, % 85.1 79.2 DEVIATOR STRESS, Void Ratio 0.643 0.599 0.603 40 Water Content, % 23.2 21.1 21.9 Dry Density, pcf 104. 107.9 106.4 30 Saturation*, % 100.0 100.0 100.0 0.632 0.574 0.596 Void Ratio Back Press., psi 120. 134. 134. 20 Ver. Eff. Cons. Stress, psi 4.001 5.997 8.009 14.74 Shear Strength, psi 14.5 21.53 10 17 17 Strain at Failure, % 16.8 Strain Rate, %/min 0.05 0.05 0.05 B-Value 0.96 0.96 0.95 0 10 20 2.72 2.72 2.72 Measured Specific Gravity VERTICAL STRAIN, % Liquid Limit NP NP NP NP NP NP Plastic Limit Project: Plant Yates Ash Pond

Project: Plant Yates Ash Pond
Location: AP2-1
Project No.: 6189109008
Boring No.: AP2-1
Sample Type: Undisturbed
Description: Brown Silty Sand with Mica
Remarks: ASTM D4767-04

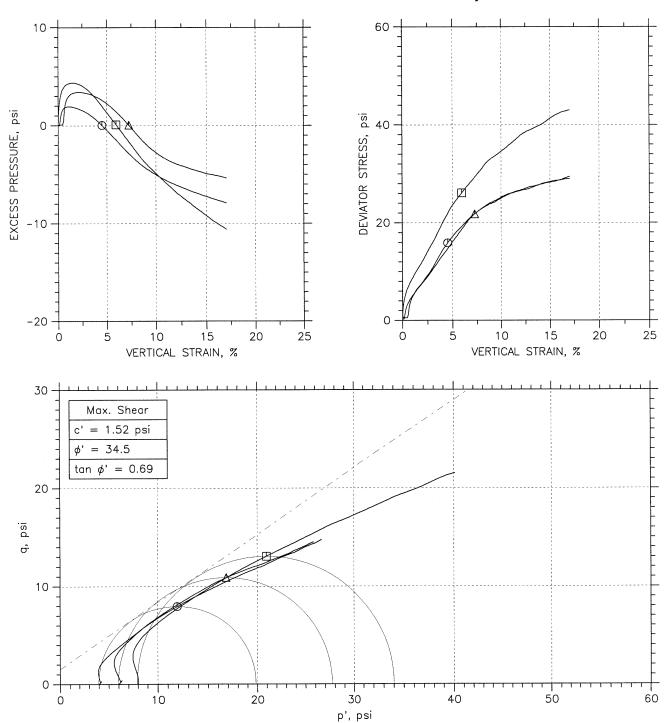
	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0	IS-1	10099.1	10-12 ft	JW	3/26/10			10099.1_2547.dat
Δ	IS-1	10099.2	10-12 ft	JW	3/26/10			10099.2_2580.dat
	IS-1	10099.3	10-12 ft	JW	3/26/10			10099.3_2546.dat

Ma	Project: Plant Yates Ash Pond	Location: AP2-1	Project No.: 6189109008			
#MACTEC	Boring No.: AP2-1	Sample Type: Undisturbed				
	Description: Brown Silty Sand with Mica					
	Remarks: ASTM D4767-04					

CONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D4767 Max. Shear = 1.52 psi $\phi' = 34.5$ $\tan \phi' = 0.69$ 20 psi σ̈́ 10 0 20 30 50 60 10 40 p', psi Symbol Φ Δ IS-1 IS-1 IS-1 Sample No. 70 Test No. 10099.2 10099.3 10099.1 10-12 ft Depth 10-12 ft 10-12 ft 2.856 Diameter, in 2.878 2.873 60 5.977 5.574 5.572 Height, in 17.4 19.4 Water Content, % 20.1 50 Dry Density, pcf 103.3 106.2 105.9 psi 87.4 Saturation, % 85.1 79.2 DEVIATOR STRESS, 0.643 Void Ratio 0.599 0.603 40 Water Content, % 23.2 21.1 21.9 Shear Dry Density, pcf 107.9 106.4 104. 30 Saturation*, % 100.0 100.0 100.0 Before 0.574 0.596 Void Ratio 0.632 Back Press., psi 120. 134. 134. 20 Ver. Eff. Cons. Stress, psi 5.997 8.009 4.001 Shear Strength, psi 7.937 10.88 13.05 10 Strain at Failure, % 4.52 7.24 5.94 Strain Rate, %/min 0.05 0.05 0.05 B-Value 0.96 0.96 0.95 5 10 20 Measured Specific Gravity 2.72 2.72 2.72 VERTICAL STRAIN, % Liquid Limit NP NP NP NΡ Plastic Limit NP NP Project: Plant Yates Ash Pond Location: AP2-1

