

Plant Scherer Monthly Dewatering Results¹ July 2025

TŁ TETRA TECH

Effluent Concentration Permit Limits Parameter Units Daily Min² Daily Avg² **Daily Min Daily Avg Daily Max** Daily Max² *** *** *** Flow MGD 7.71 10.77 *** *** SU 6.0 7.2 8.0 9.0 **Total Suspended Solids** mg/L 2.8 11.6 100.0 5.7 ND 30.0 Oil and Grease ND^3 ND ND ND 15.0 20.0 mg/L

	Units							
Parameter		Week 1	Week 2 Week 3		Week 4	Week 5	Daily	
i didilictei		7/1/2025	7/8/2025	7/15/2025	7/22/2025	No Discharge	Average	
Turbidity ⁴	NTU	4.8	6.9	6.9	6.3		6.2	
Total Residual Chlorine ⁴	mg/L	ND	ND	ND	ND		ND	
Total Dissolved Solids	mg/L	638	680	712	678		677	
Ammonia	mg/L	ND	ND	ND	ND		ND	
Total Kjeldahl Nitrogen	mg/L	1.10	ND	0.71	1.10		0.73	
Nitrate-Nitrite	mg/L	ND	ND	ND	ND		ND	
Organic Nitrogen	mg/L	1.10	ND	0.71	1.10		0.73	
Phosphorus	mg/L	ND	ND	ND	ND		ND	
Ortho-Phosphorus	mg/L	ND	ND	ND	ND		ND	
Biological Oxygen Demand	mg/L	ND	2.3	2.1	2.8		1.8	
Hardness	mg/L	78	73	67	66		71	

Parameter	Units	Effluent Concentration ⁵					Calculated Receiving Water Concentration⁵						Water Quality Criteria ⁶	
		Week 1	Week 2	Week 3	Week 4	Week 5	Week 1	Week 2	Week 3	Week 4	Week 5	Average	Acute ⁷	Chronic ⁷
		7/1/2025	7/8/2025	7/15/2025	7/22/2025	No Discharge	7/1/2025	7/8/2025	7/15/2025	7/22/2025	No Discharge			
Antimony ⁹	μg/L	ND	ND	ND	ND		***	***	***	***		***	***	640
Arsenic	μg/L	ND	ND	ND	ND		***	***	***	***		***	340	150
Cadmium	μg/L	ND	ND	ND	ND		***	***	***	***		***	1.09	0.16
Chromium ⁸	μg/L	ND	ND	ND	ND		***	***	***	***		***	16	11
Copper	μg/L	ND	ND	ND	ND		***	***	***	***		***	7	5
Lead	μg/L	ND	ND	ND	ND		***	***	***	***		***	32	1
Nickel	μg/L	ND	ND	5.3	6.2		***	***	0.2532	0.3244		0.1444	274	30
Selenium ⁹	μg/L	9.2	8.6	7.2	8.5		0.6217	0.5812	0.4866	0.5744		0.5660	***	5
Thallium ⁹	μg/L	ND	ND	ND	ND		***	***	***	***		***	***	0.47
Zinc	μg/L	ND	ND	ND	ND		***	***	***	***		***	68	69
Mercury	ng/L	1.7	2.8	2.3	ND		0.1149	0.1885	0.1541	***		0.1144	1400	12

- Tetra Tech verifies the correct laboratory analysis methods were used, any applicable permit limits have been met and other results are protective of Georgia EPD's water quality standards.

 Daily Min and Daily Max are the lowest and highest values for any day in the month. Daily Avg is the arithmetic average of all daily values during the entire month.

 ND = Not Detected (below the lab's reporting limit).

 Turbidity and total residual chlorine are monitored continuously. The value reported is the weekly maximum and the daily average is the average of the weekly maximum values reported.

 Calculated Receiving Water Concentration shows the effluent concentration at the discharge once it has fully mixed in the receiving waterbody. This value is calculated as a dissolved concentrations.

 Calculated Receiving Water Concentrations. Consistent with Georgia EPD, non-detectable effluent concentrations at the dissolved orm. Consistent with Georgia EPD, non-detectable effluent concentrations are consistent with Georgia EPD, non-detectable effluent concentrations are protective of the designated use per Georgia EPD's rules and regulations. Calculated Receiving Water Concentrations is shart hose criteria are protective of the waterbody.

 Acute (short-term) water quality criterion to be compared with the weekly calculated receiving water concentration. Numeric water quality criterion to be compared with the weekly calculated receiving water concentration.

 The numeric water quality criterion shown are the chronic (long-term) water quality criterion water quality criterion water quality criterion water quality criterion water quality criterion.

 Not Applicable

- *** = Not Applicable

 mg/L = milligrams per liter = parts per million; µg/L = micrograms per liter = parts per billion; ng/L = nanograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day

Plant Scherer Monthly Instream Results¹

Prepared by:

July 2025

		Ocmulgee River ²						
Parameter ³	Units	7/1/2025	7/1/2025	7/8/2025	7/8/2025			
		Upstream	Downstream	Upstream	Downstream			
рН	SU	7.3	7.5	7.3	7.4			
TSS	mg/L	ND^4	ND	3.4	9.5			
O&G	mg/L	ND	ND	ND	ND			
TRC	mg/L	***	***	***	***			
Turbidity	NTU	5.4	6.2	6.9	6.9			
TDS	mg/L	59	48	62	64			
BOD	mg/L	ND	ND	ND	ND			
Antimony	μg/L	ND	ND	ND	ND			
Arsenic	μg/L	ND	ND	ND	ND			
Cadmium	μg/L	ND	ND	ND	ND			
Chromium	μg/L	ND	ND	ND	ND			
Copper	μg/L	ND	ND	ND	ND			
Lead	μg/L	ND	ND	ND	ND			
Mercury	ng/L	0.9	0.9	1.0	1.1			
Nickel	μg/L	ND	ND	ND	ND			
Selenium	μg/L	ND	ND	ND	ND			
Thallium	μg/L	ND	ND	ND	ND			
Zinc	μg/L	ND	ND	ND	ND			
Ammonia	mg/L	ND	ND	ND	ND			
TKN	mg/L	ND	ND	ND	ND			
Nitrate-Nitrite	mg/L	0.41	0.41	0.39	0.38			
Organic Nitrogen	mg/L	ND	ND	ND	ND			
Phosphorus	mg/L	ND	ND	ND	ND			
Ortho-phosphorus	mg/L	ND	ND	ND	ND			
Hardness	mg/L	23	23	22	23			

- 1 Tetra Tech verifies the correct laboratory analysis methods were used.
- 2 Ocmulgee River measured 1000ft upstream and 1000ft downstream of the Final Plant Discharge (Outfall 001)
- 3 Metals results are total recoverable.
- 4 ND = Non-detect
- *** = Not Applicable

mg/L = milligrams per liter = parts per million; $\mu g/L = micrograms$ per liter = parts per billion; ng/L = nanograms per liter = parts per trillion; SU = Standard Units; MGD = Million Gallons Day