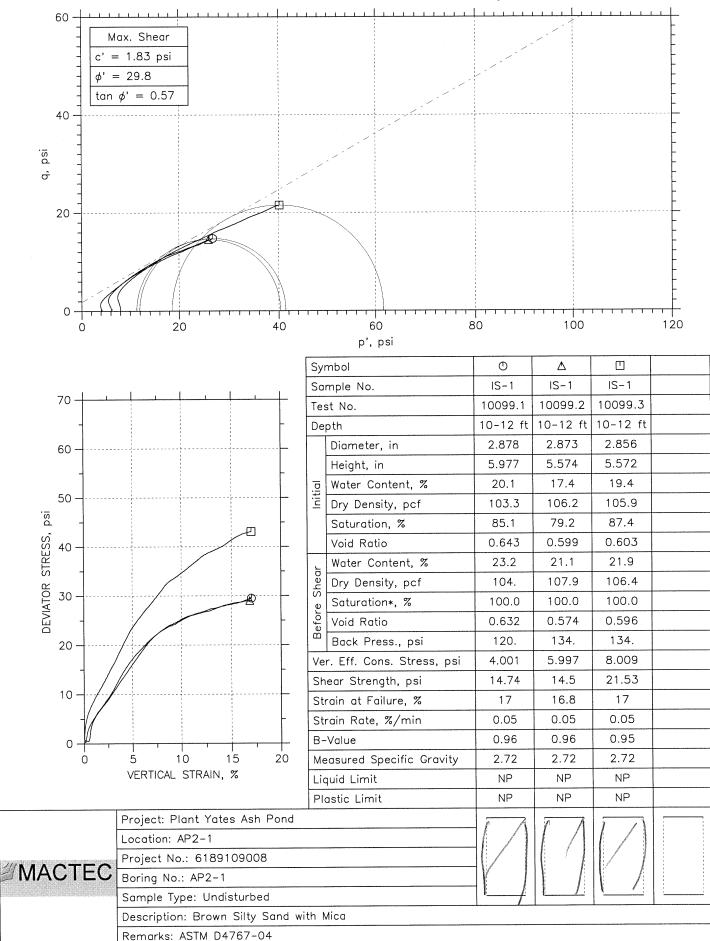
Project: Plant Yates Ash Pond

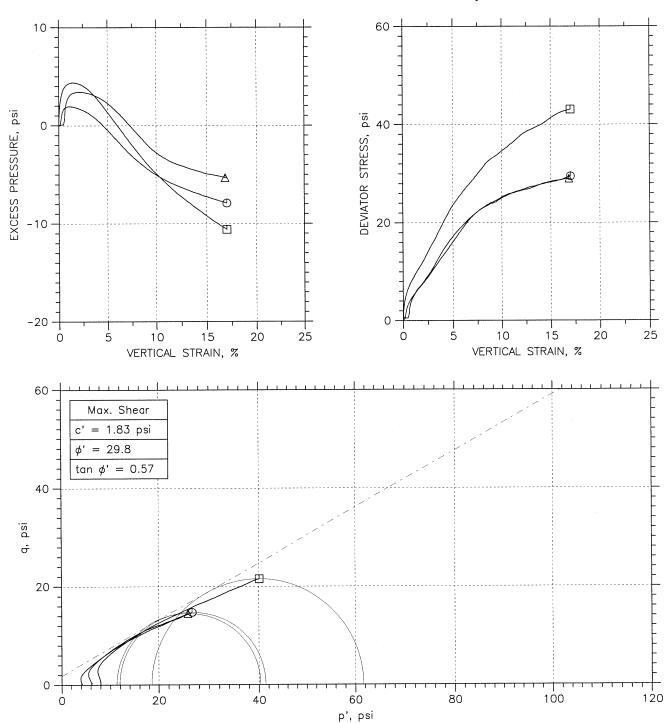
Location: AP2-1


Project No.: 6189109008

Boring No.: AP2-1

Sample Type: Undisturbed


Description: Brown Silty Sand with Mica

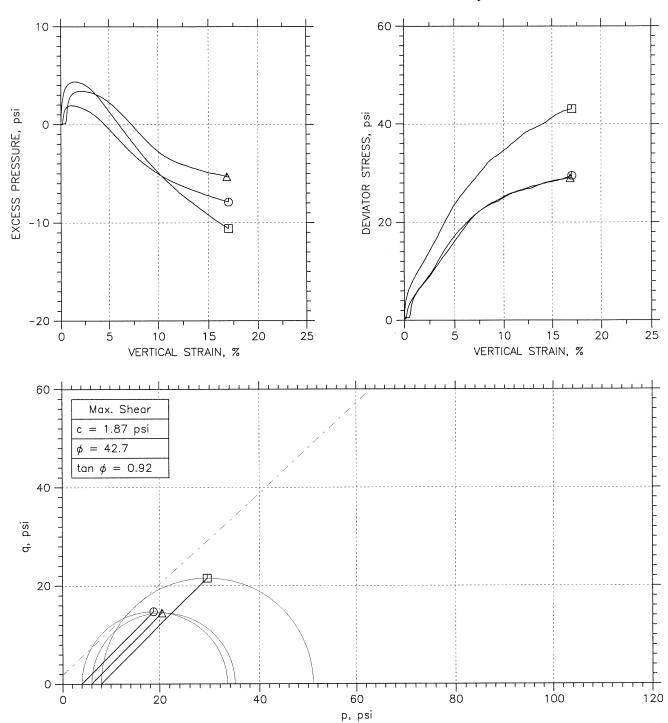

Remarks: ASTM D4767-04 Strains at failure based on A=0.

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0	IS-1	10099.1	10-12 ft	JW	3/26/10			10099.1_2547.dat
Δ	IS-1	10099.2	10-12 ft	JW	3/26/10			10099.2_2580.dat
	IS-1	10099.3	10-12 ft	JW	3/26/10			10099.3_2546.dat

		I	5 : 11 010010000
MAAAATEA	Project: Plant Yates Ash Pond	Location: AP2-1	Project No.: 6189109008
MACIEC	Project: Plant Yates Ash Pond Boring No.: AP2-1	Sample Type: Undisturbed	
	Description: Brown Silty Sand with	n Mica	
	Remarks: ASTM D4767-04 Stra	ins at failure based on A=0.	

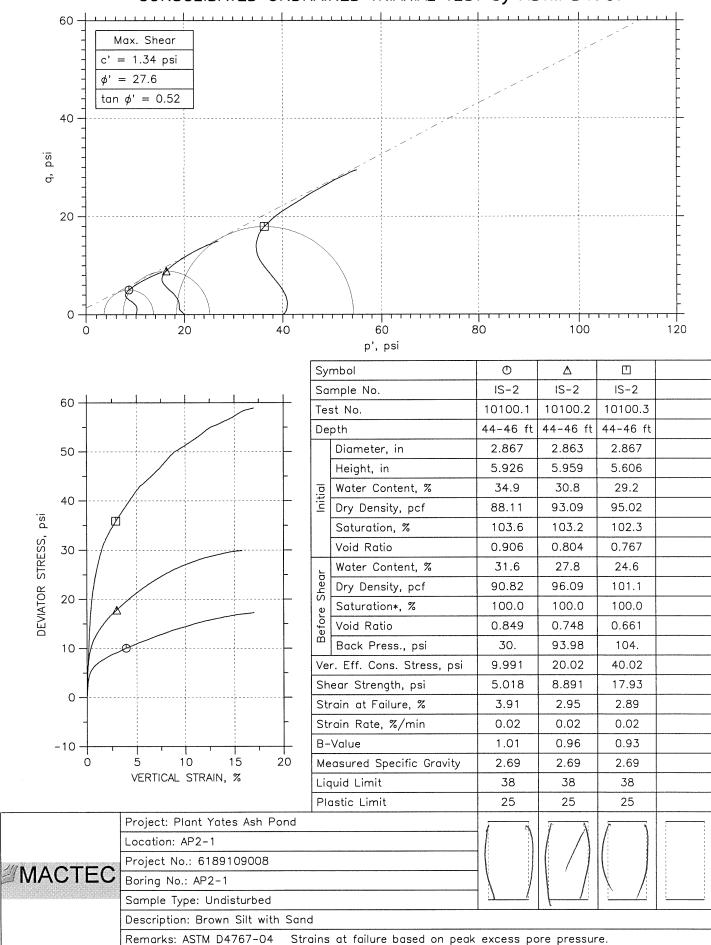
	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0	IS-1	10099.1	10-12 ft	JW	3/26/10			10099.1_2547.dat
Δ	IS-1	10099.2	10-12 ft	JW	3/26/10			10099.2_2580.dat
	IS-1	10099.3	10-12 ft	JW	3/26/10			10099.3_2546.dat

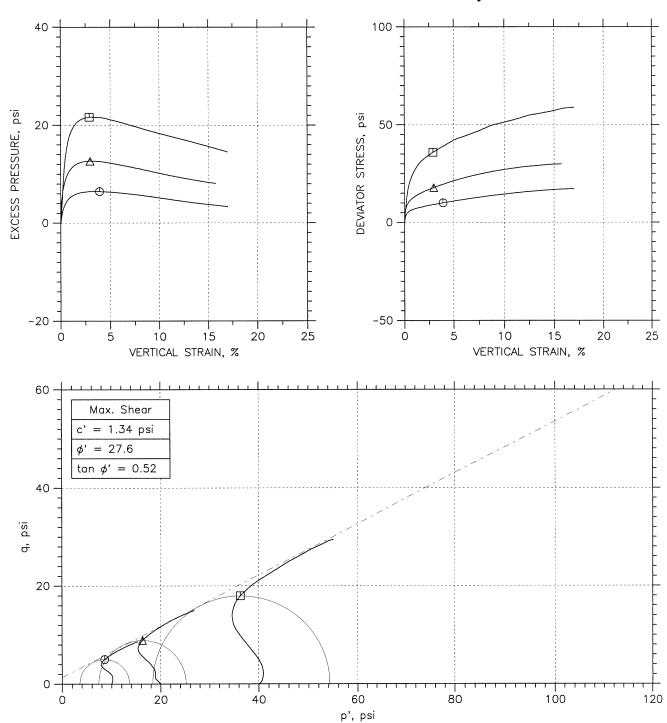
// P	۱Л	Δ	\mathbf{C}	-	C
I	Αī	-	U	_	U


· ·		
Project: Plant Yates Ash Pond	Location: AP2-1	Project No.: 6189109008
Boring No.: AP2-1	Sample Type: Undisturbed	
Description: Brown Silty Sand with	n Mica	
Remarks: ASTM D4767-04		

CONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D4767 Max. Shear = 1.87 psi = 42.7 $tan \phi = 0.92$ 40 psi σ̂ 20 40 80 100 120 20 60 p, psi Symbol 0 Δ IS-1 IS-1 IS-1 Sample No. 70 10099.2 10099.3 Test No. 10099.1 Depth 10-12 ft 10-12 ft 10-12 ft 2.878 2.873 2.856 Diameter, in 60 5.977 5.574 5.572 Height, in Water Content, % 17.4 19.4 20.1 50 Dry Density, pcf 103.3 106.2 105.9 psi 87.4 Saturation, % 85.1 79.2 DEVIATOR STRESS, Void Ratio 0.643 0.599 0.603 40 Water Content, % 23.2 21.1 21.9 Dry Density, pcf 104. 107.9 106.4 30 100.0 100.0 Saturation*, % 100.0 Void Ratio 0.632 0.574 0.596 Back Press., psi 120. 134. 134. 20 Ver. Eff. Cons. Stress, psi 4.001 5.997 8.009 Shear Strength, psi 14.74 14.5 21.53 10 Strain at Failure, % 17 16.8 17 0.05 0.05 Strain Rate, %/min 0.05 0.96 0.95 B-Value 0.96 0 10 15 20 Measured Specific Gravity 2.72 2.72 2.72 VERTICAL STRAIN, % NP NΡ NP Liquid Limit Plastic Limit NP NP NP Project: Plant Yates Ash Pond Location: AP2-1

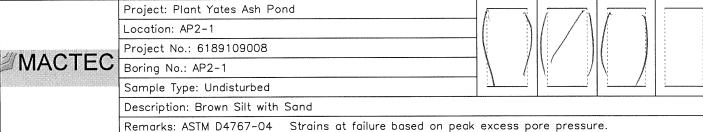
Project: Plant Yates Ash Pond
Location: AP2-1
Project No.: 6189109008
Boring No.: AP2-1
Sample Type: Undisturbed
Description: Brown Silty Sand with Mica
Remarks: ASTM D4767-04

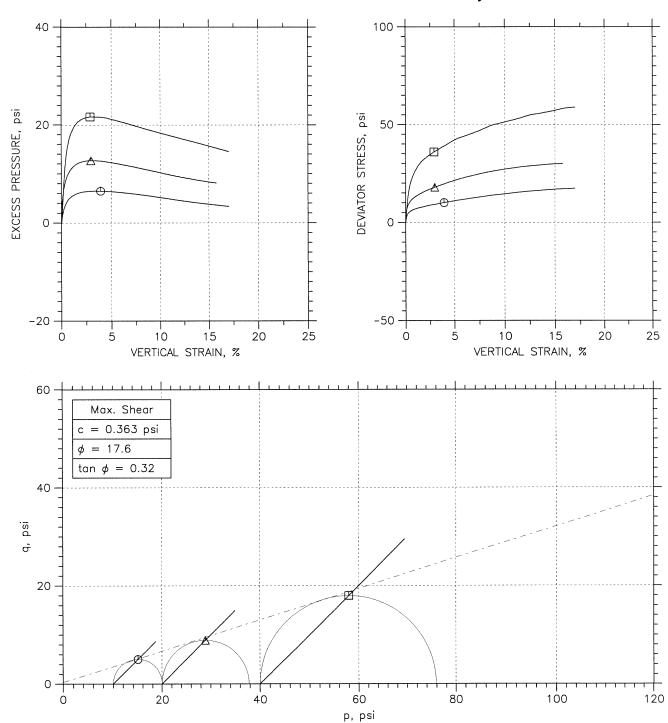

Phase calculations based on start and end of test.


* Saturation is set to 100% for phase calculations.

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ф	IS-1	10099.1	10-12 ft	JW	3/26/10			10099.1_2547.dat
Δ	IS-1	10099.2	10-12 ft	JW	3/26/10			10099.2_2580.dat
	IS-1	10099.3	10-12 ft	JW	3/26/10			10099.3_2546.dat

	Project: Plant Yates Ash Pond	Location: AP2-1	Project No.: 6189109008			
MACTEC	Project: Plant Yates Ash Pond Boring No.: AP2-1	Sample Type: Undisturbed				
	Description: Brown Silty Sand with Mica					
	Remarks: ASTM D4767-04					





	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0	IS-2	10100.1	44-46 ft	JW	3/30/10			10100.1_2547.dat
Δ	IS-2	10100.2	44-46 ft	JW	3/30/10			10100.2a_2580.dat
	IS-2	10100.3	44-46 ft	JW	3/30/10			10100.3_2546.dat

			,
	Project: Plant Yates Ash Pond	Location: AP2-1	Project No.: 6189109008
MACTEC	Project: Plant Yates Ash Pond Boring No.: AP2-1	Sample Type: Undisturbed	
	Description: Brown Silt with Sand		
	Remarks: ASTM D4767-04 Stra	ins at failure based on peak exces	ss pore pressure.

CONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D4767 Max. Shear = 0.363 psi= 17.6 $tan \phi = 0.32$ 40 psi σ̈ 20 0 40 60 80 100 120 20 p, psi Symbol Δ IS-2 IS-2 IS-2 Sample No. 60 Test No. 10100.1 10100.2 10100.3 44-46 ft 44-46 ft 44-46 ft Depth 2.867 2.863 2.867 Diameter, in 50 Height, in 5.926 5.959 5.606 Water Content, , Water Content, % 34.9 30.8 29.2 40 88.11 93.09 95.02 DEVIATOR STRESS, psi 103.6 103.2 102.3 Saturation, % Void Ratio 0.906 0.804 0.767 30 27.8 24.6 Water Content, % 31.6 Shear 90.82 Dry Density, pcf 96.09 101.1 20 Saturation*, % 100.0 100.0 100.0 Void Ratio 0.849 0.748 0.661 Back Press., psi 30. 93.98 104. 10 Ver. Eff. Cons. Stress, psi 9.991 20.02 40.02 Shear Strength, psi 8.891 17.93 5.018 0 Strain at Failure, % 3.91 2.95 2.89 0.02 Strain Rate, %/min 0.02 0.02 0.93 B-Value 1.01 0.96 -10 10 15 20 Measured Specific Gravity 2.69 2.69 2.69 VERTICAL STRAIN, % Liquid Limit 38 38 38 25 25 25 Plastic Limit Project: Plant Yates Ash Pond

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0	IS-2	10100.1	44-46 ft	JW	3/30/10			10100.1_2547.dat
Δ	IS-2	10100.2	44-46 ft	JW	3/30/10			10100.2a_2580.dat
	IS-2	10100.3	44-46 ft	JW	3/30/10			10100.3_2546.dat

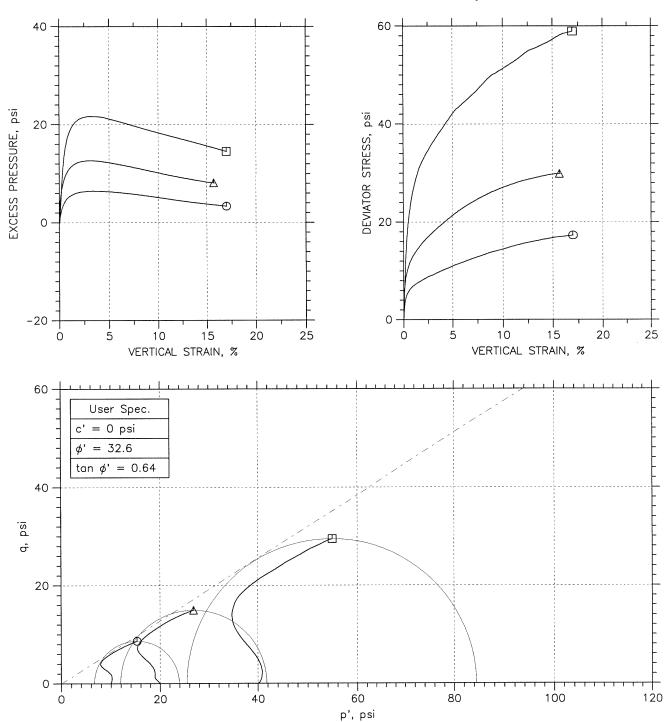
MARAOTEO	Project: Plant Yates Ash Pond	Location: AP2-1	Project No.: 6189109008			
ØMACTEC	Boring No.: AP2-1	Sample Type: Undisturbed				
	Description: Brown Silt with Sand					
	Remarks: ASTM D4767-04 Str	ains at failure based on peak exce	ss pore pressure.			

CONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D4767 User Spec. = 0 psi $\phi' = 32.6$ $tan \phi' = 0.64$ 40 psi 20 80 100 120 20 40 60 p', psi Symbol Δ IS-2 IS-2 IS-2 Sample No. 70 10100.1 10100.2 10100.3 Test No. 44-46 ft 44-46 ft Depth 44-46 ft Diameter, in 2.867 2.863 2.867 60 5.606 Height, in 5.926 5.959 29.2 Water Content, % 34.9 30.8 50 Dry Density, pcf 88.11 93.09 95.02 psi 103.2 102.3 Saturation, % 103.6 DEVIATOR STRESS, Void Ratio 0.906 0.804 0.767 40 Water Content, % 31.6 27.8 24.6 Shear Dry Density, pcf 90.82 96.09 101.1 30 Saturation*, % 100.0 100.0 100.0 0.748 0.661 Void Ratio 0.849 Back Press., psi 30. 93.98 104. 20 Ver. Eff. Cons. Stress, psi 20.02 40.02 9.991 Shear Strength, psi 8.634 14.94 29.46 10 17 Strain at Failure, % 17 15.7 Strain Rate, %/min 0.02 0.02 0.02 B-Value 1.01 0.96 0.93 0 10 20 2.69 Measured Specific Gravity 2.69 2.69 VERTICAL STRAIN, % Liquid Limit 38 38 38 25 25 25 Plastic Limit Project: Plant Yates Ash Pond

Project: Plant Yates Ash Pond

Location: AP2-1

Project No.: 6189109008


Boring No.: AP2-1

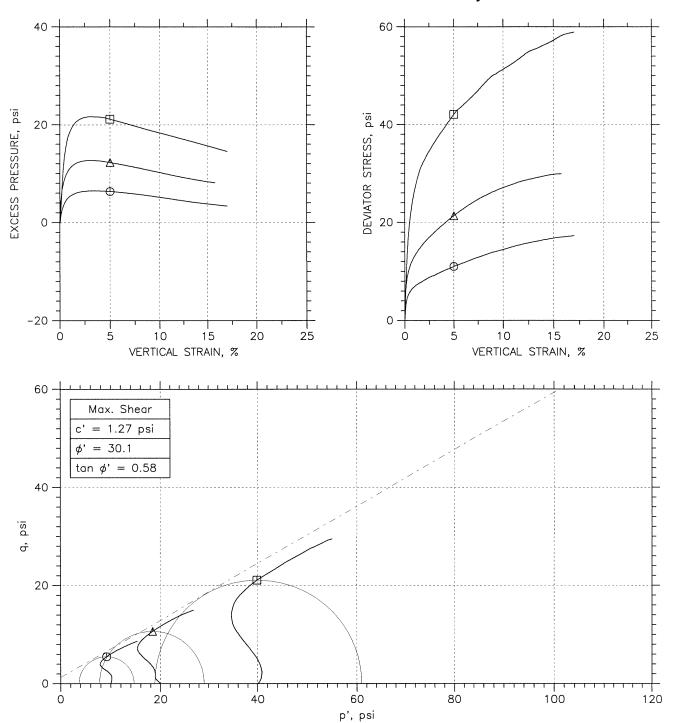
Sample Type: Undisturbed

Description: Brown Silt with Sand

Phase calculations based on start and end of test.

Remarks: ASTM D4767-04

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0	IS-2	10100.1	44-46 ft	JW	3/30/10			10100.1_2547.dat
Δ	IS-2	10100.2	44-46 ft	JW	3/30/10			10100.2a_2580.dat
	IS-2	10100.3	44-46 ft	JW	3/30/10			10100.3_2546.dat


#MACTEC						
	Project: Plant Yates Ash Pond	Location: AP2-1	Project No.: 6189109008			
	Boring No.: AP2-1	Sample Type: Undisturbed				
	Description: Brown Silt with Sand					
	Remarks: ASTM D4767-04					

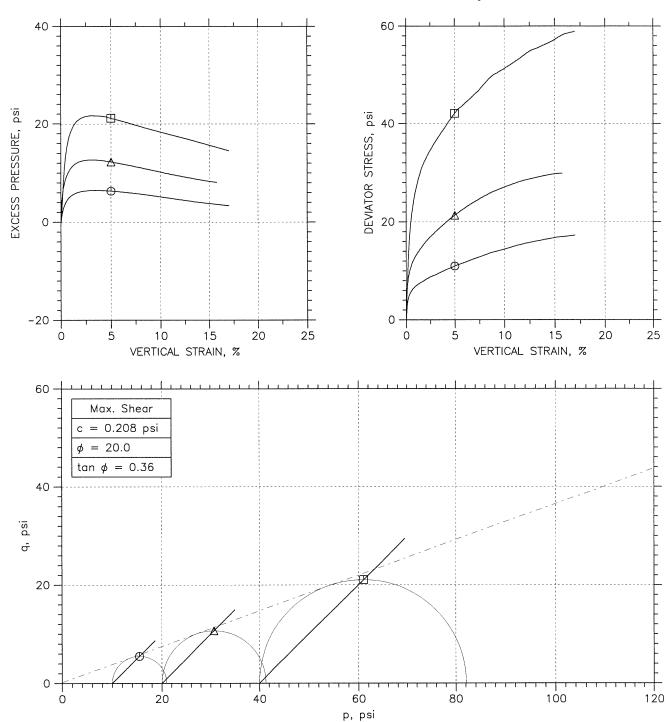
CONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D4767 Max. Shear c' = 1.27 psi $\phi' = 30.1$ $\tan \phi' = 0.58$ 40 psi ò 20 0 20 40 80 100 120 60 p', psi Symbol Φ Δ Sample No. IS-2 IS-2 IS-2 70 Test No. 10100.1 10100.2 10100.3 Depth 44-46 ft 44-46 ft 44-46 ft 2.867 2.863 Diameter, in 2.867 60 Height, in 5.926 5.959 5.606 Water Content, % 34.9 30.8 29.2 50 Dry Density, pcf 88.11 93.09 95.02 psi 102.3 Saturation, % 103.6 103.2 DEVIATOR STRESS, Void Ratio 0.906 0.804 0.767 40 Water Content, % 31.6 27.8 24.6 Shear Dry Density, pcf 90.82 96.09 101.1 30 Saturation*, % 100.0 100.0 100.0 Before Void Ratio 0.849 0.748 0.661 Back Press., psi 30. 93.98 104. 20 Ver. Eff. Cons. Stress, psi 9.991 20.02 40.02 Shear Strength, psi 5.488 10.66 21.05 10 Strain at Failure, % 5 5 5 Strain Rate, %/min 0.02 0.02 0.02 B-Value 0.96 0.93 1.01 0 10 20 Measured Specific Gravity 2.69 2.69 2.69 VERTICAL STRAIN, % Liquid Limit 38 38 38 Plastic Limit 25 25 25 Project: Plant Yates Ash Pond Location: AP2-1 Project No.: 6189109008 **MACTEC** Boring No.: AP2-1 Sample Type: Undisturbed Description: Brown Silt with Sand

Phase calculations based on start and end of test.

Remarks: ASTM D4767-04

* Saturation is set to 100% for phase calculations.

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0	IS-2	10100.1	44-46 ft	JW	3/30/10			10100.1_2547.dat
Δ	IS-2	10100.2	44-46 ft	JW	3/30/10			10100.2a_2580.dat
	IS-2	10100.3	44-46 ft	JW	3/30/10			10100.3_2546.dat

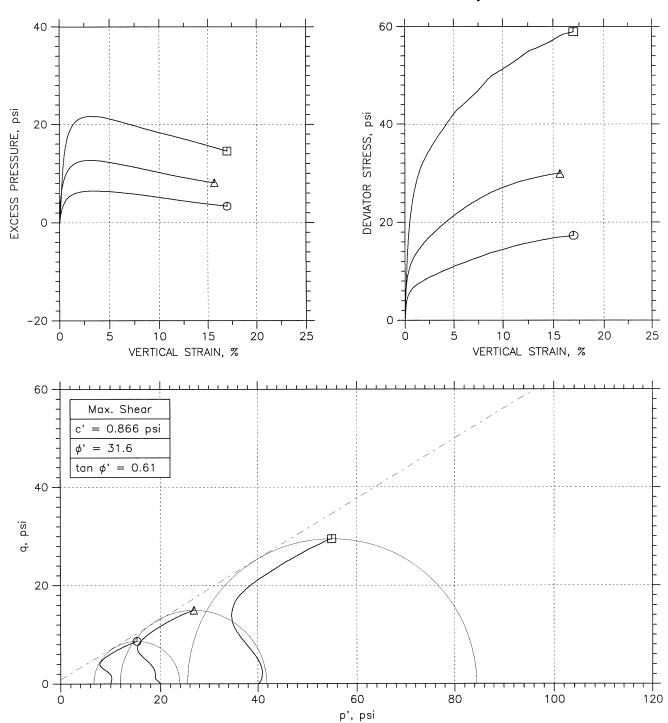

ne i a compo						
	Project: Plant Yates Ash Pond	Location: AP2-1	Project No.: 6189109008			
MACTEC	Boring No.: AP2-1	Sample Type: Undisturbed				
	Description: Brown Silt with Sand					
	Remarks: ASTM D4767-04					

CONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D4767 Max. Shear = 0.208 psi $\phi = 20.0$ $tan \phi = 0.36$ 40 psi ó 20 0 80 100 120 20 40 60 p, psi Symbol Φ Δ Ш IS-2 Sample No. IS-2 IS-2 70 Test No. 10100.1 10100.2 10100.3 Depth 44-46 ft 44-46 ft 44-46 ft 2.867 2.863 2.867 Diameter, in 60 Height, in 5.926 5.959 5.606 Water Content, % 34.9 30.8 29.2 50 Dry Density, pcf 88.11 93.09 95.02 psi. 103.2 102.3 Saturation, % 103.6 DEVIATOR STRESS, Void Ratio 0.906 0.804 0.767 40 Water Content, % 31.6 27.8 24.6 Shear Dry Density, pcf 90.82 96.09 101.1 30 Saturation*, % 100.0 100.0 100.0 Before 0.661 Void Ratio 0.849 0.748 Back Press., psi 30. 93.98 104. 20 Ver. Eff. Cons. Stress, psi 9.991 20.02 40.02 5.488 Shear Strength, psi 10.66 21.05 10 5 5 Strain at Failure, % 5 Strain Rate, %/min 0.02 0.02 0.02 B-Value 1.01 0.93 0.96 0 10 20 Measured Specific Gravity 2.69 2.69 2.69 VERTICAL STRAIN, % Liquid Limit 38 38 38 25 Plastic Limit 25 25 Project: Plant Yates Ash Pond Location: AP2-1 Project No.: 6189109008 **MACTEC** Boring No.: AP2-1 Sample Type: Undisturbed

Phase calculations based on start and end of test.

Description: Brown Silt with Sand

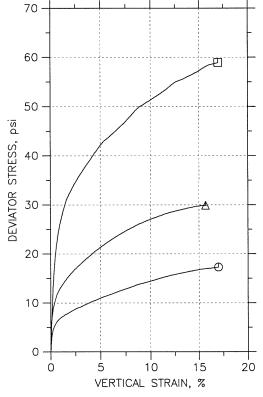
Remarks: ASTM D4767-04



	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0	IS-2	10100.1	44-46 ft	JW	3/30/10			10100.1_2547.dat
Δ	IS-2	10100.2	44-46 ft	JW	3/30/10			10100.2a_2580.dat
	IS-2	10100.3	44-46 ft	JW	3/30/10			10100.3_2546.dat

100	Project: Plant Yates Ash Pond	Location: AP2-1	Project No.: 6189109008			
MACTEC	Project: Plant Yates Ash Pond Boring No.: AP2-1	Sample Type: Undisturbed				
	Description: Brown Silt with Sand					
	Remarks: ASTM D4767-04					

CONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D4767 Max. Shear = 0.866 psi $\phi' = 31.6$ $\tan \phi' = 0.61$ 40 psi 20 0 120 80 100 20 40 60 p', psi Symbol Φ Δ IS-2 IS-2 IS-2 Sample No. 70 Test No. 10100.1 10100.2 10100.3 Depth 44-46 ft 44-46 ft 44-46 ft Diameter, in 2.867 2.863 2.867 60 Height, in 5.926 5.959 5.606 Water Content, % 34.9 30.8 29.2 50 Dry Density, pcf 88.11 93.09 95.02 psi. Saturation, % 103.6 103.2 102.3 DEVIATOR STRESS, Void Ratio 0.906 0.804 0.767 40 Water Content, % 31.6 27.8 24.6 Shear Dry Density, pcf 90.82 96.09 101.1 30 Saturation*, % 100.0 100.0 100.0 Before Void Ratio 0.661 0.849 0.748 Back Press., psi 93.98 104. 30. 20 Ver. Eff. Cons. Stress, psi 40.02 9.991 20.02 Shear Strength, psi 8.634 14.94 29.46 10 17 Strain at Failure, % 17 15.7 Strain Rate, %/min 0.02 0.02 0.02 B-Value 1.01 0.96 0.93 0 10 20 Measured Specific Gravity 2.69 2.69 2.69 VERTICAL STRAIN, % Liquid Limit 38 38 38 25 25 Plastic Limit 25 Project: Plant Yates Ash Pond


Project: Plant Yates Ash Pond
Location: AP2-1
Project No.: 6189109008
Boring No.: AP2-1
Sample Type: Undisturbed
Description: Brown Silt with Sand
Remarks: ASTM D4767-04

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0	IS-2	10100.1	44-46 ft	JW	3/30/10			10100.1_2547.dat
Δ	IS-2	10100.2	44-46 ft	JW	3/30/10			10100.2a_2580.dat
	IS-2	10100.3	44-46 ft	JW	3/30/10			10100.3_2546.dat

Harris and the second	Project: Plant Yates Ash Pond	Location: AP2-1	Project No.: 6189109008			
#MACTEC	Boring No.: AP2-1	Sample Type: Undisturbed				
	Description: Brown Silt with Sand					
	Remarks: ASTM D4767-04					

CONSOLIDATED UNDRAINED TRIAXIAL TEST by ASTM D4767 Max. Shear = 0.887 psi $\phi = 24.3$ $tan \phi = 0.45$ 40 60 80 100 20 120 p, psi Symbol

Symbol			Δ		
Sa	mple No.	IS-2	IS-2	IS-2	
Tes	st No.	10100.1	10100.2	10100.3	
De	pth	44-46 ft	44-46 ft	44-46 ft	
	Diameter, in	2.867	2.863	2.867	
	Height, in	5.926	5.959	5.606	
Initial	Water Content, %	34.9	30.8	29.2	
<u>=</u>	Dry Density, pcf	88.11	93.09	95.02	
	Saturation, %	103.6	103.2	102.3	
	Void Ratio	0.906	0.804	0.767	
[_	Water Content, %	31.6	27.8	24.6	
Shear	Dry Density, pcf	90.82	96.09	101.1	
	Saturation*, %	100.0	100.0	100.0	
Before	Void Ratio	0.849	0.748	0.661	
m	Back Press., psi	30.	93.98	104.	
Ve	r. Eff. Cons. Stress, psi	9.991	20.02	40.02	
Sh	ear Strength, psi	8.634	14.94	29.46	
Str	rain at Failure, %	17	15.7	17	
Str	rain Rate, %/min	0.02	0.02	0.02	
B-	Value	1.01	0.96	0.93	
Ме	asured Specific Gravity	2.69	2.69	2.69	
Lic	quid Limit	38	38	38	
Plo	astic Limit	25	25	25	

MACTEC

40

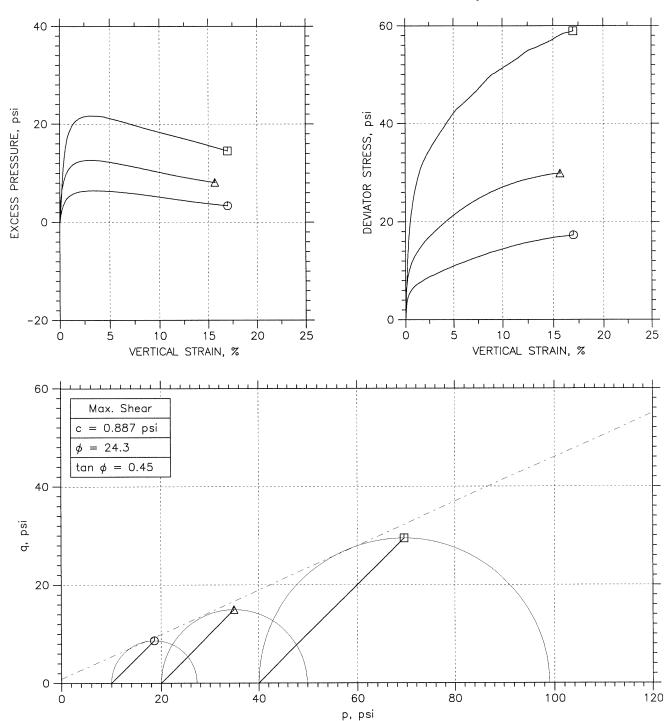
20

0

psi σ̂

Project: Plant Yates Ash Pond

Location: AP2-1

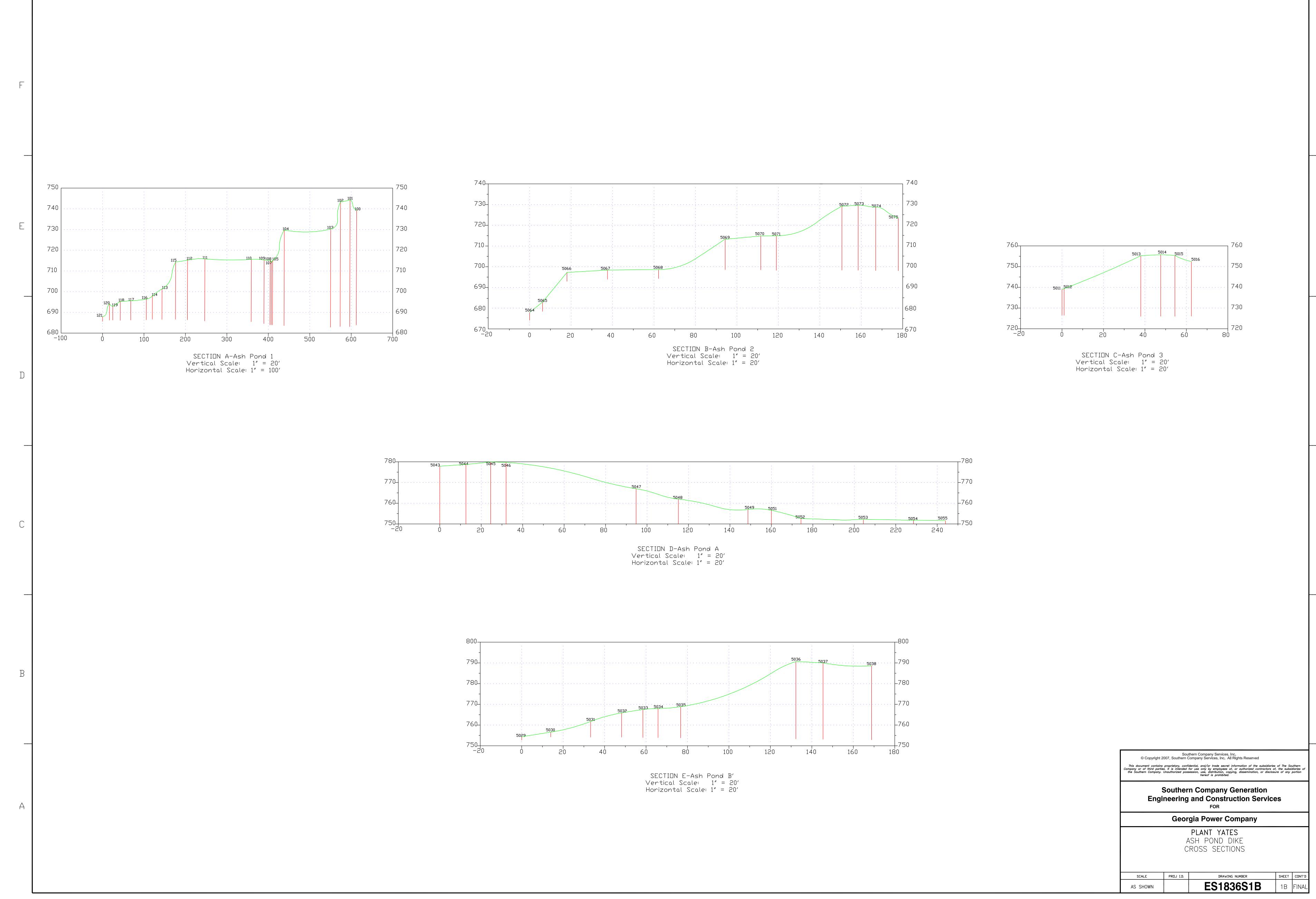

Project No.: 6189109008

Boring No.: AP2-1

Sample Type: Undisturbed

Description: Brown Silt with Sand

Remarks: ASTM D4767-04



	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ф	IS-2	10100.1	44-46 ft	JW	3/30/10			10100.1_2547.dat
Δ	IS-2	10100.2	44-46 ft	JW	3/30/10			10100.2a_2580.dat
	IS-2	10100.3	44-46 ft	JW	3/30/10			10100.3_2546.dat

MAAA OTEO	Project: Plant Yates Ash Pond	Location: AP2-1	Project No.: 6189109008		
#MACTEC	Boring No.: AP2-1	Sample Type: Undisturbed			
	Description: Brown Silt with Sand				
	Remarks: ASTM D4767-04				

Attachment D

Critical Section Profile

